1
|
Khalili Yazdi A, Namjoshi S, Hackett J, Ghonaim N, Shilton BH. Characterization of a polypeptide-binding site in the DEAD Motor of the SecA ATPase. FEBS Lett 2017; 591:3378-3390. [DOI: 10.1002/1873-3468.12832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 08/18/2017] [Accepted: 08/22/2017] [Indexed: 11/07/2022]
Affiliation(s)
| | - Sarita Namjoshi
- Department of Biochemistry; University of Western Ontario; London Canada
| | - Jesse Hackett
- Department of Biochemistry; University of Western Ontario; London Canada
| | - Nour Ghonaim
- Department of Biochemistry; University of Western Ontario; London Canada
| | - Brian H. Shilton
- Department of Biochemistry; University of Western Ontario; London Canada
| |
Collapse
|
2
|
Wowor AJ, Yan Y, Auclair SM, Yu D, Zhang J, May ER, Gross ML, Kendall DA, Cole JL. Analysis of SecA dimerization in solution. Biochemistry 2014; 53:3248-60. [PMID: 24786965 PMCID: PMC4030788 DOI: 10.1021/bi500348p] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
![]()
The Sec pathway mediates translocation
of protein across the inner
membrane of bacteria. SecA is a motor protein that drives translocation
of preprotein through the SecYEG channel. SecA reversibly dimerizes
under physiological conditions, but different dimer interfaces have
been observed in SecA crystal structures. Here, we have used biophysical
approaches to address the nature of the SecA dimer that exists in
solution. We have taken advantage of the extreme salt sensitivity
of SecA dimerization to compare the rates of hydrogen–deuterium
exchange of the monomer and dimer and have analyzed the effects of
single-alanine substitutions on dimerization affinity. Our results
support the antiparallel dimer arrangement observed in one of the
crystal structures of Bacillus subtilis SecA. Additional
residues lying within the preprotein binding domain and the C-terminus
are also protected from exchange upon dimerization, indicating linkage
to a conformational transition of the preprotein binding domain from
an open to a closed state. In agreement with this interpretation,
normal mode analysis demonstrates that the SecA dimer interface influences
the global dynamics of SecA such that dimerization stabilizes the
closed conformation.
Collapse
Affiliation(s)
- Andy J Wowor
- Department of Pharmaceutical Sciences, University of Connecticut , Storrs, Connecticut 06269, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Mapping of the SecA signal peptide binding site and dimeric interface by using the substituted cysteine accessibility method. J Bacteriol 2013; 195:4709-15. [PMID: 23935053 DOI: 10.1128/jb.00661-13] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
SecA is an ATPase nanomotor critical for bacterial secretory protein translocation. Secretory proteins carry an amino-terminal signal peptide that is recognized and bound by SecA followed by its transfer across the SecYEG translocon. While this process is crucial for the onset of translocation, exactly where the signal peptide interacts with SecA is unclear. SecA protomers also interact among themselves to form dimers in solution, yet the oligomeric interface and the residues involved in dimerization are unknown. To address these issues, we utilized the substituted cysteine accessibility method (SCAM); we generated a library of 23 monocysteine SecA mutants and probed for the accessibility of each mutant cysteine to maleimide-(polyethylene glycol)2-biotin (MPB), a sulfhydryl-labeling reagent, both in the presence and absence of a signal peptide. Dramatic differences in MPB labeling were observed, with a select few mutants located at the preprotein cross-linking domain (PPXD), the helical wing domain (HWD), and the helical scaffold domain (HSD), indicating that the signal peptide binds at the groove formed between these three domains. The exposure of this binding site is varied under different conditions and could therefore provide an ideal mechanism for preprotein transfer into the translocon. We also identified residues G793, A795, K797, and D798 located at the two-helix finger of the HSD to be involved in dimerization. Adenosine-5'-(γ-thio)-triphosphate (ATPγS) alone and, more extensively, in conjunction with lipids and signal peptides strongly favored dimer dissociation, while ADP supports dimerization. This study provides key insight into the structure-function relationships of SecA preprotein binding and dimer dissociation.
Collapse
|
4
|
De Bona P, Deshmukh L, Gorbatyuk V, Vinogradova O, Kendall DA. Structural studies of a signal peptide in complex with signal peptidase I cytoplasmic domain: the stabilizing effect of membrane-mimetics on the acquired fold. Proteins 2011; 80:807-17. [PMID: 22113858 DOI: 10.1002/prot.23238] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Revised: 10/12/2011] [Accepted: 10/17/2011] [Indexed: 11/09/2022]
Abstract
A protein destined for export from the cell cytoplasm is synthesized as a preprotein with an amino-terminal signal peptide. In Escherichia coli, typically signal peptides that guide preproteins into the SecYEG protein conduction channel are subsequently removed by signal peptidase I. To understand the mechanism of this critical step, we have assessed the conformation of the signal peptide when bound to signal peptidase by solution nuclear magnetic resonance. We employed a soluble form of signal peptidase, which laks the two transmembrane domains (SPase I Δ2-75), and the E. coli alkaline phosphatase signal peptide. Using a transferred NOE approach, we found clear evidence of a weak peptide-enzyme complex formation. The peptide adopts a U-turn shape originating from the proline residues within the primary sequence that is stabilized by its interaction with the peptidase and leaves key residues of the cleavage region exposed for proteolysis. In dodecylphosphocholine (DPC) micelles the signal peptide also adopts a U-turn shape comparable with that observed in association with the enzyme. In both environments this conformation is stabilized by the signal peptide phenylalanine side chain-interaction with enzyme or lipid mimetic. Moreover, in the presence of DPC, the N-terminal core region residues of the peptide adopt a helical motif and based on PRE (paramagnetic relaxation enhancement) experiments are shown to be buried within the membrane. Taken together, this is consistent with proteolysis of the preprotein occurring while the signal peptide remains in the bilayer and the enzyme active site functioning at the membrane surface.
Collapse
Affiliation(s)
- Paolo De Bona
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut 06269-3192, USA
| | | | | | | | | |
Collapse
|
5
|
Abstract
SecA signal peptide interaction is critical for initiating protein translocation in the bacterial Sec-dependent pathway. Here, we have utilized the recent nuclear magnetic resonance (NMR) and Förster resonance energy transfer studies that mapped the location of the SecA signal peptide-binding site to design and isolate signal peptide-binding-defective secA mutants. Biochemical characterization of the mutant SecA proteins showed that Ser226, Val310, Ile789, Glu806, and Phe808 are important for signal peptide binding. A genetic system utilizing alkaline phosphatase secretion driven by different signal peptides was employed to demonstrate that both the PhoA and LamB signal peptides appear to recognize a common set of residues at the SecA signal peptide-binding site. A similar system containing either SecA-dependent or signal recognition particle (SRP)-dependent signal peptides along with the prlA suppressor mutation that is defective in signal peptide proofreading activity were employed to distinguish between SecA residues that are utilized more exclusively for signal peptide recognition or those that also participate in the proofreading and translocation functions of SecA. Collectively, our data allowed us to propose a model for the location of the SecA signal peptide-binding site that is more consistent with recent structural insights into this protein translocation system.
Collapse
|
6
|
Auclair SM, Moses JP, Musial-Siwek M, Kendall DA, Oliver DB, Mukerji I. Mapping of the signal peptide-binding domain of Escherichia coli SecA using Förster resonance energy transfer. Biochemistry 2010; 49:782-92. [PMID: 20025247 DOI: 10.1021/bi901446r] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Identification of the signal peptide-binding domain within SecA ATPase is an important goal for understanding the molecular basis of SecA preprotein recognition as well as elucidating the chemo-mechanical cycle of this nanomotor during protein translocation. In this study, Forster resonance energy transfer methodology was employed to map the location of the SecA signal peptide-binding domain using a collection of functional monocysteine SecA mutants and alkaline phosphatase signal peptides labeled with appropriate donor-acceptor fluorophores. Fluorescence anisotropy measurements yielded an equilibrium binding constant of 1.4 or 10.7 muM for the alkaline phosphatase signal peptide labeled at residue 22 or 2, respectively, with SecA, and a binding stoichiometry of one signal peptide bound per SecA monomer. Binding affinity measurements performed with a monomer-biased mutant indicate that the signal peptide binds equally well to SecA monomer or dimer. Distance measurements determined for 13 SecA mutants show that the SecA signal peptide-binding domain encompasses a portion of the preprotein cross-linking domain but also includes regions of nucleotide-binding domain 1 and particularly the helical scaffold domain. The identified region lies at a multidomain interface within the heart of SecA, surrounded by and potentially responsive to domains important for binding nucleotide, mature portions of the preprotein, and the SecYEG channel. Our FRET-mapped binding domain, in contrast to the domain identified by NMR spectroscopy, includes the two-helix finger that has been shown to interact with the preprotein during translocation and lies at the entrance to the protein-conducting channel in the recently determined SecA-SecYEG structure.
Collapse
Affiliation(s)
- Sarah M Auclair
- Department of Molecular Biology and Biochemistry, Molecular Biophysics Program, Wesleyan University, Middletown, Connecticut 06459, USA
| | | | | | | | | | | |
Collapse
|
7
|
Abstract
Bacteria and archaea possess a protein complex in the plasma membrane that governs protein secretion and membrane protein insertion. Eukaryotes carry homologues in the endoplasmic reticulum (ER) where they direct the same reaction. A combination of experiments conducted on the systems found in all three domains of life has revealed a great deal about protein translocation. The channel provides a route for proteins to pass through the hydrophobic barrier of the membrane, assisted by various partner proteins which maintain an unfolded state of the substrate, target it to the channel and provide the energy and mechanical drive required for transport. In bacteria, the post-translational reaction utilizes an ATPase that couples the free energy of ATP binding and hydrolysis to move the substrate through the protein pore. This review will draw on genetic, biochemical and structural findings in an account of our current understanding of this mechanism.
Collapse
Affiliation(s)
- Vicki A M Gold
- Department of Biochemistry, University of Bristol, Bristol, UK
| | | | | |
Collapse
|
8
|
Abstract
Understanding the transport of hydrophilic proteins across biological membranes continues to be an important undertaking. The general secretory (Sec) pathway in Escherichia coli transports the majority of E. coli proteins from their point of synthesis in the cytoplasm to their sites of final localization, associating sequentially with a number of protein components of the transport machinery. The targeting signals for these substrates must be discriminated from those of proteins transported via other pathways. While targeting signals for each route have common overall characteristics, individual signal peptides vary greatly in their amino acid sequences. How do these diverse signals interact specifically with the proteins that comprise the appropriate transport machinery and, at the same time, avoid targeting to an alternate route? The recent publication of the crystal structures of components of the Sec transport machinery now allows a more thorough consideration of the interactions of signal sequences with these components.
Collapse
Affiliation(s)
- Sharyn L. Rusch
- Department of Molecular and Cell Biology, The University of Connecticut, Storrs, Connecticut 06269
| | - Debra A. Kendall
- Department of Molecular and Cell Biology, The University of Connecticut, Storrs, Connecticut 06269
| |
Collapse
|
9
|
Sun C, Rusch SL, Kim J, Kendall DA. Chloroplast SecA and Escherichia coli SecA have distinct lipid and signal peptide preferences. J Bacteriol 2007; 189:1171-5. [PMID: 17142391 PMCID: PMC1797313 DOI: 10.1128/jb.01589-06] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2006] [Accepted: 11/20/2006] [Indexed: 11/20/2022] Open
Abstract
Like prokaryotic Sec-dependent protein transport, chloroplasts utilize SecA. However, we observe distinctive requirements for the stimulation of chloroplast SecA ATPase activity; it is optimally stimulated in the presence of galactolipid and only a small fraction of anionic lipid and by Sec-dependent thylakoid signal peptides but not Escherichia coli signal peptides.
Collapse
Affiliation(s)
- Changqi Sun
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut 06269-3125, USA
| | | | | | | |
Collapse
|
10
|
Musial-Siwek M, Rusch SL, Kendall DA. Selective photoaffinity labeling identifies the signal peptide binding domain on SecA. J Mol Biol 2006; 365:637-48. [PMID: 17084862 PMCID: PMC1851904 DOI: 10.1016/j.jmb.2006.10.027] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2006] [Revised: 10/02/2006] [Accepted: 10/08/2006] [Indexed: 11/26/2022]
Abstract
SecA, an ATPase crucial to the Sec-dependent translocation machinery in Escherichia coli, recognizes and directly binds the N-terminal signal peptide of an exported preprotein. This interaction plays a central role in the targeting and transport of preproteins via the SecYEG channel. Here we identify the signal peptide binding groove (SPBG) on SecA addressing a key issue regarding the SecA-preprotein interaction. We employ a synthetic signal peptide containing the photoreactive benzoylphenylalanine to efficiently and specifically label SecA containing a unique Factor Xa site. Comparison of the photolabeled fragment from the subsequent proteolysis of several SecAs, which vary only in the location of the Factor Xa site, reveals one 53 residue segment in common with the entire series. The covalently modified SecA segment produced is the same in aqueous solution and in lipid vesicles. This spans amino acid residues 269 to 322 of the E. coli protein, which is distinct from a previously proposed signal peptide binding site, and contributes to a hydrophobic peptide binding groove evident in molecular models of SecA.
Collapse
Affiliation(s)
| | | | - Debra A. Kendall
- *Corresponding author. Department of Molecular and Cell Biology, 91 North Eagleville Road, University of Connecticut, Storrs, Connecticut 06269-3125, USA; Tel.: (860) 486-1891; Fax: (860) 486-4331; E-mail: ()
| |
Collapse
|
11
|
Shin JY, Kim M, Ahn T. Effects of signal peptide and adenylate on the oligomerization and membrane binding of soluble SecA. BMB Rep 2006; 39:319-28. [PMID: 16756762 DOI: 10.5483/bmbrep.2006.39.3.319] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
SecA protein, a cytoplasmic ATPase, plays a central role in the secretion of signal peptide-containing proteins. Here, we examined effects of signal peptide and ATP on the oligomerization, conformational change, and membrane binding of SecA. The wild-type (WT) signal peptide from the ribose-binding protein inhibited ATP binding to soluble SecA and stimulated release of ATP already bound to the protein. The signal peptide enhanced the oligomerization of soluble SecA, while ATP induced dissociation of SecA oligomer. Analysis of SecA unfolding with urea or heat revealed that the WT signal peptide induces an open conformation of soluble SecA, while ATP increased the compactness of SecA. We further obtained evidences that the signal peptide-induced oligomerization and the formation of open structure enhance the membrane binding of SecA, whereas ATP inhibits the interaction of soluble SecA with membranes. On the other hand, the complex of membrane-bound SecA and signal peptide was shown to resume nucleotide-binding activity. From these results, we propose that the translocation components affect the degree of oligomerization of soluble SecA, thereby modulating the membrane binding of SecA in early translocation pathway. A possible sequential interaction of SecA with signal peptide, ATP, and cytoplasmic membrane is discussed.
Collapse
Affiliation(s)
- Ji Yeun Shin
- Department of Biochemistry, College of Veterinary Medicine, Chonnam National University, Gwangju, Korea
| | | | | |
Collapse
|
12
|
Papanikou E, Karamanou S, Baud C, Frank M, Sianidis G, Keramisanou D, Kalodimos CG, Kuhn A, Economou A. Identification of the Preprotein Binding Domain of SecA. J Biol Chem 2005; 280:43209-17. [PMID: 16243836 DOI: 10.1074/jbc.m509990200] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
SecA, the preprotein translocase ATPase, has a helicase DEAD motor. To catalyze protein translocation, SecA possesses two additional flexible domains absent from other helicases. Here we demonstrate that one of these "specificity domains" is a preprotein binding domain (PBD). PBD is essential for viability and protein translocation. PBD mutations do not abrogate the basal enzymatic properties of SecA (nucleotide binding and hydrolysis), nor do they prevent SecA binding to the SecYEG protein conducting channel. However, SecA PBD mutants fail to load preproteins onto SecYEG, and their translocation ATPase activity does not become stimulated by preproteins. Bulb and Stem, the two sterically proximal PBD substructures, are physically separable and have distinct roles. Stem binds signal peptides, whereas the Bulb binds mature preprotein regions as short as 25 amino acids. Binding of signal or mature region peptides or full-length preproteins causes distinct conformational changes to PBD and to the DEAD motor. We propose that (a) PBD is a preprotein receptor and a physical bridge connecting bound preproteins to the DEAD motor, and (b) preproteins control the ATPase cycle via PBD.
Collapse
Affiliation(s)
- Efrosyni Papanikou
- Institute of Molecular Biology and Biotechnology, F.O.R.T.H., University of Crete, P.O. Box 1527, GR-711 10 Iraklio, Crete, Greece
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Musial-Siwek M, Rusch SL, Kendall DA. Probing the affinity of SecA for signal peptide in different environments. Biochemistry 2005; 44:13987-96. [PMID: 16229488 PMCID: PMC3094106 DOI: 10.1021/bi050882k] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
SecA, the peripheral subunit of the Escherichia coli preprotein translocase, interacts with a number of ligands during export, including signal peptides, membrane phospholipids, and nucleotides. Using fluorescence resonance energy transfer (FRET), we studied the interactions of wild-type (WT) and mutant SecAs with IAEDANS-labeled signal peptide, and how these interactions are modified in the presence of other transport ligands. We find that residues on the third alpha-helix in the preprotein cross-linking domain (PPXD) are important for the interaction of SecA and signal peptide. For SecA in aqueous solution, saturation binding data using FRET analysis fit a single-site binding model and yielded a Kd of 2.4 microM. FRET is inhibited for SecA in lipid vesicles relative to that in aqueous solution at a low signal peptide concentration. The sigmoidal nature of the binding curve suggests that SecA in lipids has two conformational states; our results do not support different oligomeric states of SecA. Using native gel electrophoresis, we establish signal peptide-induced SecA monomerization in both aqueous solution and lipid vesicles. Whereas the affinity of SecA for signal peptide in an aqueous environment is unaffected by temperature or the presence of nucleotides, in lipids the affinity decreases in the presence of ADP or AMP-PCP but increases at higher temperature. The latter finding is consistent with SecA existing in an elongated form while inserting the signal peptide into membranes.
Collapse
Affiliation(s)
- Monika Musial-Siwek
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut 06269
| | - Sharyn L. Rusch
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut 06269
| | - Debra A. Kendall
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut 06269
| |
Collapse
|
14
|
Chou YT, Gierasch LM. The Conformation of a Signal Peptide Bound by Escherichia coli Preprotein Translocase SecA. J Biol Chem 2005; 280:32753-60. [PMID: 16046390 DOI: 10.1074/jbc.m507532200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To understand the structural nature of signal sequence recognition by the preprotein translocase SecA, we have characterized the interactions of a signal peptide corresponding to a LamB signal sequence (modified to enhance aqueous solubility) with SecA by NMR methods. One-dimensional NMR studies showed that the signal peptide binds SecA with a moderately fast exchange rate (Kd approximately 10(-5) m). The line-broadening effects observed from one-dimensional and two-dimensional NMR spectra indicated that the binding mode does not equally immobilize all segments of this peptide. The positively charged arginine residues of the n-region and the hydrophobic residues of the h-region had less mobility than the polar residues of the c-region in the SecA-bound state, suggesting that this peptide has both electrostatic and hydrophobic interactions with the binding pocket of SecA. Transferred nuclear Overhauser experiments revealed that the h-region and part of the c-region of the signal peptide form an alpha-helical conformation upon binding to SecA. One side of the hydrophobic core of the helical h-region appeared to be more strongly bound in the binding pocket, whereas the extreme C terminus of the peptide was not intimately involved. These results argue that the positive charges at the n-region and the hydrophobic helical h-region are the selective features for recognition of signal sequences by SecA and that the signal peptide-binding site on SecA is not fully buried within its structure.
Collapse
Affiliation(s)
- Yi-Te Chou
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003-04510, USA
| | | |
Collapse
|
15
|
Karamyshev AL, Johnson AE. Selective SecA association with signal sequences in ribosome-bound nascent chains: a potential role for SecA in ribosome targeting to the bacterial membrane. J Biol Chem 2005; 280:37930-40. [PMID: 16120599 DOI: 10.1074/jbc.m509100200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The role of SecA in selecting bacterial proteins for export was examined using a heterologous system that lacks endogenous SecA and other bacterial proteins. This approach allowed us to assess the interaction of SecA with ribosome-bound photoreactive nascent chains in the absence of trigger factor, SecB, Ffh (the bacterial protein component of the signal recognition particle), and the SecYEG translocon in the bacterial plasma membrane. In the absence of membranes, SecA photocross-linked efficiently to nascent translocation substrate OmpA in ribosome-nascent chain (RNC) complexes in an interaction that was independent of both ATP and SecB. However, no photocross-linking to a nascent membrane protein that is normally targeted by a signal recognition particle was observed. Modification of the signal sequence revealed that its affinity for SecA and Ffh varied inversely. Gel filtration showed that SecA binds tightly to both translating and non-translating ribosomes. When purified SecA.RNC complexes containing nascent OmpA were exposed to inner membrane vesicles lacking functional SecA, the nascent chains were successfully targeted to SecYEG translocons. However, purified RNCs lacking SecA were unable to target to the same membranes. Taken together, these data strongly suggest that cytosolic SecA participates in the selection of proteins for export by co-translationally binding to the signal sequences of non-membrane proteins and directing those nascent chains to the translocon.
Collapse
Affiliation(s)
- Andrey L Karamyshev
- Department of Medical Biochemistry and Genetics, Texas A & M University System Health Science Center, College Station, 77843-1114, USA
| | | |
Collapse
|
16
|
Mergulhão FJM, Summers DK, Monteiro GA. Recombinant protein secretion in Escherichia coli. Biotechnol Adv 2005; 23:177-202. [PMID: 15763404 DOI: 10.1016/j.biotechadv.2004.11.003] [Citation(s) in RCA: 346] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2004] [Revised: 11/23/2004] [Accepted: 11/30/2004] [Indexed: 10/25/2022]
Abstract
The secretory production of recombinant proteins by the Gram-negative bacterium Escherichia coli has several advantages over intracellular production as inclusion bodies. In most cases, targeting protein to the periplasmic space or to the culture medium facilitates downstream processing, folding, and in vivo stability, enabling the production of soluble and biologically active proteins at a reduced process cost. This review presents several strategies that can be used for recombinant protein secretion in E. coli and discusses their advantages and limitations depending on the characteristics of the target protein to be produced.
Collapse
Affiliation(s)
- F J M Mergulhão
- Centro de Engenharia Biológica e Química, Instituto Superior Técnico, Av. Rovisco Pais, Lisbon 1049-001, Portugal.
| | | | | |
Collapse
|
17
|
Baud C, Papanikou E, Karamanou S, Sianidis G, Kuhn A, Economou A. Purification of a functional mature region from a SecA-dependent preprotein. Protein Expr Purif 2005; 40:336-9. [PMID: 15766875 DOI: 10.1016/j.pep.2004.12.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2004] [Revised: 12/08/2004] [Indexed: 10/26/2022]
Abstract
Most of the bacterial proteins that are active in extracytoplasmic locations are translocated through the inner membrane by the Sec translocase. Translocase comprises a membrane "pore" and the peripheral ATPase SecA. Where preproteins bind to SecA and how they activate translocation ATPase remains elusive. To address this central question we have purified to homogeneity the mature and preprotein parts of an exported protein (pCH5EE). pCH5EE satisfies a minimal size required for protein translocation and its membrane insertion is SecA-dependent. Purified pCH5EE and CH5EE can form physical complexes with SecA and can functionally suppress the elevated ATPase of a constitutively activated mutant. These properties render pCH5EE and CH5EE unique tools for the biochemical mapping of the preprotein binding site on SecA.
Collapse
Affiliation(s)
- Catherine Baud
- Institute of Molecular Biology and Biotechnology, FORTH and Department of Biology, University of Crete, P.O. Box 1527, GR-711 10 Iraklio, Crete, Greece
| | | | | | | | | | | |
Collapse
|
18
|
Vrontou E, Economou A. Structure and function of SecA, the preprotein translocase nanomotor. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2005; 1694:67-80. [PMID: 15546658 DOI: 10.1016/j.bbamcr.2004.06.003] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2003] [Revised: 06/03/2004] [Accepted: 06/17/2004] [Indexed: 11/22/2022]
Abstract
Most secretory proteins that are destined for the periplasm or the outer membrane are exported through the bacterial plasma membrane by the Sec translocase. Translocase is a complex nanomachine that moves processively along its aminoacyl polymeric substrates effectively pumping them to the periplasmic space. The salient features of this process are: (a) a membrane-embedded "clamp" formed by the trimeric SecYEG protein, (b) a "motor" provided by the dimeric SecA ATPase, (c) regulatory subunits that optimize catalysis and (d) both chemical and electrochemical metabolic energy. Significant recent strides have allowed structural, biochemical and biophysical dissection of the export reaction. A model incorporating stepwise strokes of the translocase nanomachine at work is discussed.
Collapse
Affiliation(s)
- Eleftheria Vrontou
- Laboratory Unicellular, Organisms Group, Institute of Molecular Biology and Biotechnology, FO.R.T.H. and Department of Biology, University of Crete, Vassilika Vouton, P.O. Box 1527, GR-711 10 Iraklio, Crete, Greece
| | | |
Collapse
|
19
|
Wang L, Miller A, Rusch SL, Kendall DA. Demonstration of a specific Escherichia coli SecY-signal peptide interaction. Biochemistry 2004; 43:13185-92. [PMID: 15476412 PMCID: PMC3084660 DOI: 10.1021/bi049485k] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Protein translocation in Escherichia coli is initiated by the interaction of a preprotein with the membrane translocase composed of a motor protein, SecA ATPase, and a membrane-embedded channel, the SecYEG complex. The extent to which the signal peptide region of the preprotein plays a role in SecYEG interactions is unclear, in part because studies in this area typically employ the entire preprotein. Using a synthetic signal peptide harboring a photoaffinity label in its hydrophobic core, we examined this interaction with SecYEG in a detergent micellar environment. The signal peptide was found to specifically bind SecY in a saturable manner and at levels comparable to those that stimulate SecA ATPase activity. Chemical and proteolytic cleavage of cross-linked SecY and analysis of the signal peptide adducts indicate that the binding was primarily to regions of the protein containing transmembrane domains seven and two. The signal peptide-SecY interaction was affected by the presence of SecA and nucleotides in a manner consistent with the transfer of signal peptide to SecY upon nucleotide hydrolysis at SecA.
Collapse
Affiliation(s)
| | | | | | - Debra A. Kendall
- To whom correspondence should be addressed: Department of Molecular and Cell Biology, 91 North Eagleville Road, The University of Connecticut, Storrs, CT 06269-3125. Tel: (860) 486-1891.
| |
Collapse
|
20
|
Power PM, Jones RA, Beacham IR, Bucholtz C, Jennings MP. Whole genome analysis reveals a high incidence of non-optimal codons in secretory signal sequences of Escherichia coli. Biochem Biophys Res Commun 2004; 322:1038-44. [PMID: 15336569 DOI: 10.1016/j.bbrc.2004.08.022] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2004] [Indexed: 11/21/2022]
Abstract
Translational pausing may occur due to a number of mechanisms, including the presence of non-optimal codons, and it is thought to play a role in the folding of specific polypeptide domains during translation and in the facilitation of signal peptide recognition during sec-dependent protein targeting. In this whole genome analysis of Escherichia coli we have found that non-optimal codons in the signal peptide-encoding sequences of secretory genes are overrepresented relative to the "mature" portions of these genes; this is in addition to their overrepresentation in the 5'-regions of genes encoding non-secretory proteins. We also find increased non-optimal codon usage at the 3' ends of most E. coli genes, in both non-secretory and secretory sequences. Whereas presumptive translational pausing at the 5' and 3' ends of E. coli messenger RNAs may clearly have a general role in translation, we suggest that it also has a specific role in sec-dependent protein export, possibly in facilitating signal peptide recognition. This finding may have important implications for our understanding of how the majority of non-cytoplasmic proteins are targeted, a process that is essential to all biological cells.
Collapse
Affiliation(s)
- Peter M Power
- School of Molecular and Microbial Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | | | | | | | | |
Collapse
|
21
|
Facey SJ, Kuhn A. Membrane integration of E. coli model membrane proteins. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2004; 1694:55-66. [PMID: 15546657 DOI: 10.1016/j.bbamcr.2004.03.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2003] [Revised: 02/18/2004] [Accepted: 03/01/2004] [Indexed: 11/30/2022]
Abstract
The molecular events of membrane translocation and insertion have been investigated using a number of different model proteins. Each of these proteins has specific features that allow interaction with the membrane components which ensure that the proteins reach their specific local destination and final conformation. This review will give an overview on the best-characterized proteins studied in the bacterial system and emphasize the distinct aspects of the pathways.
Collapse
Affiliation(s)
- Sandra J Facey
- Institute of Microbiology and Molecular Biology, University of Hohenheim, 70599 Stuttgart, Germany
| | | |
Collapse
|
22
|
Abstract
Pathogenic spirochetes are the causative agents of several important diseases including syphilis, Lyme disease, leptospirosis, swine dysentery, periodontal disease and some forms of relapsing fever. Spirochetal bacteria possess two membranes and the proteins present in the outer membrane are at the site of interaction with host tissue and the immune system. This review describes the current knowledge in the field of spirochetal outer membrane protein (OMP) biology. What is known concerning biogenesis and structure of OMPs, with particular regard to the atypical signal peptide cleavage sites observed amongst the spirochetes, is discussed. We examine the functions that have been determined for several spirochetal OMPs including those that have been demonstrated to function as adhesins, porins or to have roles in complement resistance. A detailed description of the role of spirochetal OMPs in immunity, including those that stimulate protective immunity or that are involved in antigenic variation, is given. A final section is included which covers experimental considerations in spirochetal outer membrane biology. This section covers contentious issues concerning cellular localization of putative OMPs, including determination of surface exposure. A more detailed knowledge of spirochetal OMP biology will hopefully lead to the design of new vaccines and a better understanding of spirochetal pathogenesis.
Collapse
Affiliation(s)
- Paul A. Cullen
- Australian Bacterial Pathogenesis Program, Department of Microbiology, Monash University, Melbourne, Vic. 3800, Australia
- Victorian Bioinformatics Consortium, Monash University, Vic. 3800, Australia
| | - David A. Haake
- School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA
- Division of Infectious Diseases, Veteran Affairs Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA
| | - Ben Adler
- Australian Bacterial Pathogenesis Program, Department of Microbiology, Monash University, Melbourne, Vic. 3800, Australia
- Victorian Bioinformatics Consortium, Monash University, Vic. 3800, Australia
- Corresponding author. Tel.: +61-3-9905-4815; fax: +61-3-9905-4811. E-mail address: (B. Adler)
| |
Collapse
|
23
|
Papanikou E, Karamanou S, Baud C, Sianidis G, Frank M, Economou A. Helicase Motif III in SecA is essential for coupling preprotein binding to translocation ATPase. EMBO Rep 2004; 5:807-11. [PMID: 15272299 PMCID: PMC1299117 DOI: 10.1038/sj.embor.7400206] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2004] [Revised: 06/22/2004] [Accepted: 06/22/2004] [Indexed: 11/09/2022] Open
Abstract
The SecA ATPase is a protein translocase motor and a superfamily 2 (SF2) RNA helicase. The ATPase catalytic core ('DEAD motor') contains the seven conserved SF2 motifs. Here, we demonstrate that Motif III is essential for SecA-mediated protein translocation and viability. SecA Motif III mutants can bind ligands (nucleotide, the SecYEG translocase 'channel', signal and mature preprotein domains), can catalyse basal and SecYEG-stimulated ATP hydrolysis and can be activated for catalysis. However, Motif III mutation specifically blocks the preprotein-stimulated 'translocation ATPase' at a step of the reaction pathway that lies downstream of ligand binding. A functional Motif III is required for optimal ligand-driven conformational changes and kinetic parameters that underlie optimal preprotein-modulated nucleotide cycling at the SecA DEAD motor. We propose that helicase Motif III couples preprotein binding to the SecA translocation ATPase and that catalytic activation of SF2 enzymes through Motif-III-mediated action is essential for both polypeptide and nucleic-acid substrates.
Collapse
Affiliation(s)
- Efrosyni Papanikou
- Institute of Molecular Biology and Biotechnology, Foundation of Research and Technology Hellas and Department of Biology, University of Crete, PO Box 1527, GR711 10 Iraklio, Crete, Greece
| | - Spyridoula Karamanou
- Institute of Molecular Biology and Biotechnology, Foundation of Research and Technology Hellas and Department of Biology, University of Crete, PO Box 1527, GR711 10 Iraklio, Crete, Greece
| | - Catherine Baud
- Institute of Molecular Biology and Biotechnology, Foundation of Research and Technology Hellas and Department of Biology, University of Crete, PO Box 1527, GR711 10 Iraklio, Crete, Greece
| | - Giorgos Sianidis
- Institute of Molecular Biology and Biotechnology, Foundation of Research and Technology Hellas and Department of Biology, University of Crete, PO Box 1527, GR711 10 Iraklio, Crete, Greece
| | - Miriam Frank
- Institute of Molecular Biology and Biotechnology, Foundation of Research and Technology Hellas and Department of Biology, University of Crete, PO Box 1527, GR711 10 Iraklio, Crete, Greece
| | - Anastassios Economou
- Institute of Molecular Biology and Biotechnology, Foundation of Research and Technology Hellas and Department of Biology, University of Crete, PO Box 1527, GR711 10 Iraklio, Crete, Greece
| |
Collapse
|
24
|
Randall LL, Crane JM, Liu G, Hardy SJS. Sites of interaction between SecA and the chaperone SecB, two proteins involved in export. Protein Sci 2004; 13:1124-33. [PMID: 15010547 PMCID: PMC2280050 DOI: 10.1110/ps.03410104] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
SecB, a small tetrameric cytosolic chaperone in Escherichia coli, facilitates the export of precursor poly-peptides by maintaining them in a nonnative conformation and passing them to SecA, which is a peripheral member of the membrane-bound translocation apparatus. It has been proposed by several laboratories that as SecA interacts with various components along the export pathway, it undergoes conformational changes that are crucial to its function. Here we report details of molecular interactions between SecA and SecB, which may serve as conformational switches. One site of interaction involves the final C-terminal 21 amino acids of SecA, which are positively charged and contain zinc. The C terminus of each subunit of the SecA dimer makes contact with the flat beta-sheet that is formed by each dimer of the SecB tetramer. Here we demonstrate that a second interaction exists between the extreme C-terminal alpha-helix of SecB and a site on SecA, as yet undefined but different from the C terminus of SecA. We investigated the energetics of the interactions by titration calorimetry and characterized the hydrodynamic properties of complexes stabilized by both interactions or each interaction singly using sedimentation velocity centrifugation.
Collapse
Affiliation(s)
- Linda L Randall
- Department of Biochemistry, 117 Schweitzer Hall, University of Missouri, Columbia, Columbia, MO 65211, USA.
| | | | | | | |
Collapse
|
25
|
Vrontou E, Karamanou S, Baud C, Sianidis G, Economou A. Global co-ordination of protein translocation by the SecA IRA1 switch. J Biol Chem 2004; 279:22490-7. [PMID: 15007058 DOI: 10.1074/jbc.m401008200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
SecA, the dimeric ATPase subunit of protein translocase, contains a DEAD helicase catalytic core that binds to a regulatory C-terminal domain. We now demonstrate that IRA1, a conserved helix-loop-helix structure in the C-domain, controls C-domain conformation through direct interdomain contacts. C-domain conformational changes are transmitted to the DEAD motor and alter its conformation. These interactions establish DEAD motor/C-domain conformational cross-talk that requires a functional IRA1. IRA1-controlled binding/release cycles of the C-domain to the DEAD motor couple this cross-talk to protein translocation chemistries, i.e. DEAD motor affinities for ligands (nucleotides, preprotein signal peptides, and SecYEG, the integral membrane component of translocase) and ATP turnover. IRA1-mediated global co-ordination of SecA catalysis is essential for protein translocation.
Collapse
Affiliation(s)
- Eleftheria Vrontou
- Department of Biology, University of Crete, PO Box 1527, GR-71110 Iraklio, Crete, Greece
| | | | | | | | | |
Collapse
|
26
|
Eser M, Ehrmann M. SecA-dependent quality control of intracellular protein localization. Proc Natl Acad Sci U S A 2003; 100:13231-4. [PMID: 14597695 PMCID: PMC263763 DOI: 10.1073/pnas.2234410100] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Complex secretion machineries mediate protein translocation across cellular membranes. These machines typically recognize their substrates via signal sequences, which are required for proper targeting to the translocon. We report that during posttranslational secretion the widely conserved targeting factor SecA performs a quality-control function that is based on a general chaperone activity. This quality-control mechanism involves assisted folding of signal sequenceless proteins, thereby excluding them from the secretion process. These results suggest that SecA channels proteins into one of two key pathways, posttranslational secretion or folding in the cytoplasm. Implications of this finding for intracellular protein localization are discussed.
Collapse
Affiliation(s)
- Markus Eser
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3US, United Kingdom
| | | |
Collapse
|
27
|
Lenz LL, Mohammadi S, Geissler A, Portnoy DA. SecA2-dependent secretion of autolytic enzymes promotes Listeria monocytogenes pathogenesis. Proc Natl Acad Sci U S A 2003; 100:12432-7. [PMID: 14527997 PMCID: PMC218775 DOI: 10.1073/pnas.2133653100] [Citation(s) in RCA: 214] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Pathogenic bacteria secrete proteins that promote invasion of host tissues and resistance to immune responses. However, secretion mechanisms that contribute to the enormous morbidity and mortality of Gram-positive bacteria are largely undefined. An auxiliary protein secretion system (SecA2) has recently emerged in Listeria monocytogenes and eight other Gram-positive pathogens. Here, a proteomics approach identified seventeen SecA2-dependent secreted and surface proteins of L. monocytogenes, the two most abundant of which [the p60 and N-acetylmuramidase (NamA) autolysins] hydrolyze bacterial peptidoglycan (PGN) and contribute to host colonization. SecA2-deficient (DeltaSecA2) bacteria were rapidly cleared after systemic infection of murine hosts, and in cultured cells showed reduced cell-cell spread. p60 or NamA deficiencies (Deltap60 and DeltaNamA) caused intermediate reductions in bacterial virulence in vivo, yet showed no defect for infection of cultured cells. Restoration of virulence in Deltap60 bacteria required full-length p60 with an intact catalytic domain, suggesting that PGN hydrolysis by p60 is crucial for L. monocytogenes virulence. Coordinated PGN hydrolysis by p60 and NamA activities is predicted to generate a muramyl glycopeptide, glucosaminylmuramyl dipeptide (GMDP), which is known to modify host inflammatory responses. Thus, SecA2-dependent secretion may promote release of muramyl peptides that subvert host pattern recognition.
Collapse
Affiliation(s)
- Laurel L Lenz
- Department of Molecular and Cell Biology, University of California, 401 Barker Hall, Berkeley, CA 94720-3202, USA.
| | | | | | | |
Collapse
|
28
|
Bu Z, Wang L, Kendall DA. Nucleotide binding induces changes in the oligomeric state and conformation of Sec A in a lipid environment: a small-angle neutron-scattering study. J Mol Biol 2003; 332:23-30. [PMID: 12946344 PMCID: PMC3086338 DOI: 10.1016/s0022-2836(03)00840-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In Escherichia coli, SecA is a large, multifunctional protein that is a vital component of the general protein secretion pathway. In its membrane-bound form it functions as the motor component of the protein translocase, perhaps through successive rounds of membrane insertion and ATP hydrolysis. To understand both the energy conversion process and translocase assembly, we have used contrast-matched, small-angle neutron-scattering (SANS) experiments to examine SecA in small unilamellar vesicles of E.coli phospholipids. In the absence of nucleotide, we observe a dimeric form of SecA with a radius of gyration comparable to that previously observed for SecA in solution. In contrast, the presence of either ADP or a non-hydrolyzable ATP analog induces conversion to a monomeric form. The larger radius of gyration for the ATP-bound relative to the ADP-bound form suggests the former has a more expanded global conformation. This is the first direct structural determination of SecA in a lipid bilayer. The SANS data indicate that nucleotide turnover can function as a switch of conformation of SecA in the membrane in a manner consistent with its proposed role in successive cycles of deep membrane penetration and release with concommitant preprotein insertion.
Collapse
|
29
|
Benach J, Chou YT, Fak JJ, Itkin A, Nicolae DD, Smith PC, Wittrock G, Floyd DL, Golsaz CM, Gierasch LM, Hunt JF. Phospholipid-induced monomerization and signal-peptide-induced oligomerization of SecA. J Biol Chem 2003; 278:3628-38. [PMID: 12403785 DOI: 10.1074/jbc.m205992200] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The SecA ATPase drives the processive translocation of the N terminus of secreted proteins through the cytoplasmic membrane in eubacteria via cycles of binding and release from the SecYEG translocon coupled to ATP turnover. SecA forms a physiological dimer with a dissociation constant that has previously been shown to vary with temperature and ionic strength. We now present data showing that the oligomeric state of SecA in solution is altered by ligands that it interacts with during protein translocation. Analytical ultracentrifugation, chemical cross-linking, and fluorescence anisotropy measurements show that the physiological dimer of SecA is monomerized by long-chain phospholipid analogues. Addition of wild-type but not mutant signal sequence peptide to these SecA monomers redimerizes the protein. Physiological dimers of SecA do not change their oligomeric state when they bind signal sequence peptide in the compact, low temperature conformational state but polymerize when they bind the peptide in the domain-dissociated, high-temperature conformational state that interacts with SecYEG. This last result shows that, at least under some conditions, signal peptide interactions drive formation of new intermolecular contacts distinct from those stabilizing the physiological dimer. The observations that signal peptides promote conformationally specific oligomerization of SecA while phospholipids promote subunit dissociation suggest that the oligomeric state of SecA could change dynamically during the protein translocation reaction. Cycles of SecA subunit recruitment and dissociation could potentially be employed to achieve processivity in polypeptide transport.
Collapse
Affiliation(s)
- Jordi Benach
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Affiliation(s)
- Mark Paetzel
- Department of Chemistry, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | |
Collapse
|
31
|
Walz AC, Demel RA, de Kruijff B, Mutzel R. Aerobic sn-glycerol-3-phosphate dehydrogenase from Escherichia coli binds to the cytoplasmic membrane through an amphipathic alpha-helix. Biochem J 2002; 365:471-9. [PMID: 11955283 PMCID: PMC1222694 DOI: 10.1042/bj20011853] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2001] [Revised: 03/19/2002] [Accepted: 04/16/2002] [Indexed: 11/17/2022]
Abstract
sn-Glycerol-3-phosphate dehydrogenase (GlpD) from Escherichia coli is a peripheral membrane enzyme involved in respiratory electron transfer. For it to display its enzymic activity, binding to the inner membrane is required. The way the enzyme interacts with the membrane and how this controls activity has not been elucidated. In the present study we provide evidence for direct protein-lipid interaction. Using the monolayer technique, we observed insertion of GlpD into lipid monolayers with a clear preference for anionic phospholipids. GlpD variants with point mutations in their predicted amphipathic helices showed a decreased ability to penetrate anionic phospholipid monolayers. From these data we propose that membrane binding of GlpD occurs by insertion of an amphipathic helix into the acyl-chain region of lipids mediated by negatively charged phospholipids.
Collapse
|
32
|
Baud C, Karamanou S, Sianidis G, Vrontou E, Politou AS, Economou A. Allosteric communication between signal peptides and the SecA protein DEAD motor ATPase domain. J Biol Chem 2002; 277:13724-31. [PMID: 11825907 DOI: 10.1074/jbc.m200047200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
SecA, the preprotein translocase ATPase is built of an amino-terminal DEAD helicase motor domain bound to a regulatory C-domain. SecA recognizes mature and signal peptide preprotein regions. We now demonstrate that the amino-terminal 263 residues of the ATPase subdomain of the DEAD motor are necessary and sufficient for high affinity signal peptide binding. Binding is abrogated by deletion of residues 219-244 that lie within SSD, a novel substrate specificity element of the ATPase subdomain. SSD is essential for protein translocation, is unique to SecA, and is absent from other DEAD proteins. Signal peptide binding to the DEAD motor is controlled in trans by the C-terminal intramolecular regulator of ATPase (IRA1) switch. IRA1 mutations that activate the DEAD motor ATPase also enhance signal peptide affinity. This mechanism coordinates signal peptide binding with ATPase activation. Signal peptide binding causes widespread conformational changes to the ATPase subdomain and inhibits the DEAD motor ATPase. This involves an allosteric mechanism, since binding occurs at sites that are distinct from the catalytic ATPase determinants. Our data reveal the physical determinants and sophisticated intramolecular regulation that allow signal peptides to act as allosteric effectors of the SecA motor.
Collapse
Affiliation(s)
- Catherine Baud
- Institute of Molecular Biology and Biotechnology, Foundation of Research and Technology-Hellas, Department of Biology, University of Crete, P.O. Box 1527, GR-711 10 Iraklio, Crete, Greece
| | | | | | | | | | | |
Collapse
|
33
|
Page AL, Sansonetti P, Parsot C. Spa15 of Shigella flexneri, a third type of chaperone in the type III secretion pathway. Mol Microbiol 2002; 43:1533-42. [PMID: 11952903 DOI: 10.1046/j.1365-2958.2002.02835.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The type III secretion (TTS) pathway is used by numerous Gram-negative pathogens to inject virulence factors into eukaryotic cells. In addition to a functional TTS apparatus, secretion of effector proteins depends upon specific chaperones. Using a two-hybrid screen in yeast and a co-purification assay in Shigella flexneri, we demonstrated that Spa15, which is encoded by an operon for components of the TTS apparatus, is associated in the cytoplasm with three proteins that are secreted by the TTS pathway, IpaA, IpgB1 and OspC3. Spa15 was found to be necessary for stability of IpgB1 but not IpaA, and for secretion of IpaA molecules that were stored in the cytoplasm but not those that were synthesized while the secretion apparatus was active. The ability of Spa15 to associate with several non-homologous secreted proteins, the presence of Spa15 homologues in other TTS systems and the location of the corresponding genes within operons for components of the TTS apparatus suggest that Spa15 belongs to a new class of TTS chaperones.
Collapse
Affiliation(s)
- Anne-Laure Page
- Unité de Pathogénie Microbienne Moléculaire, INSERM U389, Institut Pasteur, 25-28 rue du docteur Roux, 75724 Paris Cedex 15, France
| | | | | |
Collapse
|
34
|
Roos T, Kiefer D, Hugenschmidt S, Economou A, Kuhn A. Indecisive M13 procoat protein mutants bind to SecA but do not activate the translocation ATPase. J Biol Chem 2001; 276:37909-15. [PMID: 11487581 DOI: 10.1074/jbc.m105483200] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The M13 procoat protein serves as the paradigm for the Sec-independent membrane insertion pathway. This protein is inserted into the inner membrane of Escherichia coli with two hydrophobic regions and a central periplasmic loop region of 20 amino acid residues. Extension of the periplasmic loop region renders M13 procoat membrane insertion Sec-dependent. Loop regions with 118 or more residues required SecA and SecYEG and were efficiently translocated in vivo. Two mutants having loop regions of 80 and 100 residues, respectively, interacted with SecA but failed to activate the membrane translocation ATPase of SecA in vitro. Similarly, a procoat mutant with two additional glutamyl residues in the loop region showed binding to SecA but did not stimulate the ATPase. The three mutants were also defective for precursor-stimulated binding of SecA to the membrane surface. Remarkably, the mutant proteins act as competitive inhibitors of the Sec translocase. This suggests that the region to be translocated is sensed by SecA but the activation of the SecA translocation ATPase is only successful for substrates with a minimum length of the translocated region.
Collapse
Affiliation(s)
- T Roos
- Institute of Microbiology and Molecular Biology, University of Hohenheim, D-70593 Stuttgart, Germany
| | | | | | | | | |
Collapse
|
35
|
Triplett TL, Sgrignoli AR, Gao FB, Yang YB, Tai PC, Gierasch LM. Functional signal peptides bind a soluble N-terminal fragment of SecA and inhibit its ATPase activity. J Biol Chem 2001; 276:19648-55. [PMID: 11279006 DOI: 10.1074/jbc.m100098200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The selective recognition of pre-secretory proteins by SecA is essential to the process of protein export from Escherichia coli, yet very little is known about the requirements for recognition and the mode of binding of precursors to SecA. The major reason for this is the lack of a soluble system suitable for biophysical study of the SecA-precursor complex. Complicating the development of such a system is the likelihood that SecA interacts with the precursor in a high affinity, productive manner only when it is activated by binding to membrane and SecYEG. A critical aspect of the precursor/SecA interaction is that it is regulated by various SecA ligands (nucleotide, lipid, SecYEG) to facilitate the release of the precursor, most likely in a stepwise fashion, for translocation. Several recent reports show that functions of SecA can be studied using separated domains. Using this approach, we have isolated a proteolytically generated N-terminal fragment of SecA, which is stably folded, has high ATPase activity, and represents an activated version of SecA. We report here that this fragment, termed SecA64, binds signal peptides with significantly higher affinity than does SecA. Moreover, the ATPase activity of SecA64 is inhibited by signal peptides to an extent that correlates with the ability of these signal peptides to inhibit either SecA translocation ATPase or in vitro protein translocation, arguing that the interaction with SecA64 is functionally significant. Thus, SecA64 offers a soluble, well defined system to study the mode of recognition of signal peptides by SecA and the regulation of signal peptide release.
Collapse
Affiliation(s)
- T L Triplett
- Departments of Biochemistry & Molecular Biology and Chemistry, University of Massachusetts, Amherst, Massachusetts 01003-4510, USA
| | | | | | | | | | | |
Collapse
|
36
|
van Voorst F, Vereyken IJ, de Kruijff B. The high affinity ATP binding site modulates the SecA-precursor interaction. FEBS Lett 2000; 486:57-62. [PMID: 11108843 DOI: 10.1016/s0014-5793(00)02209-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
SecA is the central component of the protein-translocation machinery of Escherichia coli. It is able to interact with the precursor protein, the chaperone SecB, the integral membrane protein complex SecYEG, acidic phospholipids and its own mRNA. We studied the interaction between prePhoE and SecA by using a site-specific photocrosslinking strategy. We found that SecA is able to interact with both the signal sequence and the mature domain of prePhoE. Furthermore, this interaction was dependent on the type of nucleotide bound. SecA in the ADP-bound conformation was unable to crosslink with the precursor, whereas the ATP-bound conformation was active in precursor crosslinking. The SecA-precursor interaction was maintained in the presence of E. coli phospholipids but was loosened by the presence of phosphatidylglycerol bilayers. Examining SecA ATP binding site mutants demonstrated that ATP hydrolysis at the N-terminal high affinity binding site is responsible for the changed interaction with the preprotein.
Collapse
Affiliation(s)
- F van Voorst
- CBLE, Institute of Biomembranes, Department of Biochemistry of Membranes, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands.
| | | | | |
Collapse
|
37
|
Bost S, Silva F, Rudaz C, Belin D. Both transmembrane domains of SecG contribute to signal sequence recognition by the Escherichia coli protein export machinery. Mol Microbiol 2000; 38:575-87. [PMID: 11069681 DOI: 10.1046/j.1365-2958.2000.02153.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A chimeric protein containing the uncleaved signal sequence of plasminogen activators inhibitor-2 (PAI2) fused to alkaline phosphatase (AP) interferes with Escherichia coli protein export and arrests growth. Suppressors of this toxicity include secG mutations that define the Thr-41-Leu-42-Phe-43 (TLF) domain of SecG. These mutations slow down the export of PAI2-AP. Another construct encoding a truncated PAI2 signal sequence (hB-AP) is also toxic. Most suppressors exert their effect on both chimeric proteins. We describe here five secG suppressors that only suppress the toxicity of hB-AP and selectively slow down its export. These mutations do not alter the TLF domain: three encode truncated SecG, whereas two introduce Arg residues in the transmembrane domains of SecG. The shortest truncated protein only contains 13 residues of SecG, suggesting that the mutation is equivalent to a null allele. Indeed, a secG disruption selectively suppresses the toxicity of hB-AP. However, the missense mutations are not null alleles. They allow SecG binding to SecYE, although with reduced affinity. Furthermore, these mutated SecG are functional, as they facilitate the export of endogenous proteins. Thus, SecG participates in signal sequence recognition, and both transmembrane domains of SecG contribute to ensure normal signal sequence recognition by the translocase.
Collapse
Affiliation(s)
- S Bost
- Department of Pathology, CMU, 1 rue Michel Servet, CH-1211 Geneva, Switzerland
| | | | | | | |
Collapse
|
38
|
Kim J, Kendall DA. Sec-dependent protein export and the involvement of the molecular chaperone SecB. Cell Stress Chaperones 2000; 5:267-75. [PMID: 11048650 PMCID: PMC312857 DOI: 10.1379/1466-1268(2000)005<0267:sdpeat>2.0.co;2] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2000] [Revised: 06/12/2000] [Accepted: 06/13/2000] [Indexed: 11/24/2022] Open
Affiliation(s)
- Jinoh Kim
- Department of Molecular and Cell Biology, The University of Connecticut, Storrs, Connecticut 06269, USA
| | - Debra A. Kendall
- Department of Molecular and Cell Biology, The University of Connecticut, Storrs, Connecticut 06269, USA
- Correspondence to: Debra A. Kendall, Tel: 860 486-1891; Fax: 860 486-1784; .
| |
Collapse
|
39
|
Sarker S, Rudd KE, Oliver D. Revised translation start site for secM defines an atypical signal peptide that regulates Escherichia coli secA expression. J Bacteriol 2000; 182:5592-5. [PMID: 10986266 PMCID: PMC111006 DOI: 10.1128/jb.182.19.5592-5595.2000] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The secretion-responsive regulation of Escherichia coli secA occurs by coupling its translation to the translation and secretion of an upstream regulator, secM (formerly geneX). We revise the translational start site for secM, defining a new signal peptide sequence with an extended amino-terminal region. Mutational studies indicate that certain atypical amino acyl residues within this extended region are critical for proper secA regulation.
Collapse
Affiliation(s)
- S Sarker
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, Connecticut 06459, USA
| | | | | |
Collapse
|
40
|
Abstract
SecA is an essential ATP-dependent motor protein that interacts with the preprotein and translocon to drive protein translocation across the eubacterial plasma membrane. A region containing residues 267-340 has been proposed to comprise the preprotein binding site of Escherichia coli SecA. To elucidate the function of this region further, we isolated mutants using a combination of region-specific polymerase chain reaction (PCR) mutagenesis and a genetic and biochemical screening procedure. Although this region displayed considerable plasticity based on phylogenetic and genetic analysis, Tyr-326 was found to be critical for SecA function. secA mutants with non-conservative substitutions at Tyr-326 showed strong protein secretion defects in vivo and were completely defective for SecA-dependent translocation ATPase activity in vitro. The SecA-Y326 mutant proteins were normal in their membrane, SecYE and nucleotide-binding properties. However, they exhibited a reduced affinity for preprotein and were defective in preprotein release, as assessed by several biochemical assays. Our results indicate that the region containing Tyr-326 functions as a conformational response element to regulate the preprotein binding and release cycle of SecA.
Collapse
Affiliation(s)
- L Kourtz
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, CT 06459, USA
| | | |
Collapse
|
41
|
Kim J, Luirink J, Kendall DA. SecB dependence of an exported protein is a continuum influenced by the characteristics of the signal peptide or early mature region. J Bacteriol 2000; 182:4108-12. [PMID: 10869093 PMCID: PMC94600 DOI: 10.1128/jb.182.14.4108-4112.2000] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have used Escherichia coli alkaline phosphatase to show the interplay among the characteristics of two amino-terminal domains in the preprotein (the signal peptide and the early mature region), the efficiency with which this protein is transported, and its requirement for SecB to accomplish the transport process. The results suggest that although alkaline phosphatase does not normally require SecB for transport, it is inherently able to utilize SecB, and it does so when its ability to interface with the transport machinery is compromised.
Collapse
Affiliation(s)
- J Kim
- Department of Molecular and Cell Biology, University of Connecticut, Storrs 06269, USA
| | | | | |
Collapse
|
42
|
Wang L, Miller A, Kendall DA. Signal peptide determinants of SecA binding and stimulation of ATPase activity. J Biol Chem 2000; 275:10154-9. [PMID: 10744698 DOI: 10.1074/jbc.275.14.10154] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A signal peptide is required for entry of a preprotein into the secretory pathway, but how it functions in concert with the other transport components is unknown. In Escherichia coli, SecA is a key component of the translocation machinery found in the cytoplasm and at membrane translocation sites. Synthetic signal peptides corresponding to the wild type alkaline phosphatase signal sequence and three sets of model signal sequences varying in hydrophobicity and amino-terminal charge were generated. These were used to establish the requirements for interaction with SecA. Binding to SecA, modulation of SecA conformations sensitive to protease, and stimulation of SecA-lipid ATPase activity occur with functional signal sequences but not with transport-incompetent ones. The extent of SecA interaction is directly related to the hydrophobicity of the signal peptide core region. For signal peptides of moderate hydrophobicity, stimulation of the SecA-lipid ATPase activity is also dependent on amino-terminal charge. The results demonstrate unequivocally that the signal peptide, in the absence of the mature protein, interacts with SecA in aqueous solution and in a lipid bilayer. We show a clear parallel between the hierarchy of signal peptide characteristics that promote interaction with SecA in vitro and the hierarchy of those observed for function in vivo.
Collapse
Affiliation(s)
- L Wang
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut 06269, USA
| | | | | |
Collapse
|
43
|
Karamanou S, Vrontou E, Sianidis G, Baud C, Roos T, Kuhn A, Politou AS, Economou A. A molecular switch in SecA protein couples ATP hydrolysis to protein translocation. Mol Microbiol 1999; 34:1133-45. [PMID: 10594836 DOI: 10.1046/j.1365-2958.1999.01686.x] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SecA, the dimeric ATPase subunit of bacterial protein translocase, catalyses translocation during ATP-driven membrane cycling at SecYEG. We now show that the SecA protomer comprises two structural modules: the ATPase N-domain, containing the nucleotide binding sites NBD1 and NBD2, and the regulatory C-domain. The C-domain binds to the N-domain in each protomer and to the C-domain of another protomer to form SecA dimers. NBD1 is sufficient for single rounds of SecA ATP hydrolysis. Multiple ATP turnovers at NBD1 require both the NBD2 site acting in cis and a conserved C-domain sequence operating in trans. This intramolecular regulator of ATP hydrolysis (IRA) mediates N-/C-domain binding and acts as a molecular switch: it suppresses ATP hydrolysis in cytoplasmic SecA while it releases hydrolysis in SecY-bound SecA during translocation. We propose that the IRA switch couples ATP binding and hydrolysis to SecA membrane insertion/deinsertion and substrate translocation by controlling nucleotide-regulated relative motions between the N-domain and the C-domain. The IRA switch is a novel essential component of the protein translocation catalytic pathway.
Collapse
Affiliation(s)
- S Karamanou
- Institute of Molecular Biology and Biotechnology and Department of Biology, University of Crete, PO Box 1527, GR-711 10 Iraklio, Crete, Greece
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
Significant strides have been made during the past 20 years in our understanding of protein secretion across the bacterial inner membrane. Specialized chaperones select secretory polypeptide chains and usher them to a membrane-embedded preprotein translocase. This unique molecular machine envelops the polymeric substrate and migrates along its length in defined, energy-dependent steps. Consequently, preproteins are gradually pumped into the periplasm where they acquire their native, folded conformation.
Collapse
Affiliation(s)
- A Economou
- Institute of Molecular Biology and Biotechnology-FORTH, Iraklio, Crete, GR-71110, Greece.
| |
Collapse
|
45
|
Abstract
Proteins that perform their activity within the cytoplasmic membrane or outside this cell boundary must be targeted to the translocation site prior to their insertion and/or translocation. In bacteria, several targeting routes are known; the SecB- and the signal recognition particle-dependent pathways are the best characterized. Recently, evidence for the existence of a third major route, the twin-Arg pathway, was gathered. Proteins that use either one of these three different pathways possess special features that enable their specific interaction with the components of the targeting routes. Such targeting information is often contained in an N-terminal extension, the signal sequence, but can also be found within the mature domain of the targeted protein. Once the nascent chain starts to emerge from the ribosome, competition for the protein between different targeting factors begins. After recognition and binding, the targeting factor delivers the protein to the translocation sites at the cytoplasmic membrane. Only by means of a specific interaction between the targeting component and its receptor is the cargo released for further processing and translocation. This mechanism ensures the high-fidelity targeting of premembrane and membrane proteins to the translocation site.
Collapse
Affiliation(s)
- P Fekkes
- Department of Microbiology and Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9751 NN Haren, The Netherlands
| | | |
Collapse
|