1
|
Muhammad AA, Basto C, Peterlini T, Guirouilh-Barbat J, Thomas M, Veaute X, Busso D, Lopez B, Mazon G, Le Cam E, Masson JY, Dupaigne P. Human RAD52 stimulates the RAD51-mediated homology search. Life Sci Alliance 2024; 7:e202201751. [PMID: 38081641 PMCID: PMC10713436 DOI: 10.26508/lsa.202201751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/01/2023] [Accepted: 12/01/2023] [Indexed: 12/18/2023] Open
Abstract
Homologous recombination (HR) is a DNA repair mechanism of double-strand breaks and blocked replication forks, involving a process of homology search leading to the formation of synaptic intermediates that are regulated to ensure genome integrity. RAD51 recombinase plays a central role in this mechanism, supported by its RAD52 and BRCA2 partners. If the mediator function of BRCA2 to load RAD51 on RPA-ssDNA is well established, the role of RAD52 in HR is still far from understood. We used transmission electron microscopy combined with biochemistry to characterize the sequential participation of RPA, RAD52, and BRCA2 in the assembly of the RAD51 filament and its activity. Although our results confirm that RAD52 lacks a mediator activity, RAD52 can tightly bind to RPA-coated ssDNA, inhibit the mediator activity of BRCA2, and form shorter RAD51-RAD52 mixed filaments that are more efficient in the formation of synaptic complexes and D-loops, resulting in more frequent multi-invasions as well. We confirm the in situ interaction between RAD51 and RAD52 after double-strand break induction in vivo. This study provides new molecular insights into the formation and regulation of presynaptic and synaptic intermediates by BRCA2 and RAD52 during human HR.
Collapse
Affiliation(s)
- Ali Akbar Muhammad
- Genome Integrity and Cancers UMR 9019 CNRS, Université Paris- Saclay, Gustave Roussy, Villejuif Cedex, France
| | - Clara Basto
- Genome Integrity and Cancers UMR 9019 CNRS, Université Paris- Saclay, Gustave Roussy, Villejuif Cedex, France
| | - Thibaut Peterlini
- Genome Stability Laboratory, CHU de Quebec Research Center, HDQ Pavilion, Oncology Axis, Quebec City, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University, Quebec City, Canada
| | - Josée Guirouilh-Barbat
- INSERM U1016, UMR 8104 CNRS, Institut Cochin, Equipe Labellisée Ligue Contre le Cancer, Université de Paris, Paris, France
| | - Melissa Thomas
- Genome Stability Laboratory, CHU de Quebec Research Center, HDQ Pavilion, Oncology Axis, Quebec City, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University, Quebec City, Canada
| | - Xavier Veaute
- CIGEx Platform, INSERM, IRCM/IBFJ CEA, UMR Stabilité Génétique Cellules Souches et Radiations, Université de Paris and Université Paris-Saclay, Fontenay-aux-Roses, France
| | - Didier Busso
- CIGEx Platform, INSERM, IRCM/IBFJ CEA, UMR Stabilité Génétique Cellules Souches et Radiations, Université de Paris and Université Paris-Saclay, Fontenay-aux-Roses, France
| | - Bernard Lopez
- INSERM U1016, UMR 8104 CNRS, Institut Cochin, Equipe Labellisée Ligue Contre le Cancer, Université de Paris, Paris, France
| | - Gerard Mazon
- Genome Integrity and Cancers UMR 9019 CNRS, Université Paris- Saclay, Gustave Roussy, Villejuif Cedex, France
| | - Eric Le Cam
- Genome Integrity and Cancers UMR 9019 CNRS, Université Paris- Saclay, Gustave Roussy, Villejuif Cedex, France
| | - Jean-Yves Masson
- Genome Stability Laboratory, CHU de Quebec Research Center, HDQ Pavilion, Oncology Axis, Quebec City, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University, Quebec City, Canada
| | - Pauline Dupaigne
- Genome Integrity and Cancers UMR 9019 CNRS, Université Paris- Saclay, Gustave Roussy, Villejuif Cedex, France
| |
Collapse
|
2
|
Tan T, Tan Y, Wang Y, Yang X, Zhai B, Zhang S, Yang X, Nie H, Gao J, Zhou J, Zhang L, Wang S. Negative supercoils regulate meiotic crossover patterns in budding yeast. Nucleic Acids Res 2022; 50:10418-10435. [PMID: 36107772 PMCID: PMC9561271 DOI: 10.1093/nar/gkac786] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 08/21/2022] [Accepted: 09/01/2022] [Indexed: 11/25/2022] Open
Abstract
Interference exists ubiquitously in many biological processes. Crossover interference patterns meiotic crossovers, which are required for faithful chromosome segregation and evolutionary adaption. However, what the interference signal is and how it is generated and regulated is unknown. We show that yeast top2 alleles which cannot bind or cleave DNA accumulate a higher level of negative supercoils and show weaker interference. However, top2 alleles which cannot religate the cleaved DNA or release the religated DNA accumulate less negative supercoils and show stronger interference. Moreover, the level of negative supercoils is negatively correlated with crossover interference strength. Furthermore, negative supercoils preferentially enrich at crossover-associated Zip3 regions before the formation of meiotic DNA double-strand breaks, and regions with more negative supercoils tend to have more Zip3. Additionally, the strength of crossover interference and homeostasis change coordinately in mutants. These findings suggest that the accumulation and relief of negative supercoils pattern meiotic crossovers.
Collapse
Affiliation(s)
- Taicong Tan
- Center for Reproductive Medicine, Cheeloo College of Medicine, State Key Laboratory of Microbial Technology, Shandong University , China
| | - Yingjin Tan
- Center for Reproductive Medicine, Cheeloo College of Medicine, State Key Laboratory of Microbial Technology, Shandong University , China
| | - Ying Wang
- Center for Reproductive Medicine, Cheeloo College of Medicine, State Key Laboratory of Microbial Technology, Shandong University , China
| | - Xiao Yang
- Center for Reproductive Medicine, Cheeloo College of Medicine, State Key Laboratory of Microbial Technology, Shandong University , China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University , Jinan, Shandong 250012, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education , Jinan, Shandong 250001, China
- Shandong Provincial Clinical Research Center for Reproductive Health , Jinan, Shandong 250012, China
- Shandong Key Laboratory of Reproductive Medicine , Jinan, Shandong 250012, China
| | - Binyuan Zhai
- Center for Reproductive Medicine, Cheeloo College of Medicine, State Key Laboratory of Microbial Technology, Shandong University , China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University , Jinan, Shandong 250012, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education , Jinan, Shandong 250001, China
- Shandong Provincial Clinical Research Center for Reproductive Health , Jinan, Shandong 250012, China
- Shandong Key Laboratory of Reproductive Medicine , Jinan, Shandong 250012, China
| | - Shuxian Zhang
- Center for Reproductive Medicine, Cheeloo College of Medicine, State Key Laboratory of Microbial Technology, Shandong University , China
- Advanced Medical Research Institute, Shandong University , Jinan, Shandong 250012, China
| | - Xuan Yang
- Center for Reproductive Medicine, Cheeloo College of Medicine, State Key Laboratory of Microbial Technology, Shandong University , China
| | - Hui Nie
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University , Jinan 250014, Shandong, China
| | - Jinmin Gao
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University , Jinan 250014, Shandong, China
| | - Jun Zhou
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University , Jinan 250014, Shandong, China
| | - Liangran Zhang
- Center for Reproductive Medicine, Cheeloo College of Medicine, State Key Laboratory of Microbial Technology, Shandong University , China
- Advanced Medical Research Institute, Shandong University , Jinan, Shandong 250012, China
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University , Jinan 250014, Shandong, China
| | - Shunxin Wang
- Center for Reproductive Medicine, Cheeloo College of Medicine, State Key Laboratory of Microbial Technology, Shandong University , China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University , Jinan, Shandong 250012, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education , Jinan, Shandong 250001, China
- Shandong Provincial Clinical Research Center for Reproductive Health , Jinan, Shandong 250012, China
- Shandong Key Laboratory of Reproductive Medicine , Jinan, Shandong 250012, China
| |
Collapse
|
3
|
Martinez-Garcia M, White CI, Franklin FCH, Sanchez-Moran E. The Role of Topoisomerase II in DNA Repair and Recombination in Arabidopsis thaliana. Int J Mol Sci 2021; 22:13115. [PMID: 34884922 PMCID: PMC8658145 DOI: 10.3390/ijms222313115] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 11/25/2022] Open
Abstract
DNA entanglements and supercoiling arise frequently during normal DNA metabolism. DNA topoisomerases are highly conserved enzymes that resolve the topological problems that these structures create. Topoisomerase II (TOPII) releases topological stress in DNA by removing DNA supercoils through breaking the two DNA strands, passing a DNA duplex through the break and religating the broken strands. TOPII performs key DNA metabolic roles essential for DNA replication, chromosome condensation, heterochromatin metabolism, telomere disentanglement, centromere decatenation, transmission of crossover (CO) interference, interlock resolution and chromosome segregation in several model organisms. In this study, we reveal the endogenous role of Arabidopsis thaliana TOPII in normal root growth and cell cycle, and mitotic DNA repair via homologous recombination. Additionally, we show that the protein is required for meiotic DSB repair progression, but not for CO formation. We propose that TOPII might promote mitotic HR DNA repair by relieving stress needed for HR strand invasion and D-loop formation.
Collapse
Affiliation(s)
| | - Charles I. White
- Génétique, Reproduction et Développement, Faculté de Médecine, UMR CNRS 6293—INSERM U1103—Université Clermont Auvergne, 28 Place Henri Dunant, 63001 Clermont-Ferrand, France;
| | | | | |
Collapse
|
4
|
Abstract
The double-helical structure of genomic DNA is both elegant and functional in that it serves both to protect vulnerable DNA bases and to facilitate DNA replication and compaction. However, these design advantages come at the cost of having to evolve and maintain a cellular machinery that can manipulate a long polymeric molecule that readily becomes topologically entangled whenever it has to be opened for translation, replication, or repair. If such a machinery fails to eliminate detrimental topological entanglements, utilization of the information stored in the DNA double helix is compromised. As a consequence, the use of B-form DNA as the carrier of genetic information must have co-evolved with a means to manipulate its complex topology. This duty is performed by DNA topoisomerases, which therefore are, unsurprisingly, ubiquitous in all kingdoms of life. In this review, we focus on how DNA topoisomerases catalyze their impressive range of DNA-conjuring tricks, with a particular emphasis on DNA topoisomerase III (TOP3). Once thought to be the most unremarkable of topoisomerases, the many lives of these type IA topoisomerases are now being progressively revealed. This research interest is driven by a realization that their substrate versatility and their ability to engage in intimate collaborations with translocases and other DNA-processing enzymes are far more extensive and impressive than was thought hitherto. This, coupled with the recent associations of TOP3s with developmental and neurological pathologies in humans, is clearly making us reconsider their undeserved reputation as being unexceptional enzymes.
Collapse
Affiliation(s)
- Anna H Bizard
- Center for Chromosome Stability and Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Ian D Hickson
- Center for Chromosome Stability and Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| |
Collapse
|
5
|
Tavares EM, Wright WD, Heyer WD, Le Cam E, Dupaigne P. In vitro role of Rad54 in Rad51-ssDNA filament-dependent homology search and synaptic complexes formation. Nat Commun 2019; 10:4058. [PMID: 31492866 PMCID: PMC6731316 DOI: 10.1038/s41467-019-12082-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 08/12/2019] [Indexed: 11/28/2022] Open
Abstract
Homologous recombination (HR) uses a homologous template to accurately repair DNA double-strand breaks and stalled replication forks to maintain genome stability. During homology search, Rad51 nucleoprotein filaments probe and interact with dsDNA, forming the synaptic complex that is stabilized on a homologous sequence. Strand intertwining leads to the formation of a displacement-loop (D-loop). In yeast, Rad54 is essential for HR in vivo and required for D-loop formation in vitro, but its exact role remains to be fully elucidated. Using electron microscopy to visualize the DNA-protein complexes, here we find that Rad54 is crucial for Rad51-mediated synaptic complex formation and homology search. The Rad54−K341R ATPase-deficient mutant protein promotes formation of synaptic complexes but not D-loops and leads to the accumulation of stable heterologous associations, suggesting that the Rad54 ATPase is involved in preventing non-productive intermediates. We propose that Rad51/Rad54 form a functional unit operating in homology search, synaptic complex and D-loop formation. Homologous recombination uses a template to accurately repair DNA double-strand breaks and stalled replication forks to maintain genome stability. Here authors use electron microscopy to investigate the role of Rad54 in homology search and synaptic complex formation.
Collapse
Affiliation(s)
- Eliana Moreira Tavares
- Genome Maintenance and Molecular Microscopy UMR8126 CNRS, Université Paris-Sud, Université Paris-Saclay, Gustave Roussy, F-94805, Villejuif Cedex, France
| | - William Douglass Wright
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA, 95616-8665, USA
| | - Wolf-Dietrich Heyer
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA, 95616-8665, USA
| | - Eric Le Cam
- Genome Maintenance and Molecular Microscopy UMR8126 CNRS, Université Paris-Sud, Université Paris-Saclay, Gustave Roussy, F-94805, Villejuif Cedex, France
| | - Pauline Dupaigne
- Genome Maintenance and Molecular Microscopy UMR8126 CNRS, Université Paris-Sud, Université Paris-Saclay, Gustave Roussy, F-94805, Villejuif Cedex, France.
| |
Collapse
|
6
|
Wright WD, Shah SS, Heyer WD. Homologous recombination and the repair of DNA double-strand breaks. J Biol Chem 2018; 293:10524-10535. [PMID: 29599286 DOI: 10.1074/jbc.tm118.000372] [Citation(s) in RCA: 468] [Impact Index Per Article: 66.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Homologous recombination enables the cell to access and copy intact DNA sequence information in trans, particularly to repair DNA damage affecting both strands of the double helix. Here, we discuss the DNA transactions and enzymatic activities required for this elegantly orchestrated process in the context of the repair of DNA double-strand breaks in somatic cells. This includes homology search, DNA strand invasion, repair DNA synthesis, and restoration of intact chromosomes. Aspects of DNA topology affecting individual steps are highlighted. Overall, recombination is a dynamic pathway with multiple metastable and reversible intermediates designed to achieve DNA repair with high fidelity.
Collapse
Affiliation(s)
| | | | - Wolf-Dietrich Heyer
- From the Departments of Microbiology and Molecular Genetics and .,Molecular and Cellular Biology, University of California, Davis, Davis, California 95616-8665
| |
Collapse
|
7
|
Lu CH, Li HW. DNA with Different Local Torsional States Affects RecA-Mediated Recombination Progression. Chemphyschem 2017; 18:584-590. [PMID: 28054431 DOI: 10.1002/cphc.201601281] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 01/04/2017] [Indexed: 11/10/2022]
Abstract
DNA topology is thought to affect DNA enzyme activity. The helical structure of duplex DNA dictates the change of topological states during strand separation when DNA is constrained. During the repair of DNA double-stranded breaks, the RecA nucleoprotein filament invades DNA and carries out consecutive strand exchange reactions coupled with duplex DNA strand separation. It has been suggested that torsional strain could be generated and its accumulation could inhibit strand exchange. We used hairpin and nicked DNA substrates to test how torsional strain alters the RecA-mediated strand exchange efficiency. Single-molecule tethered particle motion (TPM) experiments showed that torsionally constrained hairpin DNA substrates returned nearly no successful strand exchange events catalyzed by RecA. Surprisingly, the strand exchange efficiencies increase in the presence of DNA nicks or loop disruption. The dwell time of transient RecA events in hairpin is shorter compared to those found in nicked or fork DNA substrates, which suggests a limited strand exchange progression in hairpin substrates. Our observation shows that RecA generates local torsional strain during strand exchange, and the inability to dissipate this torsional strain inhibits homologous recombination progression. DNA topological states are thus important regulation measures of DNA recombination.
Collapse
Affiliation(s)
- Chih-Hao Lu
- Department of Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 10617, Taiwan) (R.O.C
| | - Hung-Wen Li
- Department of Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 10617, Taiwan) (R.O.C
| |
Collapse
|
8
|
Mechanism of homology recognition in DNA recombination from dual-molecule experiments. Mol Cell 2012; 46:616-24. [PMID: 22560720 DOI: 10.1016/j.molcel.2012.03.029] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Revised: 02/21/2012] [Accepted: 03/30/2012] [Indexed: 11/24/2022]
Abstract
In E. coli homologous recombination, a filament of RecA protein formed on DNA searches and pairs a homologous sequence within a second DNA molecule with remarkable speed and fidelity. Here, we directly probe the strength of the two-molecule interactions involved in homology search and recognition using dual-molecule manipulation, combining magnetic and optical tweezers. We find that the filament's secondary DNA-binding site interacts with a single strand of the incoming double-stranded DNA during homology sampling. Recognition requires opening of the helix and is strongly promoted by unwinding torsional stress. Recognition is achieved upon binding of both strands of the incoming dsDNA to each of two ssDNA-binding sites in the filament. The data indicate a physical picture for homology recognition in which the fidelity of the search process is governed by the distance between the DNA-binding sites.
Collapse
|
9
|
Homologous recombination in real time: DNA strand exchange by RecA. Mol Cell 2008; 30:530-8. [PMID: 18498754 DOI: 10.1016/j.molcel.2008.03.010] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2007] [Revised: 11/02/2007] [Accepted: 03/07/2008] [Indexed: 11/20/2022]
Abstract
Homologous recombination, the exchange of strands between different DNA molecules, is essential for proper maintenance and accurate duplication of the genome. Using magnetic tweezers, we monitor RecA-driven homologous recombination of individual DNA molecules in real time. We resolve several key aspects of DNA structure during and after strand exchange. Changes in DNA length and twist yield helical parameters for the protein-bound three-stranded structure in conditions in which ATP was not hydrolyzed. When strand exchange was completed under ATP hydrolysis conditions that allow protein dissociation, a "D wrap" structure formed. During homologous recombination, strand invasion at one end and RecA dissociation at the other end occurred at the same rate, and our single-molecule analysis indicated that a region of only about 80 bp is actively involved in the synapsis at any time during the entire reaction involving a long ( approximately 1 kb) region of homology.
Collapse
|
10
|
Hülter N, Wackernagel W. Double illegitimate recombination events integrate DNA segments through two different mechanisms during natural transformation of Acinetobacter baylyi. Mol Microbiol 2008; 67:984-95. [PMID: 18194157 DOI: 10.1111/j.1365-2958.2007.06096.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Acquisition of foreign DNA by horizontal gene transfer is seen as a major source of genetic diversity in prokaryotes. However, strongly divergent DNA is not genomically integrated by homologous recombination and would depend on illegitimate recombination (IR) events which are rare. We show that, by two mechanisms, during natural transformation of Acinetobacter baylyi two IR events can integrate DNA segments. One mechanism is double illegitimate recombination (DIR) acting in the absence of any homology (frequency: 7 x 10(-13) per cell). It occurs about 10(10)-fold less frequent than homologous transformation. The other mechanism is homology-facilitated double illegitimate recombination (HFDIR) being about 440-fold more frequent (3 x 10(-10) per cell) than DIR. HFDIR depends on a homologous sequence located between the IR sites and on recA(+). In HFDIR two IR events act on the same donor DNA molecule as shown by the joint inheritance of molecular DNA tags. While the IR events in HFDIR occurred at microhomologies, in DIR microhomologies were not used. The HFDIR phenomenon indicates that a temporal recA-dependent association of donor DNA at a homology in recipient DNA may facilitate two IR events on the 5' and 3' heterologous parts of the transforming DNA molecule.
Collapse
Affiliation(s)
- Nils Hülter
- Genetics, Department of Biology and Environmental Sciences, Carl von Ossietzky University Oldenburg, D-26111 Oldenburg, Germany
| | | |
Collapse
|
11
|
Forsdyke DR. Molecular sex: The importance of base composition rather than homology when nucleic acids hybridize. J Theor Biol 2007; 249:325-30. [PMID: 17868701 DOI: 10.1016/j.jtbi.2007.07.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2007] [Revised: 05/23/2007] [Accepted: 07/24/2007] [Indexed: 12/24/2022]
Abstract
On learning that nucleic acid hybridization had been achieved in a test tube, Huxley hailed the discovery of "molecular sex." The description was apt, since sex involves recombination, which requires hybridization that, in turn, depends on a successful homology search. Conversely, when the homology search fails, recombination fails. In yeast, this failure has been attributed to "simple sequence divergence." But sequence divergence does not impair nucleic acid hybridization simply. Most natural single-stranded nucleic acids are predisposed to adopt higher-order structures containing stem-loops. Tomizawa showed that the rate-limiting step in the hybridization of single-stranded sequences is an initial "kissing" exploration between complementary loops, which must first be appropriately extruded and aligned. Successful duplex formation requires successful synchronization of matching higher-ordered structures, which depends, not so much on the degree of similarity between their base sequences as on the closeness of their base compositions (GC%). In these terms, we can understand how the anti-recombinational effect of GC% differences supports the duplication both of genes within a genome and of genomes within a genus (speciation).
Collapse
Affiliation(s)
- Donald R Forsdyke
- Department of Biochemistry, Queen's University, Kingston, Ontario, Canada K7K3N6.
| |
Collapse
|
12
|
Chargaff’s GC rule. Evol Bioinform Online 2006. [DOI: 10.1007/978-0-387-33419-6_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
13
|
Jaouen S, de Koning L, Gaillard C, Muselíková-Polanská E, Stros M, Strauss F. Determinants of specific binding of HMGB1 protein to hemicatenated DNA loops. J Mol Biol 2005; 353:822-37. [PMID: 16199053 DOI: 10.1016/j.jmb.2005.08.073] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2005] [Revised: 08/29/2005] [Accepted: 08/29/2005] [Indexed: 01/23/2023]
Abstract
Protein HMGB1 has long been known as one of the most abundant non-histone proteins in the nucleus of mammalian cells, and has regained interest recently for its function as an extracellular cytokine. As a DNA-binding protein, HMGB1 facilitates DNA-protein interactions by increasing the flexibility of the double helix, and binds specifically to distorted DNA structures. We have previously observed that HMGB1 binds with extremely high affinity to a novel DNA structure, hemicatenated DNA loops (hcDNA), in which double-stranded DNA fragments containing a tract of poly(CA).poly(TG) form a loop maintained at its base by a hemicatenane. Here, we show that the single HMGB1 domains A and B, the HMG-box domain of sex determination factor SRY, as well as the prokaryotic HMGB1-like protein HU, specifically interact with hcDNA (Kd approximately 0.5 nM). However, the affinity of full-length HMGB1 for hcDNA is three orders of magnitude higher (Kd<0.5 pM) and requires the simultaneous presence of both HMG-box domains A and B plus the acidic C-terminal tail on the molecule. Interestingly, the high affinity of the full-length protein for hcDNA does not decrease in the presence of magnesium. Experiments including a comparison of HMGB1 binding to hcDNA and to minicircles containing the CA/TG sequence, binding studies with HMGB1 mutated at intercalating amino acid residues (involved in recognition of distorted DNA structures), and exonuclease III footprinting, strongly suggest that the hemicatenane, not the DNA loop, is the main determinant of the affinity of HMGB1 for hcDNA. Experiments with supercoiled CA/TG-minicircles did not reveal any involvement of left-handed Z-DNA in HMGB1 binding. Our results point to a tight structural fit between HMGB1 and DNA hemicatenanes under physiological conditions, and suggest that one of the nuclear functions of HMGB1 could be linked to the possible presence of hemicatenanes in the cell.
Collapse
Affiliation(s)
- Sandrine Jaouen
- Institut Jacques Monod, 2 place Jussieu, F-75251 Paris 05, France
| | | | | | | | | | | |
Collapse
|
14
|
Gaillard C, Shlyakhtenko LS, Lyubchenko YL, Strauss F. Structural analysis of hemicatenated DNA loops. BMC STRUCTURAL BIOLOGY 2002; 2:7. [PMID: 12450412 PMCID: PMC139983 DOI: 10.1186/1472-6807-2-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2002] [Accepted: 11/26/2002] [Indexed: 11/10/2022]
Abstract
BACKGROUND We have previously isolated a stable alternative DNA structure, which was formed in vitro by reassociation of the strands of DNA fragments containing a 62 bp tract of the CA-microsatellite poly(CA).poly(TG). In the model which was proposed for this structure the double helix is folded into a loop, the base of the loop consists of a DNA junction in which one of the strands of one duplex passes between the two strands of the other duplex, forming a DNA hemicatenane in a hemiknot structure. The hemiknot DNA structures obtained with long CA/TG inserts have been imaged by AFM allowing us to directly visualize the loops. RESULTS Here we have analyzed this structure with several different techniques: high-resolution gel electrophoresis, probing by digestion with single stranded DNA-specific nucleases or with DNase I, modification with chemicals specific for unpaired bases, and atomic force microscopy. The data show a change in DNA structure localized to the CA/TG sequence and allow us to better understand the structure of this alternative conformation and the mechanism of its formation. CONCLUSIONS The present work is in good agreement with the model of hemicatenated DNA loop proposed previously. In the presence of protein HMGB1, shifted reassociation of the strands of DNA fragments containing a tract of the poly(CA).poly(TG) microsatellite leads to the formation of DNA loops maintained at their base by a hemicatenated junction located within the repetitive sequence. No mobility of the junction along the DNA molecule could be detected under the conditions used. The novel possibility to prepare DNA hemicatenanes should be useful to further study this alternative DNA structure and its involvement in replication or recombination.
Collapse
Affiliation(s)
- Claire Gaillard
- Institut Jacques Monod, 2 place Jussieu, 75251 Paris 05, France
| | - Luda S Shlyakhtenko
- Department of Biology, Arizona State University, Tempe, AZ 85287-2701, U.S.A
| | - Yuri L Lyubchenko
- Department of Biology, Arizona State University, Tempe, AZ 85287-2701, U.S.A
- Department of Microbiology, Arizona State University, Tempe, AZ 85287-2701, U.S.A
| | | |
Collapse
|
15
|
Zhang Z, Yoon D, LaPorte JR, Chen J. Appropriate initiation of the strand exchange reaction promoted by RecA protein requires ATP hydrolysis. J Mol Biol 2001; 309:29-43. [PMID: 11491297 DOI: 10.1006/jmbi.2001.4753] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The DNA-dependent ATPase activity of the Escherichia coli RecA protein has been recognized for more than two decades. Yet, the role of ATP hydrolysis in the RecA-promoted strand exchange reaction remains unclear. Here, we demonstrate that ATP hydrolysis is required as part of a proofreading process during homology recognition. It enables the RecA-ssDNA complex, after determining that the strand-exchanged duplex is mismatched, to dissociate from the synaptic complex, which allows it to re-initiate the search for a "true" homologous region. Furthermore, the results suggest that when non-homologous sequences are present at the proximal end, ATP hydrolysis is required to allow ssDNA-RecA to reinitiate the strand exchange from an internal homologous region.
Collapse
Affiliation(s)
- Z Zhang
- Department of Chemistry & Biochemistry, University of Delaware, Newark 19716, USA
| | | | | | | |
Collapse
|
16
|
Adair GM, Rolig RL, Moore-Faver D, Zabelshansky M, Wilson JH, Nairn RS. Role of ERCC1 in removal of long non-homologous tails during targeted homologous recombination. EMBO J 2000; 19:5552-61. [PMID: 11032822 PMCID: PMC313999 DOI: 10.1093/emboj/19.20.5552] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The XpF/Ercc1 structure-specific endonuclease performs the 5' incision in nucleotide excision repair and is the apparent mammalian counterpart of the Rad1/Rad10 endonuclease from Saccharomyces cerevisiae. In yeast, Rad1/Rad10 endonuclease also functions in mitotic recombination. To determine whether XpF/Ercc1 endonuclease has a similar role in mitotic recombination, we targeted the APRT locus in Chinese hamster ovary ERCC1(+) and ERCC1(-) cell lines with insertion vectors having long or short terminal non-homologies flanking each side of a double-strand break. No substantial differences were evident in overall recombination frequencies, in contrast to results from targeting experiments in yeast. However, profound differences were observed in types of APRT(+) recombinants recovered from ERCC1(-) cells using targeting vectors with long terminal non-homologies-almost complete ablation of gap repair and single-reciprocal exchange events, and generation of a new class of aberrant insertion/deletion recombinants absent in ERCC1(+) cells. These results represent the first demonstration of a requirement for ERCC1 in targeted homologous recombination in mammalian cells, specifically in removal of long non-homologous tails from invading homologous strands.
Collapse
Affiliation(s)
- G M Adair
- Department of Carcinogenesis, The University of Texas M.D. Anderson Cancer Center, Science Park-Research Division, Smithville, TX 78957, USA
| | | | | | | | | | | |
Collapse
|
17
|
Forsdyke DR. Haldane's rule: hybrid sterility affects the heterogametic sex first because sexual differentiation is on the path to species differentiation. J Theor Biol 2000; 204:443-52. [PMID: 10816367 DOI: 10.1006/jtbi.2000.2028] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Prevention of recombination is needed to preserve both phenotypic differentiation between species and sexual phenotypic differentiation within species. For species differentiation (speciation), isolating barriers preventing recombination may be pre-zygotic (gamete transfer barriers), or post-zygotic (either a developmental barrier resulting in hybrid inviability, or a chromosomal-pairing barrier resulting in hybrid sterility). The sterility barrier is usually the first to appear and, although often initially only manifest in the heterogametic sex (Haldane's rule), is finally manifest in both sexes. For sexual differentiation, the first and only barrier is chromosomal-pairing, and always applies to the heterogametic sex. For regions of sex chromosomes affecting sexual differentiation there must be something analogous to the process generating the hybrid sterility seen when allied species cross. Explanations for Haldane's rule have generally assumed that the chromosomal-pairing barrier initiating evolutionary divergence into species is due to incompatibilities between gene products ("genic), or sets of gene products ("polygenic), rather than between chromosomes per se ("chromosomal"). However, if chromosomal incompatibilities promoting incipient sexual differentiation could also contribute to the process of incipient speciation, then a step towards speciation would have been taken in the heterogametic sex. Thus, incipient speciation, manifest as hybrid sterility when "varieties" are crossed, would appear at the earliest stage in the heterogametic sex, even in genera with homomorphic sex chromosomes (Haldane's rule for hybrid sterility). In contrast, it has been proposed that Haldane's rule for hybrid inviability needs differences in dosage compensation, so could not apply to genera with homomorphic sex chromosomes.
Collapse
Affiliation(s)
- D R Forsdyke
- Department of Biochemistry, Queen's University, Kingston, ONT, K7L3N6, Canada.
| |
Collapse
|
18
|
Forsdyke DR. Two levels of information in DNA: relationship of Romanes' "intrinsic" variability of the reproductive system, and Bateson's "residue" to the species-dependent component of the base composition, (C+G)%. J Theor Biol 1999; 201:47-61. [PMID: 10534435 DOI: 10.1006/jtbi.1999.1013] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In 1886 Charles Darwin's research associate George Romanes published a paper entitled "Physiological Selection: An Additional Suggestion on the Origin of Species". This was criticized by his Victorian contemporaries and largely ignored by those who followed. However, the recent recognition of two levels of information in DNA suggests that Romanes had solved the major problems with Darwin's theory. It was apparent from the outset that the form of reproductive isolation likely to apply most generally to initial species divergence (hybrid sterility), would depend on differences, not in "primary" information ("genic"), but in "secondary" information ("chromosomal"). This viewpoint, further elaborated by Bateson & Saunders (1902), White (1978), and King (1993), is criticized by the genic school (Coyne & Orr, 1998) because it requires visible differences between chromosomes, and appears not to explain Haldane's rule. However, chromosomal differentiation with respect to the species-dependent component of base composition [(C+G)%; Forsdyke, 1996] appears to resolve these problems. Because it explained so much, it was easy to believe that the genic viewpoint explained everything. Romanes and Bateson thought otherwise. We are only just beginning to recognize what they were trying to tell us.
Collapse
Affiliation(s)
- D R Forsdyke
- Department of Biochemistry, Queen's University, Kingston, Ontario, K7L 3N6, Canada.
| |
Collapse
|
19
|
Bertucat G, Lavery R, Prévost C. A molecular model for RecA-promoted strand exchange via parallel triple-stranded helices. Biophys J 1999; 77:1562-76. [PMID: 10465767 PMCID: PMC1300444 DOI: 10.1016/s0006-3495(99)77004-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
A number of studies have concluded that strand exchange between a RecA-complexed DNA single strand and a homologous DNA duplex occurs via a single-strand invasion of the minor groove of the duplex. Using molecular modeling, we have previously demonstrated the possibility of forming a parallel triple helix in which the single strand interacts with the intact duplex in the minor groove, via novel base interactions (Bertucat et al., J. Biomol. Struct. Dynam. 16:535-546). This triplex is stabilized by the stretching and unwinding imposed by RecA. In the present study, we show that the bases within this triplex are appropriately placed to undergo strand exchange. Strand exchange is found to be exothermic and to result in a triple helix in which the new single strand occupies the major groove. This structure, which can be equated to so-called R-form DNA, can be further stabilized by compression and rewinding. We are consequently able to propose a detailed, atomic-scale model of RecA-promoted strand exchange. This model, which is supported by a variety of experimental data, suggests that the role of RecA is principally to prepare the single strand for its future interactions, to guide a minor groove attack on duplex DNA, and to stabilize the resulting, stretched triplex, which intrinsically favors strand exchange. We also discuss how this mechanism can incorporate homologous recognition.
Collapse
Affiliation(s)
- G Bertucat
- Laboratoire de Biochimie Théorique, CNRS UPR 9080, Institut de Biologie Physico-Chimique, 75005 Paris, France
| | | | | |
Collapse
|
20
|
Zaitsev EN, Kowalczykowski SC. The simultaneous binding of two double-stranded DNA molecules by Escherichia coli RecA protein. J Mol Biol 1999; 287:21-31. [PMID: 10074404 DOI: 10.1006/jmbi.1998.2580] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have characterized the double-stranded DNA (dsDNA) binding properties of RecA protein, using an assay based on changes in the fluorescence of 4',6-diamidino-2-phenylindole (DAPI)-dsDNA complexes. Here we use fluorescence, nitrocellulose filter-binding, and DNase I-sensitivity assays to demonstrate the binding of two duplex DNA molecules by the RecA protein filament. We previously established that the binding stoichiometry for the RecA protein-dsDNA complex is three base-pairs per RecA protein monomer, in the presence of ATP. In the presence of ATPgammaS, however, the binding stoichiometry depends on the MgCl2 concentration. The stoichiometry is 3 bp per monomer at low MgCl2 concentrations, but changes to 6 bp per monomer at higher MgCl2 concentrations, with the transition occurring at approximately 5 mM MgCl2. Above this MgCl2 concentration, the dsDNA within the RecA nucleoprotein complex becomes uncharacteristically sensitive to DNase I digestion. For these reasons we suggest that, at the elevated MgCl2 conditions, the RecA-dsDNA nucleoprotein filament can bind a second equivalent of dsDNA. These results demonstrate that RecA protein has the capacity to bind two dsDNA molecules, and they suggest that RecA or RecA-like proteins may effect homologous recognition between intact DNA duplexes.
Collapse
Affiliation(s)
- E N Zaitsev
- Sections of Microbiology and of Molecular and Cell Biology, University of California, Davis, CA, 95616-8665, USA
| | | |
Collapse
|