1
|
Penvose A, Keenan JL, Bray D, Ramlall V, Siggers T. Comprehensive study of nuclear receptor DNA binding provides a revised framework for understanding receptor specificity. Nat Commun 2019; 10:2514. [PMID: 31175293 PMCID: PMC6555819 DOI: 10.1038/s41467-019-10264-3] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Accepted: 05/02/2019] [Indexed: 01/06/2023] Open
Abstract
The type II nuclear receptors (NRs) function as heterodimeric transcription factors with the retinoid X receptor (RXR) to regulate diverse biological processes in response to endogenous ligands and therapeutic drugs. DNA-binding specificity has been proposed as a primary mechanism for NR gene regulatory specificity. Here we use protein-binding microarrays (PBMs) to comprehensively analyze the DNA binding of 12 NR:RXRα dimers. We find more promiscuous NR-DNA binding than has been reported, challenging the view that NR binding specificity is defined by half-site spacing. We show that NRs bind DNA using two distinct modes, explaining widespread NR binding to half-sites in vivo. Finally, we show that the current models of NR specificity better reflect binding-site activity rather than binding-site affinity. Our rich dataset and revised NR binding models provide a framework for understanding NR regulatory specificity and will facilitate more accurate analyses of genomic datasets. The type II nuclear receptors (NRs) and the retinoid X receptor (RXR) form heterodimeric transcription factors to regulate development, metabolism, and inflammation. Here the authors employ protein-binding microarrays to comprehensively analyze the DNA binding of 12 NR:RXRα heterodimers, and report promiscuous NR-DNA binding.
Collapse
Affiliation(s)
- Ashley Penvose
- Department of Biology, Boston University, Boston, MA, 02215, USA.,Biological Design Center, Boston University, Boston, MA, 02215, USA
| | - Jessica L Keenan
- Biological Design Center, Boston University, Boston, MA, 02215, USA.,Bioinformatics Program, Boston University, Boston, MA, 02215, USA
| | - David Bray
- Biological Design Center, Boston University, Boston, MA, 02215, USA.,Bioinformatics Program, Boston University, Boston, MA, 02215, USA
| | - Vijendra Ramlall
- Department of Biology, Boston University, Boston, MA, 02215, USA.,Biological Design Center, Boston University, Boston, MA, 02215, USA
| | - Trevor Siggers
- Department of Biology, Boston University, Boston, MA, 02215, USA. .,Biological Design Center, Boston University, Boston, MA, 02215, USA. .,Bioinformatics Program, Boston University, Boston, MA, 02215, USA.
| |
Collapse
|
2
|
Lanig H, Reisen F, Whitley D, Schneider G, Banting L, Clark T. In Silico Adoption of an Orphan Nuclear Receptor NR4A1. PLoS One 2015; 10:e0135246. [PMID: 26270486 PMCID: PMC4535767 DOI: 10.1371/journal.pone.0135246] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 07/20/2015] [Indexed: 11/24/2022] Open
Abstract
A 4.1μs molecular dynamics simulation of the NR4A1 (hNur77) apo-protein has been undertaken and a previously undetected druggable pocket has become apparent that is located remotely from the ‘traditional’ nuclear receptor ligand-binding site. A NR4A1/bis-indole ligand complex at this novel site has been found to be stable over 1 μs of simulation and to result in an interesting conformational transmission to a remote loop that has the capacity to communicate with a NBRE within a RXR-α/NR4A1 heterodimer. Several features of the simulations undertaken indicate how NR4A1 can be affected by alternate-site modulators.
Collapse
Affiliation(s)
- Harald Lanig
- Computer-Chemie-Centrum der Friedrich-Alexander-Universität Erlangen-Nürnberg, Nägelsbachstraße 25, 91052, Erlangen, Germany
| | - Felix Reisen
- ETH Zürich, Institute of Pharmaceutical Sciences, Wolfgang-Pauli-Straße 10, 8093, Zürich, Switzerland
| | - David Whitley
- Centre for Molecular Design, School of Pharmacy and Biomolecular Sciences, University of Portsmouth, King Henry Building, Portsmouth, PO1 2DY, United Kingdom
| | - Gisbert Schneider
- ETH Zürich, Institute of Pharmaceutical Sciences, Wolfgang-Pauli-Straße 10, 8093, Zürich, Switzerland
| | - Lee Banting
- School of Pharmacy and Biomolecular Sciences, University of Portsmouth, St. Michael’s Building, White Swan Road, Portsmouth, PO1 2DT, United Kingdom
- * E-mail: (LB); (TC)
| | - Timothy Clark
- Computer-Chemie-Centrum der Friedrich-Alexander-Universität Erlangen-Nürnberg, Nägelsbachstraße 25, 91052, Erlangen, Germany
- Centre for Molecular Design, School of Pharmacy and Biomolecular Sciences, University of Portsmouth, King Henry Building, Portsmouth, PO1 2DY, United Kingdom
- * E-mail: (LB); (TC)
| |
Collapse
|
3
|
Flajollet S, Rachez C, Ploton M, Schulz C, Gallais R, Métivier R, Pawlak M, Leray A, Issulahi AA, Héliot L, Staels B, Salbert G, Lefebvre P. The elongation complex components BRD4 and MLLT3/AF9 are transcriptional coactivators of nuclear retinoid receptors. PLoS One 2013; 8:e64880. [PMID: 23762261 PMCID: PMC3677938 DOI: 10.1371/journal.pone.0064880] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 04/18/2013] [Indexed: 12/20/2022] Open
Abstract
Nuclear all-trans retinoic acid receptors (RARs) initiate early transcriptional events which engage pluripotent cells to differentiate into specific lineages. RAR-controlled transactivation depends mostly on agonist-induced structural transitions in RAR C-terminus (AF-2), thus bridging coactivators or corepressors to chromatin, hence controlling preinitiation complex assembly. However, the contribution of other domains of RAR to its overall transcriptional activity remains poorly defined. A proteomic characterization of nuclear proteins interacting with RAR regions distinct from the AF-2 revealed unsuspected functional properties of the RAR N-terminus. Indeed, mass spectrometry fingerprinting identified the Bromodomain-containing protein 4 (BRD4) and ALL1-fused gene from chromosome 9 (AF9/MLLT3), known to associate with and regulates the activity of Positive Transcription Elongation Factor b (P-TEFb), as novel RAR coactivators. In addition to promoter sequences, RAR binds to genomic, transcribed regions of retinoid-regulated genes, in association with RNA polymerase II and as a function of P-TEFb activity. Knockdown of either AF9 or BRD4 expression affected differentially the neural differentiation of stem cell-like P19 cells. Clusters of retinoid-regulated genes were selectively dependent on BRD4 and/or AF9 expression, which correlated with RAR association to transcribed regions. Thus RAR establishes physical and functional links with components of the elongation complex, enabling the rapid retinoid-induced induction of genes required for neuronal differentiation. Our data thereby extends the previously known RAR interactome from classical transcriptional modulators to components of the elongation machinery, and unravel a functional role of RAR in transcriptional elongation.
Collapse
Affiliation(s)
- Sébastien Flajollet
- European Genomic Institute for Diabetes (EGID), FR 3508, Lille, France
- INSERM UMR1011, Lille, France
- Univ Lille 2, Lille, France
- Institut Pasteur de Lille, Lille, France
| | - Christophe Rachez
- Unité de Régulation Epigénétique, URA 2578 du CNRS, Département de Biologie du Développement, Institut Pasteur, Paris, France
| | - Maheul Ploton
- European Genomic Institute for Diabetes (EGID), FR 3508, Lille, France
- INSERM UMR1011, Lille, France
- Univ Lille 2, Lille, France
- Institut Pasteur de Lille, Lille, France
| | - Céline Schulz
- Interdisciplinary Research Institute, Univ Lille 1, USR 3078 CNRS, Biophotonique Cellulaire Fonctionnelle, Villeneuve d’Ascq, France
| | - Rozenn Gallais
- Equipe SPARTE, UMR CNRS 6026-Université Rennes 1, Rennes, France
| | - Raphaël Métivier
- Equipe SPARTE, UMR CNRS 6026-Université Rennes 1, Rennes, France
| | - Michal Pawlak
- European Genomic Institute for Diabetes (EGID), FR 3508, Lille, France
- INSERM UMR1011, Lille, France
- Univ Lille 2, Lille, France
- Institut Pasteur de Lille, Lille, France
| | - Aymeric Leray
- Interdisciplinary Research Institute, Univ Lille 1, USR 3078 CNRS, Biophotonique Cellulaire Fonctionnelle, Villeneuve d’Ascq, France
| | - Al Amine Issulahi
- Interdisciplinary Research Institute, Univ Lille 1, USR 3078 CNRS, Biophotonique Cellulaire Fonctionnelle, Villeneuve d’Ascq, France
| | - Laurent Héliot
- Interdisciplinary Research Institute, Univ Lille 1, USR 3078 CNRS, Biophotonique Cellulaire Fonctionnelle, Villeneuve d’Ascq, France
| | - Bart Staels
- European Genomic Institute for Diabetes (EGID), FR 3508, Lille, France
- INSERM UMR1011, Lille, France
- Univ Lille 2, Lille, France
- Institut Pasteur de Lille, Lille, France
| | - Gilles Salbert
- Equipe SPARTE, UMR CNRS 6026-Université Rennes 1, Rennes, France
| | - Philippe Lefebvre
- European Genomic Institute for Diabetes (EGID), FR 3508, Lille, France
- INSERM UMR1011, Lille, France
- Univ Lille 2, Lille, France
- Institut Pasteur de Lille, Lille, France
- * E-mail:
| |
Collapse
|
4
|
Bilbija D, Haugen F, Sagave J, Baysa A, Bastani N, Levy FO, Sirsjö A, Blomhoff R, Valen G. Retinoic acid signalling is activated in the postischemic heart and may influence remodelling. PLoS One 2012; 7:e44740. [PMID: 23028599 PMCID: PMC3460971 DOI: 10.1371/journal.pone.0044740] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Accepted: 08/07/2012] [Indexed: 11/18/2022] Open
Abstract
Background All-trans retinoic acid (atRA), an active derivative of vitamin A, regulates cell differentiation, proliferation and cardiac morphogenesis via transcriptional activation of retinoic acid receptors (RARs) acting on retinoic acid response elements (RARE).We hypothesized that the retinoic acid (RA) signalling pathway is activated in myocardial ischemia and postischemic remodelling. Methods and Findings Myocardial infarction was induced through ligating the left coronary artery in mice. In vivo cardiac activation of the RARs was measured by imaging RARE-luciferase reporter mice, and analysing expression of RAR target genes and proteins by real time RT-PCR and western blot. Endogenous retinoids in postinfarcted hearts were analysed by triple-stage liquid chromatography/tandem mass spectrometry. Cardiomyocytes (CM) and cardiofibroblasts (CF) were isolated from infarcted and sham operated RARE luciferase reporter hearts and monitored for RAR activity and expression of target genes. The effect of atRA on CF proliferation was evaluated by EdU incorporation. Myocardial infarction increased thoracic RAR activity in vivo (p<0.001), which was ascribed to the heart through ex vivo imaging (p = 0.002) with the largest signal 1 week postinfarct. This was accompanied by increased cardiac gene and protein expression of the RAR target genes retinol binding protein 1 (p = 0.01 for RNA, p = 0,006 for protein) and aldehyde dehydrogenase 1A2 (p = 0.04 for RNA, p = 0,014 for protein), while gene expression of cytochrome P450 26B1 was downregulated (p = 0.007). Concomitantly, retinol accumulated in the infarcted zone (p = 0.02). CM and CF isolated from infarcted hearts had higher luminescence than those from sham operated hearts (p = 0.02 and p = 0.008). AtRA inhibited CF proliferation in vitro (p = 0.02). Conclusion The RA signalling pathway is activated in postischemic hearts and may play a role in regulation of damage and repair during remodelling.
Collapse
Affiliation(s)
- Dusan Bilbija
- Department of Physiology, University of Oslo, Oslo, Norway.
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Pawlak M, Lefebvre P, Staels B. General molecular biology and architecture of nuclear receptors. Curr Top Med Chem 2012; 12:486-504. [PMID: 22242852 PMCID: PMC3637177 DOI: 10.2174/156802612799436641] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Accepted: 11/22/2011] [Indexed: 12/12/2022]
Abstract
Nuclear receptors (NRs) regulate and coordinate multiple processes by integrating internal and external signals, thereby maintaining homeostasis in front of nutritional, behavioral and environmental challenges. NRs exhibit strong similarities in their structure and mode of action: by selective transcriptional activation or repression of cognate target genes, which can either be controlled through a direct, DNA binding-dependent mechanism or through crosstalk with other transcriptional regulators, NRs modulate the expression of gene clusters thus achieving coordinated tissue responses. Additionally, non genomic effects of NR ligands appear mediated by ill-defined mechanisms at the plasma membrane. These effects mediate potential therapeutic effects as small lipophilic molecule targets, and many efforts have been put in elucidating their precise mechanism of action and pathophysiological roles. Currently, numerous nuclear receptor ligand analogs are used in therapy or are tested in clinical trials against various diseases such as hypertriglyceridemia, atherosclerosis, diabetes, allergies and cancer and others.
Collapse
Affiliation(s)
- Michal Pawlak
- Récepteurs nucléaires, maladies cardiovasculaires et diabète
INSERM : U1011Institut Pasteur de LilleUniversité Lille II - Droit et santé1 rue du Prof Calmette 59019 Lille Cedex,FR
| | - Philippe Lefebvre
- Récepteurs nucléaires, maladies cardiovasculaires et diabète
INSERM : U1011Institut Pasteur de LilleUniversité Lille II - Droit et santé1 rue du Prof Calmette 59019 Lille Cedex,FR
| | - Bart Staels
- Récepteurs nucléaires, maladies cardiovasculaires et diabète
INSERM : U1011Institut Pasteur de LilleUniversité Lille II - Droit et santé1 rue du Prof Calmette 59019 Lille Cedex,FR
| |
Collapse
|
6
|
Rochel N, Ciesielski F, Godet J, Moman E, Roessle M, Peluso-Iltis C, Moulin M, Haertlein M, Callow P, Mély Y, Svergun DI, Moras D. Common architecture of nuclear receptor heterodimers on DNA direct repeat elements with different spacings. Nat Struct Mol Biol 2011; 18:564-70. [DOI: 10.1038/nsmb.2054] [Citation(s) in RCA: 153] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Accepted: 01/27/2011] [Indexed: 11/09/2022]
|
7
|
Gillespie RF, Gudas LJ. Retinoid regulated association of transcriptional co-regulators and the polycomb group protein SUZ12 with the retinoic acid response elements of Hoxa1, RARbeta(2), and Cyp26A1 in F9 embryonal carcinoma cells. J Mol Biol 2007; 372:298-316. [PMID: 17663992 PMCID: PMC2972191 DOI: 10.1016/j.jmb.2007.06.079] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2007] [Revised: 06/18/2007] [Accepted: 06/26/2007] [Indexed: 11/25/2022]
Abstract
Hox gene expression is activated by all-trans retinoic acid (RA), through binding to retinoic acid receptor-retinoid X receptor (RAR-RXR) heterodimers bound at RA response elements (RAREs) of target genes. The RARs and RXRs each have three isotypes (alpha, beta, and gamma), which are encoded by distinct genes. Hox genes are also repressed by polycomb group proteins (PcG), though how these proteins are targeted is unclear. We used chromatin immunoprecipitation assays to investigate the association of RXRalpha, RARgamma, cofactors, and the PcG protein SUZ12 with the Hoxa1, RARbeta2, and Cyp26A1 RAREs in F9 embryonal carcinoma cells (teratocarcinoma stem cells) during RA treatment. We demonstrate that RARgamma and RXRalpha are associated with RAREs prior to and during RA treatment. pCIP, p300, and RNA polymerase II levels increased at target RAREs upon exposure to RA. Conversely, SUZ12 was found associated with all RAREs studied and these associations were attenuated by treatment with RA. Upon RA removal, SUZ12 re-associated with RAREs. H3ac, H3K4me2, and H3K27me3 marks were simultaneously detected at target loci, indicative of a bivalent domain chromatin structure. During RA mediated differentiation, H3K27me3 levels decreased at target RAREs whereas H3ac and H3K4me2 levels remained constant. These studies provide insight into the dynamics of association of co-regulators with RAREs and demonstrate a novel link between RA signaling and PcG repression.
Collapse
Affiliation(s)
| | - Lorraine J. Gudas
- Corresponding author: Lorraine J. Gudas, Department of Pharmacology, Weill Medical College of Cornell University, 1300 York Ave., Rm. E-409, New York, New York, 10021, Phone (212) 746-6250, Fax (212) 746-8858,
| |
Collapse
|
8
|
Lefebvre B, Brand C, Flajollet S, Lefebvre P. Down-Regulation of the Tumor Suppressor Gene Retinoic Acid Receptor β2 through the Phosphoinositide 3-Kinase/Akt Signaling Pathway. Mol Endocrinol 2006; 20:2109-21. [PMID: 16613989 DOI: 10.1210/me.2005-0321] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Abstract
The retinoic acid receptor β2 (RARβ2) is a potent, retinoid-inducible tumor suppressor gene, which is a critical molecular relay for retinoid actions in cells. Its down-regulation, or loss of expression, leads to resistance of cancer cells to retinoid treatment. Up to now, no primary mechanism underlying the repression of the RARβ2 gene expression, hence affecting cellular retinoid sensitivity, has been identified. Here, we demonstrate that the phosphoinositide 3-kinase/Akt signaling pathway affects cellular retinoid sensitivity, by regulating corepressor recruitment to the RARβ2 promoter. Through direct phosphorylation of the corepressor silencing mediator for retinoic and thyroid hormone receptors (SMRT), Akt stabilized RAR/SMRT interaction, leading to an increased tethering of SMRT to the RARβ2 promoter, decreased histone acetylation, down-regulation of the RARβ2 expression, and impaired cellular differentiation in response to retinoid. The phosphoinositide 3-kinase/Akt signaling pathway, an important modulator of cellular survival, has thus a direct impact on cellular retinoid sensitivity, and its deregulation may be the triggering event in retinoid resistance of cancer cells.
Collapse
Affiliation(s)
- Bruno Lefebvre
- Institut National de la Santé et de la Recherche Médicale, Unité 545, Faculté de Médecine Henri Warembourg, 1 Place de Verdun, 59045 Lille cedex, France.
| | | | | | | |
Collapse
|
9
|
Lefebvre P, Martin PJ, Flajollet S, Dedieu S, Billaut X, Lefebvre B. Transcriptional activities of retinoic acid receptors. VITAMINS AND HORMONES 2005; 70:199-264. [PMID: 15727806 DOI: 10.1016/s0083-6729(05)70007-8] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Vitamin A derivatives plays a crucial role in embryonic development, as demonstrated by the teratogenic effect of either an excess or a deficiency in vitamin A. Retinoid effects extend however beyond embryonic development, and tissue homeostasis, lipid metabolism, cellular differentiation and proliferation are in part controlled through the retinoid signaling pathway. Retinoids are also therapeutically effective in the treatment of skin diseases (acne, psoriasis and photoaging) and of some cancers. Most of these effects are the consequences of retinoic acid receptors activation, which triggers transcriptional events leading either to transcriptional activation or repression of retinoid-controlled genes. Synthetic molecules are able to mimic part of the biological effects of the natural retinoic acid receptors, all-trans retinoic acid. Therefore, retinoic acid receptors are considered as highly valuable therapeutic targets and limiting unwanted secondary effects due to retinoid treatment requires a molecular knowledge of retinoic acid receptors biology. In this review, we will examine experimental evidence which provide a molecular basis for the pleiotropic effects of retinoids, and emphasize the crucial roles of coregulators of retinoic acid receptors, providing a conceptual framework to identify novel therapeutic targets.
Collapse
Affiliation(s)
- Philippe Lefebvre
- INSERM U459 and Ligue Nationale Contre le Cancer, Faculté de Médecine de Lille, 59045 Lille cedex, France
| | | | | | | | | | | |
Collapse
|
10
|
Yang Z, Zheng C, Thiriet C, Hayes JJ. The core histone N-terminal tail domains negatively regulate binding of transcription factor IIIA to a nucleosome containing a 5S RNA gene via a novel mechanism. Mol Cell Biol 2005; 25:241-9. [PMID: 15601846 PMCID: PMC538782 DOI: 10.1128/mcb.25.1.241-249.2005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Reconstitution of a DNA fragment containing a 5S RNA gene from Xenopus borealis into a nucleosome greatly restricts binding of the primary 5S transcription factor, TFIIIA. Consistent with transcription experiments using reconstituted templates, removal of the histone tail domains stimulates TFIIIA binding to the 5S nucleosome greater than 100-fold. However, we show that tail removal increases the probability of 5S DNA unwrapping from the core histone surface by only approximately fivefold. Moreover, using site-specific histone-to-DNA cross-linking, we show that TFIIIA binding neither induces nor requires nucleosome movement. Binding studies with COOH-terminal deletion mutants of TFIIIA and 5S nucleosomes reconstituted with native and tailless core histones indicate that the core histone tail domains play a direct role in restricting the binding of TFIIIA. Deletion of only the COOH-terminal transcription activation domain dramatically stimulates TFIIIA binding to the native nucleosome, while further C-terminal deletions or removal of the tail domains does not lead to further increases in TFIIIA binding. We conclude that the unmodified core histone tail domains directly negatively influence TFIIIA binding to the nucleosome in a manner that requires the C-terminal transcription activation domain of TFIIIA. Our data suggest an additional mechanism by which the core histone tail domains regulate the binding of trans-acting factors in chromatin.
Collapse
Affiliation(s)
- Zungyoon Yang
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Box 712, Rochester, NY 14642, USA
| | | | | | | |
Collapse
|
11
|
Huggins CF, Chafin DR, Aoyagi S, Henricksen LA, Bambara RA, Hayes JJ. Flap endonuclease 1 efficiently cleaves base excision repair and DNA replication intermediates assembled into nucleosomes. Mol Cell 2002; 10:1201-11. [PMID: 12453426 DOI: 10.1016/s1097-2765(02)00736-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Flap Endonuclease 1 (FEN1) plays important roles both in DNA replication and in base excision repair (BER). However, in both processes FEN1 substrates are likely to be assembled into chromatin. In order to examine how FEN1 is able to work within chromatin, we prepared model nucleosome substrates containing FEN1-cleavable DNA flaps. We find that human FEN1 binds and cleaves such substrates with efficiencies similar to that displayed with naked DNA. Moreover, we demonstrate that both FEN1 and human DNA ligase I can operate successively on DNA within the same nucleosome. These results suggest that some BER steps may not require nucleosome remodeling in vivo and that FEN 1 activity during Okazaki fragment processing can occur on nucleosomal substrates.
Collapse
Affiliation(s)
- Christine F Huggins
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY 14642, USA
| | | | | | | | | | | |
Collapse
|
12
|
Brand C, Ségard P, Plouvier P, Formstecher P, Danzé PM, Lefebvre P. Selective alteration of gene expression in response to natural and synthetic retinoids. BMC Pharmacol 2002; 2:13. [PMID: 12019025 PMCID: PMC113761 DOI: 10.1186/1471-2210-2-13] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2002] [Accepted: 05/13/2002] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Retinoids are very potent inducers of cellular differentiation and apoptosis, and are efficient anti-tumoral agents. Synthetic retinoids are designed to restrict their toxicity and side effects, mostly by increasing their selectivity toward each isotype of retinoic acids receptors (RARalpha,beta, gamma and RXRalpha, beta, gamma). We however previously showed that retinoids displayed very different abilities to activate retinoid-inducible reporter genes, and that these differential properties were correlated to the ability of a given ligand to promote SRC-1 recruitment by DNA-bound RXR:RAR heterodimers. This suggested that gene-selective modulation could be achieved by structurally distinct retinoids. RESULTS Using the differential display mRNA technique, we identified several genes on the basis of their differential induction by natural or synthetic retinoids in human cervix adenocarcinoma cells. Furthermore, this differential ability to regulate promoter activities was also observed in murine P19 cells for the RARbeta2 and CRABPII gene, showing conclusively that retinoid structure has a dramatic impact on the regulation of endogenous genes. CONCLUSIONS Our findings therefore show that some degree of selective induction or repression of gene expression may be achieved when using appropriately designed ligands for retinoic acid receptors, extending the concept of selective modulators from estrogen and peroxisome proliferator activated receptors to the class of retinoid receptors.
Collapse
Affiliation(s)
- Céline Brand
- INSERM U 459 and Ligue nationale contre le Cancer, Faculté de Médecine Henri Warembourg, 1, place de Verdun, 59045 Lille cedex, France
| | - Pascaline Ségard
- INSERM U 459 and Ligue nationale contre le Cancer, Faculté de Médecine Henri Warembourg, 1, place de Verdun, 59045 Lille cedex, France
| | - Pascal Plouvier
- INSERM U 459 and Ligue nationale contre le Cancer, Faculté de Médecine Henri Warembourg, 1, place de Verdun, 59045 Lille cedex, France
| | - Pierre Formstecher
- INSERM U 459 and Ligue nationale contre le Cancer, Faculté de Médecine Henri Warembourg, 1, place de Verdun, 59045 Lille cedex, France
| | - Pierre-Marie Danzé
- INSERM U 459 and Ligue nationale contre le Cancer, Faculté de Médecine Henri Warembourg, 1, place de Verdun, 59045 Lille cedex, France
| | - Philippe Lefebvre
- INSERM U 459 and Ligue nationale contre le Cancer, Faculté de Médecine Henri Warembourg, 1, place de Verdun, 59045 Lille cedex, France
| |
Collapse
|
13
|
Lefebvre B, Ozato K, Lefebvre P. Phosphorylation of histone H3 is functionally linked to retinoic acid receptor beta promoter activation. EMBO Rep 2002; 3:335-40. [PMID: 11897660 PMCID: PMC1084054 DOI: 10.1093/embo-reports/kvf066] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Ligand-dependent transcriptional activation of retinoic acid receptors (RARs) is a multistep process culminating in the formation of a multimeric co-activator complex on regulated promoters. Several co-activator complexes harbor an acetyl transferase activity, which is required for retinoid-induced transcription of reporter genes. Using murine P19 embryonal carcinoma cells, we examined the relationship between histone post-translational modifications and activation of the endogenous RARbeta2 promoter, which is under the control of a canonical retinoic acid response element and rapidly induced upon retinoid treatment. While histones H3 and H4 were constitutively acetylated at this promoter, retinoid agonists induced a rapid phosphorylation at Ser10 of histone H3. A retinoid antagonist, whose activity was independent of co-repressor binding to RAR, could oppose this agonist-induced H3 phosphorylation. Since such post-translational modifications were not observed at several other promoters, we conclude that histone H3 phosphorylation may be a molecular signature of the activated, retinoid-controlled mRARbeta2 gene promoter.
Collapse
Affiliation(s)
- Bruno Lefebvre
- Laboratory of Molecular Growth Regulation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | |
Collapse
|
14
|
An W, Palhan VB, Karymov MA, Leuba SH, Roeder RG. Selective requirements for histone H3 and H4 N termini in p300-dependent transcriptional activation from chromatin. Mol Cell 2002; 9:811-21. [PMID: 11983172 DOI: 10.1016/s1097-2765(02)00497-5] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The N-terminal tails of the core histones play important roles in transcriptional regulation, but their mechanism(s) of action are poorly understood. Here, pure chromatin templates assembled with varied combinations of recombinant wild-type and mutant core histones have been employed to ascertain the role of individual histone tails, both in overall acetylation patterns and in transcription. In vitro assays show an indispensable role for H3 and H4 tails, especially major lysine substrates, in p300-dependent transcriptional activation, as well as activator-targeted acetylation of promoter-proximal histone tails by p300. These results indicate, first, that constraints to transcription are imposed by nucleosomal histone components other than histone N-terminal tails and, second, that the histone N-terminal tails have selective roles, which can be modulated by targeted acetylation, in transcriptional activation by p300.
Collapse
Affiliation(s)
- Woojin An
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, NY 10021, USA
| | | | | | | | | |
Collapse
|
15
|
Lefebvre B, Brand C, Lefebvre P, Ozato K. Chromosomal integration of retinoic acid response elements prevents cooperative transcriptional activation by retinoic acid receptor and retinoid X receptor. Mol Cell Biol 2002; 22:1446-59. [PMID: 11839811 PMCID: PMC134698 DOI: 10.1128/mcb.22.5.1446-1459.2002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
All-trans-retinoic acid receptors (RAR) and 9-cis-retinoic acid receptors (RXR) are nuclear receptors known to cooperatively activate transcription from retinoid-regulated promoters. By comparing the transactivating properties of RAR and RXR in P19 cells using either plasmid or chromosomal reporter genes containing the mRAR beta 2 gene promoter, we found contrasting patterns of transcriptional regulation in each setting. Cooperativity between RXR and RAR occurred at all times with transiently introduced promoters, but was restricted to a very early stage (<3 h) for chromosomal promoters. This time-dependent loss of cooperativity was specific for chromosomal templates containing two copies of a retinoid-responsive element (RARE) and was not influenced by the spacing between the two RAREs. This loss of cooperativity suggested a delayed acquisition of RAR full transcriptional competence because (i) cooperativity was maintained at RAR ligand subsaturating concentrations, (ii) overexpression of SRC-1 led to loss of cooperativity and even to strong repression of chromosomal templates activity, and (iii) loss of cooperativity was observed when additional cis-acting response elements were activated. Surprisingly, histone deacetylase inhibitors counteracted this loss of cooperativity by repressing partially RAR-mediated activation of chromosomal promoters. Loss of cooperativity was not correlated to local histone hyperacetylation or to alteration of constitutive RNA polymerase II (RNAP) loading at the promoter region. Unexpectedly, RNAP binding to transcribed regions was correlated to the RAR activation state as well as to acetylation levels of histones H3 and H4, suggesting that RAR acts at the mRAR beta promoter by triggering the switch from an RNA elongation-incompetent RNAP form towards an RNA elongation-competent RNAP.
Collapse
Affiliation(s)
- Bruno Lefebvre
- Laboratory of Molecular Growth Regulation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
16
|
Depoix C, Delmotte MH, Formstecher P, Lefebvre P. Control of retinoic acid receptor heterodimerization by ligand-induced structural transitions. A novel mechanism of action for retinoid antagonists. J Biol Chem 2001; 276:9452-9. [PMID: 11254657 DOI: 10.1074/jbc.m008004200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Heterodimerization of retinoic acid receptors (RARs) with 9-cis-retinoic receptors (RXRs) is a prerequisite for binding of RXR.RAR dimers to DNA and for retinoic acid-induced gene regulation. Whether retinoids control RXR/RAR solution interaction remains a debated question, and we have used in vitro and in vivo protein interaction assays to investigate the role of ligand in modulating RXR/RAR interaction in the absence of DNA. Two-hybrid assay in mammalian cells demonstrated that only RAR agonists were able to increase significantly RAR interaction with RXR, whereas RAR antagonists inhibited RXR binding to RAR. Quantitative glutathione S-transferase pull-down assays established that there was a strict correlation between agonist binding affinity for the RAR monomer and the affinity of RXR for liganded RAR, but RAR antagonists were inactive in inducing RXR recruitment to RAR in vitro. Alteration of coactivator- or corepressor-binding interfaces of RXR or RAR did not alter ligand-enhanced dimerization. In contrast, preventing the formation of a stable holoreceptor structure upon agonist binding strongly altered RXR.RAR dimerization. Finally, we observed that RAR interaction with RXR silenced RXR ligand-dependent activation function. We propose that ligand-controlled dimerization of RAR with RXR is an important step in the RXR.RAR activation process. This interaction is dependent upon adequate remodeling of the AF-2 structure and amenable to pharmacological inhibition by structurally modified retinoids.
Collapse
Affiliation(s)
- C Depoix
- INSERM U459, Faculté de Médecine Henri Warembourg, 1, place de Verdun, 59045 Lille Cedex, France
| | | | | | | |
Collapse
|
17
|
Widlund HR, Vitolo JM, Thiriet C, Hayes JJ. DNA sequence-dependent contributions of core histone tails to nucleosome stability: differential effects of acetylation and proteolytic tail removal. Biochemistry 2000; 39:3835-41. [PMID: 10736184 DOI: 10.1021/bi991957l] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Modulation of nucleosome stability in chromatin plays an important role in eukaryotic gene expression. The core histone N-terminal tail domains are believed to modulate the stability of wrapping nucleosomal DNA and the stability of the chromatin filament. We analyzed the contribution of the tail domains to the stability of nucleosomes containing selected DNA sequences that are intrinsically straight, curved, flexible, or inflexible. We find that the presence of the histone tail domains stabilizes nucleosomes containing DNA sequences that are intrinsically straight or curved. However, the tails do not significantly contribute to the free energy of nucleosome formation with flexible DNA. Interestingly, hyperacetylation of the core histone tail domains does not recapitulate the effect of tail removal by limited proteolysis with regard to nucleosome stability. We find that acetylation of the tails has the same minor effect on nucleosome stability for all the selected DNA sequences. A comparison of histone partitioning between long donor chromatin, acceptor DNA, and free histones in solution shows that the core histone tails mediate internucleosomal interactions within an H1-depleted chromatin fiber amounting to an average free energy of about 1 kcal/mol. Thus, such interactions would be significant with regard to the free energies of sequence-dependent nucleosome positioning. Last, we analyzed the contribution of the H2A/H2B dimers to nucleosome stability. We find that the intact nucleosome is stabilized by 900 cal/mol by the presence of the dimers regardless of sequence. The biological implications of these observations are discussed.
Collapse
Affiliation(s)
- H R Widlund
- Department of Biochemistry and Biophysics, The Lundberg Institute, Chalmers University of Technology, SE 41390 Göteborg, Sweden.
| | | | | | | |
Collapse
|
18
|
Wolffe AP, Collingwood TN, Li Q, Yee J, Urnov F, Shi YB. Thyroid hormone receptor, v-ErbA, and chromatin. VITAMINS AND HORMONES 2000; 58:449-92. [PMID: 10668407 DOI: 10.1016/s0083-6729(00)58033-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
The thyroid hormone receptor and the highly related viral oncoprotein v-erbA are found exclusively in the nucleus as stable constituents of chromatin. Unlike most transcriptional regulators, the thyroid hormone receptor binds with comparable affinity to naked and nucleosomal DNA. In vitro reconstitution experiments and in vivo genomic footprinting have delineated the chromatin structural features that facilitate association with the receptor. Chromatin bound thyroid hormone receptor and v-erbA generate Dnase I hypersensitive sites independent of ligand. The unliganded thyroid hormone receptor and v-erbA associate with a corepressor complex containing NCoR, SIN3, and histone deacetylase. The enzymatic activity of the deacetylase and a chromatin environment are essential for the dominant repression of transcription by both the unliganded thyroid hormone receptor and v-erbA. In the presence of ligand, the thyroid hormone receptor undergoes a conformational change that weakens interactions with the corepressor complex while facilitating the recruitment of transcriptional coactivators such as p300 and PCAF possessing histone acetyltransferase activity. The ligand-bound thyroid hormone receptor directs chromatin disruption events in addition to histone acetylation. Thus, the thyroid hormone receptor and v-erbA make very effective use of their stable association with chromatin and their capacity to alter the chromatin environment as a major component of the transcription regulation process. This system provides an exceptionally useful paradigm for investigating the structural and functional consequences of targeted chromatin modification.
Collapse
Affiliation(s)
- A P Wolffe
- Laboratory of Molecular Embryology, National Institute of Child Health and Human Development, Bethesda, Maryland 20892-5431, USA
| | | | | | | | | | | |
Collapse
|
19
|
Vitolo JM, Thiriet C, Hayes JJ. The H3-H4 N-terminal tail domains are the primary mediators of transcription factor IIIA access to 5S DNA within a nucleosome. Mol Cell Biol 2000; 20:2167-75. [PMID: 10688663 PMCID: PMC110833 DOI: 10.1128/mcb.20.6.2167-2175.2000] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Reconstitution of a DNA fragment containing a Xenopus borealis somatic type 5S rRNA gene into a nucleosome greatly restricts the binding of transcription factor IIIA (TFIIIA) to its cognate DNA sequence within the internal promoter of the gene. Removal of all core histone tail domains by limited trypsin proteolysis or acetylation of the core histone tails significantly relieves this inhibition and allows TFIIIA to exhibit high-affinity binding to nucleosomal DNA. Since only a single tail or a subset of tails may be primarily responsible for this effect, we determined whether removal of the individual tail domains of the H2A-H2B dimer or the H3-H4 tetramer affects TFIIIA binding to its cognate DNA site within the 5S nucleosome in vitro. The results show that the tail domains of H3 and H4, but not those of H2A and/or H2B, directly modulate the ability of TFIIIA to bind nucleosomal DNA. In vitro transcription assays carried out with nucleosomal templates lacking individual tail domains show that transcription efficiency parallels the binding of TFIIIA. In addition, we show that the stoichiometry of core histones within the 5S DNA-core histone-TFIIIA triple complex is not changed upon TFIIIA association. Thus, TFIIIA binding occurs by displacement of H2A-H2B-DNA contacts but without complete loss of the dimer from the nucleoprotein complex. These data, coupled with previous reports (M. Vettese-Dadey, P. A. Grant, T. R. Hebbes, C. Crane-Robinson, C. D. Allis, and J. L. Workman, EMBO J. 15:2508-2518, 1996; L. Howe, T. A. Ranalli, C. D. Allis, and J. Ausio, J. Biol. Chem. 273:20693-20696, 1998), suggest that the H3/H4 tails are the primary arbiters of transcription factor access to intranucleosomal DNA.
Collapse
Affiliation(s)
- J M Vitolo
- Department of Biochemistry, University of Rochester Medical Center, Rochester, New York, USA
| | | | | |
Collapse
|
20
|
Caretti G, Motta MC, Mantovani R. NF-Y associates with H3-H4 tetramers and octamers by multiple mechanisms. Mol Cell Biol 1999; 19:8591-603. [PMID: 10567583 PMCID: PMC84987 DOI: 10.1128/mcb.19.12.8591] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
NF-Y is a CCAAT-binding trimer with two histonic subunits, NF-YB and NF-YC, resembling H2A-H2B. We previously showed that the short conserved domains of NF-Y efficiently bind to the major histocompatibility complex class II Ea Y box in DNA nucleosomized with purified chicken histones. Using wild-type NF-Y and recombinant histones, we find that NF-Y associates with H3-H4 early during nucleosome assembly, under conditions in which binding to naked DNA is not observed. In such assays, the NF-YB-NF-YC dimer forms complexes with H3-H4, for whose formation the CCAAT box is not required. We investigated whether they represent octamer-like structures, using DNase I, micrococcal nuclease, and exonuclease III, and found a highly positioned nucleosome on Ea, whose boundaries were mapped; addition of NF-YB-NF-YC does not lead to the formation of octameric structures, but changes in the digestion patterns are observed. NF-YA can bind to such preformed DNA complexes in a CCAAT-dependent way. In the absence of DNA, NF-YB-NF-YC subunits bind to H3-H4, but not to H2A-H2B, through the NF-YB histone fold. These results indicate that (i) the NF-Y histone fold dimer can efficiently associate DNA during nucleosome formation; (ii) it has an intrinsic affinity for H3-H4 but does not form octamers; and (iii) the interactions between NF-YA, NF-YB-NF-YC, and H3-H4 or nucleosomes are not mutually exclusive. Thus, NF-Y can intervene at different steps during nucleosome formation, and this scenario might be paradigmatic for other histone fold proteins involved in gene regulation.
Collapse
Affiliation(s)
- G Caretti
- Dipartimento di Genetica e Biologia dei Microrganismi, Università di Milano, 20133 Milan, Italy
| | | | | |
Collapse
|
21
|
Mouchon A, Delmotte MH, Formstecher P, Lefebvre P. Allosteric regulation of the discriminative responsiveness of retinoic acid receptor to natural and synthetic ligands by retinoid X receptor and DNA. Mol Cell Biol 1999; 19:3073-85. [PMID: 10082574 PMCID: PMC84101 DOI: 10.1128/mcb.19.4.3073] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Transcriptional activation by retinoids is mediated through two families of nuclear receptors, all-trans-retinoic acid (RARs) and 9-cis retinoic acid receptors (RXRs). Conformationally restricted retinoids are used to achieve selective activation of RAR isotype alpha, beta or gamma, which reduces side effects in therapeutical applications. Synthetic retinoids mimic some of all-trans retinoic acid biological effects in vivo but interact differently with the ligand binding domain of RARalpha and induce distinct structural transitions of the receptor. In this report, we demonstrate that RAR-selective ligands have distinct quantitative activation properties which are reflected by their abilities to promote interaction of DNA-bound human RXRalpha (hRXRalpha)-hRARalpha heterodimers with the nuclear receptor coactivator (NCoA) SRC-1 in vitro. The hormone response element core motifs spacing defined the relative affinity of liganded heterodimers for two NCoAs, SRC-1 and RIP140. hRXRalpha activating function 2 was critical to confer hRARalpha full responsiveness but not differential sensitivity of hRARalpha to natural or synthetic retinoids. We also provide evidence showing that lysines located in helices 3 and 4, which define part of hRARalpha NCoA binding surface, contribute differently to (i) the transcriptional activity and (ii) the interaction of RXR-RAR heterodimers with SRC-1, when challenged by either natural or RAR-selective retinoids. Thus, ligand structure, DNA, and RXR exert allosteric regulations on hRARalpha conformation organized as a DNA-bound heterodimer. We suggest that the use of physically distinct NCoA binding interfaces may be important in controlling specific genes by conformationally restricted ligands.
Collapse
Affiliation(s)
- A Mouchon
- INSERM U459, Faculté de Médecine Henri Warembourg, 59045 Lille Cedex, France
| | | | | | | |
Collapse
|
22
|
Abstract
Chromatin disruption and modification are associated with transcriptional regulation by diverse coactivators and corepressors. Here we discuss the possible structural basis and functional consequences of the observed alterations in chromatin associated with transcriptional activation and repression. Recent advances in defining the roles of individual histones and their domains in the assembly and maintenance of regulatory architectures provide a framework for understanding how chromatin remodelling machines, histone acetyltransferases and deacetylases function.
Collapse
Affiliation(s)
- A P Wolffe
- Laboratory of Molecular Embryology, Natational Institute of Child Health and Human Development, NIH, Building 18T, Room 106, Bethesda, MD 20892-5431, USA.
| | | |
Collapse
|