1
|
Pfeiffer S, Swoboda I. The allergenic potential of enolases: physiological and pathophysiological insights. Curr Opin Allergy Clin Immunol 2025; 25:212-219. [PMID: 40131768 PMCID: PMC12052056 DOI: 10.1097/aci.0000000000001068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
PURPOSE OF REVIEW This review gives an overview on the current knowledge of the physiological and pathophysiological features of enolases and how these features might contribute to the enzymes' allergenic properties. It summarizes the most recent literature on allergenic enolases and raises questions that need to be answered in the future to gain a better understanding of the role of enolases in allergic diseases. RECENT FINDINGS The recent identification of two novel allergenic enolases, from London plane tree and whiff, further supports the uniqueness of this allergen family: the occurrence of enolases in the three major kingdoms of life and the capability to induce allergic symptoms via inhalation, ingestion, and skin contact. SUMMARY The importance and uniqueness of enolases as allergenic molecules is widely accepted. However, studies linking the biochemical and physiological features of enolases with their potential to induce allergies are still needed. This would contribute to a better understanding about the role of enolases in the induction of allergic diseases, to improve specificity and sensitivity of allergy diagnosis and to further enable the development of patient-tailored prophylactic and therapeutic approaches.
Collapse
Affiliation(s)
- Sandra Pfeiffer
- The Molecular Biotechnology Section, Department Applied Life Sciences, FH Campus Wien, University of Applied Sciences, Vienna, Austria
| | | |
Collapse
|
2
|
He Y, Sareila O, Johansson L, Agelii ML, Cheng L, Lundquist A, Lönnblom E, Gröndal G, Gudbjornsson B, Hørslev-Petersen K, Lampa J, Lend K, Hetland ML, Nordström D, Nurmohamed M, Rudin A, Uhlig T, Østergaard M, Gjertsson I, Rantapää-Dahlqvist S, Holmdahl R. Epitopes targeted by autoantibodies in presymptomatic individuals predict early rheumatoid arthritis. Ann Rheum Dis 2025:S0003-4967(25)00902-1. [PMID: 40348635 DOI: 10.1016/j.ard.2025.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 04/08/2025] [Accepted: 04/10/2025] [Indexed: 05/14/2025]
Abstract
OBJECTIVES To determine anticitrullinated protein antibody (ACPA) responses to novel peptides predicting the clinical outcomes of treatment-naïve early rheumatoid arthritis (RA) in the presymptomatic stage. METHODS We analysed monoclonal ACPAs derived from RA patients, including a characterised protective ACPA (clone E4), along with plasma samples collected from 520 presymptomatic individuals, of whom 244 were also sampled at diagnosis of RA, and 530 population controls in Sweden. The validation cohort (The Nordic Rheumatic Diseases Strategy Trials and Registries, NORD-STAR) consisted of 690 treatment-naïve early RA patients. Responses to citrullinated or native alpha-enolase (ENO1) or peptidylarginine deiminase 4 (PAD4) peptides were analysed by bead-based multiplex flow immunoassay. Clinical outcomes included C-reactive protein (CRP) and the 28-joint disease activity score (DAS28) with its components: tender joint count (TJC), swollen joint count (SJC), and erythrocyte sedimentation rate (ESR). RESULTS Monoclonal ACPAs displayed distinct binding patterns to ENO1 and PAD4 peptides. A time-dependent increase of ACPA response to citrullinated peptides was observed in the presymptomatic stage towards onset. In the presymptomatic (0.2-5 years before onset) and early RA stage, ACPA responses to several ENO1 and PAD4 peptides were associated with less severe RA, assessed as lower levels of CRP and DAS28 and its components. In early RA, the association was more pronounced in rheumatoid factor (RF)-negative patients based on lower SJC. In presymptomatic individuals, ACPA responses widely predicted lower disease activity in early RA and were more pronounced in 5 selected peptides. CONCLUSIONS Antibody responses to certain citrullinated epitopes are associated with lower disease activity in treatment-naïve early RA and appear years before symptom onset of RA.
Collapse
Affiliation(s)
- Yibo He
- Medical Inflammation Research, Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Outi Sareila
- Medical Inflammation Research, Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Linda Johansson
- Public Health and Clinical Medicine, Rheumatology, Umeå University, Umeå, Sweden
| | - Monica Leu Agelii
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Lei Cheng
- Medical Inflammation Research, Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Anders Lundquist
- Department of Statistics, Umeå School of Business, Economics and Statistics, Umeå, Sweden; Department of Medical and Translational Biology, Umeå University, Umeå, Sweden
| | - Erik Lönnblom
- Medical Inflammation Research, Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Gerdur Gröndal
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland; Centre for Rheumatology Research, Landspitali University Hospital, Reykjavik, Iceland
| | - Bjorn Gudbjornsson
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland; Centre for Rheumatology Research, Landspitali University Hospital, Reykjavik, Iceland
| | - Kim Hørslev-Petersen
- Danish Hospital for Rheumatic Diseases, University Hospital of Southern Denmark, Sønderborg, Denmark; Department of Regional Health Research, University of Southern Denmark, Odense, Syddanmark, Denmark
| | - Jon Lampa
- Department of Medicine, Rheumatology Unit, Center for Molecular Medicine (CMM), Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Kristina Lend
- Department of Rheumatology and Clinical Immunology, Amsterdam University Medical Centers, Amsterdam, The Netherlands; Division of Rheumatology, Department of Medicine, Karolinska Institute, Stockholm, Sweden
| | - Merete Lund Hetland
- Copenhagen Center for Arthritis Research (COPECARE), Center for Rheumatology and Spine Diseases, Centre for Head and Orthopaedics, Rigshospitalet, Glostrup, Denmark; Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Dan Nordström
- Amsterdam Rheumatology Immunology Center, Reade Rheumatology, Amsterdam, The Netherlands
| | - Michael Nurmohamed
- Department of Medicine and Rheumatology, Helsinki University Hospital, Helsinki, Finland
| | - Anna Rudin
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Department of Rheumatology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Till Uhlig
- Center for Treatment of Rheumatic Musculoskeletal Diseases (REMEDY), Diakonhjemmet Hospital, Oslo, Norway; University of Oslo, Oslo, Norway
| | | | - Inger Gjertsson
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Department of Rheumatology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | | | - Rikard Holmdahl
- Medical Inflammation Research, Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden; Medical Inflammation Research, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden; National-Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| |
Collapse
|
3
|
Zhao T, Pellegrini L, van der Hee B, Boekhorst J, Fernandes A, Brugman S, van Baarlen P, Wells JM. Choroid plexus organoids reveal mechanisms of Streptococcus suis translocation at the blood-cerebrospinal fluid barrier. Fluids Barriers CNS 2025; 22:14. [PMID: 39930492 PMCID: PMC11812244 DOI: 10.1186/s12987-025-00627-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 01/27/2025] [Indexed: 02/13/2025] Open
Abstract
Streptococcus suis is a globally emerging zoonotic pathogen that can cause invasive disease commonly associated with meningitis in pigs and humans. To cause meningitis, S. suis must invade the central nervous system (CNS) by crossing the neurovascular unit, also known as the blood-brain barrier (BBB), or vascularized choroid plexus (ChP) epithelium known as the blood-cerebrospinal fluid barrier (BCSFB). Recently developed ChP organoids have been shown to accurately replicate the cytoarchitecture and physiological functions of the ChP epithelium in vivo. Here, we used human induced pluripotent stem cells (iPSC)-derived ChP organoids as an in vitro model to investigate S. suis interaction and infection at the BCSFB. Our study revealed that S. suis is capable of translocating across the epithelium of ChP organoids without causing significant cell death or compromising the barrier integrity. Plasminogen (Plg) binding to S. suis in the presence of tissue plasminogen activator (tPA), which converts immobilized Plg to plasmin (Pln), significantly increased the basolateral to apical translocation across ChP organoids into the CSF-like fluid in the lumen. S. suis was able to replicate at the same rate in CSF and laboratory S. suis culture medium but reached a lower final density. The analysis of transcriptomes in ChP organoids after S. suis infection indicated inflammatory responses, while the addition of Plg further suggested extracellular matrix (ECM) remodeling. To our knowledge, this is the first study using ChP organoids to investigate bacterial infection of the BCSFB. Our findings highlight the potential of ChP organoids as a valuable tool for studying the mechanisms of bacterial interaction and infection of the human ChP in vitro.
Collapse
Affiliation(s)
- Tiantong Zhao
- Host-Microbe Interactomics, Department Animal Science, Wageningen University & Research, De Elst 1, Wageningen, 6708 WD, The Netherlands
| | - Laura Pellegrini
- Centre for Developmental Neurobiology, King's College London, Guys Campus, New Hunt's House, London, UK
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK
| | - Bart van der Hee
- Host-Microbe Interactomics, Department Animal Science, Wageningen University & Research, De Elst 1, Wageningen, 6708 WD, The Netherlands
| | - Jos Boekhorst
- Host-Microbe Interactomics, Department Animal Science, Wageningen University & Research, De Elst 1, Wageningen, 6708 WD, The Netherlands
| | - Aline Fernandes
- Host-Microbe Interactomics, Department Animal Science, Wageningen University & Research, De Elst 1, Wageningen, 6708 WD, The Netherlands
| | - Sylvia Brugman
- Host-Microbe Interactomics, Department Animal Science, Wageningen University & Research, De Elst 1, Wageningen, 6708 WD, The Netherlands
| | - Peter van Baarlen
- Host-Microbe Interactomics, Department Animal Science, Wageningen University & Research, De Elst 1, Wageningen, 6708 WD, The Netherlands
| | - Jerry M Wells
- Host-Microbe Interactomics, Department Animal Science, Wageningen University & Research, De Elst 1, Wageningen, 6708 WD, The Netherlands.
| |
Collapse
|
4
|
Tang D, Khakzad H, Hjortswang E, Malmström L, Ekström S, Happonen L, Malmström J. Streptolysin O accelerates the conversion of plasminogen to plasmin. Nat Commun 2024; 15:10212. [PMID: 39587097 PMCID: PMC11589678 DOI: 10.1038/s41467-024-54173-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 10/31/2024] [Indexed: 11/27/2024] Open
Abstract
Group A Streptococcus (GAS) is a human-specific bacterial pathogen that can exploit the plasminogen-plasmin fibrinolysis system to dismantle blood clots and facilitate its spread and survival within the human host. In this study, we use affinity-enrichment mass spectrometry to decipher the host-pathogen protein-protein interaction between plasminogen and streptolysin O, a key cytolytic toxin produced by GAS. This interaction accelerates the conversion of plasminogen to plasmin by both the host tissue-type plasminogen activator and streptokinase, a bacterial plasminogen activator secreted by GAS. Integrative structural mass spectrometry analysis shows that the interaction induces local conformational shifts in plasminogen. These changes lead to the formation of a stabilised intermediate plasminogen-streptolysin O complex that becomes significantly more susceptible to proteolytic processing by plasminogen activators. Our findings reveal a conserved and moonlighting pathomechanistic function for streptolysin O that extends beyond its well-characterised cytolytic activity.
Collapse
Affiliation(s)
- Di Tang
- Division of Infection Medicine, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, Lund, Sweden.
| | - Hamed Khakzad
- Université de Lorraine, CNRS, Inria, LORIA, Nancy, France
| | - Elisabeth Hjortswang
- Division of Infection Medicine, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, Lund, Sweden
| | - Lars Malmström
- Division of Infection Medicine, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, Lund, Sweden
| | - Simon Ekström
- SciLifeLab, Integrated Structural Biology Platform, Structural Proteomics Unit Sweden, Lund University, Lund, Sweden
| | - Lotta Happonen
- Division of Infection Medicine, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, Lund, Sweden
| | - Johan Malmström
- Division of Infection Medicine, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, Lund, Sweden.
- SciLifeLab, Integrated Structural Biology Platform, Structural Proteomics Unit Sweden, Lund University, Lund, Sweden.
| |
Collapse
|
5
|
Quiroz-Castañeda RE, Aguilar-Díaz H, Coronado-Villanueva E, Catalán-Ochoa DI, Amaro-Estrada I. Molecular Identification and Bioinformatics Analysis of Anaplasma marginale Moonlighting Proteins as Possible Antigenic Targets. Pathogens 2024; 13:845. [PMID: 39452716 PMCID: PMC11510912 DOI: 10.3390/pathogens13100845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/13/2024] [Accepted: 09/27/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND Diseases of veterinary importance, such as bovine Anaplasmosis, cause significant economic losses. Due to this, the study of various proteins of the causal agent Anaplasma marginale has focused on surface proteins. However, a vaccine for this disease is not yet available. To this end, in this work, moonlighting proteins (MLPs) are presented as an alternative approach for the design of immunogens against A. marginale. METHODS The proteins of the strain MEX-15-099-01 were analyzed, and its MLPs were identified. Subsequently, four virulence-associated MLP genes were selected and identified using PCR. The proteins were analyzed using a structural homology approach and the collection of B-cell epitopes was predicted for each MLP. Finally, a pair of AmEno peptides were synthesized and the antigenic potential was tested using an iELISA. RESULTS Our bioinformatics analysis revealed the potential of AmEno, AmGroEl, AmEF-Tu, and AmDnaK proteins as promising candidates for designing immunogens. The PCR allowed the gene sequence identification in the genome of the strain MEX-15-099-01. Notably, AmEno-derived synthetic peptides showed antigenicity in an ELISA. CONCLUSIONS Our study has shed light on the potential use of MLPs for immunogen design, demonstrating the antigenic potential of AmEno.
Collapse
|
6
|
Xie O, Davies MR, Tong SYC. Streptococcus dysgalactiae subsp. equisimilis infection and its intersection with Streptococcus pyogenes. Clin Microbiol Rev 2024; 37:e0017523. [PMID: 38856686 PMCID: PMC11392527 DOI: 10.1128/cmr.00175-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024] Open
Abstract
SUMMARYStreptococcus dysgalactiae subsp. equisimilis (SDSE) is an increasingly recognized cause of disease in humans. Disease manifestations range from non-invasive superficial skin and soft tissue infections to life-threatening streptococcal toxic shock syndrome and necrotizing fasciitis. Invasive disease is usually associated with co-morbidities, immunosuppression, and advancing age. The crude incidence of invasive disease approaches that of the closely related pathogen, Streptococcus pyogenes. Genomic epidemiology using whole-genome sequencing has revealed important insights into global SDSE population dynamics including emerging lineages and spread of anti-microbial resistance. It has also complemented observations of overlapping pathobiology between SDSE and S. pyogenes, including shared virulence factors and mobile gene content, potentially underlying shared pathogen phenotypes. This review provides an overview of the clinical and genomic epidemiology, disease manifestations, treatment, and virulence determinants of human infections with SDSE with a particular focus on its overlap with S. pyogenes. In doing so, we highlight the importance of understanding the overlap of SDSE and S. pyogenes to inform surveillance and disease control strategies.
Collapse
Affiliation(s)
- Ouli Xie
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
- Monash Infectious Diseases, Monash Health, Melbourne, Australia
| | - Mark R Davies
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Steven Y C Tong
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
- Victorian Infectious Disease Service, The Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| |
Collapse
|
7
|
Milanes JE, Yan VC, Pham CD, Muller F, Kwain S, Rees KC, Dominy BN, Whitehead DC, Millward SW, Bolejack M, Shek R, Tillery L, Phan IQ, Staker B, Moseman EA, Zhang X, Ma X, Jebet A, Yin X, Morris JC. Enolase inhibitors as therapeutic leads for Naegleria fowleri infection. PLoS Pathog 2024; 20:e1012412. [PMID: 39088549 PMCID: PMC11321563 DOI: 10.1371/journal.ppat.1012412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 08/13/2024] [Accepted: 07/11/2024] [Indexed: 08/03/2024] Open
Abstract
Infections with the pathogenic free-living amoebae Naegleria fowleri can lead to life-threatening illnesses including catastrophic primary amoebic meningoencephalitis (PAM). Efficacious treatment options for these infections are lacking and the mortality rate remains >95% in the US. Glycolysis is very important for the infectious trophozoite lifecycle stage and inhibitors of glucose metabolism have been found to be toxic to the pathogen. Recently, human enolase 2 (ENO2) phosphonate inhibitors have been developed as lead agents to treat glioblastoma multiforme (GBM). These compounds, which cure GBM in a rodent model, are well-tolerated in mammals because enolase 1 (ENO1) is the predominant isoform used systemically. Here, we describe findings that demonstrate these agents are potent inhibitors of N. fowleri ENO (NfENO) and are lethal to amoebae. In particular, (1-hydroxy-2-oxopiperidin-3-yl) phosphonic acid (HEX) was a potent enzyme inhibitor (IC50 = 0.14 ± 0.04 μM) that was toxic to trophozoites (EC50 = 0.21 ± 0.02 μM) while the reported CC50 was >300 μM. Molecular docking simulation revealed that HEX binds strongly to the active site of NfENO with a binding affinity of -8.6 kcal/mol. Metabolomic studies of parasites treated with HEX revealed a 4.5 to 78-fold accumulation of glycolytic intermediates upstream of NfENO. Last, nasal instillation of HEX increased longevity of amoebae-infected rodents. Two days after infection, animals were treated for 10 days with 3 mg/kg HEX, followed by one week of observation. At the end of the one-week observation, eight of 12 HEX-treated animals remained alive (resulting in an indeterminable median survival time) while one of 12 vehicle-treated rodents remained, yielding a median survival time of 10.9 days. However, intranasal HEX delivery was not curative as brains of six of the eight survivors were positive for amoebae. These findings suggest that HEX requires further evaluation to develop as a lead for treatment of PAM.
Collapse
Affiliation(s)
- Jillian E. Milanes
- Department of Genetics and Biochemistry, Eukaryotic Pathogens Innovation Center, Clemson University, Clemson, South Carolina, United States of America
| | - Victoria C. Yan
- Department of Cancer Systems Imaging, UT MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Cong-Dat Pham
- Department of Cancer Systems Imaging, UT MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Florian Muller
- Sporos Bioventures, Houston, Texas, United States of America
| | - Samuel Kwain
- Department of Chemistry, Eukaryotic Pathogens Innovation Center, Clemson University, Clemson, South Carolina, United States of America
| | - Kerrick C. Rees
- Department of Chemistry, Eukaryotic Pathogens Innovation Center, Clemson University, Clemson, South Carolina, United States of America
| | - Brian N. Dominy
- Department of Chemistry, Eukaryotic Pathogens Innovation Center, Clemson University, Clemson, South Carolina, United States of America
| | - Daniel C. Whitehead
- Department of Chemistry, Eukaryotic Pathogens Innovation Center, Clemson University, Clemson, South Carolina, United States of America
| | - Steven W. Millward
- Department of Cancer Systems Imaging, UT MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Madison Bolejack
- UCB BioSciences, Bainbridge Island, Washington, United States of America
| | - Roger Shek
- Center for Emerging and Re-emerging Infectious Diseases and Seattle Structural Genomics Center for Infectious Disease, Center for Global Infection Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Logan Tillery
- Center for Emerging and Re-emerging Infectious Diseases and Seattle Structural Genomics Center for Infectious Disease, Center for Global Infection Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Isabelle Q. Phan
- Seattle Structural Genomics Center for Infectious Disease, Center for Global Infection Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Bart Staker
- Seattle Structural Genomics Center for Infectious Disease, Center for Global Infection Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - E. Ashley Moseman
- Department of Immunology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Xiang Zhang
- Department of Chemistry, University of Louisville, Louisville, Kentucky, United States of America
| | - Xipeng Ma
- Department of Chemistry, University of Louisville, Louisville, Kentucky, United States of America
| | - Audriy Jebet
- Department of Chemistry, University of Louisville, Louisville, Kentucky, United States of America
| | - Xinmin Yin
- Department of Chemistry, University of Louisville, Louisville, Kentucky, United States of America
| | - James C. Morris
- Department of Genetics and Biochemistry, Eukaryotic Pathogens Innovation Center, Clemson University, Clemson, South Carolina, United States of America
| |
Collapse
|
8
|
Cesnik A, Schaffer LV, Gaur I, Jain M, Ideker T, Lundberg E. Mapping the Multiscale Proteomic Organization of Cellular and Disease Phenotypes. Annu Rev Biomed Data Sci 2024; 7:369-389. [PMID: 38748859 PMCID: PMC11343683 DOI: 10.1146/annurev-biodatasci-102423-113534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2024]
Abstract
While the primary sequences of human proteins have been cataloged for over a decade, determining how these are organized into a dynamic collection of multiprotein assemblies, with structures and functions spanning biological scales, is an ongoing venture. Systematic and data-driven analyses of these higher-order structures are emerging, facilitating the discovery and understanding of cellular phenotypes. At present, knowledge of protein localization and function has been primarily derived from manual annotation and curation in resources such as the Gene Ontology, which are biased toward richly annotated genes in the literature. Here, we envision a future powered by data-driven mapping of protein assemblies. These maps can capture and decode cellular functions through the integration of protein expression, localization, and interaction data across length scales and timescales. In this review, we focus on progress toward constructing integrated cell maps that accelerate the life sciences and translational research.
Collapse
Affiliation(s)
- Anthony Cesnik
- Department of Bioengineering, Stanford University, Stanford, California, USA;
| | - Leah V Schaffer
- Department of Medicine, University of California San Diego, La Jolla, California, USA;
| | - Ishan Gaur
- Department of Bioengineering, Stanford University, Stanford, California, USA;
| | - Mayank Jain
- Department of Medicine, University of California San Diego, La Jolla, California, USA;
| | - Trey Ideker
- Departments of Computer Science and Engineering and Bioengineering, University of California San Diego, La Jolla, California, USA
- Department of Medicine, University of California San Diego, La Jolla, California, USA;
| | - Emma Lundberg
- Chan Zuckerberg Biohub, San Francisco, California, USA
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
- Department of Pathology, Stanford University, Palo Alto, California, USA
- Department of Bioengineering, Stanford University, Stanford, California, USA;
| |
Collapse
|
9
|
Su MSW, Cheng YL, Lin YS, Wu JJ. Interplay between group A Streptococcus and host innate immune responses. Microbiol Mol Biol Rev 2024; 88:e0005222. [PMID: 38451081 PMCID: PMC10966951 DOI: 10.1128/mmbr.00052-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024] Open
Abstract
SUMMARYGroup A Streptococcus (GAS), also known as Streptococcus pyogenes, is a clinically well-adapted human pathogen that harbors rich virulence determinants contributing to a broad spectrum of diseases. GAS is capable of invading epithelial, endothelial, and professional phagocytic cells while evading host innate immune responses, including phagocytosis, selective autophagy, light chain 3-associated phagocytosis, and inflammation. However, without a more complete understanding of the different ways invasive GAS infections develop, it is difficult to appreciate how GAS survives and multiplies in host cells that have interactive immune networks. This review article attempts to provide an overview of the behaviors and mechanisms that allow pathogenic GAS to invade cells, along with the strategies that host cells practice to constrain GAS infection. We highlight the counteractions taken by GAS to apply virulence factors such as streptolysin O, nicotinamide-adenine dinucleotidase, and streptococcal pyrogenic exotoxin B as a hindrance to host innate immune responses.
Collapse
Affiliation(s)
- Marcia Shu-Wei Su
- Department of Medical Laboratory Science and Biotechnology, College of Medical and Health Sciences, Asia University, Taichung, Taiwan
- Department of Biotechnology and Laboratory Science in Medicine, College of Biomedical Science and Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yi-Lin Cheng
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Center of Infectious Disease and Signaling Research, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yee-Shin Lin
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Center of Infectious Disease and Signaling Research, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jiunn-Jong Wu
- Department of Medical Laboratory Science and Biotechnology, College of Medical and Health Sciences, Asia University, Taichung, Taiwan
- Department of Biotechnology and Laboratory Science in Medicine, College of Biomedical Science and Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| |
Collapse
|
10
|
Zhao T, Gussak A, van der Hee B, Brugman S, van Baarlen P, Wells JM. Identification of plasminogen-binding sites in Streptococcus suis enolase that contribute to bacterial translocation across the blood-brain barrier. Front Cell Infect Microbiol 2024; 14:1356628. [PMID: 38456079 PMCID: PMC10919400 DOI: 10.3389/fcimb.2024.1356628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/06/2024] [Indexed: 03/09/2024] Open
Abstract
Streptococcus suis is an emerging zoonotic pathogen that can cause invasive disease commonly associated with meningitis in pigs and humans. To cause meningitis, S. suis must cross the blood-brain barrier (BBB) comprising blood vessels that vascularize the central nervous system (CNS). The BBB is highly selective due to interactions with other cell types in the brain and the composition of the extracellular matrix (ECM). Purified streptococcal surface enolase, an essential enzyme participating in glycolysis, can bind human plasminogen (Plg) and plasmin (Pln). Plg has been proposed to increase bacterial traversal across the BBB via conversion to Pln, a protease which cleaves host proteins in the ECM and monocyte chemoattractant protein 1 (MCP1) to disrupt tight junctions. The essentiality of enolase has made it challenging to unequivocally demonstrate its role in binding Plg/Pln on the bacterial surface and confirm its predicted role in facilitating translocation of the BBB. Here, we report on the CRISPR/Cas9 engineering of S. suis enolase mutants eno261, eno252/253/255, eno252/261, and eno434/435 possessing amino acid substitutions at in silico predicted binding sites for Plg. As expected, amino acid substitutions in the predicted Plg binding sites reduced Plg and Pln binding to S. suis but did not affect bacterial growth in vitro compared to the wild-type strain. The binding of Plg to wild-type S. suis enhanced translocation across the human cerebral microvascular endothelial cell line hCMEC/D3 but not for the eno mutant strains tested. To our knowledge, this is the first study where predicted Plg-binding sites of enolase have been mutated to show altered Plg and Pln binding to the surface of S. suis and attenuation of translocation across an endothelial cell monolayer in vitro.
Collapse
Affiliation(s)
| | | | | | | | | | - Jerry M. Wells
- Host-Microbe Interactomics, Wageningen University & Research, Wageningen, Netherlands
| |
Collapse
|
11
|
Milanes JE, Yan VC, Pham CD, Muller F, Kwain S, Rees KC, Dominy BN, Whitehead DC, Millward SW, Bolejack M, Abendroth J, Phan IQ, Staker B, Moseman EA, Zhang X, Ma X, Jebet A, Yin X, Morris JC. Enolase inhibitors as therapeutic leads for Naegleria fowleri infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.16.575558. [PMID: 38293107 PMCID: PMC10827119 DOI: 10.1101/2024.01.16.575558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Infections with the pathogenic free-living amoebae Naegleria fowleri can lead to life-threatening illnesses including catastrophic primary amebic meningoencephalitis (PAM). Efficacious treatment options for these infections are lacking and the mortality rate remains >95% in the US. Glycolysis is very important for the infectious trophozoite lifecycle stage and inhibitors of glucose metabolism have been found to be toxic to the pathogen. Recently, human enolase 2 (ENO2) phosphonate inhibitors have been developed as lead agents to treat glioblastoma multiforme (GBM). These compounds, which cure GBM in a rodent model, are well-tolerated in mammals because enolase 1 (ENO1) is the predominant isoform used systemically. Here, we describe findings that demonstrate that these agents are potent inhibitors of N. fowleri ENO ( Nf ENO) and are lethal to amoebae. In particular, (1-hydroxy-2-oxopiperidin-3-yl) phosphonic acid (HEX) was a potent enzyme inhibitor (IC 50 value of 0.14 ± 0.04 µM) that was toxic to trophozoites (EC 50 value of 0.21 ± 0.02 µM) while the reported CC 50 was >300 µM. Molecular docking simulation revealed that HEX binds strongly to the active site of Nf ENO with a binding affinity of -8.6 kcal/mol. Metabolomic studies of parasites treated with HEX revealed a 4.5 to 78-fold accumulation of glycolytic intermediates upstream of Nf ENO. Last, nasal instillation of HEX increased longevity of amoebae-infected rodents. Two days after infection, animals were treated for 10 days with 3 mg/kg HEX, followed by one week of observation. At the conclusion of the experiment, eight of 12 HEX-treated animals remained alive (resulting in an indeterminable median survival time) while one of 12 vehicle-treated rodents remained, yielding a median survival time of 10.9 days. Brains of six of the eight survivors were positive for amoebae, suggesting the agent at the tested dose suppressed, but did not eliminate, infection. These findings suggest that HEX is a promising lead for the treatment of PAM.
Collapse
|
12
|
Wu T, Jiang H, Li F, Jiang X, Wang J, Wei S, Sun Y, Tian Y, Chu H, Shi Y, Zhang N, Li N, Lei L. O-acetyl-homoserine sulfhydrylase deficient Streptococcus suis serotype 2 strain SC19 becomes an avirulent strain and provides immune protection against homotype infection in mice. Vet Microbiol 2024; 288:109943. [PMID: 38113574 DOI: 10.1016/j.vetmic.2023.109943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/24/2023] [Accepted: 12/06/2023] [Indexed: 12/21/2023]
Abstract
O-acetyl-homoserine sulfhydrylase (OAHS) is a pyridoxal 5'-phosphate-dependent enzyme involved in microbial methionine biosynthesis, which catalyzes the conversion of o-acetyl-homoserine (OAH) to homocysteine. In our previous study, we found that OAHS of Streptococcus suis serotype 2 (SS2) can interact with the porcine blood-brain barrier (BBB) model, but whether OAHS regulates the penetration of BBB during SS2 infection is still unclear. To explore the role of OAHS in SS2 infection, OAHS-deficient SS2 mutant strain (SC19-ΔOAHS) and gene complemental strain (SC19-cΔOAHS) were constructed. Compared to the parent strain, with the loss of oahs, the chain length of SC19-ΔOAHS was shortened, the virulence was significantly reduced, the survival rate of mice infected with SC19-ΔOAHS was obviously increased accompanied by the relieved clinical symptoms. And the survival ability of SC19-ΔOAHS in whole blood was also remarkably decreased. Interestingly, the adhesion of SC19-ΔOAHS to endothelial cells was markedly increased, but the deficiency of OAHS significantly inhibited the strain penetrating BBB both in vivo and in vitro. Most of these phenomena can be reversed by the complemental strain (SC19-cΔOAHS). Further study showed that the deficiency of OAHS severely reduced SC19-induced endothelial cell apoptosis, tight junctions (TJs) protein impairment and the expression of SS2 virulence factor Enolase (Eno), involved in the destruction of BBB. Additionally, SC19-ΔOAHS immunized mice were able to resist SC19 or JZLQ022 infection. In conclusion, we confirmed that OAHS promoted the pathogenicity by enhancing host's BBB permeability and immune escape, and SC19- ΔOAHS is a potential live vaccine.
Collapse
Affiliation(s)
- Tong Wu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China.
| | - Hexiang Jiang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Fengyang Li
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Xuan Jiang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Jun Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Shaopeng Wei
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Yi Sun
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Yanyan Tian
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Hong Chu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Yu Shi
- The First Bethune Hospital of Jilin University, Jilin University, Changchun, China
| | - Nan Zhang
- The First Bethune Hospital of Jilin University, Jilin University, Changchun, China
| | - Na Li
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China.
| | - Liancheng Lei
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China; Department of Veterinary Medicine, College of Animal Science, Yangtze University, Jingzhou 434023, China.
| |
Collapse
|
13
|
Chiang-Ni C, Chiang CY, Chen YW, Shi YA, Chao YT, Wang S, Tsai PJ, Chiu CH. RopB-regulated SpeB cysteine protease degrades extracellular vesicles-associated streptolysin O and bacterial proteins from group A Streptococcus. Virulence 2023; 14:2249784. [PMID: 37621107 PMCID: PMC10461520 DOI: 10.1080/21505594.2023.2249784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/31/2023] [Accepted: 08/13/2023] [Indexed: 08/26/2023] Open
Abstract
Extracellular vesicles (EVs) can be released from gram-positive bacteria and would participate in the delivery of bacterial toxins. Streptococcus pyogenes (group A Streptococcus, GAS) is one of the most common pathogens of monomicrobial necrotizing fasciitis. Spontaneous inactivating mutation in the CovR/CovS two-component regulatory system is related to the increase of EVs production via an unknown mechanism. This study aimed to investigate whether the CovR/CovS-regulated RopB, the transcriptional regulator of GAS exoproteins, would participate in regulating EVs production. Results showed that the size, morphology, and number of EVs released from the wild-type strain and the ropB mutant were similar, suggesting RopB is not involved in controlling EVs production. Nonetheless, RopB-regulated SpeB protease degrades streptolysin O and bacterial proteins in EVs. Although SpeB has crucial roles in modulating protein composition in EVs, the SpeB-positive EVs failed to trigger HaCaT keratinocytes pyroptosis, suggesting that EVs did not deliver SpeB into keratinocytes or the amount of SpeB in EVs was not sufficient to trigger cell pyroptosis. Finally, we identified that EV-associated enolase was resistant to SpeB degradation, and therefore could be utilized as the internal control protein for verifying SLO degradation. This study revealed that RopB would participate in modulating protein composition in EVs via SpeB-dependent protein degradation and suggested that enolase is a potential internal marker for studying GAS EVs.
Collapse
Affiliation(s)
- Chuan Chiang-Ni
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- Department of Orthopedic Surgery, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Chien-Yi Chiang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yan-Wen Chen
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yong-An Shi
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yu-Tzu Chao
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shuying Wang
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan
| | - Pei-Jane Tsai
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Cheng-Hsun Chiu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| |
Collapse
|
14
|
Zhou S, Zhou Y, Zhong W, Su Z, Qin Z. Involvement of protein L-isoaspartyl methyltransferase in the physiopathology of neurodegenerative diseases: Possible substrates associated with synaptic function. Neurochem Int 2023; 170:105606. [PMID: 37657764 DOI: 10.1016/j.neuint.2023.105606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 08/11/2023] [Accepted: 08/29/2023] [Indexed: 09/03/2023]
Abstract
Synaptic dysfunction is a typical pathophysiologic change in neurodegenerative diseases (NDs) such as Alzheimer's disease (AD), Parkinson's disease (PD), Hintington's disease (HD) and amyotrophic lateral sclerosis (ALS), which involves protein post-translational modifications (PTMs) including L-isoaspartate (L-isoAsp) formed by isomerization of aspartate or deamidation of asparagine. The formation of L-isoAsp could be repaired by protein L-isoaspartyl methyltransferase (PIMT). Some synaptic proteins have been identified as PIMT potential substrates and play an essential role in ensuring synaptic function. In this review, we discuss the role of certain synaptic proteins as PIMT substrates in neurodegenerative disease, thus providing therapeutic synapse-centered targets for the treatment of NDs.
Collapse
Affiliation(s)
- Sirui Zhou
- Department of Anatomy, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Yancheng Zhou
- Department of Anatomy, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Wanyu Zhong
- Department of Anatomy, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Zhonghao Su
- Department of Febrile Disease, School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Zhenxia Qin
- Department of Anatomy, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
15
|
Quiroz-Castañeda RE, Aguilar-Díaz H, Amaro-Estrada I. An alternative vaccine target for bovine Anaplasmosis based on enolase, a moonlighting protein. Front Vet Sci 2023; 10:1225873. [PMID: 37808115 PMCID: PMC10556744 DOI: 10.3389/fvets.2023.1225873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 09/11/2023] [Indexed: 10/10/2023] Open
Abstract
The discovery of new targets for preventing bovine anaplasmosis has moved away from focusing on proteins that have already been extensively studied in Anaplasma marginale, including the Major Surface Proteins, Outer Membrane Proteins, and Type IV Secretion System proteins. An alternative is moonlighting or multifunctional proteins, capable of performing various biological functions within various cellular compartments. There are several reports on the role of moonlighting proteins as virulence factors in various microorganisms. Moreover, it is known that about 25% of all moonlighting is involved in the virulence of pathogens. In this work, for the first time, we present the identification of three enolase proteins (AmEno01, AmEno15, and AmEno31) in the genome of Mexican strains of A. marginale. Using bioinformatics tools, we predicted the catalytic domains, enolase signature, and amino acids binding magnesium ion of the catalytic domain and performed a phylogenetic reconstruction. In addition, by molecular docking analysis, we found that AmEno01 would bind to erythrocyte proteins spectrin, ankyrin, and stomatin. This adhesion function has been reported for enolases from other pathogens. It is considered a promising target since blocking this function would impede the fundamental adhesion process that facilitates the infection of erythrocytes. Additionally, molecular docking predicts that AmEno01 could bind to extracellular matrix protein fibronectin, which would be significant if we consider that some proteins with fibronectin domains are localized in tick gut cells and used as an adhesion strategy to gather bacteria before traveling to salivary glands. Derived from the molecular docking analysis of AmEno01, we hypothesized that enolases could be proteins driven by the pathogen and redirected at the expense of the pathogen's needs.
Collapse
|
16
|
Tang H, Pan L, Tang L, Liu J. Alpha-enolase 1 knockdown facilitates the proliferation and invasion of villous trophoblasts by upregulating COX-2. Mol Genet Genomic Med 2023; 11:e2220. [PMID: 37288669 PMCID: PMC10496057 DOI: 10.1002/mgg3.2220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 04/07/2023] [Accepted: 05/23/2023] [Indexed: 06/09/2023] Open
Abstract
BACKGROUND Enolase 1 (ENO1) is a metabolic enzyme which participates in pyruvate synthesis and ATP production in cells. Previously, differential expression of ENO1 was discovered in villous tissues between recurrent miscarriage and induced abortion. This study was designed to explore whether ENO1 influences the proliferation and invasion of villous trophoblasts and the related molecular mechanisms. METHODS First, ENO1 expression in placental villus tissues collected from recurrent miscarriage (RM) patients and women for induced abortion as well as in trophoblast-derived cell lines was detected by RT-qPCR and western blotting. ENO1 localization and expression in villus tissues were further confirmed through immunohistochemistry staining. Then, the effects of ENO1 downregulation on trophoblast Bewo cell proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT) process were evaluated by CCK-8 assay, transwell assay, and western blotting. As for the regulatory mechanism of ENO1, the expression of COX-2, c-Myc and cyclin D1 in Bewo cells after ENO1 knockdown was finally evaluated by RT-qPCR and western blotting. RESULTS ENO1 was mainly localized in the cytoplasm, with very small amounts in the nucleus of trophoblast cells. ENO1 expression in the villi tissues of RM patients was significantly increased, when compared with the villous tissues of healthy controls. Furthermore, Bewo cells, a trophoblast cell line with relatively higher expression of ENO1, was used to downregulate the ENO1 expression by ENO1-siRNA transfection. ENO1 knockdown significantly facilitated Bewo cell growth, EMT process, migration, and invasion. ENO1 silencing markedly elevated COX-2, c-Myc, and cyclin D1 expression. CONCLUSION ENO1 may participate in the development of RM via suppressing the growth and invasion of villous trophoblasts via reducing the expression of COX-2, c-Myc, and cyclin D1.
Collapse
Affiliation(s)
- Huaiyun Tang
- Clinical Center of Reproductive Medicine, Lianyungang Maternal and Child Health HospitalKangda College of Nanjing Medical UniversityLianyungangChina
| | - Linqing Pan
- Clinical Center of Reproductive Medicine, Lianyungang Maternal and Child Health HospitalKangda College of Nanjing Medical UniversityLianyungangChina
| | - Lisha Tang
- Clinical Center of Reproductive Medicine, Lianyungang Maternal and Child Health HospitalKangda College of Nanjing Medical UniversityLianyungangChina
| | - Jiayin Liu
- State Key Laboratory of Reproductive Medicine, Clinical Center of Reproductive MedicineThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| |
Collapse
|
17
|
Satala D, Bednarek A, Kozik A, Rapala-Kozik M, Karkowska-Kuleta J. The Recruitment and Activation of Plasminogen by Bacteria-The Involvement in Chronic Infection Development. Int J Mol Sci 2023; 24:10436. [PMID: 37445613 DOI: 10.3390/ijms241310436] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/13/2023] [Accepted: 06/16/2023] [Indexed: 07/15/2023] Open
Abstract
The development of infections caused by pathogenic bacteria is largely related to the specific properties of the bacterial cell surface and extracellular hydrolytic activity. Furthermore, a significant role of hijacking of host proteolytic cascades by pathogens during invasion should not be disregarded during consideration of the mechanisms of bacterial virulence. This is the key factor for the pathogen evasion of the host immune response, tissue damage, and pathogen invasiveness at secondary infection sites after initial penetration through tissue barriers. In this review, the mechanisms of bacterial impact on host plasminogen-the precursor of the important plasma serine proteinase, plasmin-are characterized, principally focusing on cell surface exposition of various proteins, responsible for binding of this host (pro)enzyme and its activators or inhibitors, as well as the fibrinolytic system activation tactics exploited by different bacterial species, not only pathogenic, but also selected harmless residents of the human microbiome. Additionally, the involvement of bacterial factors that modulate the process of plasminogen activation and fibrinolysis during periodontitis is also described, providing a remarkable example of a dual use of this host system in the development of chronic diseases.
Collapse
Affiliation(s)
- Dorota Satala
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Aneta Bednarek
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, 30-387 Kraków, Poland
| | - Andrzej Kozik
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Maria Rapala-Kozik
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Justyna Karkowska-Kuleta
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| |
Collapse
|
18
|
Ayinuola YA, Donahue DL, Charles J, Liang Z, Castellino FJ, Ploplis VA. Generation and characterization of a plasminogen-binding group A streptococcal M-protein/streptokinase-sensitive mouse line. J Thromb Haemost 2023; 21:1630-1635. [PMID: 36914052 DOI: 10.1016/j.jtha.2023.02.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/14/2023] [Accepted: 02/19/2023] [Indexed: 03/13/2023]
Abstract
BACKGROUND Streptococcus pyogenes (GAS) is a human bacterial pathogen that generates various mild to severe diseases. Worldwide, there are approximately 700 million cases of GAS infections per year. In some strains of GAS, the surface-resident M-protein, plasminogen-binding group A streptococcal M-protein (PAM), binds directly to human host plasminogen (hPg), where it is activated to plasmin through a mechanism involving a Pg/bacterial streptokinase (SK) complex as well as endogenous activators. Binding to Pg and its activation are dictated by selected sequences within the human host Pg protein, making it difficult to generate animal models to study this pathogen. OBJECTIVES To develop a murine model for studying GAS infection by minimally modifying mouse Pg to enhance the affinity to bacterial PAM and sensitivity to GAS-derived SK. METHODS We used a targeting vector that contained a mouse albumin-promoter and mouse/human hybrid plasminogen cDNA targeted to the Rosa26 locus. Characterization of the mouse strain consisted of both gross and histological techniques and determination of the effects of the modified Pg protein through surface plasmon resonance measurements, Pg activation analyses, and mouse survival post-GAS infection. RESULTS We generated a mouse line expressing a chimeric Pg protein consisting of 2 amino acid substitutions in the heavy chain of Pg and a complete replacement of the mouse Pg light chain with the human Pg light chain. CONCLUSION This protein demonstrated an enhanced affinity for bacterial PAM and sensitivity to activation by the Pg-SK complex, making the murine host susceptible to the pathogenic effects of GAS.
Collapse
Affiliation(s)
- Yetunde A Ayinuola
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, Indiana, USA
| | - Deborah L Donahue
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, Indiana, USA
| | - Jermilia Charles
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, Indiana, USA
| | - Zhong Liang
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, Indiana, USA
| | - Francis J Castellino
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, Indiana, USA; Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - Victoria A Ploplis
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, Indiana, USA; Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA.
| |
Collapse
|
19
|
Celik F, Simsek S, Selcuk MA, Kesik HK, Gunyakti Kilinc S, Aslan Celik B. Cloning and expression of Fasciola hepatica enolase gene and efficacy of recombinant protein in the serodiagnosis of sheep fasciolosis. Vet Parasitol 2023; 320:109961. [PMID: 37290212 DOI: 10.1016/j.vetpar.2023.109961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/24/2023] [Accepted: 05/26/2023] [Indexed: 06/10/2023]
Abstract
Fasciolosis caused by Fasciola hepatica is a disease of zoonotic importance that is common worldwide and can cause serious problems in farm animals, some wild animals and humans. The development of diagnostic kits for the correct diagnosis of fasciolosis in sheep is important in terms of preventing yield losses. With this study, it is aimed to clone and express the enolase gene to be isolated from adult F. hepatica and to determine the effectiveness of the recombinant antigen in the serodiagnosis of sheep fasciolosis. For this aim, primers were designed to amplify the enolase gene from the F. hepatica enolase sequence, mRNA was isolated from F. hepatica adult fluke obtained from an infected sheep followed by cDNA was obtained. Enolase gene was amplified by PCR and the product was cloned and then expressed. The efficiency of the purified recombinant protein was displayed by Western blot (WB) and ELISA using positive and negative sheep sera. As a result, the sensitivity and specificity rates of the recombinant FhENO antigen were 85% and %82.8 by WB while the rates were 90% and 97.14% by ELISA, respectively. At the same time, in sheep blood sera samples collected from the Elazig and Siirt provinces of Turkey, 100 (50%) of 200 sera were found to be positive by WB and 46 (23%) were found to be positive by ELISA. The most important problem in ELISA was the high cross-reaction rate of the recombinant antigen used, as in WB. In order to prevent the cross-reactions, it will be useful to compare the genes encoding the enolase protein of parasites from the closely related parasite family, and select the regions where there are no common epitopes, and clone them and test the purified protein.
Collapse
Affiliation(s)
- Figen Celik
- University of Firat, Faculty of Veterinary Medicine, Department of Parasitology, Elazig, Turkey
| | - Sami Simsek
- University of Firat, Faculty of Veterinary Medicine, Department of Parasitology, Elazig, Turkey.
| | - Muhammed Ahmed Selcuk
- Siirt University, Faculty of Veterinary Medicine, Department of Parasitology, Siirt, Turkey
| | - Harun Kaya Kesik
- Bingol University, Faculty of Veterinary Medicine, Department of Parasitology, Bingol, Turkey
| | - Seyma Gunyakti Kilinc
- Bingol University, Faculty of Veterinary Medicine, Department of Parasitology, Bingol, Turkey
| | - Burcak Aslan Celik
- Siirt University, Faculty of Veterinary Medicine, Department of Parasitology, Siirt, Turkey
| |
Collapse
|
20
|
Di Bonaventura G, Picciani C, Lupetti V, Pompilio A. Comparative Proteomic Analysis of Protein Patterns of Stenotrophomonas maltophilia in Biofilm and Planktonic Lifestyles. Microorganisms 2023; 11:microorganisms11020442. [PMID: 36838406 PMCID: PMC9960084 DOI: 10.3390/microorganisms11020442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Abstract
Stenotrophomonas maltophilia is a clinically relevant bacterial pathogen, particularly in cystic fibrosis (CF) patients. Despite the well-known ability to form biofilms inherently resistant to antibiotics and host immunity, many aspects involved in S. maltophilia biofilm formation are yet to be elucidated. In the present study, a proteomic approach was used to elucidate the differential protein expression patterns observed during the planktonic-to-biofilm transition of S. maltophilia Sm126, a strong biofilm producer causing chronic infection in a CF patient, to identify determinants potentially associated with S. maltophilia biofilm formation. In all, 57 proteins were differentially (3-fold; p < 0.01) expressed in biofilm cells compared with planktonic counterparts: 38 were overexpressed, and 19 were down-expressed. It is worth noting that 34 proteins were exclusively found in biofilm, mainly associated with quorum sensing-mediated intercellular communication, augmented glycolysis, amino acid metabolism, biosynthesis of secondary metabolites, phosphate signaling, response to nutrient starvation, and general stress. Further work is warranted to evaluate if these proteins can be suitable targets for developing anti-biofilm strategies effective against S. maltophilia.
Collapse
Affiliation(s)
- Giovanni Di Bonaventura
- Department of Medical, Oral, and Biotechnological Sciences, G. d’Annunzio University of Chieti-Pescara, Via dei Vestini, 31, 66100 Chieti, Italy
- Center for Advanced Studies and Technology, G. d’Annunzio University of Chieti-Pescara, Via L. Polacchi 11, 66100 Chieti, Italy
- Correspondence:
| | - Carla Picciani
- Department of Medical, Oral, and Biotechnological Sciences, G. d’Annunzio University of Chieti-Pescara, Via dei Vestini, 31, 66100 Chieti, Italy
- Center for Advanced Studies and Technology, G. d’Annunzio University of Chieti-Pescara, Via L. Polacchi 11, 66100 Chieti, Italy
| | - Veronica Lupetti
- Department of Medical, Oral, and Biotechnological Sciences, G. d’Annunzio University of Chieti-Pescara, Via dei Vestini, 31, 66100 Chieti, Italy
- Center for Advanced Studies and Technology, G. d’Annunzio University of Chieti-Pescara, Via L. Polacchi 11, 66100 Chieti, Italy
| | - Arianna Pompilio
- Department of Medical, Oral, and Biotechnological Sciences, G. d’Annunzio University of Chieti-Pescara, Via dei Vestini, 31, 66100 Chieti, Italy
- Center for Advanced Studies and Technology, G. d’Annunzio University of Chieti-Pescara, Via L. Polacchi 11, 66100 Chieti, Italy
| |
Collapse
|
21
|
Tjia-Fleck S, Readnour BM, Ayinuola YA, Castellino FJ. High-Resolution Single-Particle Cryo-EM Hydrated Structure of Streptococcus pyogenes Enolase Offers Insights into Its Function as a Plasminogen Receptor. Biochemistry 2023; 62:735-746. [PMID: 36701429 DOI: 10.1021/acs.biochem.2c00637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Cellular plasminogen (Pg) receptors (PgRs) are utilized to recruit Pg; stimulate its activation to the serine protease, plasmin (Pm); and sterically protect the surface Pm from inactivation by host inhibitors. One such PgR is the moonlighting enzyme, enolase, some of which leaves the cytoplasm and resides at the cell surface to potentially function as a PgR. Since microbes employ conscription of host Pg by PgRs as one virulence mechanism, we explored the structural basis of the ability of Streptococcus pyogenes enolase (Sen) to function in this manner. Employing single-particle cryo-electron microscopy (cryo-EM), recombinant Sen from S. pyogenes was modeled at 2.6 Å as a stable symmetrical doughnut-shaped homooctamer with point group 422 (D4) symmetry, with a monomeric subunit molecular weight of ∼49 kDa. Binding sites for hPg were reported in other studies to include an internal K252,255 and the COOH-terminal K434,435 residues of Sen. However, in native Sen, the latter are buried within the minor interfaces of the octamer and do not function as a Pg-binding epitope. Whereas Sen and hPg do not interact in solution, when Sen is bound to a surface, hPg interacts with Sen independently of K252,255,434,435. PgRs devoid of COOH-terminal lysine utilize lysine isosteres comprising a basic residue, "i", and an anionic residue at "i + 3" around one turn of an α-helix. We highlight a number of surface-exposed potential hPg-binding lysine isosteres and further conclude that while the octameric structure of Sen is critical for hPg binding, disruption of this octamer without dissociation exposes hPg-binding epitopes.
Collapse
Affiliation(s)
- Sheiny Tjia-Fleck
- W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, Indiana 46556, United States.,Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Bradley M Readnour
- W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, Indiana 46556, United States.,Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Yetunde A Ayinuola
- W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Francis J Castellino
- W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, Indiana 46556, United States.,Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
22
|
Yadav P, Singh R, Sur S, Bansal S, Chaudhry U, Tandon V. Moonlighting proteins: beacon of hope in era of drug resistance in bacteria. Crit Rev Microbiol 2023; 49:57-81. [PMID: 35220864 DOI: 10.1080/1040841x.2022.2036695] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Moonlighting proteins (MLPs) are ubiquitous and provide a unique advantage to bacteria performing multiple functions using the same genomic content. Targeting MLPs can be considered as a futuristic approach in fighting drug resistance problem. This review follows the MLP trail from its inception to the present-day state, describing a few bacterial MLPs, viz., glyceraldehyde 3'-phosphate dehydrogenase, phosphoglucose isomerase glutamate racemase (GR), and DNA gyrase. Here, we carve out that targeting MLPs are the beacon of hope in an era of increasing drug resistance in bacteria. Evolutionary stability, structure-functional relationships, protein diversity, possible drug targets, and identification of new drugs against bacterial MLP are given due consideration. Before the final curtain calls, we provide a comprehensive list of small molecules that inhibit the biochemical activity of MLPs, which can aid the development of novel molecules to target MLPs for therapeutic applications.
Collapse
Affiliation(s)
- Pramod Yadav
- Special Center for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India.,Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, New Delhi, India
| | - Raja Singh
- Special Center for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Souvik Sur
- Research and Development Center, Teerthanker Mahaveer University, Uttar Pradesh, India
| | - Sandhya Bansal
- Norton Thoracic Institute, St. Joseph's Hospital, and Medical Center, Phoenix, AZ, USA
| | - Uma Chaudhry
- Bhaskaracharya College of Applied Sciences, University of Delhi, New Delhi, India
| | - Vibha Tandon
- Special Center for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
23
|
Hemmadi V, Biswas M, Mohsin M, Bano R. Biochemical and biophysical analysis of the interaction of a recombinant form of Staphylococcus aureus enolase with plasminogen. Future Microbiol 2022; 17:1455-1473. [DOI: 10.2217/fmb-2022-0169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Aim: Pathogenic invasion of Staphylococcus aureus is critically dependent on host plasminogen activation. Materials & methods: The pathophysiological implications of the interactions between S. aureus recombinant enolase and host plasminogen were investigated. The effects of mutation and small synthetic peptide inhibitors on interactions were assessed. Results: In vitro, the S. aureus recombinant enolase exists as a catalytically active fragile octamer and a robust dimer. The dimer interacts with the host plasminogen on the S. aureus surface. Conclusion: The interaction of host plasminogen and S. aureus enolase might mediate bacterial adherence to the host, activate the plasminogen with the help of plasminogen activators and prevent α2-antiplasmin-mediated inhibition of plasmin. Incorporating mutant and synthetic peptides inhibited the interactions and their associated pathophysiological consequences.
Collapse
Affiliation(s)
- Vijay Hemmadi
- Department of Biological Sciences, Birla Institute of Technology & Science, Pilani, K. K. Birla Goa Campus, NH17B, Zuarinagar, Goa, 403726, India
| | - Malabika Biswas
- Department of Biological Sciences, Birla Institute of Technology & Science, Pilani, K. K. Birla Goa Campus, NH17B, Zuarinagar, Goa, 403726, India
| | - Mohd Mohsin
- Department of Biosciences, Metabolic Engineering Lab, Jamia Millia Islamia, New Delhi, 110025, India
| | - Reshma Bano
- Department of Biosciences, Metabolic Engineering Lab, Jamia Millia Islamia, New Delhi, 110025, India
| |
Collapse
|
24
|
Kuryłek A, Stasiak M, Kern-Zdanowicz I. Virulence factors of Streptococcus anginosus - a molecular perspective. Front Microbiol 2022; 13:1025136. [PMID: 36386673 PMCID: PMC9643698 DOI: 10.3389/fmicb.2022.1025136] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 10/10/2022] [Indexed: 07/21/2023] Open
Abstract
Streptococcus anginosus together with S. constellatus and S. intermedius constitute the Streptococcus anginosus group (SAG), until recently considered to be benign commensals of the human mucosa isolated predominantly from oral cavity, but also from upper respiratory, intestinal, and urogenital tracts. For years the virulence potential of SAG was underestimated, mainly due to complications in correct species identification and their assignment to the physiological microbiota. Still, SAG representatives have been associated with purulent infections at oral and non-oral sites resulting in abscesses formation and empyema. Also, life threatening blood infections caused by SAG have been reported. However, the understanding of SAG as potential pathogen is only fragmentary, albeit certain aspects of SAG infection seem sufficiently well described to deserve a systematic overview. In this review we summarize the current state of knowledge of the S. anginosus pathogenicity factors and their mechanisms of action.
Collapse
|
25
|
Inoue Y, Tasaki M, Masuda T, Misumi Y, Nomura T, Ando Y, Ueda M. α-Enolase reduces cerebrovascular Aβ deposits by protecting Aβ amyloid formation. Cell Mol Life Sci 2022; 79:462. [PMID: 35916996 PMCID: PMC11072596 DOI: 10.1007/s00018-022-04493-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 06/29/2022] [Accepted: 07/17/2022] [Indexed: 11/03/2022]
Abstract
Cerebral amyloid angiopathy (CAA) is characterized by cerebrovascular amyloid β (Aβ) deposits and causes dementia and cerebral hemorrhage. Although α-enolase (ENO1) was shown to possess multifunctional roles, its exact functions in CAA pathogenesis have not been determined. In this study, we focused on ENO1, a well-known glycolytic enzyme, which was previously identified via a proteomic approach as an upregulated protein in brain samples from patients with Alzheimer's disease (AD). We utilized the thioflavin T fluorescence assay and transmission electron microscopy to monitor the effects of ENO1 on amyloid formation by Aβ peptides. We also cultured murine primary cerebrovascular smooth muscle cells to determine the effects of ENO1 on Aβ cytotoxicity. To investigate the effects of ENO1 in vivo, we infused ENO1 or a vehicle control into the brains of APP23 mice, a transgenic model of AD/CAA, using a continuous infusion system, followed by a cognitive test and pathological and biochemical analyses. We found that novel functions of ENO1 included interacting with Aβ and inhibiting its fibril formation, disrupting Aβ fibrils, and weakening the cytotoxic effects of these fibrils via proteolytic degradation of Aβ peptide. We also demonstrated that infusion of ENO1 into APP23 mouse brains reduced cerebrovascular Aβ deposits and improved cognitive impairment. In addition, we found that enzymatically inactivated ENO1 failed to inhibit Aβ fibril formation and fibril disruption. The proteolytic activity of ENO1 may thus underlie the enzyme's cytoprotective effect and clearance of Aβ from the brain, and ENO1 may be a therapeutic target in CAA.
Collapse
Affiliation(s)
- Yasuteru Inoue
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1, Chuo-ku, Honjo, Kumamoto, Kumamoto, 860-8556, Japan.
| | - Masayoshi Tasaki
- Department of Biomedical Laboratory Sciences, Graduate School of Health Sciences, Kumamoto University, Kumamoto, Japan
| | - Teruaki Masuda
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1, Chuo-ku, Honjo, Kumamoto, Kumamoto, 860-8556, Japan
| | - Yohei Misumi
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1, Chuo-ku, Honjo, Kumamoto, Kumamoto, 860-8556, Japan
| | - Toshiya Nomura
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1, Chuo-ku, Honjo, Kumamoto, Kumamoto, 860-8556, Japan
| | - Yukio Ando
- Department of Amyloidosis Research, Nagasaki International University, Sasebo, Japan
| | - Mitsuharu Ueda
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1, Chuo-ku, Honjo, Kumamoto, Kumamoto, 860-8556, Japan
| |
Collapse
|
26
|
Nguyen S, Jovcevski B, Truong JQ, Pukala TL, Bruning JB. A structural model of the human plasminogen and
Aspergillus fumigatus
enolase complex. Proteins 2022; 90:1509-1520. [DOI: 10.1002/prot.26331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 02/16/2022] [Accepted: 03/02/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Stephanie Nguyen
- Institute of Photonics and Advanced Sensing (IPAS), School of Biological Sciences, The University of Adelaide Adelaide South Australia Australia
| | - Blagojce Jovcevski
- Adelaide Proteomics Centre, School of Physical Sciences The University of Adelaide Adelaide South Australia Australia
- School of Agriculture, Food and Wine The University of Adelaide Adelaide South Australia Australia
| | - Jia Q. Truong
- Adelaide Proteomics Centre, School of Physical Sciences The University of Adelaide Adelaide South Australia Australia
- School of Biological Sciences The University of Adelaide Adelaide South Australia Australia
| | - Tara L. Pukala
- Adelaide Proteomics Centre, School of Physical Sciences The University of Adelaide Adelaide South Australia Australia
| | - John B. Bruning
- Institute of Photonics and Advanced Sensing (IPAS), School of Biological Sciences, The University of Adelaide Adelaide South Australia Australia
| |
Collapse
|
27
|
Readnour BM, Ayinuola YA, Russo BT, Liang Z, Lee SW, Ploplis VA, Fischetti VA, Castellino FJ. Evolution of Streptococcus pyogenes has maximized the efficiency of the Sortase A cleavage motif for cell wall transpeptidation. J Biol Chem 2022; 298:101940. [PMID: 35430253 PMCID: PMC9123276 DOI: 10.1016/j.jbc.2022.101940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/09/2022] [Accepted: 04/12/2022] [Indexed: 11/29/2022] Open
Abstract
Trafficking of M-protein (Mprt) from the cytosol of Group A Streptococcus pyogenes (GAS) occurs via Sec translocase membrane channels that associate with Sortase A (SrtA), an enzyme that catalyzes cleavage of Mprt at the proximal C-terminal [-LPST355∗GEAA-] motif and subsequent transpeptidation of the Mprt-containing product to the cell wall (CW). These steps facilitate stable exposure of the N-terminus of Mprt to the extracellular milieu where it interacts with ligands. Previously, we found that inactivation of SrtA in GAS cells eliminated Mprt CW transpeptidation but effected little reduction in its cell surface exposure, indicating that the C-terminus of Mprt retained in the cytoplasmic membrane (CM) extends its N-terminus to the cell surface. Herein, we assessed the effects of mutating the Thr355 residue in the WT SrtA consensus sequence (LPST355∗GEAA-) in a specific Mprt, PAM. In vitro, we found that synthetic peptides with mutations (LPSX355GEAA) in the SrtA cleavage site displayed slower cleavage activities with rSrtA than the WT peptide. Aromatic residues at X had the lowest activities. Nonetheless, PAM/[Y355G] still transpeptidated the CW in vivo. However, when using isolated CMs from srtA-inactivated GAS cells, rapid cleavage of PAM/[LPSY355GEAA] occurred at E357∗ but transpeptidation did not take place. These results show that another CM-resident enzyme nonproductively cleaved PAM/[LPSYGE357∗AA]. However, SrtA associated with the translocon channel in vivo cleaved and transpeptidated PAM/[LPSX355∗GEAA] variants. These CM features allow diverse cleavage site variants to covalently attach to the CW despite the presence of other potent nonproductive CM proteases.
Collapse
Affiliation(s)
- Bradley M Readnour
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, Indiana, USA; Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - Yetunde A Ayinuola
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, Indiana, USA
| | - Brady T Russo
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, Indiana, USA; Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - Zhong Liang
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, Indiana, USA
| | - Shaun W Lee
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, Indiana, USA; Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Victoria A Ploplis
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, Indiana, USA; Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - Vincent A Fischetti
- Laboratory of Bacterial Pathogenesis and Immunology, Rockefeller University, New York, New York, USA
| | - Francis J Castellino
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, Indiana, USA; Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA.
| |
Collapse
|
28
|
Ayinuola YA, Tjia-Fleck S, Readnour BM, Liang Z, Ayinuola O, Paul LN, Lee SW, Fischetti VA, Ploplis VA, Castellino FJ. Relationships Between Plasminogen-Binding M-Protein and Surface Enolase for Human Plasminogen Acquisition and Activation in Streptococcus pyogenes. Front Microbiol 2022; 13:905670. [PMID: 35685926 PMCID: PMC9173704 DOI: 10.3389/fmicb.2022.905670] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 04/19/2022] [Indexed: 02/03/2023] Open
Abstract
The proteolytic activity of human plasmin (hPm) is utilized by various cells to provide a surface protease that increases the potential of cells to migrate and disseminate. Skin-trophic Pattern D strains of Streptococcus pyogenes (GAS), e.g., GAS isolate AP53, contain a surface M-protein (PAM) that directly and strongly interacts (Kd ~ 1 nM) with human host plasminogen (hPg), after which it is activated to hPm by a specific coinherited bacterial activator, streptokinase (SK2b), or by host activators. Another ubiquitous class of hPg binding proteins on GAS cells includes "moonlighting" proteins, such as the glycolytic enzyme, enolase (Sen). However, the importance of Sen in hPg acquisition, especially when PAM is present, has not been fully developed. Sen forms a complex with hPg on different surfaces, but not in solution. Isogenic AP53 cells with a targeted deletion of PAM do not bind hPg, but the surface expression of Sen is also greatly diminished upon deletion of the PAM gene, thus confounding this approach for defining the role of Sen. However, cells with point deletions in PAM that negate hPg binding, but fully express PAM and Sen, show that hPg binds weakly to Sen on GAS cells. Despite this, Sen does not stimulate hPg activation by SK2b, but does stimulate tissue-type plasminogen activator-catalyzed activation of hPg. These data demonstrate that PAM plays the dominant role as a functional hPg receptor in GAS cells that also contain surface enolase.
Collapse
Affiliation(s)
- Yetunde A. Ayinuola
- W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN, United States
| | - Sheiny Tjia-Fleck
- W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN, United States,Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, United States
| | - Bradley M. Readnour
- W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN, United States,Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, United States
| | - Zhong Liang
- W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN, United States
| | - Olawole Ayinuola
- W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN, United States
| | - Lake N. Paul
- BioAnalysis, LLC.Philadelphia, PA, United States
| | - Shaun W. Lee
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States
| | - Vincent A. Fischetti
- Laboratory of Bacterial Pathogenesis and Immunology, Rockefeller University, New York, NY, United States
| | - Victoria A. Ploplis
- W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN, United States,Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, United States
| | - Francis J. Castellino
- W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN, United States,Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, United States,*Correspondence: Francis J. Castellino,
| |
Collapse
|
29
|
Hussain M, Kohler C, Becker K. Enolase of Staphylococcus lugdunensis Is a Surface-Exposed Moonlighting Protein That Binds to Extracellular Matrix and the Plasminogen/Plasmin System. Front Microbiol 2022; 13:837297. [PMID: 35308335 PMCID: PMC8928124 DOI: 10.3389/fmicb.2022.837297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/20/2022] [Indexed: 11/27/2022] Open
Abstract
The coagulase-negative staphylococcal (CoNS) species Staphylococcus lugdunensis is unique in causing serious infections in humans that resemble those of Staphylococcus aureus rather than those of other CoNS species. The colonization and invasion of host tissue presupposes the presence of adherence factors, but only a few proteins mediating adhesion of S. lugdunensis to biotic surfaces are known yet. Here, we report on the functionality of the S. lugdunensis enolase (SlEno), which performs two distinct roles, first, as the metabolic enzyme of the glycolysis, and second, as an adherence factor to the extracellular matrix (ECM) of cells. Phylogenetic analyses of the SlEno confirmed their high conservation to enolases of other species and revealed a closer relationship to Staphylococcus epidermidis than to S. aureus. Using matrix-assisted laser desorption/ionization time of flight mass spectrometry and Western blot experiments, we identified SlEno to be located in the cytoplasm as well as on the cell surface of S. lugdunensis. Recombinantly generated and surface-associated SlEno showed the usual enolase activity by catalyzing the conversion of 2-phosphoglycerate to phosphoenolpyruvate but, in addition, also displayed strong binding to immobilized laminin, fibronectin, fibrinogen, and collagen type IV in a dose-dependent manner. We also showed a strong binding of SlEno to plasminogen (Plg) and observed a tissue plasminogen activator (tPA)-dependent conversion of Plg to plasmin (Pln) whereby the Plg activation significantly increased in the presence of SlEno. This interaction might be dependent on lysines of the SlEno protein as binding to Plg was inhibited by ε-aminocaproic acid. Furthermore, the enhanced activation of the Plg/Pln system by SlEno enabled S. lugdunensis to migrate through a fibrin matrix. This migration was about 10-fold higher than without exogenously added SlEno. Finally, we observed a significantly higher clearance of S. lugdunensis by freshly prepared granulocytes and in the presence of anti-SlEno antibodies. In conclusion, these data demonstrate for the first time a moonlighting function of the S. lugdunensis enolase, which is an underrated virulence factor for colonization and invasion of tissues. Hence, SlEno might be a potential vaccine candidate to prevent severe infections caused by this pathogen.
Collapse
Affiliation(s)
- Muzaffar Hussain
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany
| | - Christian Kohler
- Friedrich Loeffler Institute of Medical Microbiology, University Medicine Greifswald, Greifswald, Germany
| | - Karsten Becker
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany
- Friedrich Loeffler Institute of Medical Microbiology, University Medicine Greifswald, Greifswald, Germany
- Interdisciplinary Centre for Clinical Research (IZKF), University Hospital Münster, Münster, Germany
- *Correspondence: Karsten Becker,
| |
Collapse
|
30
|
The C-Terminal Domain of Staphylococcus aureus Zinc Transport Protein AdcA Binds Plasminogen and Factor H In Vitro. Pathogens 2022; 11:pathogens11020240. [PMID: 35215183 PMCID: PMC8878332 DOI: 10.3390/pathogens11020240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 11/17/2022] Open
Abstract
Bacterial acquisition of metals from a host is an essential attribute to facilitate survival and colonization within an infected organism. Staphylococcus aureus, a bacterial pathogen of medical importance, has evolved its strategies to acquire multiple metals, including iron, manganese, and zinc. Other important strategies for the colonization and infection of the host have been reported for staphylococci and include the expression of adhesins on the bacterial surface, as well as the acquisition of host plasminogen and complement regulatory proteins. Here we assess the ability of the zinc transport protein AdcA from Staphylococcus aureus, first characterized elsewhere as a zinc-binding protein of the ABC (ATP-binding cassette) transporters, to bind to host molecules. Like other staphylococcus ion-scavenging proteins, such as MntC, a manganese-binding protein, AdcA interacts with human plasminogen. Once activated, plasmin bound to AdcA cleaves fibrinogen and vitronectin. In addition, AdcA interacts with the human negative complement regulator factor H (FH). Plasminogen and FH have been shown to bind to distinct sites on the AdcA C-terminal portion. In conclusion, our in vitro data pave the way for future studies addressing the relevance of AdcA interactions with host molecules in vivo.
Collapse
|
31
|
Marques da Silva W, Seyffert N, Silva A, Azevedo V. A journey through the Corynebacterium pseudotuberculosis proteome promotes insights into its functional genome. PeerJ 2022; 9:e12456. [PMID: 35036114 PMCID: PMC8710256 DOI: 10.7717/peerj.12456] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 10/18/2021] [Indexed: 11/28/2022] Open
Abstract
Background Corynebacterium pseudotuberculosis is a Gram-positive facultative intracellular pathogen and the etiologic agent of illnesses like caseous lymphadenitis in small ruminants, mastitis in dairy cattle, ulcerative lymphangitis in equines, and oedematous skin disease in buffalos. With the growing advance in high-throughput technologies, genomic studies have been carried out to explore the molecular basis of its virulence and pathogenicity. However, data large-scale functional genomics studies are necessary to complement genomics data and better understating the molecular basis of a given organism. Here we summarize, MS-based proteomics techniques and bioinformatics tools incorporated in genomic functional studies of C. pseudotuberculosis to discover the different patterns of protein modulation under distinct environmental conditions, and antigenic and drugs targets. Methodology In this study we performed an extensive search in Web of Science of original and relevant articles related to methods, strategy, technology, approaches, and bioinformatics tools focused on the functional study of the genome of C. pseudotuberculosis at the protein level. Results Here, we highlight the use of proteomics for understating several aspects of the physiology and pathogenesis of C. pseudotuberculosis at the protein level. The implementation and use of protocols, strategies, and proteomics approach to characterize the different subcellular fractions of the proteome of this pathogen. In addition, we have discussed the immunoproteomics, immunoinformatics and genetic tools employed to identify targets for immunoassays, drugs, and vaccines against C. pseudotuberculosis infection. Conclusion In this review, we showed that the combination of proteomics and bioinformatics studies is a suitable strategy to elucidate the functional aspects of the C. pseudotuberculosis genome. Together, all information generated from these proteomics studies allowed expanding our knowledge about factors related to the pathophysiology of this pathogen.
Collapse
Affiliation(s)
- Wanderson Marques da Silva
- Institute of Agrobiotechnology and Molecular Biology-(INTA/CONICET), Hurlingham, Buenos Aires, Argentina
| | - Nubia Seyffert
- Institute of Health Sciences, Federal University of Bahia, Salvador, Bahia, Brazil
| | - Artur Silva
- Laboratory of Genomics and Bioinformatics, Center of Genomics and Systems Biology, Institute of Biological Sciences, Federal University of Para, Belém, Pará, Brazil
| | - Vasco Azevedo
- Genetics, Ecology and Evolution, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
32
|
Dobrut A, Brzychczy-Włoch M. Immunogenic Proteins of Group B Streptococcus-Potential Antigens in Immunodiagnostic Assay for GBS Detection. Pathogens 2021; 11:43. [PMID: 35055991 PMCID: PMC8778278 DOI: 10.3390/pathogens11010043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/29/2021] [Accepted: 12/29/2021] [Indexed: 12/21/2022] Open
Abstract
Streptococcus agalactiae (Group B Streptococcus, GBS) is an opportunistic pathogen, which asymptomatically colonizes the gastrointestinal and genitourinary tract of up to one third of healthy adults. Nevertheless, GBS carriage in pregnant women may lead to several health issues in newborns causing life threatening infection, such as sepsis, pneumonia or meningitis. Recommended GBS screening in pregnant women significantly reduced morbidity and mortality in infants. Nevertheless, intrapartum antibiotic prophylaxis, recommended following the detection of carriage or in case of lack of a carriage test result for pregnant women who demonstrate certain risk factors, led to the expansion of the adverse phenomenon of bacterial resistance to antibiotics. In our paper, we reviewed some immunogenic GBS proteins, i.e., Alp family proteins, β protein, Lmb, Sip, BibA, FsbA, ScpB, enolase, elongation factor Tu, IMPDH, and GroEL, which possess features characteristic of good candidates for immunodiagnostic assays for GBS carriage detection, such as immunoreactivity and specificity. We assume that they can be used as an alternative diagnostic method to the presently recommended bacteriological cultivation and MALDI.
Collapse
Affiliation(s)
| | - Monika Brzychczy-Włoch
- Department of Molecular Medical Microbiology, Faculty of Medicine, Medical College, Jagiellonian University, 31-121 Krakow, Poland;
| |
Collapse
|
33
|
Osorio-Aguilar Y, Gonzalez-Vazquez MC, Hernandez-Ceron DE, Lozano-Zarain P, Martinez-Laguna Y, Gonzalez-Bonilla CR, Rocha-Gracia RDC, Carabarin-Lima A. Structural Characterization of Haemophilus influenzae Enolase and Its Interaction with Human Plasminogen by In Silico and In Vitro Assays. Pathogens 2021; 10:pathogens10121614. [PMID: 34959569 PMCID: PMC8707213 DOI: 10.3390/pathogens10121614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/03/2021] [Accepted: 12/07/2021] [Indexed: 12/02/2022] Open
Abstract
Haemophilus influenzae is the causal agent of invasive pediatric diseases, such as meningitis, epiglottitis, pneumonia, septic arthritis, pericarditis, cellulitis, and bacteremia (serotype b). Non-typeable H. influenzae (NTHi) strains are associated with localized infections, such as otitis media, conjunctivitis, sinusitis, bronchitis, and pneumonia, and can cause invasive diseases, such as as meningitis and sepsis in immunocompromised hosts. Enolase is a multifunctional protein and can act as a receptor for plasminogen, promoting its activation to plasmin, which leads to the degradation of components of the extracellular matrix, favoring host tissue invasion. In this study, using molecular docking, three important residues involved in plasminogen interaction through the plasminogen-binding motif (251EFYNKENGMYE262) were identified in non-typeable H. influenzae enolase (NTHiENO). Interaction with the human plasminogen kringle domains is conformationally stable due to the formation of four hydrogen bonds corresponding to enoTYR253-plgGLU1 (K2), enoTYR253-plgGLY310 (K3), and enoLYS255-plgARG471/enoGLU251-plgLYS468 (K5). On the other hand, in vitro assays, such as ELISA and far-western blot, showed that NTHiENO is a plasminogen-binding protein. The inhibition of this interaction using polyclonal anti-NTHiENO antibodies was significant. With these results, we can propose that NTHiENO–plasminogen interaction could be one of the mechanisms used by H. influenzae to adhere to and invade host cells.
Collapse
Affiliation(s)
- Yesenia Osorio-Aguilar
- Posgrado en Microbiología, Laboratorio de Microbiología Hospitalaria y de la Comunidad, Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico; (Y.O.-A.); (M.C.G.-V.); (P.L.-Z.); (Y.M.-L.); (R.d.C.R.-G.)
| | - Maria Cristina Gonzalez-Vazquez
- Posgrado en Microbiología, Laboratorio de Microbiología Hospitalaria y de la Comunidad, Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico; (Y.O.-A.); (M.C.G.-V.); (P.L.-Z.); (Y.M.-L.); (R.d.C.R.-G.)
| | | | - Patricia Lozano-Zarain
- Posgrado en Microbiología, Laboratorio de Microbiología Hospitalaria y de la Comunidad, Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico; (Y.O.-A.); (M.C.G.-V.); (P.L.-Z.); (Y.M.-L.); (R.d.C.R.-G.)
| | - Ygnacio Martinez-Laguna
- Posgrado en Microbiología, Laboratorio de Microbiología Hospitalaria y de la Comunidad, Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico; (Y.O.-A.); (M.C.G.-V.); (P.L.-Z.); (Y.M.-L.); (R.d.C.R.-G.)
| | | | - Rosa del Carmen Rocha-Gracia
- Posgrado en Microbiología, Laboratorio de Microbiología Hospitalaria y de la Comunidad, Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico; (Y.O.-A.); (M.C.G.-V.); (P.L.-Z.); (Y.M.-L.); (R.d.C.R.-G.)
| | - Alejandro Carabarin-Lima
- Posgrado en Microbiología, Laboratorio de Microbiología Hospitalaria y de la Comunidad, Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico; (Y.O.-A.); (M.C.G.-V.); (P.L.-Z.); (Y.M.-L.); (R.d.C.R.-G.)
- Licenciatura en Biotecnología, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico
- Correspondence: ; Tel.: +52-(222)-229-5500 (ext. 3965)
| |
Collapse
|
34
|
Gonzaga ZJC, Chen S, Lehoux M, Segura M, Rehm BHA. Engineering Antigens to Assemble into Polymer Particle Vaccines for Prevention of Streptococcus suis Infection. Vaccines (Basel) 2021; 9:1386. [PMID: 34960132 PMCID: PMC8709461 DOI: 10.3390/vaccines9121386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/08/2021] [Accepted: 11/15/2021] [Indexed: 11/24/2022] Open
Abstract
Streptococcus suis is a zoonotic pathogen affecting pigs and humans. This bacterium causes severe economic losses in the swine industry and poses a serious threat to public health and food safety. There is no effective commercial vaccine available for pigs or humans. In this study, we applied the biopolymer particle (BP) vaccine technology to incorporate seven conserved S. suis antigens (38 kDa protein (38), enolase (Enol), SSU1915, SSU1355, SSU0185, SSU1215, and SSU1773 (SSU1 and SSU2)). Two combinations of these antigens (38 and Enol; all SSU antigens designated as SSU1 and SSU2) were engineered to mediate production of BPs coated with either antigens 38 and Enol or SSU1 and SSU2 inside recombinant Escherichia coli. The isolated and purified empty BPs, 38-BP-Enol and SSU1-BP-SSU2, showed size ranges of 312-428 nm and 292-344 nm with and without the QuilA® adjuvant, respectively, and all showed a negative surface charge. Further characterization of purified BPs confirmed the presence of the expected antigen-comprising fusion proteins as assessed by tryptic peptide fingerprinting analysis using quadrupole time-of-flight mass spectrometry and immunoblotting. Vaccination with 38-BP-Enol and SSU1-BP-SSU2 formulated with and without QuilA® adjuvant induced significant antigen-specific humoral immune responses in mice. Antigen-coated BPs induced significant and specific Ig (IgM + IgG) and IgG immune responses (1.0 × 106-1.0 × 107) when compared with mice vaccinated with empty BPs. Functionality of the immune response was confirmed in challenge experiments using an acute murine S. suis infection model, which showed 100% survival of the 38-BP-Enol and SSU1-BP-SSU2 vaccinated mice compared to 70% survival when vaccinated with empty BPs. Overall, our data suggest that S. suis antigen-coated BPs could be developed into particulate vaccines that induce protective immunity against S. suis infections.
Collapse
Affiliation(s)
- Zennia Jean C. Gonzaga
- Centre for Cell Factories and Biopolymers (CCFB), Griffith Institute for Drug Discovery, Griffith University, Don Young Road, Natha, QLD 4111, Australia; (Z.J.C.G.); (S.C.)
| | - Shuxiong Chen
- Centre for Cell Factories and Biopolymers (CCFB), Griffith Institute for Drug Discovery, Griffith University, Don Young Road, Natha, QLD 4111, Australia; (Z.J.C.G.); (S.C.)
| | - Mélanie Lehoux
- Research Group on Infectious Diseases in Production Animals and Swine and Poultry Infectious Diseases Research Centre, Faculty of Veterinary Medicine, Université de Montréal, 3200 Rue Sicotte, CP5000, St-Hyacinthe, QC J2S 7C6, Canada; (M.L.); (M.S.)
| | - Mariela Segura
- Research Group on Infectious Diseases in Production Animals and Swine and Poultry Infectious Diseases Research Centre, Faculty of Veterinary Medicine, Université de Montréal, 3200 Rue Sicotte, CP5000, St-Hyacinthe, QC J2S 7C6, Canada; (M.L.); (M.S.)
| | - Bernd H. A. Rehm
- Centre for Cell Factories and Biopolymers (CCFB), Griffith Institute for Drug Discovery, Griffith University, Don Young Road, Natha, QLD 4111, Australia; (Z.J.C.G.); (S.C.)
- Menzies Health Institute Queensland (MHIQ), Griffith University, Gold Coast, QLD 4222, Australia
| |
Collapse
|
35
|
Angeletti A, Migliorini P, Bruschi M, Pratesi F, Candiano G, Prunotto M, Verrina E, Ghiggeri GM. Anti-alpha enolase multi-antibody specificity in human diseases. Clinical significance and molecular mechanisms. Autoimmun Rev 2021; 20:102977. [PMID: 34718161 DOI: 10.1016/j.autrev.2021.102977] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 07/06/2021] [Indexed: 11/30/2022]
Abstract
Alpha-enolase (Eno) is an ubiquitary glycolytic enzyme playing multiple functions that go well beyond its principal metabolic role of energy supplier during glycolysis. Eno is localized in the cytoplasm, but also expressed on the cell membrane, where it binds plasminogen allowing its activation. Its shorter form, in the nucleus, acts as transcription factor. In inflammatory conditions, Eno undergoes post-translational modifications, such as citrullination, oxidation and phosphorylation. Eno is also an autoantigen in different disorders. In fact, autoantibodies to Eno have been detected in rheumatoid arthritis, lupus nephritis, primary glomerulonephritis, cancer, infections and other disorders, and in many cases they represent specific markers to be utilized in clinical practice. Anti-Eno antibodies in the different clinical conditions are not equal: they differ in isotype and often recognize different epitopes on the enzyme. IgG1 and IgG3 are prevalent in Rheumatoid Arthritis, IgG2 in Lupus nephritis and IgG4 in primary autoimmune glomerulopathy. This review analyzes the characteristics of anti-Eno autoantibodies in autoimmune disorders and cancer, describing their fine specificity and isotype restriction. The post-translational modifications that are target of autoantibodies are also discussed, as they represent the basis for elucidating the molecular mechanisms responsible for epitope generation. Despite an impressive amount of experimental work on anti-Eno antibodies, it is still necessary to validate the use of anti-Eno antibodies as biomarkers of selected diseases and extend the knowledge on the mechanisms of anti-Eno autoantibody production. Strategies that downmodulate the immune response to Eno may represent in the future novel approaches in the treatment of autoimmune disorders.
Collapse
Affiliation(s)
- Andrea Angeletti
- Division of Nephrology, Dialysis, and Transplantation, IRCCS Istituto Giannina Gaslini, Genova, Italy; Laboratory of Molecular Nephrology, IRCCS Istituto Giannina Gaslini, Italy
| | - Paola Migliorini
- Clinical Immunology Unit, Department of Internal Medicine, University of Pisa, Italy.
| | - Maurizio Bruschi
- Laboratory of Molecular Nephrology, IRCCS Istituto Giannina Gaslini, Italy
| | - Federico Pratesi
- Clinical Immunology Unit, Department of Internal Medicine, University of Pisa, Italy
| | - Giovanni Candiano
- Laboratory of Molecular Nephrology, IRCCS Istituto Giannina Gaslini, Italy
| | - Marco Prunotto
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
| | - Enrico Verrina
- Division of Nephrology, Dialysis, and Transplantation, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Gian Marco Ghiggeri
- Division of Nephrology, Dialysis, and Transplantation, IRCCS Istituto Giannina Gaslini, Genova, Italy; Laboratory of Molecular Nephrology, IRCCS Istituto Giannina Gaslini, Italy.
| |
Collapse
|
36
|
Coppolino F, Romeo L, Pietrocola G, Lentini G, De Gaetano GV, Teti G, Galbo R, Beninati C. Lysine Residues in the MK-Rich Region Are Not Required for Binding of the PbsP Protein From Group B Streptococci to Plasminogen. Front Cell Infect Microbiol 2021; 11:679792. [PMID: 34568085 PMCID: PMC8455988 DOI: 10.3389/fcimb.2021.679792] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 08/23/2021] [Indexed: 11/13/2022] Open
Abstract
Binding to plasminogen (Plg) enables bacteria to associate with and invade host tissues. The cell wall protein PbsP significantly contributes to the ability of group B streptococci, a frequent cause of invasive infection, to bind Plg. Here we sought to identify the molecular regions involved in the interactions between Plg and PbsP. The K4 Kringle domain of the Plg molecule was required for binding of Plg to whole PbsP and to a PbsP fragment encompassing a region rich in methionine and lysine (MK-rich domain). These interactions were inhibited by free L-lysine, indicating the involvement of lysine binding sites in the Plg molecule. However, mutation to alanine of all lysine residues in the MK-rich domain did not decrease its ability to bind Plg. Collectively, our data identify a novel bacterial sequence that can interact with lysine binding sites in the Plg molecule. Notably, such binding did not require the presence of lysine or other positively charged amino acids in the bacterial receptor. These data may be useful for developing alternative therapeutic strategies aimed at blocking interactions between group B streptococci and Plg.
Collapse
Affiliation(s)
- Francesco Coppolino
- Department of Biomedical, Dental and Imaging Sciences, University of Messina, Messina, Italy
| | - Letizia Romeo
- Department of Human Pathology and Medicine, University of Messina, Messina, Italy
| | - Giampiero Pietrocola
- Department Molecular Medicine, Biochemistry Section, University of Pavia, Pavia, Italy
| | - Germana Lentini
- Department of Human Pathology and Medicine, University of Messina, Messina, Italy
| | | | | | - Roberta Galbo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Concetta Beninati
- Department of Human Pathology and Medicine, University of Messina, Messina, Italy.,Scylla Biotech Srl, Messina, Italy
| |
Collapse
|
37
|
Gomes MT, Paes-Vieira L, Gomes-Vieira AL, Cosentino-Gomes D, da Silva APP, Giarola NLL, Da Silva D, Sola-Penna M, Galina A, Meyer-Fernandes JR. 3-Bromopyruvate: A new strategy for inhibition of glycolytic enzymes in Leishmania amazonensis. Exp Parasitol 2021; 229:108154. [PMID: 34481863 DOI: 10.1016/j.exppara.2021.108154] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 05/14/2021] [Accepted: 08/28/2021] [Indexed: 11/29/2022]
Abstract
The compound 3-bromopyruvate (3-BrPA) is well-known and studies from several researchers have demonstrated its involvement in tumorigenesis. It is an analogue of pyruvic acid that inhibits ATP synthesis by inhibiting enzymes from the glycolytic pathway and oxidative phosphorylation. In this work, we investigated the effect of 3-BrPA on energy metabolism of L. amazonensis. In order to verify the effect of 3-BrPA on L. amazonensis glycolysis, we measured the activity level of three glycolytic enzymes located at different points of the pathway: (i) glucose kinases, step 1, (ii) glyceraldehyde 3-phosphate dehydrogenase (GAPDH), step 6, and (iii) enolase, step 9. 3-BrPA, in a dose-dependent manner, significantly reduced the activity levels of all the enzymes. In addition, 3-BrPA treatment led to a reduction in the levels of phosphofruto-1-kinase (PFK) protein, suggesting that the mode of action of 3-BrPA involves the downregulation of some glycolytic enzymes. Measurement of ATP levels in promastigotes of L. amazonensis showed a significant reduction in ATP generation. The O2 consumption was also significantly inhibited in promastigotes, confirming the energy depletion effect of 3-BrPA. When 3-BrPA was added to the cells at the beginning of growth cycle, it significantly inhibited L. amazonensis proliferation in a dose-dependent manner. Furthermore, the ability to infect macrophages was reduced by approximately 50% when promastigotes were treated with 3-BrPA. Taken together, these studies corroborate with previous reports which suggest 3-BrPA as a potential drug against pathogenic microorganisms that are reliant on glucose catabolism for ATP supply.
Collapse
Affiliation(s)
- Marta Teixeira Gomes
- Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Department of Medicine, Indiana University, Indianapolis, IN, USA; Laboratório de Bioquímica Celular, Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| | - Lisvane Paes-Vieira
- Laboratório de Bioquímica Celular, Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - André Luiz Gomes-Vieira
- Instituto de Química, Departamento de Bioquímica, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, Brazil
| | - Daniela Cosentino-Gomes
- Instituto de Química, Departamento de Bioquímica, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, Brazil
| | - Ana Paula Pereira da Silva
- Instituto de Química, Departamento de Bioquímica, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, Brazil
| | - Naira Ligia Lima Giarola
- Laboratório de Bioquímica Celular, Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Daniel Da Silva
- Laboratório de Enzimologia e Controle do Metabolismo, Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Mauro Sola-Penna
- Laboratório de Enzimologia e Controle do Metabolismo, Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Antonio Galina
- Laboratorio de Bioenergética e Fisiologia Mitocondrial, Programa de Bioquímica e Biofísica Celular, Instituto de Bioquímica Medica Leopoldo de Meis, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, RJ, Brazil
| | - José Roberto Meyer-Fernandes
- Laboratório de Bioquímica Celular, Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagem, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
38
|
Serek P, Lewandowski Ł, Dudek B, Pietkiewicz J, Jermakow K, Kapczyńska K, Krzyżewska E, Bednarz-Misa I. Klebsiella pneumoniae enolase-like membrane protein interacts with human plasminogen. Int J Med Microbiol 2021; 311:151518. [PMID: 34237624 DOI: 10.1016/j.ijmm.2021.151518] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/14/2021] [Accepted: 07/01/2021] [Indexed: 10/20/2022] Open
Abstract
Many models assessing the risk of sepsis utilize the knowledge of the constituents of the plasminogen system, as it is proven that some species of bacteria can activate plasminogen, as a result of interactions with bacterial outer membrane proteins. However, much is yet to be discovered about this interaction since there is little information regarding some bacterial species. This study is aimed to check if Klebsiella pneumoniae, one of the major factors of nosocomial pneumonia and a factor for severe sepsis, has the ability to bind to human plasminogen. The strain used in this study, PCM 2713, acted as a typical representative of the species. With use of various methods, including: electron microscopy, 2-dimensional electrophoresis, immunoblotting and peptide fragmentation fingerprinting, it is shown that Klebsiella pneumoniae binds to human plasminogen, among others, due to plasminogen-bacterial enolase-like protein interaction, occurring on the outer membrane of the bacterium. Moreover, the study reveals, that other proteins, such as: phosphoglucomutase, and phosphoenolpyruvate carboxykinase act as putative plasminogen-binding factors. These information may virtually act as a foundation for future studies investigating: the: pathogenicity of Klebsiella pneumoniae and means for prevention from the outcomes of Klebsiella-derived sepsis.
Collapse
Affiliation(s)
- Paweł Serek
- Department of Biochemistry and Immunochemistry, Wroclaw Medical University, Chałubińskiego 10, 50-368, Wroclaw, Poland
| | - Łukasz Lewandowski
- Department of Biochemistry and Immunochemistry, Wroclaw Medical University, Chałubińskiego 10, 50-368, Wroclaw, Poland
| | - Bartłomiej Dudek
- Department of Microbiology, Institute of Genetics and Microbiology, University of Wrocław, Przybyszewskiego 63-77, 51-148, Wroclaw, Poland
| | - Jadwiga Pietkiewicz
- Department of Biochemistry and Immunochemistry, Wroclaw Medical University, Chałubińskiego 10, 50-368, Wroclaw, Poland
| | - Katarzyna Jermakow
- Department of Microbiology, Faculty of Medicine, Wroclaw Medical University, Chałubińskiego 4, 50-368, Wrocław, Poland
| | - Katarzyna Kapczyńska
- Department of Immunology of Infectious Diseases, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114, Wrocław, Poland
| | - Eva Krzyżewska
- Department of Immunology of Infectious Diseases, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114, Wrocław, Poland
| | - Iwona Bednarz-Misa
- Department of Biochemistry and Immunochemistry, Wroclaw Medical University, Chałubińskiego 10, 50-368, Wroclaw, Poland.
| |
Collapse
|
39
|
Inhibition of Fibrinolysis by Streptococcal Phage Lysin SM1. mBio 2021; 12:e0074621. [PMID: 34154404 PMCID: PMC8263008 DOI: 10.1128/mbio.00746-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Expression of bacteriophage lysinSM1 by Streptococcus oralis strain SF100 is thought to be important for the pathogenesis of infective endocarditis, due to its ability to mediate bacterial binding to fibrinogen. To better define the lysinSM1 binding site on fibrinogen Aα, and to investigate the impact of binding on fibrinolysis, we examined the interaction of lysinSM1 with a series of recombinant fibrinogen Aα variants. These studies revealed that lysinSM1 binds the C-terminal region of fibrinogen Aα spanned by amino acid residues 534 to 610, with an affinity of equilibrium dissociation constant (KD) of 3.23 × 10-5 M. This binding site overlaps the known binding site for plasminogen, an inactive precursor of plasmin, which is a key protease responsible for degrading fibrin polymers. When tested in vitro, lysinSM1 competitively inhibited plasminogen binding to the αC region of fibrinogen Aα. It also inhibited plasminogen-mediated fibrinolysis, as measured by thromboelastography (TEG). These results indicate that lysinSM1 is a bi-functional virulence factor for streptococci, serving as both an adhesin and a plasminogen inhibitor. Thus, lysinSM1 may facilitate the attachment of bacteria to fibrinogen on the surface of damaged cardiac valves and may also inhibit plasminogen-mediated lysis of infected thrombi (vegetations) on valve surfaces. IMPORTANCE The interaction of streptococci with human fibrinogen and platelets on damaged endocardium is a central event in the pathogenesis of infective endocarditis. Streptococcus oralis can bind platelets via the interaction of bacteriophage lysinSM1 with fibrinogen on the platelet surface, and this process has been associated with increased virulence in an animal model of endocarditis. We now report that lysinSM1 binds to the αC region of the human fibrinogen Aα chain. This interaction blocks plasminogen binding to fibrinogen and inhibits fibrinolysis. In vivo, this inhibition could prevent the lysis of infected vegetations, thereby promoting bacterial persistence and virulence.
Collapse
|
40
|
Hassan M, Baig AA, Attique SA, Abbas S, Khan F, Zahid S, Ain QU, Usman M, Simbak NB, Kamal MA, Yusof HA. Molecular docking of alpha-enolase to elucidate the promising candidates against Streptococcus pneumoniae infection. Daru 2021; 29:73-84. [PMID: 33537864 PMCID: PMC8149539 DOI: 10.1007/s40199-020-00384-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 12/23/2020] [Indexed: 12/20/2022] Open
Abstract
PURPOSE To predict potential inhibitors of alpha-enolase to reduce plasminogen binding of Streptococcus pneumoniae (S. pneumoniae) that may lead as an orally active drug. S. pneumoniae remains dominant in causing invasive diseases. Fibrinolytic pathway is a critical factor of S. pneumoniae to invade and progression of disease in the host body. Besides the low mass on the cell surface, alpha-enolase possesses significant plasminogen binding among all exposed proteins. METHODS In-silico based drug designing approach was implemented for evaluating potential inhibitors against alpha-enolase based on their binding affinities, energy score and pharmacokinetics. Lipinski's rule of five (LRo5) and Egan's (Brain Or IntestinaL EstimateD) BOILED-Egg methods were executed to predict the best ligand for biological systems. RESULTS Molecular docking analysis revealed, Sodium (1,5-dihydroxy-2-oxopyrrolidin-3-yl)-hydroxy-dioxidophosphanium (SF-2312) as a promising inhibitor that fabricates finest attractive charges and conventional hydrogen bonds with S. pneumoniae alpha-enolase. Moreover, the pharmacokinetics of SF-2312 predict it as a therapeutic inhibitor for clinical trials. Like SF-2312, phosphono-acetohydroxamate (PhAH) also constructed adequate interactions at the active site of alpha-enolase, but it predicted less favourable than SF-2312 based on binding affinity. CONCLUSION Briefly, SF-2312 and PhAH ligands could inhibit the role of alpha-enolase to restrain plasminogen binding, invasion and progression of S. pneumoniae. As per our investigation and analysis, SF-2312 is the most potent naturally existing inhibitor of S. pneumoniae alpha-enolase in current time.
Collapse
Affiliation(s)
- Muhammad Hassan
- Faculty of Medicine, Universiti Sultan Zainal Abidin (UniSZA), Jalan Sultan Mahmud, 20400 Kuala Terengganu, Terengganu Darul Iman Malaysia
| | - Atif Amin Baig
- Faculty of Medicine, Universiti Sultan Zainal Abidin (UniSZA), Jalan Sultan Mahmud, 20400 Kuala Terengganu, Terengganu Darul Iman Malaysia
| | - Syed Awais Attique
- Research Centre for Modelling and Simulation (RCMS), National University of Sciences and Technology (NUST), Islamabad, H-12 Pakistan
| | - Shafqat Abbas
- School of Environmental Engineering, Suzhou University of Science and Technology, Suzhou New District, 215009 China
| | - Fizza Khan
- Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad, 38000 Pakistan
| | - Sara Zahid
- Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad, 38000 Pakistan
| | - Qurat Ul Ain
- Centre for Applied Molecular Biology (CAMB), University of the Punjab, Lahore, 53700 Pakistan
| | - Muhammad Usman
- Department of Computer Science, University of Agriculture, Faisalabad, 38000 Pakistan
| | - Nordin Bin Simbak
- Faculty of Medicine, Universiti Sultan Zainal Abidin (UniSZA), Jalan Sultan Mahmud, 20400 Kuala Terengganu, Terengganu Darul Iman Malaysia
| | - Mohammad Amjad Kamal
- King Fahd Medical Research Center, King Abdulaziz University, P.O. Box 80216, Jeddah, 21589 Saudi Arabia
- Enzymoics, Novel Global Community Educational Foundation, 7 Peterlee Place, Hebersham, NSW 2770 Australia
| | - Hanani Ahmad Yusof
- Kulliyyah of Allied Health Sciences, International Islamic University Malaysia (IIUM), 25200 Kuantan, Pahang Malaysia
| |
Collapse
|
41
|
Assessing Plasmin Generation in Health and Disease. Int J Mol Sci 2021; 22:ijms22052758. [PMID: 33803235 PMCID: PMC7963172 DOI: 10.3390/ijms22052758] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/20/2021] [Accepted: 03/05/2021] [Indexed: 12/13/2022] Open
Abstract
Fibrinolysis is an important process in hemostasis responsible for dissolving the clot during wound healing. Plasmin is a central enzyme in this process via its capacity to cleave fibrin. The kinetics of plasmin generation (PG) and inhibition during fibrinolysis have been poorly understood until the recent development of assays to quantify these metrics. The assessment of plasmin kinetics allows for the identification of fibrinolytic dysfunction and better understanding of the relationships between abnormal fibrin dissolution and disease pathogenesis. Additionally, direct measurement of the inhibition of PG by antifibrinolytic medications, such as tranexamic acid, can be a useful tool to assess the risks and effectiveness of antifibrinolytic therapy in hemorrhagic diseases. This review provides an overview of available PG assays to directly measure the kinetics of plasmin formation and inhibition in human and mouse plasmas and focuses on their applications in defining the role of plasmin in diseases, including angioedema, hemophilia, rare bleeding disorders, COVID-19, or diet-induced obesity. Moreover, this review introduces the PG assay as a promising clinical and research method to monitor antifibrinolytic medications and screen for genetic or acquired fibrinolytic disorders.
Collapse
|
42
|
Nguyen S, Truong JQ, Bruning JB. Targeting Unconventional Pathways in Pursuit of Novel Antifungals. Front Mol Biosci 2021; 7:621366. [PMID: 33511160 PMCID: PMC7835888 DOI: 10.3389/fmolb.2020.621366] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 12/11/2020] [Indexed: 01/31/2023] Open
Abstract
The impact of invasive fungal infections on human health is a serious, but largely overlooked, public health issue. Commonly affecting the immunocompromised community, fungal infections are predominantly caused by species of Candida, Cryptococcus, and Aspergillus. Treatments are reliant on the aggressive use of pre-existing antifungal drug classes that target the fungal cell wall and membrane. Despite their frequent use, these drugs are subject to unfavorable drug-drug interactions, can cause undesirable side-effects and have compromised efficacy due to the emergence of antifungal resistance. Hence, there is a clear need to develop novel classes of antifungal drugs. A promising approach involves exploiting the metabolic needs of fungi by targeted interruption of essential metabolic pathways. This review highlights potential antifungal targets including enolase, a component of the enolase-plasminogen complex, and enzymes from the mannitol biosynthesis and purine nucleotide biosynthesis pathways. There has been increased interest in the enzymes that comprise these particular pathways and further investigation into their merits as antifungal targets and roles in fungal survival and virulence are warranted. Disruption of these vital processes by targeting unconventional pathways with small molecules or antibodies may serve as a promising approach to discovering novel classes of antifungals.
Collapse
Affiliation(s)
- Stephanie Nguyen
- Institute of Photonics and Advanced Sensing (IPAS), School of Biological Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Jia Q Truong
- School of Biological Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - John B Bruning
- Institute of Photonics and Advanced Sensing (IPAS), School of Biological Sciences, The University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
43
|
Yamaguchi M. [Investigation of pneumococcal virulence factors in the infection process]. Nihon Saikingaku Zasshi 2020; 75:173-183. [PMID: 33361653 DOI: 10.3412/jsb.75.173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This review summarizes current knowledge regarding the pathological mechanism of Streptococcus pneumoniae, a major cause of pneumonia, sepsis, and meningitis, with focus on our previously presented studies.To identify pneumococcal adhesins or invasins on cell surfaces, we investigated several proteins with an LPXTG anchoring motif and identified one showing interaction with human fibronectin, which was designated PfbA. Next, the mechanism of pneumococcal evasion form host immunity system in blood was examined and pneumococcal α-Enolase was found to function as a neutrophil extracellular trap induction factor. Although S. pneumoniae organisms are partially killed by iron ion-induced free radicals, they have an ability to invade red blood cells and then evade antibiotics, neutrophil phagocytosis, and H2O2 killing. In addition, our findings have indicated that zinc metalloprotease ZmpC suppresses pneumococcal virulence by inhibiting bacterial invasion of the central nervous system. Since evolutionarily conserved virulence factors are potential candidate therapeutic targets, we performed molecular evolutionary analyses, which revealed that cbpJ had the highest rate of codons under negative selection to total number of codons among genes encoding choline-binding proteins. Our experimental analysis results indicated that CbpJ functions as a virulence factor in pneumococcal pneumonia by contributing to evasion of neutrophil killing.Use of a molecular biological approach based on bacterial genome sequences, clinical disease states, and molecular evolutionary analysis is an effective strategy for revealing virulence factors and important therapeutic targets.
Collapse
Affiliation(s)
- Masaya Yamaguchi
- Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry
| |
Collapse
|
44
|
Zandonadi FS, Ferreira SP, Alexandrino AV, Carnielli CM, Artier J, Barcelos MP, Nicolela NCS, Prieto EL, Goto LS, Belasque J, Novo-Mansur MTM. Periplasm-enriched fractions from Xanthomonas citri subsp. citri type A and X. fuscans subsp. aurantifolii type B present distinct proteomic profiles under in vitro pathogenicity induction. PLoS One 2020; 15:e0243867. [PMID: 33338036 PMCID: PMC7748154 DOI: 10.1371/journal.pone.0243867] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 11/29/2020] [Indexed: 12/24/2022] Open
Abstract
The causative agent of Asiatic citrus canker, the Gram-negative bacterium Xanthomonas citri subsp. citri (XAC), produces more severe symptoms and attacks a larger number of citric hosts than Xanthomonas fuscans subsp. aurantifolii XauB and XauC, the causative agents of cancrosis, a milder form of the disease. Here we report a comparative proteomic analysis of periplasmic-enriched fractions of XAC and XauB in XAM-M, a pathogenicity- inducing culture medium, for identification of differential proteins. Proteins were resolved by two-dimensional electrophoresis combined with liquid chromatography-mass spectrometry. Among the 12 proteins identified from the 4 unique spots from XAC in XAM-M (p<0.05) were phosphoglucomutase (PGM), enolase, xylose isomerase (XI), transglycosylase, NAD(P)H-dependent glycerol 3-phosphate dehydrogenase, succinyl-CoA synthetase β subunit, 6-phosphogluconate dehydrogenase, and conserved hypothetical proteins XAC0901 and XAC0223; most of them were not detected as differential for XAC when both bacteria were grown in NB medium, a pathogenicity non-inducing medium. XauB showed a very different profile from XAC in XAM-M, presenting 29 unique spots containing proteins related to a great diversity of metabolic pathways. Preponderant expression of PGM and XI in XAC was validated by Western Blot analysis in the periplasmic-enriched fractions of both bacteria. This work shows remarkable differences between the periplasmic-enriched proteomes of XAC and XauB, bacteria that cause symptoms with distinct degrees of severity during citrus infection. The results suggest that some proteins identified in XAC can have an important role in XAC pathogenicity.
Collapse
Affiliation(s)
- Flávia S. Zandonadi
- Laboratório de Bioquímica e Biologia Molecular Aplicada, Departamento de Genética e Evolução, Universidade Federal de São Carlos, UFSCar, São Carlos, São Paulo, Brazil
| | - Sílvia P. Ferreira
- Laboratório de Bioquímica e Biologia Molecular Aplicada, Departamento de Genética e Evolução, Universidade Federal de São Carlos, UFSCar, São Carlos, São Paulo, Brazil
| | - André V. Alexandrino
- Laboratório de Bioquímica e Biologia Molecular Aplicada, Departamento de Genética e Evolução, Universidade Federal de São Carlos, UFSCar, São Carlos, São Paulo, Brazil
| | - Carolina M. Carnielli
- Laboratório de Bioquímica e Biologia Molecular Aplicada, Departamento de Genética e Evolução, Universidade Federal de São Carlos, UFSCar, São Carlos, São Paulo, Brazil
| | - Juliana Artier
- Laboratório de Bioquímica e Biologia Molecular Aplicada, Departamento de Genética e Evolução, Universidade Federal de São Carlos, UFSCar, São Carlos, São Paulo, Brazil
| | - Mariana P. Barcelos
- Laboratório de Bioquímica e Biologia Molecular Aplicada, Departamento de Genética e Evolução, Universidade Federal de São Carlos, UFSCar, São Carlos, São Paulo, Brazil
| | - Nicole C. S. Nicolela
- Laboratório de Bioquímica e Biologia Molecular Aplicada, Departamento de Genética e Evolução, Universidade Federal de São Carlos, UFSCar, São Carlos, São Paulo, Brazil
| | - Evandro L. Prieto
- Laboratório de Bioquímica e Biologia Molecular Aplicada, Departamento de Genética e Evolução, Universidade Federal de São Carlos, UFSCar, São Carlos, São Paulo, Brazil
| | - Leandro S. Goto
- Laboratório de Bioquímica e Biologia Molecular Aplicada, Departamento de Genética e Evolução, Universidade Federal de São Carlos, UFSCar, São Carlos, São Paulo, Brazil
| | - José Belasque
- Departamento de Fitopatologia e Nematologia, Escola Superior de Agricultura “Luiz de Queiroz”, Universidade de São Paulo, USP, Piracicaba, São Paulo, Brazil
| | - Maria Teresa Marques Novo-Mansur
- Laboratório de Bioquímica e Biologia Molecular Aplicada, Departamento de Genética e Evolução, Universidade Federal de São Carlos, UFSCar, São Carlos, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
45
|
Karkowska-Kuleta J, Wronowska E, Satala D, Zawrotniak M, Bras G, Kozik A, Nobbs AH, Rapala-Kozik M. Als3-mediated attachment of enolase on the surface of Candida albicans cells regulates their interactions with host proteins. Cell Microbiol 2020; 23:e13297. [PMID: 33237623 DOI: 10.1111/cmi.13297] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/06/2020] [Accepted: 11/23/2020] [Indexed: 12/25/2022]
Abstract
The multifunctional protein enolase has repeatedly been identified on the surface of numerous cell types, including a variety of pathogenic microorganisms. In Candida albicans-one of the most common fungal pathogens in humans-a surface-exposed enolase form has been previously demonstrated to play an important role in candidal pathogenicity. In our current study, the presence of enolase at the fungal cell surface under different growth conditions was examined, and a higher abundance of enolase at the surface of C. albicans hyphal forms compared to yeast-like cells was found. Affinity chromatography and chemical cross-linking indicated a member of the agglutinin-like sequence protein family-Als3-as an important potential partner required for the surface display of enolase. Analysis of Saccharomyces cerevisiae cells overexpressing Als3 with site-specific deletions showed that the Ig-like N-terminal region of Als3 (aa 166-225; aa 218-285; aa 270-305; aa 277-286) and the central repeat domain (aa 434-830) are essential for the interaction of this adhesin with enolase. In addition, binding between enolase and Als3 influenced subsequent docking of host plasma proteins-high molecular mass kininogen and plasminogen-on the candidal cell surface, thus supporting the hypothesis that C. albicans can modulate plasma proteolytic cascades to affect homeostasis within the host and propagate inflammation during infection.
Collapse
Affiliation(s)
- Justyna Karkowska-Kuleta
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| | - Ewelina Wronowska
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| | - Dorota Satala
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| | - Marcin Zawrotniak
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| | - Grazyna Bras
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| | - Andrzej Kozik
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| | - Angela H Nobbs
- Bristol Dental School, University of Bristol, Bristol, UK
| | - Maria Rapala-Kozik
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| |
Collapse
|
46
|
Vogel K, Greinert T, Reichard M, Held C, Harms H, Maskow T. Thermodynamics and Kinetics of Glycolytic Reactions. Part I: Kinetic Modeling Based on Irreversible Thermodynamics and Validation by Calorimetry. Int J Mol Sci 2020; 21:ijms21218341. [PMID: 33172189 PMCID: PMC7664384 DOI: 10.3390/ijms21218341] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/03/2020] [Accepted: 11/04/2020] [Indexed: 12/20/2022] Open
Abstract
In systems biology, material balances, kinetic models, and thermodynamic boundary conditions are increasingly used for metabolic network analysis. It is remarkable that the reversibility of enzyme-catalyzed reactions and the influence of cytosolic conditions are often neglected in kinetic models. In fact, enzyme-catalyzed reactions in numerous metabolic pathways such as in glycolysis are often reversible, i.e., they only proceed until an equilibrium state is reached and not until the substrate is completely consumed. Here, we propose the use of irreversible thermodynamics to describe the kinetic approximation to the equilibrium state in a consistent way with very few adjustable parameters. Using a flux-force approach allowed describing the influence of cytosolic conditions on the kinetics by only one single parameter. The approach was applied to reaction steps 2 and 9 of glycolysis (i.e., the phosphoglucose isomerase reaction from glucose 6-phosphate to fructose 6-phosphate and the enolase-catalyzed reaction from 2-phosphoglycerate to phosphoenolpyruvate and water). The temperature dependence of the kinetic parameter fulfills the Arrhenius relation and the derived activation energies are plausible. All the data obtained in this work were measured efficiently and accurately by means of isothermal titration calorimetry (ITC). The combination of calorimetric monitoring with simple flux-force relations has the potential for adequate consideration of cytosolic conditions in a simple manner.
Collapse
Affiliation(s)
- Kristina Vogel
- UFZ–Helmholtz Centre for Environmental Research, Department of Environmental Microbiology, Leipzig, Permoserstr. 15, D-04318 Leipzig, Germany; (K.V.); (M.R.); (H.H.)
- Institute for Drug Development, Leipzig University Medical School, Leipzig University, Bruederstr. 34, 04103 Leipzig, Germany
| | - Thorsten Greinert
- Laboratory of Thermodynamics, Department of Biochemical and Chemical Engineering, Technische Universitaet Dortmund, Emil-Figge-Str. 70, 44227 Dortmund, Germany; (T.G.); (C.H.)
| | - Monique Reichard
- UFZ–Helmholtz Centre for Environmental Research, Department of Environmental Microbiology, Leipzig, Permoserstr. 15, D-04318 Leipzig, Germany; (K.V.); (M.R.); (H.H.)
| | - Christoph Held
- Laboratory of Thermodynamics, Department of Biochemical and Chemical Engineering, Technische Universitaet Dortmund, Emil-Figge-Str. 70, 44227 Dortmund, Germany; (T.G.); (C.H.)
| | - Hauke Harms
- UFZ–Helmholtz Centre for Environmental Research, Department of Environmental Microbiology, Leipzig, Permoserstr. 15, D-04318 Leipzig, Germany; (K.V.); (M.R.); (H.H.)
| | - Thomas Maskow
- UFZ–Helmholtz Centre for Environmental Research, Department of Environmental Microbiology, Leipzig, Permoserstr. 15, D-04318 Leipzig, Germany; (K.V.); (M.R.); (H.H.)
- Correspondence:
| |
Collapse
|
47
|
Chen SM, Zou Z, Guo SY, Hou WT, Qiu XR, Zhang Y, Song LJ, Hu XY, Jiang YY, Shen H, An MM. Preventing Candida albicans from subverting host plasminogen for invasive infection treatment. Emerg Microbes Infect 2020; 9:2417-2432. [PMID: 33115324 PMCID: PMC7646593 DOI: 10.1080/22221751.2020.1840927] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Candida albicans is a common fungal pathogen in humans that colonizes the skin and mucosal surfaces of the majority healthy individuals. How C. albicans disseminates into the bloodstream and causes life-threatening systemic infections in immunocompromised patients remains unclear. Plasminogen system activation can degrade a variety of structural proteins in vivo and is involved in several homeostatic processes. Here, for the first time, we characterized that C. albicans could capture and “subvert” host plasminogen to invade host epithelial cell surface barriers through cell-wall localized Eno1 protein. We found that the “subverted” plasminogen system plays an important role in development of invasive infection caused by C. albicans in mice. Base on this finding, we discovered a mouse monoclonal antibody (mAb) 12D9 targeting C. albicans Eno1, with high affinity to the 254FYKDGKYDL262 motif in α-helices 6, β-sheet 6 (H6S6) loop and direct blocking activity for C. albicans capture host plasminogen. mAb 12D9 could prevent C. albicans from invading human epithelial and endothelial cells, and displayed antifungal activity and synergistic effect with anidulafungin or fluconazole in proof-of-concept in vivo studies, suggesting that blocking the function of cell surface Eno1 was effective for controlling invasive infection caused by Candida spp. In summary, our study provides the evidence of C. albicans invading host by “subverting” plasminogen system, suggesting a potential novel treatment strategy for invasive fungal infections.
Collapse
Affiliation(s)
- Si-Min Chen
- Department of Pharmacology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Zui Zou
- Department of Anesthesiology, Changzheng Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Shi-Yu Guo
- Department of Pharmacology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Wei-Tong Hou
- Department of Pharmacology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Xi-Ran Qiu
- Department of Pharmacology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Yu Zhang
- Department of Pharmacology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Li-Jun Song
- Department of Anesthesiology, Changzheng Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Xin-Yu Hu
- Department of Anesthesiology, Changzheng Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Yuan-Ying Jiang
- Department of Pharmacology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Hui Shen
- Department of Laboratory Diagnosis, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Mao-Mao An
- Department of Pharmacology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| |
Collapse
|
48
|
Mosquera J, Pedreañez A. Acute post-streptococcal glomerulonephritis: analysis of the pathogenesis. Int Rev Immunol 2020; 40:381-400. [PMID: 33030969 DOI: 10.1080/08830185.2020.1830083] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Increasing evidence supports a central role of the immune system in acute post streptococcal glomerulonephritis (APSGN), but the current view of how streptococcal biology affects immunity, and vice versa, remains to be clarified. Renal glomerular immune complex deposition is critical in the initiation of APSGN; however, mechanisms previous to immune complex formation could modulate the initiation and the progression of the disease. Initial and late renal events involved in the nephritis can also be related to host factors and streptococcal factors. In this review we describe the mechanisms reported for the APSGN pathogenesis, the interactions of streptococcal products with renal cells and leukocytes, the possible effects of different nephritogenic antigens in the renal environment and the possibility that APSGN is not just due to a single streptococcal antigen and its antibody; instead, kidney damage may be the result of different factors acting at the same time related to both streptococcus and host factors. Addressing these points should help us to better understand APSGN physiopathology.
Collapse
Affiliation(s)
- Jesús Mosquera
- Facultad de Medicina, Instituto de Investigaciones Clínicas "Dr. Américo Negrette", Universidad del Zulia, Maracaibo, Venezuela
| | - Adriana Pedreañez
- Facultad de Medicina, Cátedra de Inmunología, Escuela de Bioanálisis, Universidad del Zulia, Maracaibo, Venezuela
| |
Collapse
|
49
|
Rooney CM, Mankia K, Emery P. The Role of the Microbiome in Driving RA-Related Autoimmunity. Front Cell Dev Biol 2020; 8:538130. [PMID: 33134291 PMCID: PMC7550627 DOI: 10.3389/fcell.2020.538130] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 09/07/2020] [Indexed: 12/12/2022] Open
Abstract
Once referred to as "normal commensal flora" the human microbiome plays an integral role between health and disease. The host mucosal surface replete with a multitude of immune cells is a vast arena constantly sensing and responding to antigen presentation and microbial by-products. It is this key role that may allow the microbiome to prime or protect the host from autoimmune disease. Rheumatoid arthritis (RA) is a chronic, disabling inflammatory condition characterized by a complex multifactorial etiology. The presence of certain genetic markers has been proven to increase susceptibility to RA however it does not guarantee disease development. Given low concordance rates demonstrated in monozygotic twin studies there is a clear implication for the involvement of external players in RA pathogenesis. Since the historical description of rheumatoid factor, numerous additional autoantibodies have been described in the sera of RA patients. The presence of anti-cyclic citrullinated protein antibody is now a standard test, and is associated with a more severe disease course. Interestingly these antibodies are detectable in patient's sera long before the clinical signs of RA occur. The production of autoantibodies is driven by the lack of tolerance of the immune system, and how tolerance is broken is a crucial question for understanding RA development. Here we review current literature on the role of the microbiome in RA development including periodontal, gut and lung mucosa, with particular focus on proposed mechanisms of host microbiome interactions. We discuss the use of Mendelian randomization to assign causality to the microbiome and present considerations for future studies.
Collapse
Affiliation(s)
- Cristopher M. Rooney
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Chapel Allerton Hospital, Leeds, United Kingdom
| | - Kulveer Mankia
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Chapel Allerton Hospital, Leeds, United Kingdom
- Musculoskeletal Biomedical Research Unit, Chapel Allerton Hospital, Leeds, United Kingdom
| | - Paul Emery
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Chapel Allerton Hospital, Leeds, United Kingdom
- Musculoskeletal Biomedical Research Unit, Chapel Allerton Hospital, Leeds, United Kingdom
| |
Collapse
|
50
|
Multifunctional neuron-specific enolase: its role in lung diseases. Biosci Rep 2020; 39:220911. [PMID: 31642468 PMCID: PMC6859115 DOI: 10.1042/bsr20192732] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 10/22/2019] [Accepted: 10/22/2019] [Indexed: 12/13/2022] Open
Abstract
Neuron-specific enolase (NSE), also known as gamma (γ) enolase or enolase-2 (Eno2), is a form of glycolytic enolase isozyme and is considered a multifunctional protein. NSE is mainly expressed in the cytoplasm of neurons and neuroendocrine cells, especially in those of the amine precursor uptake and decarboxylation (APUD) lineage such as pituitary, thyroid, pancreas, intestine and lung. In addition to its well-established glycolysis function in the cytoplasm, changes in cell localization and differential expression of NSE are also associated with several pathologies such as infection, inflammation, autoimmune diseases and cancer. This article mainly discusses the role and diagnostic potential of NSE in some lung diseases.
Collapse
|