1
|
Viswanathan MC, Dutta D, Kronert WA, Chitre K, Padrón R, Craig R, Bernstein SI, Cammarato A. Dominant myosin storage myopathy mutations disrupt striated muscles in Drosophila and the myosin tail-tail interactome of human cardiac thick filaments. Genetics 2025; 229:1-34. [PMID: 39485824 PMCID: PMC11708916 DOI: 10.1093/genetics/iyae174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/03/2024] [Accepted: 10/07/2024] [Indexed: 11/03/2024] Open
Abstract
Myosin storage myopathy (MSM) is a rare skeletal muscle disorder caused by mutations in the slow muscle/β-cardiac myosin heavy chain (MHC) gene. MSM missense mutations frequently disrupt the tail's stabilizing heptad repeat motif. Disease hallmarks include subsarcolemmal hyaline-like β-MHC aggregates, muscle weakness, and, occasionally, cardiomyopathy. We generated transgenic, heterozygous Drosophila to examine the dominant physiological and structural effects of the L1793P, R1845W, and E1883K MHC MSM mutations on diverse muscles. The MHC variants reduced lifespan and flight and jump abilities. Moreover, confocal and electron microscopy revealed that they provoked indirect flight muscle breaks and myofibrillar disarray/degeneration with filamentous inclusions. Incorporation of GFP-myosin enabled in situ determination of thick filament lengths, which were significantly reduced in all mutants. Semiautomated heartbeat analysis uncovered aberrant cardiac function, which worsened with age. Thus, our fly models phenocopied traits observed among MSM patients. We additionally mapped the mutations onto a recently determined, 6 Å resolution, cryo-EM structure of the human cardiac thick filament. The R1845W mutation replaces a basic arginine with a polar-neutral, bulkier tryptophan, while E1883K reverses charge at critical filament loci. Both would be expected to disrupt the core and the outer shell of the backbone structure. Replacing L1793 with a proline, a potent breaker of α-helices, could disturb the coiled-coil of the myosin rod and alter the tail-tail interactome. Hence, all mutations likely destabilize and weaken the filament backbone. This may trigger disease in humans, while potentially analogous perturbations are likely to yield the observed thick filament and muscle disruption in our fly models.
Collapse
Affiliation(s)
- Meera C Viswanathan
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Baltimore, MD 21205, USA
- Department of Biology, Molecular Biology Institute and Heart Institute San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA
| | - Debabrata Dutta
- Division of Cell Biology and Imaging, Department of Radiology, University of Massachusetts Chan Medical School, 55 Lake Avenue North, Worcester, MA 01655, USA
| | - William A Kronert
- Department of Biology, Molecular Biology Institute and Heart Institute San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA
| | - Kripa Chitre
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Baltimore, MD 21205, USA
| | - Raúl Padrón
- Division of Cell Biology and Imaging, Department of Radiology, University of Massachusetts Chan Medical School, 55 Lake Avenue North, Worcester, MA 01655, USA
| | - Roger Craig
- Division of Cell Biology and Imaging, Department of Radiology, University of Massachusetts Chan Medical School, 55 Lake Avenue North, Worcester, MA 01655, USA
| | - Sanford I Bernstein
- Department of Biology, Molecular Biology Institute and Heart Institute San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA
| | - Anthony Cammarato
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Baltimore, MD 21205, USA
| |
Collapse
|
2
|
Schmidt W, Madan A, Foster DB, Cammarato A. Lysine acetylation of F-actin decreases tropomyosin-based inhibition of actomyosin activity. J Biol Chem 2020; 295:15527-15539. [PMID: 32873710 DOI: 10.1074/jbc.ra120.015277] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/18/2020] [Indexed: 12/17/2022] Open
Abstract
Recent proteomics studies of vertebrate striated muscle have identified lysine acetylation at several sites on actin. Acetylation is a reversible post-translational modification that neutralizes lysine's positive charge. Positively charged residues on actin, particularly Lys326 and Lys328, are predicted to form critical electrostatic interactions with tropomyosin (Tpm) that promote its binding to filamentous (F)-actin and bias Tpm to an azimuthal location where it impedes myosin attachment. The troponin (Tn) complex also influences Tpm's position along F-actin as a function of Ca2+ to regulate exposure of myosin-binding sites and, thus, myosin cross-bridge recruitment and force production. Interestingly, Lys326 and Lys328 are among the documented acetylated residues. Using an acetic anhydride-based labeling approach, we showed that excessive, nonspecific actin acetylation did not disrupt characteristic F-actin-Tpm binding. However, it significantly reduced Tpm-mediated inhibition of myosin attachment, as reflected by increased F-actin-Tpm motility that persisted in the presence of Tn and submaximal Ca2+ Furthermore, decreasing the extent of chemical acetylation, to presumptively target highly reactive Lys326 and Lys328, also resulted in less inhibited F-actin-Tpm, implying that modifying only these residues influences Tpm's location and, potentially, thin filament regulation. To unequivocally determine the residue-specific consequences of acetylation on Tn-Tpm-based regulation of actomyosin activity, we assessed the effects of K326Q and K328Q acetyl (Ac)-mimetic actin on Ca2+-dependent, in vitro motility parameters of reconstituted thin filaments (RTFs). Incorporation of K328Q actin significantly enhanced Ca2+ sensitivity of RTF activation relative to control. Together, our findings suggest that actin acetylation, especially Lys328, modulates muscle contraction via disrupting inhibitory Tpm positioning.
Collapse
Affiliation(s)
- William Schmidt
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Aditi Madan
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - D Brian Foster
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Anthony Cammarato
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| |
Collapse
|
3
|
Schmidt W, Cammarato A. The actin 'A-triad's' role in contractile regulation in health and disease. J Physiol 2019; 598:2897-2908. [PMID: 30770548 DOI: 10.1113/jp276741] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 01/30/2019] [Indexed: 12/15/2022] Open
Abstract
Striated muscle contraction is regulated by Ca2+ -dependent modulation of myosin cross-bridge binding to F-actin by the thin filament troponin (Tn)-tropomyosin (Tm) complex. In the absence of Ca2+ , Tn binds to actin and constrains Tm to an azimuthal location where it sterically occludes myosin binding sites along the thin filament surface. This limits force production and promotes muscle relaxation. In addition to Tn-actin interactions, inhibitory Tm positioning requires associations between other thin filament constituents. For example, the actin 'A-triad', composed of residues K326, K328 and R147, forms numerous, highly favourable electrostatic contacts with Tm that are critical for establishing its inhibitory azimuthal binding position. Here, we review recent findings, including the identification and interrogation of modifications within and proximal to the A-triad that are associated with disease and/or altered muscle behaviour, which highlight the surface feature's role in F-actin-Tm interactions and contractile regulation.
Collapse
Affiliation(s)
- William Schmidt
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, 733 N Broadway, 21205, Baltimore, MD, USA
| | - Anthony Cammarato
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, 733 N Broadway, 21205, Baltimore, MD, USA.,Department of Physiology, Johns Hopkins University School of Medicine, 733 N Broadway, 21205, Baltimore, MD, USA
| |
Collapse
|
4
|
The Molecular Mechanisms of Mutations in Actin and Myosin that Cause Inherited Myopathy. Int J Mol Sci 2018; 19:ijms19072020. [PMID: 29997361 PMCID: PMC6073311 DOI: 10.3390/ijms19072020] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Revised: 07/06/2018] [Accepted: 07/08/2018] [Indexed: 12/23/2022] Open
Abstract
The discovery that mutations in myosin and actin genes, together with mutations in the other components of the muscle sarcomere, are responsible for a range of inherited muscle diseases (myopathies) has revolutionized the study of muscle, converting it from a subject of basic science to a relevant subject for clinical study and has been responsible for a great increase of interest in muscle studies. Myopathies are linked to mutations in five of the myosin heavy chain genes, three of the myosin light chain genes, and three of the actin genes. This review aims to determine to what extent we can explain disease phenotype from the mutant genotype. To optimise our chances of finding the right mechanism we must study a myopathy where there are a large number of different mutations that cause a common phenotype and so are likely to have a common mechanism: a corollary to this criterion is that if any mutation causes the disease phenotype but does not correspond to the proposed mechanism, then the whole mechanism is suspect. Using these criteria, we consider two cases where plausible genotype-phenotype mechanisms have been proposed: the actin “A-triad” and the myosin “mesa/IHD” models.
Collapse
|
5
|
Viswanathan MC, Schmidt W, Rynkiewicz MJ, Agarwal K, Gao J, Katz J, Lehman W, Cammarato A. Distortion of the Actin A-Triad Results in Contractile Disinhibition and Cardiomyopathy. Cell Rep 2018; 20:2612-2625. [PMID: 28903042 PMCID: PMC5902318 DOI: 10.1016/j.celrep.2017.08.070] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 07/25/2017] [Accepted: 08/21/2017] [Indexed: 12/20/2022] Open
Abstract
Striated muscle contraction is regulated by the movement of tropomyosin over the thin filament surface, which blocks or exposes myosin binding sites on actin. Findings suggest that electrostatic contacts, particularly those between K326, K328, and R147 on actin and tropomyosin, establish an energetically favorable F-actin-tropomyosin configuration, with tropomyosin positioned in a location that impedes actomyosin associations and promotes relaxation. Here, we provide data that directly support a vital role for these actin residues, termed the A-triad, in tropomyosin positioning in intact functioning muscle. By examining the effects of an A295S α-cardiac actin hypertrophic cardiomyopathy-causing mutation, over a range of increasingly complex in silico, in vitro, and in vivo Drosophila muscle models, we propose that subtle A-triad-tropomyosin perturbation can destabilize thin filament regulation, which leads to hypercontractility and triggers disease. Our efforts increase understanding of basic thin filament biology and help unravel the mechanistic basis of a complex cardiac disorder.
Collapse
Affiliation(s)
- Meera C Viswanathan
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - William Schmidt
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Michael J Rynkiewicz
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, MA 02118, USA
| | - Karuna Agarwal
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Jian Gao
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Joseph Katz
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - William Lehman
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, MA 02118, USA
| | - Anthony Cammarato
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
6
|
Khaitlina SY. Tropomyosin as a Regulator of Actin Dynamics. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 318:255-91. [PMID: 26315888 DOI: 10.1016/bs.ircmb.2015.06.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Tropomyosin is a major regulatory protein of contractile systems and cytoskeleton, an actin-binding protein that positions laterally along actin filaments and modulates actin-myosin interaction. About 40 tropomyosin isoforms have been found in a variety of cytoskeleton systems, not necessarily connected with actin-myosin interaction and contraction. Involvement of specific tropomyosin isoforms in the regulation of key cell processes was shown, and specific features of tropomyosin genes and protein structure have been investigated with molecular biology and genetics approaches. However, the mechanisms underlying the effects of tropomyosin on cytoskeleton dynamics are still unclear. As tropomyosin is primarily an F-actin-binding protein, it is important to understand how it interacts both with actin and actin-binding proteins functioning in muscles and cytoskeleton to regulate actin dynamics. This review focuses on biochemical data on the effects of tropomyosin on actin assembly and dynamics, as well as on the modulation of these effects by actin-binding proteins. The data indicate that tropomyosin can efficiently regulate actin dynamics via allosteric conformational changes within actin filaments.
Collapse
Affiliation(s)
- Sofia Yu Khaitlina
- Institute of Cytology, Russian Academy of Sciences, Saint-Petersburg, Russia.
| |
Collapse
|
7
|
Viswanathan MC, Blice-Baum AC, Schmidt W, Foster DB, Cammarato A. Pseudo-acetylation of K326 and K328 of actin disrupts Drosophila melanogaster indirect flight muscle structure and performance. Front Physiol 2015; 6:116. [PMID: 25972811 PMCID: PMC4412121 DOI: 10.3389/fphys.2015.00116] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 03/26/2015] [Indexed: 01/13/2023] Open
Abstract
In striated muscle tropomyosin (Tm) extends along the length of F-actin-containing thin filaments. Its location governs access of myosin binding sites on actin and, hence, force production. Intermolecular electrostatic associations are believed to mediate critical interactions between the proteins. For example, actin residues K326, K328, and R147 were predicted to establish contacts with E181 of Tm. Moreover, K328 also potentially forms direct interactions with E286 of myosin when the motor is strongly bound. Recently, LC-MS/MS analysis of the cardiac acetyl-lysine proteome revealed K326 and K328 of actin were acetylated, a post-translational modification (PTM) that masks the residues' inherent positive charges. Here, we tested the hypothesis that by removing the vital actin charges at residues 326 and 328, the PTM would perturb Tm positioning and/or strong myosin binding as manifested by altered skeletal muscle function and structure in the Drosophila melanogaster model system. Transgenic flies were created that permit tissue-specific expression of K326Q, K328Q, or K326Q/K328Q acetyl-mimetic actin and of wild-type actin via the UAS-GAL4 bipartite expression system. Compared to wild-type actin, muscle-restricted expression of mutant actin had a dose-dependent effect on flight ability. Moreover, excessive K328Q and K326Q/K328Q actin overexpression induced indirect flight muscle degeneration, a phenotype consistent with hypercontraction observed in other Drosophila myofibrillar mutants. Based on F-actin-Tm and F-actin-Tm-myosin models and on our physiological data, we conclude that acetylating K326 and K328 of actin alters electrostatic associations with Tm and/or myosin and thereby augments contractile properties. Our findings highlight the utility of Drosophila as a model that permits efficient targeted design and assessment of molecular and tissue-specific responses to muscle protein modifications, in vivo.
Collapse
Affiliation(s)
- Meera C Viswanathan
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine Baltimore, MD, USA
| | - Anna C Blice-Baum
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine Baltimore, MD, USA
| | - William Schmidt
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine Baltimore, MD, USA
| | - D Brian Foster
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine Baltimore, MD, USA
| | - Anthony Cammarato
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine Baltimore, MD, USA
| |
Collapse
|
8
|
Marston S, Memo M, Messer A, Papadaki M, Nowak K, McNamara E, Ong R, El-Mezgueldi M, Li X, Lehman W. Mutations in repeating structural motifs of tropomyosin cause gain of function in skeletal muscle myopathy patients. Hum Mol Genet 2013; 22:4978-87. [PMID: 23886664 DOI: 10.1093/hmg/ddt345] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The congenital myopathies include a wide spectrum of clinically, histologically and genetically variable neuromuscular disorders many of which are caused by mutations in genes for sarcomeric proteins. Some congenital myopathy patients have a hypercontractile phenotype. Recent functional studies demonstrated that ACTA1 K326N and TPM2 ΔK7 mutations were associated with hypercontractility that could be explained by increased myofibrillar Ca(2+) sensitivity. A recent structure of the complex of actin and tropomyosin in the relaxed state showed that both these mutations are located in the actin-tropomyosin interface. Tropomyosin is an elongated molecule with a 7-fold repeated motif of around 40 amino acids corresponding to the 7 actin monomers it interacts with. Actin binds to tropomyosin electrostatically at two points, through Asp25 and through a cluster of amino acids that includes Lys326, mutated in the gain-of-function mutation. Asp25 interacts with tropomyosin K6, next to K7 that was mutated in the other gain-of-function mutation. We identified four tropomyosin motifs interacting with Asp25 (K6-K7, K48-K49, R90-R91 and R167-K168) and three E-E/D-K/R motifs interacting with Lys326 (E139, E181 and E218), and we predicted that the known skeletal myopathy mutations ΔK7, ΔK49, R91G, ΔE139, K168E and E181K would cause a gain of function. Tests by an in vitro motility assay confirmed that these mutations increased Ca(2+) sensitivity, while mutations not in these motifs (R167H, R244G) decreased Ca(2+) sensitivity. The work reported here explains the molecular mechanism for 6 out of 49 known disease-causing mutations in the TPM2 and TPM3 genes, derived from structural data of the actin-tropomyosin interface.
Collapse
|
9
|
Skeletal muscle α-actin diseases (actinopathies): pathology and mechanisms. Acta Neuropathol 2013; 125:19-32. [PMID: 22825594 DOI: 10.1007/s00401-012-1019-z] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 07/12/2012] [Indexed: 01/18/2023]
Abstract
Mutations in the skeletal muscle α-actin gene (ACTA1) cause a range of congenital myopathies characterised by muscle weakness and specific skeletal muscle structural lesions. Actin accumulations, nemaline and intranuclear bodies, fibre-type disproportion, cores, caps, dystrophic features and zebra bodies have all been seen in biopsies from patients with ACTA1 disease, with patients frequently presenting with multiple pathologies. Therefore increasingly it is considered that these entities may represent a continuum of structural abnormalities arising due to ACTA1 mutations. Recently an ACTA1 mutation has also been associated with a hypertonic clinical presentation with nemaline bodies. Whilst multiple genes are known to cause many of the pathologies associated with ACTA1 mutations, to date actin aggregates, intranuclear rods and zebra bodies have solely been attributed to ACTA1 mutations. Approximately 200 different ACTA1 mutations have been identified, with 90 % resulting in dominant disease and 10 % resulting in recessive disease. Despite extensive research into normal actin function and the functional consequences of ACTA1 mutations in cell culture, animal models and patient tissue, the mechanisms underlying muscle weakness and the formation of structural lesions remains largely unknown. Whilst precise mechanisms are being grappled with, headway is being made in terms of developing therapeutics for ACTA1 disease, with gene therapy (specifically reducing the proportion of mutant skeletal muscle α-actin protein) and pharmacological agents showing promising results in animal models and patient muscle. The use of small molecules to sensitise the contractile apparatus to Ca(2+) is a promising therapeutic for patients with various neuromuscular disorders, including ACTA1 disease.
Collapse
|
10
|
Abnormal actin binding of aberrant β-tropomyosins is a molecular cause of muscle weakness in TPM2-related nemaline and cap myopathy. Biochem J 2012; 442:231-9. [PMID: 22084935 DOI: 10.1042/bj20111030] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
NM (nemaline myopathy) is a rare genetic muscle disorder defined on the basis of muscle weakness and the presence of structural abnormalities in the muscle fibres, i.e. nemaline bodies. The related disorder cap myopathy is defined by cap-like structures located peripherally in the muscle fibres. Both disorders may be caused by mutations in the TPM2 gene encoding β-Tm (tropomyosin). Tm controls muscle contraction by inhibiting actin-myosin interaction in a calcium-sensitive manner. In the present study, we have investigated the pathogenetic mechanisms underlying five disease-causing mutations in Tm. We show that four of the mutations cause changes in affinity for actin, which may cause muscle weakness in these patients, whereas two show defective Ca2+ activation of contractility. We have also mapped the amino acids altered by the mutation to regions important for actin binding and note that two of the mutations cause altered protein conformation, which could account for impaired actin affinity.
Collapse
|
11
|
Greenberg MJ, Moore JR. The molecular basis of frictional loads in the in vitro motility assay with applications to the study of the loaded mechanochemistry of molecular motors. Cytoskeleton (Hoboken) 2010; 67:273-85. [PMID: 20191566 PMCID: PMC2861725 DOI: 10.1002/cm.20441] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2009] [Accepted: 02/05/2010] [Indexed: 11/05/2022]
Abstract
Molecular motors convert chemical energy into mechanical movement, generating forces necessary to accomplish an array of cellular functions. Since molecular motors generate force, they typically work under loaded conditions where the motor mechanochemistry is altered by the presence of a load. Several biophysical techniques have been developed to study the loaded behavior and force generating capabilities of molecular motors yet most of these techniques require specialized equipment. The frictional loading assay is a modification to the in vitro motility assay that can be performed on a standard epifluorescence microscope, permitting the high-throughput measurement of the loaded mechanochemistry of molecular motors. Here, we describe a model for the molecular basis of the frictional loading assay by modeling the load as a series of either elastic or viscoelastic elements. The model, which calculates the frictional loads imposed by different binding proteins, permits the measurement of isotonic kinetics, force-velocity relationships, and power curves in the motility assay. We show computationally and experimentally that the frictional load imposed by alpha-actinin, the most widely employed actin binding protein in frictional loading experiments, behaves as a viscoelastic rather than purely elastic load. As a test of the model, we examined the frictional loading behavior of rabbit skeletal muscle myosin under normal and fatigue-like conditions using alpha-actinin as a load. We found that, consistent with fiber studies, fatigue-like conditions cause reductions in myosin isometric force, unloaded sliding velocity, maximal power output, and shift the load at which peak power output occurs.
Collapse
Affiliation(s)
- Michael J. Greenberg
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, MA, USA
| | - Jeffrey R. Moore
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
12
|
Feng JJ, Marston S. Genotype–phenotype correlations in ACTA1 mutations that cause congenital myopathies. Neuromuscul Disord 2009; 19:6-16. [DOI: 10.1016/j.nmd.2008.09.005] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2008] [Revised: 09/08/2008] [Accepted: 09/09/2008] [Indexed: 12/01/2022]
|
13
|
Hooper SL, Hobbs KH, Thuma JB. Invertebrate muscles: thin and thick filament structure; molecular basis of contraction and its regulation, catch and asynchronous muscle. Prog Neurobiol 2008; 86:72-127. [PMID: 18616971 PMCID: PMC2650078 DOI: 10.1016/j.pneurobio.2008.06.004] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2007] [Revised: 05/08/2008] [Accepted: 06/12/2008] [Indexed: 11/26/2022]
Abstract
This is the second in a series of canonical reviews on invertebrate muscle. We cover here thin and thick filament structure, the molecular basis of force generation and its regulation, and two special properties of some invertebrate muscle, catch and asynchronous muscle. Invertebrate thin filaments resemble vertebrate thin filaments, although helix structure and tropomyosin arrangement show small differences. Invertebrate thick filaments, alternatively, are very different from vertebrate striated thick filaments and show great variation within invertebrates. Part of this diversity stems from variation in paramyosin content, which is greatly increased in very large diameter invertebrate thick filaments. Other of it arises from relatively small changes in filament backbone structure, which results in filaments with grossly similar myosin head placements (rotating crowns of heads every 14.5 nm) but large changes in detail (distances between heads in azimuthal registration varying from three to thousands of crowns). The lever arm basis of force generation is common to both vertebrates and invertebrates, and in some invertebrates this process is understood on the near atomic level. Invertebrate actomyosin is both thin (tropomyosin:troponin) and thick (primarily via direct Ca(++) binding to myosin) filament regulated, and most invertebrate muscles are dually regulated. These mechanisms are well understood on the molecular level, but the behavioral utility of dual regulation is less so. The phosphorylation state of the thick filament associated giant protein, twitchin, has been recently shown to be the molecular basis of catch. The molecular basis of the stretch activation underlying asynchronous muscle activity, however, remains unresolved.
Collapse
Affiliation(s)
- Scott L. Hooper
- Neuroscience Program Department of Biological Sciences Ohio University Athens, OH 45701 614 593-0679 (voice) 614 593-0687 (FAX)
| | - Kevin H. Hobbs
- Neuroscience Program Department of Biological Sciences Ohio University Athens, OH 45701 614 593-0679 (voice) 614 593-0687 (FAX)
| | - Jeffrey B. Thuma
- Neuroscience Program Department of Biological Sciences Ohio University Athens, OH 45701 614 593-0679 (voice) 614 593-0687 (FAX)
| |
Collapse
|
14
|
Abstract
In striated muscle, regulation of actin-myosin interactions depends on a series of conformational changes within the thin filament that result in a shifting of the tropomyosin-troponin complex between distinct locations on actin. The major factors activating the filament are Ca(2+) and strongly bound myosin heads. Many lines of evidence also point to an active role of actin in the regulation. Involvement of the actin C-terminus in binding of tropomyosin-troponin in different activation states and the regulation of actin-myosin interactions were examined using actin modified by proteolytic removal of three C-terminal amino acids. Actin C-terminal modification has no effect on the binding of tropomyosin or tropomyosin-troponin + Ca(2+), but it reduces tropomyosin-troponin affinity in the absence of Ca(2+). In contrast, myosin S1 induces binding of tropomyosin to truncated actin more readily than to native actin. The rate of actin-activated myosin S1 ATPase activity is reduced by actin truncation both in the absence and presence of tropomyosin. The Ca(2+)-dependent regulation of the ATPase activity is preserved. Without Ca(2+) the ATPase activity is fully inhibited, but in the presence of Ca(2+) the activation does not reach the level observed for native actin. The results suggest that through long-range allosteric interactions the actin C-terminus participates in the thin filament regulation.
Collapse
|
15
|
Clarke NF, Ilkovski B, Cooper S, Valova VA, Robinson PJ, Nonaka I, Feng JJ, Marston S, North K. The pathogenesis ofACTA1-related congenital fiber type disproportion. Ann Neurol 2007; 61:552-61. [PMID: 17387733 DOI: 10.1002/ana.21112] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE Mutations in ACTA1 have been associated with a variety of changes in muscle histology that likely result from fundamental differences in the way that ACTA1 mutations disrupt muscle function. Recently, we reported three patients with congenital fiber type disproportion (CFTD) caused by novel heterozygous missense mutations in ACTA1 (D292V, L221P, P332S) with marked type 1 fiber hypotrophy as the only pathological finding on muscle biopsy. We have investigated the basis for the histological differences between these CFTD patients and patients with ACTA1 nemaline myopathy (NM). METHODS AND RESULTS Mass spectrometry and two-dimensional gel electrophoresis demonstrate that mutant actin accounts for 25 and 50% of alpha-skeletal actin in the skeletal muscle of patients with the P332S and D292V mutations, respectively, consistent with a dominant-negative disease mechanism. In vitro motility studies indicate that abnormal interactions between actin and tropomyosin are the likely principal cause of muscle weakness for D292V, with tropomyosin stabilized in the "switched off" position. Both the D292V and P322S CFTD mutations are associated with normal sarcomeric structure on electron microscopy, which is atypical for severe NM. In contrast, we found no clear difference between ACTA1 mutations associated with NM and CFTD in tendency to polymerize or aggregate in C2C12 expression models. INTERPRETATION These data suggest that ACTA1 CFTD mutations cause weakness by disrupting sarcomere function rather than structure. We raise the possibility that the presence or absence of structural disorganization when mutant actin incorporates into sarcomeres may be an important determinant of whether the histological patterns of CFTD or NM develop in ACTA1 myopathy.
Collapse
MESH Headings
- Actins/analysis
- Actins/genetics
- Actins/metabolism
- Amino Acid Substitution
- Animals
- Biopsy
- Cell Line
- Child, Preschool
- Humans
- Models, Molecular
- Multiprotein Complexes/chemistry
- Multiprotein Complexes/metabolism
- Muscle Weakness/genetics
- Muscle, Skeletal/chemistry
- Muscle, Skeletal/pathology
- Mutation, Missense
- Myopathies, Structural, Congenital/genetics
- Myopathies, Structural, Congenital/pathology
- Myosin Subfragments/chemistry
- Myosin Subfragments/metabolism
- Protein Conformation
- Sarcomeres/chemistry
- Sarcomeres/ultrastructure
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
- Transfection
Collapse
Affiliation(s)
- Nigel F Clarke
- Institute for Neuromuscular Research, Children's Hospital at Westmead, Discipline of Paediatrics and Child Health, University of Sydney, New South Wales, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Gu YY, Zhang HY, Zhang HJ, Li SY, Ni JH, Jia HT. 8-Chloro-adenosine inhibits growth at least partly by interfering with actin polymerization in cultured human lung cancer cells. Biochem Pharmacol 2006; 72:541-50. [PMID: 16844099 DOI: 10.1016/j.bcp.2006.05.026] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2006] [Revised: 05/10/2006] [Accepted: 05/16/2006] [Indexed: 01/30/2023]
Abstract
A key feature of actin is its ability to bind and hydrolyze ATP. 8-Chloro-adenosine (8-Cl-Ado), which can be phosphorylated to the moiety of 8-Cl-ATP in living cells, inhibits tumor cell proliferation. Therefore we tested the hypothesis that 8-Cl-Ado can interfere with the dynamic state of actin polymerization. We found that 8-Cl-Ado inhibited the growth of human lung cancer cell line A549 and H1299 in culture, and arrested the target cells in G2/M phase evidenced by fluorescence-activated cell sorting (FACS). Immunocytochemistry showed that the normal organization of microfilaments was disrupted in 8-Cl-Ado-exposed cells, which is accompanied by the decrease of cell size and the alteration of cell shape, and by aberrant mitosis and apoptosis in targeted cells. Furthermore, in vitro light scattering assays revealed that 8-Cl-ATP could directly inhibit the transition of G-actin to F-actin. DNase I inhibition assays showed that the G/F-actin ratio, a surrogate marker of actin polymerization status in living cells, was significantly increased in 8-Cl-Ado-exposed A549 and H1299 cells, compared to the G/F-actin ratio in unexposed cells. Taken together, these results indicate that 8-Cl-Ado exposure can alter the dynamic properties of actin polymerization, disrupt the dynamic instability or the rearrangement ability of actin filaments. Therefore, our data suggest that 8-Cl-Ado may exert its cytotoxicity at least partly by interfering with the dynamic instability of microfilaments, which may correlate with its inhibitory effects on cell proliferation and cell death.
Collapse
Affiliation(s)
- Yan-Yan Gu
- Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Xue Yuan Road 38, Beijing 100083, PR China
| | | | | | | | | | | |
Collapse
|
17
|
Bookwalter CS, Trybus KM. Functional Consequences of a Mutation in an Expressed Human α-Cardiac Actin at a Site Implicated in Familial Hypertrophic Cardiomyopathy. J Biol Chem 2006; 281:16777-84. [PMID: 16611632 DOI: 10.1074/jbc.m512935200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Point mutations in human alpha-cardiac actin cause familial hypertrophic cardiomyopathy. Functional characterization of these actin mutants has been limited by the lack of a high level expression system for human cardiac actin. Here, wild-type (WT) human alpha-cardiac actin and a mutant E99K actin have been expressed and purified from the baculovirus/insect cell expression system. Glu-99 in subdomain 1 of actin is thought to interact with a positively charged cluster located in the lower 50-kDa domain of the myosin motor domain. Actin-activated ATPase measurements using the expressed actins and beta-cardiac myosin showed that the mutation increased the K(m) for actin 4-fold (4.7 +/- 0.7 mum for WT versus 19.1 +/- 3.0 mum for the mutant), whereas the V(max) values were similar. The mutation slightly decreased the affinity of actin for S1 in the absence of nucleotide, which can partly be accounted for by a slower rate of association. The in vitro motility for the E99K mutant was consistently lower than WT over a range of ionic strengths, which is likely related to the lower average force supported by the mutant actin. The thermal stability of the E99K was comparable to that of WT-actin, implying no folding defects. The lower density of negative charge in subdomain 1 of actin therefore weakens the actomyosin interaction sufficiently to decrease the force and motion generating capacity of E99K actin, thus providing the primary insult that ultimately leads to the disease phenotype.
Collapse
Affiliation(s)
- Carol S Bookwalter
- Department of Molecular Physiology, University of Vermont, Burlington, VT 05405, USA
| | | |
Collapse
|
18
|
Abstract
This is the first of a projected series of canonic reviews covering all invertebrate muscle literature prior to 2005 and covers muscle genes and proteins except those involved in excitation-contraction coupling (e.g., the ryanodine receptor) and those forming ligand- and voltage-dependent channels. Two themes are of primary importance. The first is the evolutionary antiquity of muscle proteins. Actin, myosin, and tropomyosin (at least, the presence of other muscle proteins in these organisms has not been examined) exist in muscle-like cells in Radiata, and almost all muscle proteins are present across Bilateria, implying that the first Bilaterian had a complete, or near-complete, complement of present-day muscle proteins. The second is the extraordinary diversity of protein isoforms and genetic mechanisms for producing them. This rich diversity suggests that studying invertebrate muscle proteins and genes can be usefully applied to resolve phylogenetic relationships and to understand protein assembly coevolution. Fully achieving these goals, however, will require examination of a much broader range of species than has been heretofore performed.
Collapse
Affiliation(s)
- Scott L Hooper
- Neuroscience Program, Department of Biological Sciences, Irvine Hall, Ohio University, Athens, Ohio 45701, USA.
| | | |
Collapse
|
19
|
Cammarato A, Craig R, Sparrow JC, Lehman W. E93K charge reversal on actin perturbs steric regulation of thin filaments. J Mol Biol 2005; 347:889-94. [PMID: 15784249 DOI: 10.1016/j.jmb.2005.02.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2005] [Revised: 02/08/2005] [Accepted: 02/09/2005] [Indexed: 11/27/2022]
Abstract
Contraction in striated muscles is regulated by Ca2+-dependent movement of tropomyosin-troponin on thin filaments. Interactions of charged amino acid residues between the surfaces of tropomyosin and actin are believed to play an integral role in this steric mechanism by influencing the position of tropomyosin on the filaments. To investigate this possibility further, thin filaments were isolated from troponin-regulated, indirect flight muscles of Drosophila mutants that express actin with an amino acid charge reversal at residue 93 located at the interface between actin subdomains 1 and 2, in which a lysine residue is substituted for a glutamic acid. Electron microscopy and 3D helical reconstruction were employed to evaluate the structural effects of the mutation. In the absence of Ca2+, tropomyosin was in a position that blocked the myosin-binding sites on actin, as previously found with wild-type filaments. However, in the presence of Ca2+, tropomyosin position in the mutant filaments was much more variable than in the wild-type ones. In most cases (approximately 60%), tropomyosin remained in the blocking position despite the presence of Ca2+, failing to undergo a normal Ca2+-induced change in position. Thus, switching of a negative to a positive charge at position 93 on actin may stabilize negatively charged tropomyosin in the Ca2+-free state regardless of Ca2+ levels, an alteration that, in turn, is likely to interfere with steric regulation and consequently muscle activation. These results highlight the importance of actin's surface charges in determining the distribution of tropomyosin positions on thin filaments derived from troponin-regulated striated muscles.
Collapse
Affiliation(s)
- Anthony Cammarato
- Department of Physiology and Biophysics, Boston University School of Medicine, 715 Albany Street, Boston, MA 02118, USA
| | | | | | | |
Collapse
|
20
|
Marston S, Mirza M, Abdulrazzak H, Sewry C. Functional characterisation of a mutant actin (Met132Val) from a patient with nemaline myopathy. Neuromuscul Disord 2004; 14:167-74. [PMID: 14733965 DOI: 10.1016/j.nmd.2003.11.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The mutation Met132Val in the ACTA1 gene was identified in a patient with mild nemaline myopathy (NM). We examined actin mRNA and protein from biopsy samples. Sixty-one percent of the mRNA from the biopsy was not cleaved with BstX1, indicating the presence of mutant messenger in vivo. Monomeric actin was extracted from 2.5 mg of mutant muscle and wild type muscle. A proportion of the NM actin did not polymerise in 50 mM KCl, 2.5 mM MgCl2 but all the wild-type actin did. NM actin was fully polymerised by 50 mM KCl, 2.5 mM MgCl2, 150 nM rhodamine-phalloidin. Thin filaments reconstituted with this co-polymer were different from wild-type. The NM actin produces faster sliding of thin filaments at pCa5 and higher relative isometric force. We conclude that the mutant mRNA and protein is expressed and that the mutation reduces polymerisability and alters thin filament function.
Collapse
Affiliation(s)
- Steven Marston
- National Heart and Lung Institute, Imperial College, Dovehouse St, London SW3 6LY, UK.
| | | | | | | |
Collapse
|
21
|
Pavlov D, Gerson JH, Yu T, Tobacman LS, Homsher E, Reisler E. The regulation of subtilisin-cleaved actin by tropomyosin/troponin. J Biol Chem 2003; 278:5517-22. [PMID: 12468534 DOI: 10.1074/jbc.m210889200] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Vertebrate striated muscle contraction is regulated in a Ca(2+)-dependent fashion by tropomyosin (Tm) and troponin (Tn). This regulation involves shifts in the position of Tm and Tn on actin filaments and may include conformational changes in actin that are then communicated to myosin subfragment 1 (S1). To determine whether subdomain 2 of actin plays a role in this regulation, the DNase-I loop 38-52 of this subdomain was cleaved by subtilisin between residues Met(47) and Gly(48). Despite impaired unregulated function, the potentiation and regulation of cleaved actin movement in the in vitro motility assay was not significantly different from that of uncleaved actin. Stopped-flow measurements of ADP release from regulated and unregulated cleaved acto-S1 showed a marked increase in ADP release from acto-S1 in the presence of the regulatory complex. The enhancement of the actin affinity for S1 in the presence of regulatory proteins was greater for uncleaved than for cleaved F-actin. Finally, both cleaved and uncleaved actins protect myosin loop 1 from papain cleavage equally well. Our results suggest that the potentiation of actin function in the in vitro motility assay by regulatory proteins stems from changes in cross-bridge cycle kinetics. In addition, the unimpaired calcium-sensitive regulation of cleaved actin indicates that subdomain 2 conformation does not play an essential role in the regulation process.
Collapse
Affiliation(s)
- Dmitry Pavlov
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, USA
| | | | | | | | | | | |
Collapse
|
22
|
Marston S. Random walks with thin filaments: application of in vitro motility assay to the study of actomyosin regulation. J Muscle Res Cell Motil 2003; 24:149-56. [PMID: 14609026 DOI: 10.1023/a:1026097313020] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The in vitro motility devised by Kron and Spudich (Kron and Spudich, 1986; Kron et al., 1991) has proved a very valuable technique for studying the motor properties of myosin of all kinds but it is equally useful for the study of the thin filaments of muscle and their regulation. The movement of a population of thin filaments over immobilised myosin appears to be random but it does in fact yield a large amount of information about contractility and its regulation. The key to extracting useful information from in vitro motility assay experiments is the logical and comprehensive analysis of filament movements.
Collapse
Affiliation(s)
- Steven Marston
- Imperial College London, NHLI Doverhouse Street, London SW3 6LY, UK.
| |
Collapse
|
23
|
Wong WW, Gerson JH, Rubenstein PA, Reisler E. Thin filament regulation and ionic interactions between the N-terminal region in actin and troponin. Biophys J 2002; 83:2726-32. [PMID: 12414705 PMCID: PMC1302357 DOI: 10.1016/s0006-3495(02)75282-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
The N-terminal region in actin has been shown to interact with both myosin and troponin (Tn) during the cross-bridge cycle and in regulation. To study the role of this region in regulation, we used yeast actin mutants with increased and decreased numbers of acidic residues. The mutants included D24A/D25A, with Asp(24) and Asp(25) replaced with alanines; DNEQ, with the substitution of Asp(2) and Glu(4) with their amide analogs; and 4Ac, with Glu(3) and Asp(4) inserted in lieu of Ser(3). In the in vitro motility assay, using reconstituted regulated thin filaments, the sliding speeds of DNEQ, D24A/D25A, and 4Ac were similar at all pCa values. Thus, Ca(2+)-sensitivity of the thin filaments and the inhibitory function of TnI appear to be insensitive to changes in charge (+/-2) at the N-terminus of actin, suggesting little, if any, role of that actin region in regulation. A Ca(2+)-independent conformational change in that region was detected upon troponin binding to actin-Tm via an increase in the fluorescence of a pyrene probe attached to another yeast actin mutant that we used (Cys(1)).
Collapse
Affiliation(s)
- Wenise W Wong
- Department of Chemistry and Biochemistry, Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA
| | | | | | | |
Collapse
|
24
|
Van Dijk J, Knight AE, Molloy JE, Chaussepied P. Characterization of three regulatory states of the striated muscle thin filament. J Mol Biol 2002; 323:475-89. [PMID: 12381303 DOI: 10.1016/s0022-2836(02)00697-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The troponin-tropomyosin-linked regulation of striated muscle contraction occurs through allosteric control by both Ca(2+) and myosin. The thin filament fluctuates between two extreme states: the inactive "off" state and the active "on" state. Intermediate states have been proposed from structural studies and transient kinetic measurements. However, in contrast to the well-characterised, on and off states, the mechanochemical properties of the intermediate states are much less well understood because of the instability of those states. In the present study, we have characterized a myosin-induced intermediate that is stabilized by cross-linking myosin motor domains (S1) to actin filaments (with a maximum of one S1 molecule for 50 actin monomers). A single S1 molecule is known to interact with two adjacent actin monomers. A detailed analysis revealed that thin filaments containing S1 molecules cross-linked to just one actin monomer (actin(1)-S1 complexes) are regulated with a 79% inhibition of the ATPase in the absence of Ca(2+). In contrast, filaments containing S1 molecules cross-linked at two positions, to two adjacent actin monomers (actin(2)-S1 complexes) totally lose their regulation in a highly cooperative manner. This loss of regulation was due both to an enhancement of the ATPase activity without calcium and an inhibition of the ATPase with calcium. Filaments containing actin(2)-S1 complexes, with significant ATPase activity in the absence of calcium (about 50%), did not move on a myosin-coated surface unless calcium was present. This partial uncoupling between the ATPase activity and in vitro motility in the absence of calcium demonstrates that the mechanical steps require actin-myosin contacts, which take place only in the on state and not in the off or intermediate states. These data provide new insights concerning the difference in cooperativity of Ca(2+) regulation that exists between the biochemical and mechanical cycles of the actin-myosin motor.
Collapse
|
25
|
Martin AF, Phillips RM, Kumar A, Crawford K, Abbas Z, Lessard JL, de Tombe P, Solaro RJ. Ca(2+) activation and tension cost in myofilaments from mouse hearts ectopically expressing enteric gamma-actin. Am J Physiol Heart Circ Physiol 2002; 283:H642-9. [PMID: 12124211 DOI: 10.1152/ajpheart.00890.2001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To determine the significance of actin isoforms in chemomechanical coupling, we compared tension and ATPase rate in heart myofilaments from nontransgenic (NTG) and transgenic (TG) mice in which enteric gamma-actin replaced >95% of the cardiac alpha-actin. Enteric gamma-actin was expressed against three backgrounds: mice expressing cardiac alpha-actin, heterozygous null cardiac alpha-actin mice, and homozygous null cardiac alpha-actin mice. There were no differences in maximum Ca(2+) activated tension or maximum rate of tension redevelopment after a quick release and rapid restretch protocol between TG and NTG skinned fiber bundles. However, compared with NTG controls, Ca(2+) sensitivity of tension was significantly decreased and economy of tension development was significantly increased in myofilaments from all TG hearts. Shifts in myosin isoform population could not fully account for this increase in the economy of force production of TG myofilaments. Our results indicate that an exchange of cardiac alpha-actin with an actin isoform differing in only five amino acids has a significant impact on both Ca(2+) regulation of cardiac myofilaments and the cross-bridge cycling rate.
Collapse
Affiliation(s)
- Anne F Martin
- Department of Physiology and Biophysics, M/C 901, University of Illinois at Chicago, 835 S. Wolcott Avenue, Chicago, IL 60612, USA.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Kim E, Bobkova E, Hegyi G, Muhlrad A, Reisler E. Actin cross-linking and inhibition of the actomyosin motor. Biochemistry 2002; 41:86-93. [PMID: 11772006 DOI: 10.1021/bi0113824] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Intrastrand cross-linking of actin filaments by ANP, N-(4-azido-2-nitrophenyl) putrescine, between Gln-41 in subdomain 2 and Cys-374 at the C-terminus, was shown to inhibit force generation with myosin in the in vitro motility assays [Kim et al. (1998) Biochemistry 37, 17801-17809]. To clarify the immobilization of which of these two sites inhibits the actomyosin motor, the properties of actins with partially overlapping cross-linked sites were examined. pPDM (N,N'-p-phenylenedimaleimide) and ABP [N-(4-azidobenzoyl) putrescine] were used to obtain actin filaments cross-linked ( approximately 50%) between Cys-374 and Lys-191 (interstrand) and Gln-41 and Lys-113 (intrastrand), respectively. ANP, ABP, and pPDM cross-linked filaments showed similar inhibition of their sliding speeds and force generation with myosin ( approximately 25%) in the in vitro motility assays. In analogy to ANP cross-linking of actin, pPDM and ABP cross-linkings did not change the strong S1 binding to actin and the V(max) and K(m) parameters of actomyosin ATPase. The similar effects of these three cross-linkings reveal the tight coupling between structural elements of the subdomain 2/subdomain 1 interface and show the importance of its dynamic flexibility to force generation with myosin. The possibility that actin cross-linkings inhibit rate-limiting steps in motion and force generation during myosin cross-bridge cycle was tested in stopped-flow experiments. Measurements of the rates of mantADP release from actoS1 and ATP-induced dissociation of actoS1 did not reveal any differences between un-cross-linked and ANP cross-linked actin in these complexes. These findings are discussed in terms of the uncoupling between force generation and other aspects of actomyosin interactions due to a constrained dynamic flexibility of the subdomain 2/subdomain 1 interface in cross-linked actin filaments.
Collapse
Affiliation(s)
- Eldar Kim
- Department of Chemistry and Biochemistry and Molecular Biology Institute, University of California, Los Angeles, California 90095, USA
| | | | | | | | | |
Collapse
|
27
|
Vigoreaux JO. Genetics of the Drosophila flight muscle myofibril: a window into the biology of complex systems. Bioessays 2001; 23:1047-63. [PMID: 11746221 DOI: 10.1002/bies.1150] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
This essay reviews the long tradition of experimental genetics of the Drosophila indirect flight muscles (IFM). It discusses how genetics can operate in tandem with multidisciplinary approaches to provide a description, in molecular terms, of the functional properties of the muscle myofibril. In particular, studies at the interface of genetics and proteomics address protein function at the cellular scale and offer an outstanding platform with which to elucidate how the myofibril works. Two generalizations can be enunciated from the studies reviewed. First, the study of mutant IFM proteomes provides insight into how proteins are functionally organized in the myofibril. Second, IFM mutants can give rise to structural and contractile defects that are unrelated, a reflection of the dual function that myofibrillar proteins play as fundamental components of the sarcomeric framework and biochemical "parts" of the contractile "engine".
Collapse
Affiliation(s)
- J O Vigoreaux
- Department of Biology, University of Vermont, Burlington, VT 05405 USA.
| |
Collapse
|
28
|
Naimi B, Harrison A, Cummins M, Nongthomba U, Clark S, Canal I, Ferrus A, Sparrow JC. A tropomyosin-2 mutation suppresses a troponin I myopathy in Drosophila. Mol Biol Cell 2001; 12:1529-39. [PMID: 11359941 PMCID: PMC34603 DOI: 10.1091/mbc.12.5.1529] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
A suppressor mutation, D53, of the held-up(2) allele of the Drosophila melanogaster Troponin I (wupA) gene is described. D53, a missense mutation, S185F, of the tropomyosin-2, Tm2, gene fully suppresses all the phenotypic effects of held-up(2), including the destructive hypercontraction of the indirect flight muscles (IFMs), a lack of jumping, the progressive myopathy of the walking muscles, and reductions in larval crawling and feeding behavior. The suppressor restores normal function of the IFMs, but flight ability decreases with age and correlates with an unusual, progressive structural collapse of the myofibrillar lattice starting at the center. The S185F substitution in Tm2 is close to a troponin T binding site on tropomyosin. Models to explain suppression by D53, derived from current knowledge of the vertebrate troponin-tropomyosin complex structure and functions, are discussed. The effects of S185F are compared with those of two mutations in residues 175 and 180 of human alpha-tropomyosin 1 which cause familial hypertrophic cardiomyopathy (HCM).
Collapse
Affiliation(s)
- B Naimi
- Department of Biology, University of York, York YO10 5YW, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Swank DM, Bartoo ML, Knowles AF, Iliffe C, Bernstein SI, Molloy JE, Sparrow JC. Alternative exon-encoded regions of Drosophila myosin heavy chain modulate ATPase rates and actin sliding velocity. J Biol Chem 2001; 276:15117-24. [PMID: 11134017 DOI: 10.1074/jbc.m008379200] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To investigate the molecular functions of the regions encoded by alternative exons from the single Drosophila myosin heavy chain gene, we made the first kinetic measurements of two muscle myosin isoforms that differ in all alternative regions. Myosin was purified from the indirect flight muscles of wild-type and transgenic flies expressing a major embryonic isoform. The in vitro actin sliding velocity on the flight muscle isoform (6.4 microm x s(-1) at 22 degrees C) is among the fastest reported for a type II myosin and was 9-fold faster than with the embryonic isoform. With smooth muscle tropomyosin bound to actin, the actin sliding velocity on the embryonic isoform increased 6-fold, whereas that on the flight muscle myosin slightly decreased. No difference in the step sizes of Drosophila and rabbit skeletal myosins were found using optical tweezers, suggesting that the slower in vitro velocity with the embryonic isoform is due to altered kinetics. Basal ATPase rates for flight muscle myosin are higher than those of embryonic and rabbit myosin. These differences explain why the embryonic myosin cannot functionally substitute in vivo for the native flight muscle isoform, and demonstrate that one or more of the five myosin heavy chain alternative exons must influence Drosophila myosin kinetics.
Collapse
Affiliation(s)
- D M Swank
- Biology Department and Molecular Biology Institute, San Diego State University, San Diego, California 92182, USA.
| | | | | | | | | | | | | |
Collapse
|
30
|
Olson TM, Kishimoto NY, Whitby FG, Michels VV. Mutations that alter the surface charge of alpha-tropomyosin are associated with dilated cardiomyopathy. J Mol Cell Cardiol 2001; 33:723-32. [PMID: 11273725 DOI: 10.1006/jmcc.2000.1339] [Citation(s) in RCA: 176] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Proteins in cardiac myocytes assemble into contractile units known as sarcomeres. Contractile force is generated by interaction between sarcomeric thick and thin filaments. Thin filaments also transmit force within and between myocytes. Mutations in genes encoding the thin filament proteins actin and tropomyosin cause hypertrophic cardiomyopathy. Mutations affecting functionally distinct domains of actin also cause dilated cardiomyopathy (DCM). We used a non-positional candidate gene approach to test further the hypothesis that dysfunction of sarcomeric thin filaments, due to different mutations in the same gene, can lead to either hypertrophic or dilated cardiomyopathy. Mutational analyses of alpha-tropomyosin 1 were performed in patients with idiopathic DCM. We identified two mutations that alter highly conserved residues and that, unlike hypertrophic cardiomyopathy-associated mutations, cause localized charge reversal on the surface of tropomyosin. Therefore, substitution of different amino acid residues in the same thin filament proteins is associated with the distinct phenotypes of cardiac hypertrophy or congestive heart failure.
Collapse
Affiliation(s)
- T M Olson
- Department of Pediatrics, Division of Cardiology and Biochemistry, University of Utah, Salt Lake City, UT 84113, USA.
| | | | | | | |
Collapse
|
31
|
Korman VL, Hatch V, Dixon KY, Craig R, Lehman W, Tobacman LS. An actin subdomain 2 mutation that impairs thin filament regulation by troponin and tropomyosin. J Biol Chem 2000; 275:22470-8. [PMID: 10801864 DOI: 10.1074/jbc.m002939200] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Striated muscle thin filaments adopt different quaternary structures, depending upon calcium binding to troponin and myosin binding to actin. Modification of actin subdomain 2 alters troponin-tropomyosin-mediated regulation, suggesting that this region of actin may contain important protein-protein interaction sites. We used yeast actin mutant D56A/E57A to examine this issue. The mutation increased the affinity of tropomyosin for actin 3-fold. The addition of Ca(2+) to mutant actin filaments containing troponin-tropomyosin produced little increase in the thin filament-myosin S1 MgATPase rate. Despite this, three-dimensional reconstruction of electron microscope images of filaments in the presence of troponin and Ca(2+) showed tropomyosin to be in a position similar to that found for muscle actin filaments, where most of the myosin binding site is exposed. Troponin-tropomyosin bound with comparable affinity to mutant and wild type actin in the absence and presence of calcium, and in the presence of myosin S1, tropomyosin bound very tightly to both types of actin. The mutation decreased actin-myosin S1 affinity 13-fold in the presence of troponin-tropomyosin and 2.6-fold in the absence of the regulatory proteins. The results suggest the importance of negatively charged actin subdomain 2 residues 56 and 57 for myosin binding to actin, for tropomyosin-actin interactions, and for regulatory conformational changes in the actin-troponin-tropomyosin complex.
Collapse
Affiliation(s)
- V L Korman
- Departments of Biochemistry and Internal Medicine, University of Iowa, College of Medicine, Iowa City, Iowa 52242, USA
| | | | | | | | | | | |
Collapse
|
32
|
Abstract
Ca(2+) regulation of contraction in vertebrate striated muscle is exerted primarily through effects on the thin filament, which regulate strong cross-bridge binding to actin. Structural and biochemical studies suggest that the position of tropomyosin (Tm) and troponin (Tn) on the thin filament determines the interaction of myosin with the binding sites on actin. These binding sites can be characterized as blocked (unable to bind to cross bridges), closed (able to weakly bind cross bridges), or open (able to bind cross bridges so that they subsequently isomerize to become strongly bound and release ATP hydrolysis products). Flexibility of the Tm may allow variability in actin (A) affinity for myosin along the thin filament other than through a single 7 actin:1 tropomyosin:1 troponin (A(7)TmTn) regulatory unit. Tm position on the actin filament is regulated by the occupancy of NH-terminal Ca(2+) binding sites on TnC, conformational changes resulting from Ca(2+) binding, and changes in the interactions among Tn, Tm, and actin and as well as by strong S1 binding to actin. Ca(2+) binding to TnC enhances TnC-TnI interaction, weakens TnI attachment to its binding sites on 1-2 actins of the regulatory unit, increases Tm movement over the actin surface, and exposes myosin-binding sites on actin previously blocked by Tm. Adjacent Tm are coupled in their overlap regions where Tm movement is also controlled by interactions with TnT. TnT also interacts with TnC-TnI in a Ca(2+)-dependent manner. All these interactions may vary with the different protein isoforms. The movement of Tm over the actin surface increases the "open" probability of myosin binding sites on actins so that some are in the open configuration available for myosin binding and cross-bridge isomerization to strong binding, force-producing states. In skeletal muscle, strong binding of cycling cross bridges promotes additional Tm movement. This movement effectively stabilizes Tm in the open position and allows cooperative activation of additional actins in that and possibly neighboring A(7)TmTn regulatory units. The structural and biochemical findings support the physiological observations of steady-state and transient mechanical behavior. Physiological studies suggest the following. 1) Ca(2+) binding to Tn/Tm exposes sites on actin to which myosin can bind. 2) Ca(2+) regulates the strong binding of M.ADP.P(i) to actin, which precedes the production of force (and/or shortening) and release of hydrolysis products. 3) The initial rate of force development depends mostly on the extent of Ca(2+) activation of the thin filament and myosin kinetic properties but depends little on the initial force level. 4) A small number of strongly attached cross bridges within an A(7)TmTn regulatory unit can activate the actins in one unit and perhaps those in neighboring units. This results in additional myosin binding and isomerization to strongly bound states and force production. 5) The rates of the product release steps per se (as indicated by the unloaded shortening velocity) early in shortening are largely independent of the extent of thin filament activation ([Ca(2+)]) beyond a given baseline level. However, with a greater extent of shortening, the rates depend on the activation level. 6) The cooperativity between neighboring regulatory units contributes to the activation by strong cross bridges of steady-state force but does not affect the rate of force development. 7) Strongly attached, cycling cross bridges can delay relaxation in skeletal muscle in a cooperative manner. 8) Strongly attached and cycling cross bridges can enhance Ca(2+) binding to cardiac TnC, but influence skeletal TnC to a lesser extent. 9) Different Tn subunit isoforms can modulate the cross-bridge detachment rate as shown by studies with mutant regulatory proteins in myotubes and in in vitro motility assays. (ABSTRACT TRUNCATED)
Collapse
Affiliation(s)
- A M Gordon
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington 98195-7290, USA.
| | | | | |
Collapse
|
33
|
Gao Y, Patchell VB, Huber PA, Copeland O, El-Mezgueldi M, Fattoum A, Calas B, Thorsted PB, Marston SB, Levine BA. The interface between caldesmon domain 4b and subdomain 1 of actin studied by nuclear magnetic resonance spectroscopy. Biochemistry 1999; 38:15459-69. [PMID: 10569928 DOI: 10.1021/bi991383k] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The ability of caldesmon to inhibit actomyosin ATPase activity involves the interaction of three nonsequential segments of caldesmon domain 4 (amino acids 600-756) with actin. Two of these contacts are located in the C-terminal half of this region of caldesmon which has been designated domain 4b (658-756). To investigate the spatial relationship between the two sites and to determine whether their corresponding contacts on actin are sequentially distinct, we have used NMR spectroscopy to compare the actin binding properties of the minimal inhibitory peptide LW30 comprising residues 693-722 with those of the recombinant domain 4b constructs 658C (658-756) and Cg1 (a mutant of 658C in which the sequence (691)Glu-Trp-Leu-Thr-Lys-Thr(696) is changed to Pro-Gly-His-Tyr-Asn-Asn). Cg1 retains dual-sited actin attachment but displays lowered actin affinity. In the presence of tropomyosin, domain 4b-actin contacts were stronger but not qualitatively different, indicating that tropomyosin affected the conformational equilibrium of caldesmon binding. Simultaneous dual-sited attachment of domain 4b to actin is enabled by the conformational properties of the site-spanning sequence common to 658C, Cg1, and LW30 as reflected in the corresponding NOE and other NMR spectral parameters. A backbone turn region ((713)Gly-Asp-Val-Ser(716)) preceded by an extended segment (Ser(702)-Pro-Ala-Pro-Lys-Pro) acts to constrain the relative disposition of the flanking actin contact sites of domain 4b. In tests with a library of actin peptides, only the C-terminus, 350-375, bound to 658C and LW30. The use of Cu(2+) as a paramagnetic spectral probe bound to the unique His-371 provided evidence of a well-defined geometry for the complex between LW30 and actin residues 350-375 with the N-terminal, site B of domain 4b close to the C-terminal residues of actin. The data are discussed in the context of the potentiation of inhibitory activity by tropomyosin.
Collapse
Affiliation(s)
- Y Gao
- School of Biochemistry and Division of Medical Science, School of Medicine, University of Birmingham, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Razzaq A, Schmitz S, Veigel C, Molloy JE, Geeves MA, Sparrow JC. Actin residue glu(93) is identified as an amino acid affecting myosin binding. J Biol Chem 1999; 274:28321-8. [PMID: 10497190 DOI: 10.1074/jbc.274.40.28321] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Many mutants have been described that affect the function of the actin encoded by the Drosophila melanogaster indirect flight muscle-specific actin gene, Act88F. We describe the development of procedures for purification of this actin from the other isoforms expressed in the fly as well as in vitro motility, single molecule force/displacement measurements, and stop-flow solution kinetic studies of the wild-type actin and that of the E93K mutation of the Act88F gene. We show that this mutation affects in vitro motility of F-actin, in both the presence and absence of methylcellulose, and the ability of the ACT88F actin to bind the S1 fragment of rabbit skeletal myosin. However, optical tweezer measurements of the actomyosin working stroke and the force transmitted from the rabbit heavy meromyosin to and through F-actin are unchanged by the mutation. These results support the proposal (Holmes, K. C. (1995) Biophys J. 68, (suppl.) 2-7) that actin residue Glu(93) is part of the secondary myosin binding site and suggest that myosin binding occurs first at the primary myosin binding site and then at the secondary site.
Collapse
Affiliation(s)
- A Razzaq
- Department of Biology, University of York, P.O. Box 373, York YO10 5YW, United Kingdom
| | | | | | | | | | | |
Collapse
|
35
|
Korman VL, Tobacman LS. Mutations in actin subdomain 3 that impair thin filament regulation by troponin and tropomyosin. J Biol Chem 1999; 274:22191-6. [PMID: 10428784 DOI: 10.1074/jbc.274.32.22191] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Thin filament-mediated regulation of striated muscle contraction involves conformational switching among a few quaternary structures, with transitions induced by binding of Ca(2+) and myosin. We establish and exploit Saccharomyces cerevisiae actin as a model system to investigate this process. Ca(2+)-sensitive troponin-tropomyosin binding affinities for wild type yeast actin are seen to closely resemble those for muscle actin, and these hybrid thin filaments produce Ca(2+)-sensitive regulation of the myosin S-1 MgATPase rate. Yeast actin filament inner domain mutant K315A/E316A depresses Ca(2+) activation of the MgATPase rate, producing a 4-fold weakening of the apparent Ca(2+) affinity and a 50% decrease in the MgATPase rate at saturating Ca(2+) concentration. Observed destabilization of troponin-tropomyosin binding to actin in the presence of Ca(2+), a 1.4-fold effect, provides a partial explanation. Despite the decrease in apparent MgATPase Ca(2+) affinity, there was no detectable change in the true Ca(2+) affinity of the thin filament, measured using fluorophore-labeled troponin. Another inner domain mutant, E311A/R312A, decreased the MgATPase rate but did not change the apparent Ca(2+) affinity. These results suggest that charged residues on the surface of the actin inner domain are important in Ca(2+)- and myosin-induced thin filament activation.
Collapse
Affiliation(s)
- V L Korman
- Department of Biochemistry, University of Iowa, Iowa City, Iowa 52242, USA
| | | |
Collapse
|
36
|
Gerson JH, Bobkova E, Homsher E, Reisler E. Role of residues 311/312 in actin-tropomyosin interaction. In vitro motility study using yeast actin mutant e311a/r312a. J Biol Chem 1999; 274:17545-50. [PMID: 10364188 DOI: 10.1074/jbc.274.25.17545] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
According to the Lorenz et al. (Lorenz, M., Poole, K. J., Popp, D., Rosenbaum, G., and Holmes, K. C. (1995) J. Mol. Biol. 246, 108-119) atomic model of the actin-tropomyosin complex, actin residue Asp-311 (Glu-311 in yeast) is predicted to have a high binding energy contribution to actin-tropomyosin binding. Using the yeast actin mutant E311A/R312A in the in vitro motility assays, we have investigated the role of these residues in such interactions. Wild type (wt) yeast actin, like skeletal alpha-actin, is fully regulated when complexed with tropomyosin (Tm) and troponin (Tn). Structure-function comparisons of the wt and E311A/R312A actins show no significant differences between them, and the unregulated F-actins slide at similar speeds in the in vitro motility assay. However, in the presence of Tm and Tn, the mutation increases both the sliding speed and the number of moving filaments at high pCa values, shifting the speed-pCa curve nearly 0.5 pCa units to the left. Tm alone (no Tn) inhibits the motilities of both actins at low heavy meromyosin densities but potentiates only the motility of the mutant actin at high heavy meromyosin densities. Actin-Tm binding measurements indicate no significant difference between wt and E311A/R312A actin in Tm binding. These results implicate allosteric effects in the regulation of actomyosin function by tropomyosin.
Collapse
Affiliation(s)
- J H Gerson
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, USA
| | | | | | | |
Collapse
|
37
|
Marston S, Burton D, Copeland O, Fraser I, Gao Y, Hodgkinson J, Huber P, Levine B, el-Mezgueldi M, Notarianni G. Structural interactions between actin, tropomyosin, caldesmon and calcium binding protein and the regulation of smooth muscle thin filaments. ACTA PHYSIOLOGICA SCANDINAVICA 1998; 164:401-14. [PMID: 9887964 DOI: 10.1111/j.1365-201x.1998.tb10696.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The basic structure and functional properties of smooth muscle thin filaments were established about 10 years ago. Since then we and others have been working on the details of how tropomyosin, caldesmon and the Ca(2+)-binding protein regulate actin interaction with myosin. Our work has tended to emphasize the similarities between caldesmon and troponin function whilst others have been more concerned with the differences. The need to resolve the resulting differences has stimulated us to find new and more direct ways of investigating the mechanism of thin filament regulation. In recent years an apparent divergence has opened up between functional measurements, which indicate an allosteric-cooperative regulatory mechanism in which caldesmon and Ca(2+)-binding protein control actin-tropomyosin state in the same way as troponin, and structural measurements which show thin filament structures unlike striated muscle thin filaments. The challenge is to interpret function in terms of structure. We have combined functional studies with expression and mutagenesis of caldesmon and with structural methods including X-ray crystalography of tropomyosin-caldesmon crystals, electron microscopy and helical reconstruction of actin-tropomyosin-caldesmon complexes and high resolution nuclear magnetic resonance spectroscopy of the C-terminus of caldesmon in interaction with actin and calmodulin. We have used this information to propose a structural mechanism for caldesmon regulation of the smooth muscle thin filament.
Collapse
Affiliation(s)
- S Marston
- Imperial College School of Medicine, National Heart and Lung Institute, London, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|