1
|
Abdelnaser RA, Hiyoshi M, Takahashi N, Eltalkhawy YM, Mizuno H, Kimura S, Hase K, Ohno H, Monde K, Ono A, Suzu S. Identification of TNFAIP2 as a unique cellular regulator of CSF-1 receptor activation. Life Sci Alliance 2025; 8:e202403032. [PMID: 39939179 PMCID: PMC11821806 DOI: 10.26508/lsa.202403032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 02/04/2025] [Accepted: 02/05/2025] [Indexed: 02/14/2025] Open
Abstract
The receptor of CSF-1 (CSF1R) encoding tyrosine kinase is essential for tissue macrophage development, and the therapeutic target for many tumors. However, it is not completely understood how CSF1R activation is regulated. Here, we identify the cellular protein TNF-α-induced protein 2 (TNFAIP2) as a unique regulator of CSF1R. CSF1R forms large aggregates in macrophages via unknown mechanisms. The inhibition or knockdown of TNFAIP2 reduced CSF1R aggregate formation and functional response of macrophages to CSF-1, which was consistent with reduced CSF1R activation after CSF-1 stimulation. When expressed in 293 cells, TNFAIP2 augmented CSF1R aggregate formation and CSF-1-induced CSF1R activation. CSF1R and TNFAIP2 bind the cellular phosphatidylinositol 4,5-bisphosphate (PIP2). The removal of the PIP2-binding motif of CSF1R or TNFAIP2, or the depletion of cellular PIP2 reduced CSF1R aggregate formation. Moreover, TNFAIP2 altered the cellular distribution of PIP2. Because CSF-1-induced dimerization of CSF1R is critical for its activation, our findings suggest that TNFAIP2 augments CSF1R aggregate formation via PIP2, which brings CSF1R monomers close to each other and enables the efficient dimerization and activation of CSF1R in response to CSF-1.
Collapse
Affiliation(s)
- Randa A Abdelnaser
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Masateru Hiyoshi
- Research Center for Biological Products in the Next Generation, National Institute of Infectious Diseases, Tokyo, Japan
| | - Naofumi Takahashi
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Youssef M Eltalkhawy
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Hidenobu Mizuno
- International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Shunsuke Kimura
- Division of Biochemistry, Faculty of Pharmacy, Keio University, Tokyo, Japan
| | - Koji Hase
- Division of Biochemistry, Faculty of Pharmacy, Keio University, Tokyo, Japan
| | - Hiroshi Ohno
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Kazuaki Monde
- Department of Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Akira Ono
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Shinya Suzu
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
2
|
Li MY, Ye W, Luo KW. Immunotherapies Targeting Tumor-Associated Macrophages (TAMs) in Cancer. Pharmaceutics 2024; 16:865. [PMID: 39065562 PMCID: PMC11280177 DOI: 10.3390/pharmaceutics16070865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/17/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024] Open
Abstract
Tumor-associated macrophages (TAMs) are one of the most plentiful immune compositions in the tumor microenvironment, which are further divided into anti-tumor M1 subtype and pro-tumor M2 subtype. Recent findings found that TAMs play a vital function in the regulation and progression of tumorigenesis. Moreover, TAMs promote tumor vascularization, and support the survival of tumor cells, causing an impact on tumor growth and patient prognosis. Numerous studies show that reducing the density of TAMs, or modulating the polarization of TAMs, can inhibit tumor growth, indicating that TAMs are a promising target for tumor immunotherapy. Recently, clinical trials have found that treatments targeting TAMs have achieved encouraging results, and the U.S. Food and Drug Administration has approved a number of drugs for use in cancer treatment. In this review, we summarize the origin, polarization, and function of TAMs, and emphasize the therapeutic strategies targeting TAMs in cancer treatment in clinical studies and scientific research, which demonstrate a broad prospect of TAMs-targeted therapies in tumor immunotherapy.
Collapse
Affiliation(s)
- Mei-Ye Li
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; (M.-Y.L.); (W.Y.)
| | - Wei Ye
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; (M.-Y.L.); (W.Y.)
| | - Ke-Wang Luo
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; (M.-Y.L.); (W.Y.)
- People’s Hospital of Longhua, The affiliated hospital of Southern Medical University, Shenzhen 518109, China
| |
Collapse
|
3
|
Elson A, Anuj A, Barnea-Zohar M, Reuven N. The origins and formation of bone-resorbing osteoclasts. Bone 2022; 164:116538. [PMID: 36028118 DOI: 10.1016/j.bone.2022.116538] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 02/07/2023]
Abstract
Osteoclasts (OCLs) are hematopoietic cells whose physiological function is to degrade bone. OCLs are key players in the processes that determine and maintain the mass, shape, and physical properties of bone. OCLs adhere to bone tightly and degrade its matrix by secreting protons and proteases onto the underlying surface. The combination of low pH and proteases degrades the mineral and protein components of the matrix and forms a resorption pit; the degraded material is internalized by the cell and then secreted into the circulation. Insufficient or excessive activity of OCLs can lead to significant changes in bone and either cause or exacerbate symptoms of diseases, as in osteoporosis, osteopetrosis, and cancer-induced bone lysis. OCLs are derived from monocyte-macrophage precursor cells whose origins are in two distinct embryonic cell lineages - erythromyeloid progenitor cells of the yolk sac, and hematopoietic stem cells. OCLs are formed in a multi-stage process that is induced by the cytokines M-CSF and RANKL, during which the cells differentiate, fuse to form multi-nucleated cells, and then differentiate further to become mature, bone-resorbing OCLs. Recent studies indicate that OCLs can undergo fission in vivo to generate smaller cells, called "osteomorphs", that can be "re-cycled" by fusing with other cells to form new OCLs. In this review we describe OCLs and discuss their cellular origins and the cellular and molecular events that drive osteoclastogenesis.
Collapse
Affiliation(s)
- Ari Elson
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot 76100, Israel.
| | - Anuj Anuj
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Maayan Barnea-Zohar
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Nina Reuven
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
4
|
Xu JJ, Li HD, Du XS, Li JJ, Meng XM, Huang C, Li J. Role of the F-BAR Family Member PSTPIP2 in Autoinflammatory Diseases. Front Immunol 2021; 12:585412. [PMID: 34262554 PMCID: PMC8273435 DOI: 10.3389/fimmu.2021.585412] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 06/11/2021] [Indexed: 12/11/2022] Open
Abstract
Proline-serine-threonine-phosphatase-interacting protein 2 (PSTPIP2) belongs to the Fes/CIP4 homology-Bin/Amphiphysin/Rvs (F-BAR) domain family. It exhibits lipid-binding, membrane deformation, and F-actin binding activity, suggesting broader roles at the membrane–cytoskeleton interface. PSTPIP2 is known to participate in macrophage activation, neutrophil migration, cytokine production, and osteoclast differentiation. In recent years, it has been observed to play important roles in innate immune diseases and autoinflammatory diseases (AIDs). Current research indicates that the protein tyrosine phosphatase PTP-PEST, Src homology domain-containing inositol 5’-phosphatase 1 (SHIP1), and C‐terminal Src kinase (CSK) can bind to PSTPIP2 and inhibit the development of AIDs. However, the mechanisms underlying the function of PSTPIP2 have not been fully elucidated. This article reviews the research progress and mechanisms of PSTPIP2 in AIDs. PSTPIP2 also provides a new therapeutic target for the treatment of AIDs.
Collapse
Affiliation(s)
- Jie-Jie Xu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Hai-Di Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Xiao-Sa Du
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Juan-Juan Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Xiao-Ming Meng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Cheng Huang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Jun Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| |
Collapse
|
5
|
Lee S, Shi XQ, Fan A, West B, Zhang J. Targeting macrophage and microglia activation with colony stimulating factor 1 receptor inhibitor is an effective strategy to treat injury-triggered neuropathic pain. Mol Pain 2018; 14:1744806918764979. [PMID: 29546785 PMCID: PMC5858622 DOI: 10.1177/1744806918764979] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Introduction Neuropathic pain is a debilitating condition. The importance of neuroimmune interactions in neuropathic pain has been evidenced by the involvement of different immune cells in peripheral and central sensitization of pathological pain. Macrophages and microglia are the most abundant immune cells activated in injured nerves and spinal cord, respectively. Several lines of evidence showed that macrophage/microglia survival, activation, proliferation, and differentiation require the involvement of macrophage-colony stimulating factor. In this study, we investigated whether blocking macrophage-colony stimulating factor/colony stimulating factor 1 receptor signaling can be effective in relieving neuropathic pain. Materials and methods Partial sciatic nerve ligation was performed in mice to induce neuropathic pain behavior. Mice were orally treated with a selective colony stimulating factor 1 receptor inhibitor, PLX5622, daily in both preventive (two days prior to surgery until D14 post-partial sciatic nerve ligation) and reversal paradigms (D28-D33 post-partial sciatic nerve ligation). Animal neuropathic pain behavior was monitored using von Frey hairs and acetone application. Phenotype of macrophages in injured nerves was analyzed at D3 and D33 post-injury using flow cytometry analysis. The effect of PLX5622 on microglia activation in lumbar spinal cord was further examined by immunohistochemistry using Iba-1 antibody. Results Significant alleviation of both mechanical and cold allodynia was observed in PLX5622-treated animals, both in preventive and reversal paradigms. PLX5622 treatment reduced the total number of macrophages in injured nerves, it appears colony stimulating factor 1 receptor inhibition affected more specifically CD86+ (M1 like) macrophages. Consequently, the expression of various pro-inflammatory cytokines (TNF-α, IL-1β) was reduced. Microglia activation in dorsal horn of lumbar spinal cord following partial sciatic nerve ligation was significantly inhibited with PLX5622 treatment in both preventive and reversal paradigms. Conclusion Macrophages in peripheral nerve and microglia in the spinal cord are required in the generation and maintenance of injury-associated neuropathic pain. Blocking macrophage-colony stimulating factor/colony stimulating factor 1 receptor signaling on these myeloid cells along the pain transmission pathway is an effective strategy to alleviate neuropathic pain.
Collapse
Affiliation(s)
- SeungHwan Lee
- 1 Faculty of Dentistry, 5620 McGill University , Montreal, QC, Canada.,2 The Alan Edwards Centre for Research on Pain, 5620 McGill University , Montreal, QC, Canada
| | - Xiang Qun Shi
- 1 Faculty of Dentistry, 5620 McGill University , Montreal, QC, Canada.,2 The Alan Edwards Centre for Research on Pain, 5620 McGill University , Montreal, QC, Canada
| | - Anni Fan
- 1 Faculty of Dentistry, 5620 McGill University , Montreal, QC, Canada.,2 The Alan Edwards Centre for Research on Pain, 5620 McGill University , Montreal, QC, Canada
| | | | - Ji Zhang
- 1 Faculty of Dentistry, 5620 McGill University , Montreal, QC, Canada.,2 The Alan Edwards Centre for Research on Pain, 5620 McGill University , Montreal, QC, Canada.,4 Department of Neurology and Neurosurgery, 5620 McGill University , Montreal, QC, Canada
| |
Collapse
|
6
|
Schaffer AE, Breuss MW, Caglayan AO, Al-Sanaa N, Al-Abdulwahed HY, Kaymakçalan H, Yılmaz C, Zaki MS, Rosti RO, Copeland B, Baek ST, Musaev D, Scott EC, Ben-Omran T, Kariminejad A, Kayserili H, Mojahedi F, Kara M, Cai N, Silhavy JL, Elsharif S, Fenercioglu E, Barshop BA, Kara B, Wang R, Stanley V, James KN, Nachnani R, Kalur A, Megahed H, Incecik F, Danda S, Alanay Y, Faqeih E, Melikishvili G, Mansour L, Miller I, Sukhudyan B, Chelly J, Dobyns WB, Bilguvar K, Jamra RA, Gunel M, Gleeson JG. Biallelic loss of human CTNNA2, encoding αN-catenin, leads to ARP2/3 complex overactivity and disordered cortical neuronal migration. Nat Genet 2018; 50:1093-1101. [PMID: 30013181 PMCID: PMC6072555 DOI: 10.1038/s41588-018-0166-0] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Accepted: 05/22/2018] [Indexed: 12/12/2022]
Abstract
Neuronal migration defects, including pachygyria, are among the most severe developmental brain defects in humans. Here, we identify biallelic truncating mutations in CTNNA2, encoding αN-catenin, in patients with a distinct recessive form of pachygyria. CTNNA2 was expressed in human cerebral cortex, and its loss in neurons led to defects in neurite stability and migration. The αN-catenin paralog, αE-catenin, acts as a switch regulating the balance between β-catenin and Arp2/3 actin filament activities1. Loss of αN-catenin did not affect β-catenin signaling, but recombinant αN-catenin interacted with purified actin and repressed ARP2/3 actin-branching activity. The actin-binding domain of αN-catenin or ARP2/3 inhibitors rescued the neuronal phenotype associated with CTNNA2 loss, suggesting ARP2/3 de-repression as a potential disease mechanism. Our findings identify CTNNA2 as the first catenin family member with biallelic mutations in humans, causing a new pachygyria syndrome linked to actin regulation, and uncover a key factor involved in ARP2/3 repression in neurons.
Collapse
Affiliation(s)
- Ashleigh E Schaffer
- Department of Neuroscience, Rady Children's Institute for Genomic Medicine, Howard Hughes Medical Institute, University of California, San Diego, San Diego, CA, USA.
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA.
| | - Martin W Breuss
- Department of Neuroscience, Rady Children's Institute for Genomic Medicine, Howard Hughes Medical Institute, University of California, San Diego, San Diego, CA, USA
| | - Ahmet Okay Caglayan
- Departments of Neurosurgery, Neurobiology, and Genetics, Yale University School of Medicine, New Haven, CT, USA
- Department of Medical Genetics, Istanbul Bilim University, Istanbul, Turkey
| | - Nouriya Al-Sanaa
- Department of Pediatrics, Johns Hopkins Aramco Healthcare, Dhahran, Saudi Arabia
| | - Hind Y Al-Abdulwahed
- Department of Pediatrics, Johns Hopkins Aramco Healthcare, Dhahran, Saudi Arabia
| | - Hande Kaymakçalan
- Department of Pediatrics, Istanbul Bilim University, Istanbul, Turkey
| | - Cahide Yılmaz
- Department of Pediatrics, Yıldırım Beyazıt University, Ankara, Turkey
| | - Maha S Zaki
- Clinical Genetics Department, Human Genetics and Genome Research Division, National Research Centre, Cairo, Egypt
| | - Rasim O Rosti
- Department of Neuroscience, Rady Children's Institute for Genomic Medicine, Howard Hughes Medical Institute, University of California, San Diego, San Diego, CA, USA
| | - Brett Copeland
- Department of Neuroscience, Rady Children's Institute for Genomic Medicine, Howard Hughes Medical Institute, University of California, San Diego, San Diego, CA, USA
| | - Seung Tae Baek
- Department of Neuroscience, Rady Children's Institute for Genomic Medicine, Howard Hughes Medical Institute, University of California, San Diego, San Diego, CA, USA
| | - Damir Musaev
- Department of Neuroscience, Rady Children's Institute for Genomic Medicine, Howard Hughes Medical Institute, University of California, San Diego, San Diego, CA, USA
| | - Eric C Scott
- Department of Neuroscience, Rady Children's Institute for Genomic Medicine, Howard Hughes Medical Institute, University of California, San Diego, San Diego, CA, USA
| | - Tawfeg Ben-Omran
- Clinical and Metabolic Genetics Section, Department of Pediatrics, Hamad Medical Corporation, Doha, Qatar
| | | | - Hulya Kayserili
- Department of Medical Genetics, Koç University School of Medicine, Istanbul, Turkey
| | | | - Majdi Kara
- University of Tripoli, Tripoli Children's Hospital, Tripoli, Libya
| | - Na Cai
- Department of Neuroscience, Rady Children's Institute for Genomic Medicine, Howard Hughes Medical Institute, University of California, San Diego, San Diego, CA, USA
| | - Jennifer L Silhavy
- Department of Neuroscience, Rady Children's Institute for Genomic Medicine, Howard Hughes Medical Institute, University of California, San Diego, San Diego, CA, USA
| | - Seham Elsharif
- University of Tripoli, Tripoli Children's Hospital, Tripoli, Libya
| | - Elif Fenercioglu
- L.E.S. Mikrogen Genetic Diseases Diagnosis Center, Istanbul, Turkey
| | - Bruce A Barshop
- Department of Pediatrics, Biochemical Genetics Program, University of California, San Diego, San Diego, CA, USA
| | - Bulent Kara
- Department of Pediatric Neurology, Kocaeli University, Kocaeli, Turkey
| | - Rengang Wang
- Department of Neuroscience, Rady Children's Institute for Genomic Medicine, Howard Hughes Medical Institute, University of California, San Diego, San Diego, CA, USA
| | - Valentina Stanley
- Department of Neuroscience, Rady Children's Institute for Genomic Medicine, Howard Hughes Medical Institute, University of California, San Diego, San Diego, CA, USA
| | - Kiely N James
- Department of Neuroscience, Rady Children's Institute for Genomic Medicine, Howard Hughes Medical Institute, University of California, San Diego, San Diego, CA, USA
| | - Rahul Nachnani
- Department of Neuroscience, Rady Children's Institute for Genomic Medicine, Howard Hughes Medical Institute, University of California, San Diego, San Diego, CA, USA
| | - Aneesha Kalur
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Hisham Megahed
- Clinical Genetics Department, Human Genetics and Genome Research Division, National Research Centre, Cairo, Egypt
| | - Faruk Incecik
- Department of Pediatric Neurology, Cukurova University, Adana, Turkey
| | - Sumita Danda
- Department of Clinical Genetics, Christian Medical College and Hospital, Vellore, India
| | - Yasemin Alanay
- Pediatric Genetics Unit, Department of Pediatrics, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Eissa Faqeih
- Section of Medical Genetics, Department of Pediatrics, King Fahad Medical City, Children's Hospital, Riyadh, Saudi Arabia
| | | | - Lobna Mansour
- Pediatric Department, Neuropediatric Unit, Cairo University Children's Hospital, Cairo, Egypt
| | - Ian Miller
- Neurology Department, Nicklaus Children's Hospital, Miami, FL, USA
| | - Biayna Sukhudyan
- Arabkir Joint Medical Center and Institute of Child and Adolescent Health, Yerevan, Armenia
| | - Jamel Chelly
- Institut Cochin, Université Paris-Descartes, CNRS (UMR 8104), Paris, France
| | - William B Dobyns
- Departments of Pediatrics and Neurology, University of Washington, Seattle, WA, USA
| | - Kaya Bilguvar
- Departments of Neurosurgery, Neurobiology, and Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Rami Abou Jamra
- Institute of Human Genetics, University of Leipzig Hospitals and Clinics, Leipzig, Germany
| | - Murat Gunel
- Departments of Neurosurgery, Neurobiology, and Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Joseph G Gleeson
- Department of Neuroscience, Rady Children's Institute for Genomic Medicine, Howard Hughes Medical Institute, University of California, San Diego, San Diego, CA, USA.
| |
Collapse
|
7
|
Abstract
Signal transducer and activator of transcription (STAT) 3 is a key signalling protein engaged by a multitude of growth factors and cytokines to elicit diverse biological outcomes including cellular growth, differentiation, and survival. The complete loss of STAT3 is not compatible with life and even partial loss of function mutations lead to debilitating pathologies like hyper IgE syndrome. Conversely, augmented STAT3 activity has been reported in as many as 50% of all human tumours. The dogma of STAT3 activity posits that it is a tyrosine phosphorylated transcription factor which modulates the expression of hundreds of genes. However, the regulation and biological consequences of STAT3 activation are far more complex. In addition to tyrosine phosphorylation, STAT3 is decorated with a plethora of post-translational modifications which regulate STAT3's nuclear function in addition to its non-genomic activities. In addition to these emerging complexities in the biochemical regulation of STAT3 activity, recent studies reveal that STAT3 is either oncogenic or a tumour suppressor. This review will explore these complexities.
Collapse
Affiliation(s)
- Aleks C Guanizo
- a Centre for Cancer Research , Hudson Institute of Medical Research , Clayton , VIC , Australia
- b Department of Molecular and Translational Science , Monash University , Clayton , VIC , Australia
| | - Chamira Dilanka Fernando
- a Centre for Cancer Research , Hudson Institute of Medical Research , Clayton , VIC , Australia
- b Department of Molecular and Translational Science , Monash University , Clayton , VIC , Australia
| | - Daniel J Garama
- a Centre for Cancer Research , Hudson Institute of Medical Research , Clayton , VIC , Australia
- b Department of Molecular and Translational Science , Monash University , Clayton , VIC , Australia
| | - Daniel J Gough
- a Centre for Cancer Research , Hudson Institute of Medical Research , Clayton , VIC , Australia
- b Department of Molecular and Translational Science , Monash University , Clayton , VIC , Australia
| |
Collapse
|
8
|
Mitochondrial STAT3: Powering up a potent factor. Cytokine 2016; 87:20-5. [DOI: 10.1016/j.cyto.2016.05.019] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Accepted: 05/21/2016] [Indexed: 11/21/2022]
|
9
|
Regulation of microglial survival and proliferation in health and diseases. Semin Immunol 2016; 27:410-5. [PMID: 27033414 DOI: 10.1016/j.smim.2016.03.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 03/16/2016] [Indexed: 11/23/2022]
Abstract
Microglia play an important role in the development and maintenance of the central nervous system (CNS) under homeostatic conditions as well as during neurodegenerative diseases. Recent observations in human genomics and advances in genetic mouse models have provided insights into signaling pathways that control development, survival, proliferation and function of microglia. Alteration of these pathways contributes to the pathogenesis of CNS diseases. Here we review the current literature regarding the roles of these microglial pathways in both the normal and diseased brain and discuss areas that require further investigation.
Collapse
|
10
|
Sebban S, Farago M, Rabinovich S, Lazer G, Idelchuck Y, Ilan L, Pikarsky E, Katzav S. Vav1 promotes lung cancer growth by instigating tumor-microenvironment cross-talk via growth factor secretion. Oncotarget 2015; 5:9214-26. [PMID: 25313137 PMCID: PMC4253429 DOI: 10.18632/oncotarget.2400] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Vav1 is a signal transducer that functions as a scaffold protein and a regulator of cytoskeleton organization in the hematopoietic system, where it is exclusively expressed. Recently, Vav1 was shown to be involved in diverse human cancers, including lung cancer. We demonstrate that lung cancer cells that abnormally express Vav1 secrete growth factors in a Vav1-dependent manner. Transcriptome analysis demonstrated that Vav1 depletion results in a marked reduction in the expression of colony-stimulating-factor-1 (CSF1), a hematopoietic growth factor. The association between Vav1 expression and CSF1 was further supported by signal transduction experiments, supporting involvement of Vav1 in regulating lung cancer secretome. Blocking of ERK phosphorylation, led to a decrease in CSF1 transcription, thus suggesting a role for ERK, a downstream effector of Vav1, in CSF1 expression. CSF1-silenced cells exhibited reduced focus formation, proliferation abilities, and growth in NOD/SCID mice. CSF1-silenced H358 cells resulted in significantly smaller tumors, showing increased fibrosis and a decrease in tumor infiltrating macrophages. Finally, immunohistochemical analysis of primary human lung tumors revealed a positive correlation between Vav1 and CSF1 expression, which was associated with tumor grade. Additional results presented herein suggest a potential cross-talk between cancer cells and the microenvironment controlled by CSF1/Vav1 signaling pathways.
Collapse
Affiliation(s)
- Shulamit Sebban
- Departement of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hadassah Medical School - Hebrew University, Jerusalem, Israel
| | - Marganit Farago
- Departement of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hadassah Medical School - Hebrew University, Jerusalem, Israel
| | - Shiran Rabinovich
- Departement of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hadassah Medical School - Hebrew University, Jerusalem, Israel
| | - Galit Lazer
- Departement of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hadassah Medical School - Hebrew University, Jerusalem, Israel
| | - Yulia Idelchuck
- Departement of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hadassah Medical School - Hebrew University, Jerusalem, Israel
| | - Lena Ilan
- Departement of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hadassah Medical School - Hebrew University, Jerusalem, Israel
| | - Eli Pikarsky
- Department of Immunology and Cancer Research and Department of Pathology, Institute for Medical Research Israel-Canada, Hadassah Medical School - Hebrew University, Jerusalem, Israel
| | - Shulamit Katzav
- Departement of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hadassah Medical School - Hebrew University, Jerusalem, Israel
| |
Collapse
|
11
|
Liao HJ, Chyuan IT, Wu CS, Lin SW, Chen KH, Tsai HF, Hsu PN. Increased neutrophil infiltration, IL-1 production and a SAPHO syndrome-like phenotype in PSTPIP2-deficient mice. Rheumatology (Oxford) 2015; 54:1317-26. [PMID: 25602062 DOI: 10.1093/rheumatology/keu481] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Indexed: 01/15/2023] Open
Abstract
OBJECTIVE Proline-serine-threonine-phosphatase-interacting protein 2 (PSTPIP2) is involved in macrophage activation, neutrophil motility and osteoclast differentiation. However, the role of PSTPIP2 in inflammation and autoinflammatory diseases is still not clear. In this study, we generated PSTPIP2 knockout (Pstpip2(-/-)) mice to investigate its phenotype and role in autoinflammatory diseases. METHODS We constructed a Pstpip2-targeting vector and generated Pstpip2(-/-) mice. The phenotype and immunopathology of Pstpip2(-/-) mice were analysed. RESULTS All Pstpip2(-/-) mice developed paw swelling, synovitis, hyperostosis and osteitis, resembling SAPHO syndrome, an inflammatory disorder of the bone, skin and joints. Multifocal osteomyelitis was found in inflamed paws, with increased macrophage and marked neutrophil infiltrations in the bone, joint and skin. Profound osteolytic lesions with markedly decreased bone volume density developed in paws and limbs. Neutrophil-attracting chemokines and IL-1β were markedly elevated in inflamed tissues. CONCLUSION Our study suggests that PSTPIP2 could play a role in innate immunity and development of autoinflammatory bone disorders, and may be associated with the pathogenesis of human SAPHO syndrome.
Collapse
Affiliation(s)
- Hsiu-Jung Liao
- Graduate Institute of Immunology, College of Medicine, National Taiwan University, Division of Rheumatology, Department of Internal Medicine, Cathay General Hospital, Division of Rheumatology, Department of Internal Medicine, Far Eastern Memorial Hospital, Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Department of Internal Medicine, Taipei Medical University, Shuang Ho Hospital, Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University and Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - I-Tsu Chyuan
- Graduate Institute of Immunology, College of Medicine, National Taiwan University, Division of Rheumatology, Department of Internal Medicine, Cathay General Hospital, Division of Rheumatology, Department of Internal Medicine, Far Eastern Memorial Hospital, Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Department of Internal Medicine, Taipei Medical University, Shuang Ho Hospital, Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University and Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Chien-Sheng Wu
- Graduate Institute of Immunology, College of Medicine, National Taiwan University, Division of Rheumatology, Department of Internal Medicine, Cathay General Hospital, Division of Rheumatology, Department of Internal Medicine, Far Eastern Memorial Hospital, Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Department of Internal Medicine, Taipei Medical University, Shuang Ho Hospital, Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University and Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Shu-Wha Lin
- Graduate Institute of Immunology, College of Medicine, National Taiwan University, Division of Rheumatology, Department of Internal Medicine, Cathay General Hospital, Division of Rheumatology, Department of Internal Medicine, Far Eastern Memorial Hospital, Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Department of Internal Medicine, Taipei Medical University, Shuang Ho Hospital, Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University and Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Kun-Hung Chen
- Graduate Institute of Immunology, College of Medicine, National Taiwan University, Division of Rheumatology, Department of Internal Medicine, Cathay General Hospital, Division of Rheumatology, Department of Internal Medicine, Far Eastern Memorial Hospital, Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Department of Internal Medicine, Taipei Medical University, Shuang Ho Hospital, Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University and Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Hwei-Fang Tsai
- Graduate Institute of Immunology, College of Medicine, National Taiwan University, Division of Rheumatology, Department of Internal Medicine, Cathay General Hospital, Division of Rheumatology, Department of Internal Medicine, Far Eastern Memorial Hospital, Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Department of Internal Medicine, Taipei Medical University, Shuang Ho Hospital, Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University and Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan Graduate Institute of Immunology, College of Medicine, National Taiwan University, Division of Rheumatology, Department of Internal Medicine, Cathay General Hospital, Division of Rheumatology, Department of Internal Medicine, Far Eastern Memorial Hospital, Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Department of Internal Medicine, Taipei Medical University, Shuang Ho Hospital, Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University and Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Ping-Ning Hsu
- Graduate Institute of Immunology, College of Medicine, National Taiwan University, Division of Rheumatology, Department of Internal Medicine, Cathay General Hospital, Division of Rheumatology, Department of Internal Medicine, Far Eastern Memorial Hospital, Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Department of Internal Medicine, Taipei Medical University, Shuang Ho Hospital, Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University and Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan Graduate Institute of Immunology, College of Medicine, National Taiwan University, Division of Rheumatology, Department of Internal Medicine, Cathay General Hospital, Division of Rheumatology, Department of Internal Medicine, Far Eastern Memorial Hospital, Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Department of Internal Medicine, Taipei Medical University, Shuang Ho Hospital, Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University and Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
12
|
Lou J, Low-Nam ST, Kerkvliet JG, Hoppe AD. Delivery of CSF-1R to the lumen of macropinosomes promotes its destruction in macrophages. J Cell Sci 2014; 127:5228-39. [PMID: 25335894 DOI: 10.1242/jcs.154393] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Activation of the macrophage colony stimulating factor-1 receptor (CSF-1R) by CSF-1 stimulates pronounced macropinocytosis and drives proliferation of macrophages. Although the role of macropinocytosis in CSF-1R signaling remains unknown, we show here that, despite internalizing large quantities of plasma membrane, macropinosomes contribute little to the internalization of the CSF-1-CSF-1R complex. Rather, internalization of the CSF-1R in small endocytic vesicles that are sensitive to clathrin disruption, outcompetes macropinosomes for CSF-1R endocytosis. Following internalization, small vesicles carrying the CSF-1R underwent homotypic fusion and then trafficked to newly formed macropinosomes bearing Rab5. As these macropinosomes matured, acquiring Rab7, the CSF-1R was transported into their lumen and degraded. Inhibition of macropinocytosis delayed receptor degradation despite no disruption to CSF-1R endocytosis. These data indicate that CSF-1-stimulated macropinosomes are sites of multivesicular body formation and accelerate CSF-1R degradation. Furthermore, we demonstrate that macropinocytosis and cell growth have a matching dose dependence on CSF-1, suggesting that macropinosomes might be a central mechanism coupling CSF-1R signaling and macrophage growth.
Collapse
Affiliation(s)
- Jieqiong Lou
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, 57007 SD, USA
| | - Shalini T Low-Nam
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, 57007 SD, USA
| | - Jason G Kerkvliet
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, 57007 SD, USA
| | - Adam D Hoppe
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, 57007 SD, USA
| |
Collapse
|
13
|
Abstract
The CSF-1 receptor (CSF-1R) is activated by the homodimeric growth factors colony-stimulating factor-1 (CSF-1) and interleukin-34 (IL-34). It plays important roles in development and in innate immunity by regulating the development of most tissue macrophages and osteoclasts, of Langerhans cells of the skin, of Paneth cells of the small intestine, and of brain microglia. It also regulates the differentiation of neural progenitor cells and controls functions of oocytes and trophoblastic cells in the female reproductive tract. Owing to this broad tissue expression pattern, it plays a central role in neoplastic, inflammatory, and neurological diseases. In this review we summarize the evolution, structure, and regulation of expression of the CSF-1R gene. We discuss the structures of CSF-1, IL-34, and the CSF-1R and the mechanism of ligand binding to and activation of the receptor. We further describe the pathways regulating macrophage survival, proliferation, differentiation, and chemotaxis downstream from the CSF-1R.
Collapse
Affiliation(s)
- E Richard Stanley
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Violeta Chitu
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York 10461
| |
Collapse
|
14
|
Wang Y, Colonna M. Interkeukin-34, a cytokine crucial for the differentiation and maintenance of tissue resident macrophages and Langerhans cells. Eur J Immunol 2014; 44:1575-81. [PMID: 24737461 DOI: 10.1002/eji.201344365] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 02/25/2014] [Accepted: 04/10/2014] [Indexed: 12/18/2022]
Abstract
IL-34 is a recently discovered cytokine that acts on tissue resident macrophages and Langerhans cells upon binding the receptor for CSF-1, CSF-1R. The existence of two ligands for CSF-1R, IL-34, and CSF-1, raises several intriguing questions. Are IL-34 and CSF-1 redundant or does each perform temporally and spatially distinct functions? Is IL-34 involved in human pathology? Would therapeutic strategies based on selective inhibition or administration of either IL-34 or CSF-1 be advantageous for preventing human pathology? Recent in vivo studies indicate that IL-34 promotes the development, survival, and function of microglia and Langerhans cells; therefore, this cytokine may predominately function in brain and skin biology. Here, we review the evidence for IL-34 as a key cytokine in the development and function of these two diverse cell types and discuss its potential role in pathological conditions.
Collapse
Affiliation(s)
- Yaming Wang
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | | |
Collapse
|
15
|
Rougerie P, Miskolci V, Cox D. Generation of membrane structures during phagocytosis and chemotaxis of macrophages: role and regulation of the actin cytoskeleton. Immunol Rev 2014; 256:222-39. [PMID: 24117824 DOI: 10.1111/imr.12118] [Citation(s) in RCA: 171] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Macrophages are best known for their protective search and destroy functions against invading microorganisms. These processes are commonly known as chemotaxis and phagocytosis. Both of these processes require actin cytoskeletal remodeling to produce distinct F-actin-rich membrane structures called lamellipodia and phagocytic cups. This review will focus on the mechanisms by which macrophages regulate actin polymerization through initial receptor signaling and subsequent Arp2/3 activation by nucleation-promoting factors like the WASP/WAVE family, followed by remodeling of actin networks to produce these very distinct structures.
Collapse
Affiliation(s)
- Pablo Rougerie
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | | | | |
Collapse
|
16
|
Chromatin-associated CSF-1R binds to the promoter of proliferation-related genes in breast cancer cells. Oncogene 2013; 33:4359-64. [PMID: 24362524 PMCID: PMC4141303 DOI: 10.1038/onc.2013.542] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 10/04/2013] [Accepted: 11/04/2013] [Indexed: 12/18/2022]
Abstract
The colony-stimulating factor-1 (CSF-1) and its receptor CSF-1R physiologically regulate the monocyte/macrophage system, trophoblast implantation and breast development. An abnormal CSF-1R expression has been documented in several human epithelial tumors, including breast carcinomas. We recently demonstrated that CSF-1/CSF-1R signaling drives proliferation of breast cancer cells via ‘classical' receptor tyrosine kinase signaling, including activation of the extracellular signal-regulated kinase 1/2. In this paper, we show that CSF-1R can also localize within the nucleus of breast cancer cells, either cell lines or tissue specimens, irrespectively of their intrinsic molecular subtype. We found that the majority of nuclear CSF-1R is located in the chromatin-bound subcellular compartment. Chromatin immunoprecipitation revealed that CSF-1R, once in the nucleus, binds to the promoters of the proliferation-related genes CCND1, c-JUN and c-MYC. CSF-1R also binds the promoter of its ligand CSF-1 and positively regulates CSF-1 expression. The existence of such a receptor/ligand regulatory loop is a novel aspect of CSF-1R signaling. Moreover, our results provided the first evidence of a novel localization site of CSF-1R in breast cancer cells, suggesting that CSF-1R could act as a transcriptional regulator on proliferation-related genes.
Collapse
|
17
|
Okenwa C, Kumar A, Rego D, Konarski Y, Nilchi L, Wright K, Kozlowski M. SHP-1-Pyk2-Src protein complex and p38 MAPK pathways independently regulate IL-10 production in lipopolysaccharide-stimulated macrophages. THE JOURNAL OF IMMUNOLOGY 2013; 191:2589-603. [PMID: 23904162 DOI: 10.4049/jimmunol.1300466] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The role of tyrosine phosphatase Src homology region 2 domain-containing phosphatase (SHP)-1 in LPS-activated cytokine production and inflammation was investigated by determining TNF-α and IL-10 production in splenic macrophages employing SHP-1-null (me/me) mouse model. LPS-stimulated me/me splenic macrophages secreted significantly less IL-10 with concomitantly elevated levels of TNF-α compared with wild-type (WT) macrophages irrespective of LPS dose and duration of stimulation. IL-10 significantly inhibited LPS-induced TNF-α production in both me/me and WT macrophages. The critical requirement for SHP-1 in regulating LPS-induced IL-10 and TNF-α production was confirmed by interfering with SHP-1 expression in WT macrophages and by reconstituting me/me macrophages with the SHP-1 gene. To delineate the role of SHP-1 in positive regulation of LPS-induced IL-10 production, signaling proteins representing SHP-1 targets were examined. The results reveal that tyrosine kinases Src and proline-rich tyrosine kinase 2 (Pyk2) regulate SHP-1-dependent LPS-induced IL-10 production and infer that optimal LPS-induced IL-10 production requires an assembly of a protein complex consisting of SHP-1-Pyk2-Src proteins. Moreover, LPS-induced IL-10 production also requires activation of the p38 MAPK independent of SHP-1 function. Overall, to our knowledge our results show for the first time that SHP-1 acts as a positive regulator of LPS-induced IL-10 production in splenic macrophages through two distinct and independent SHP-1-Pyk2-Src and p38 MAPK pathways.
Collapse
Affiliation(s)
- Chinonso Okenwa
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | | | | | | | | | | | | |
Collapse
|
18
|
Alicea-Velázquez NL, Jakoncic J, Boggon TJ. Structure-guided studies of the SHP-1/JAK1 interaction provide new insights into phosphatase catalytic domain substrate recognition. J Struct Biol 2013; 181:243-51. [PMID: 23296072 PMCID: PMC3578099 DOI: 10.1016/j.jsb.2012.12.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Revised: 12/06/2012] [Accepted: 12/13/2012] [Indexed: 12/28/2022]
Abstract
SHP-1 (PTPN6) is a member of the SHP sub-family of protein tyrosine phosphatases and plays a critical role in the regulation of the JAK/STAT signaling pathway. Previous studies suggested that SHP-1 contains a PTP1B-like second phosphotyrosine pocket that allows for binding of tandem phosphotyrosine residues, such as those found in the activation loop of JAK kinases. To discover the structural nature of the interaction between SHP-1 and the JAK family member, JAK1, we determined the 1.8Å co-crystal structure of the SHP-1 catalytic domain and a JAK1-derived substrate peptide. This structure reveals electron density for only one bound phosphotyrosine residue. To investigate the role of the predicted second site pocket we determined the structures of SHP-1 in complex with phosphate and sulfate to 1.37Å and 1.7Å, respectively, and performed anomalous scattering experiments for a selenate-soaked crystal. These crystallographic data suggest that SHP-1 does not contain a PTP1B-like second site pocket. This conclusion is further supported by analysis of the relative dephosphorylation and binding affinities of mono- and tandem-phosphorylated peptide substrates. The crystal structures instead indicate that SHP-1 contains an extended C-terminal helix α2' incompatible with the predicted second phosphotyrosine binding site. This study suggests that SHP-1 defines a new category of PTP1B-like protein tyrosine phosphatases with a hindered second phosphotyrosine pocket.
Collapse
Affiliation(s)
- Nilda L. Alicea-Velázquez
- Department of Pharmacology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520
| | - Jean Jakoncic
- the National Synchrotron Light Source, Brookhaven National Laboratories, Upton, NY 11973, USA
| | - Titus J. Boggon
- Department of Pharmacology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520
| |
Collapse
|
19
|
Sul OJ, Ke K, Kim WK, Kim SH, Lee SC, Kim HJ, Kim SY, Suh JH, Choi HS. Absence of MCP-1 leads to elevated bone mass via impaired actin ring formation. J Cell Physiol 2012; 227:1619-27. [PMID: 21678414 DOI: 10.1002/jcp.22879] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Monocyte chemoattractant protein-1 (MCP-1) is associated with various inflammatory diseases involving bone loss, and is expressed along with its receptor by bone marrow-derived macrophages (BMM), which are osteoclast (OC) precursors. To investigate the role of MCP-1 in bone remodeling, we compared MCP-1-knockout (KO) mice with wild-type (WT) mice. The absence of MCP-1 increased bone mass and lowered serum collagen type I fragments (CTX-1) and TRACP 5b, but had no significant effect on the N-terminal propeptide of type I procollagen, suggesting that OCs are primarily responsible for the bone phenotype observed in the absence of MCP-1. MCP-1 deficiency resulted in reduced numbers and activity of OCs in vitro. It also led to a reduced level of c-Fms and receptor activator of nuclear factor-κB receptor and impaired actin ring formation. Activation of ERK, Akt, Rac1, and Rho upon M-CSF stimulation was also reduced and our evidence suggests that the aberrant actin ring formation was partly due to reduced activation of these molecules. Our findings point to a role of osteoclast MCP-1 in regulating bone remodeling. The higher bone mass in the femurs of MCP-1-KO mice could be, at least in part, due to decreased osteoclastogenesis and bone resorption resulting from aberrant M-CSF signaling in OCs.
Collapse
Affiliation(s)
- Ok-Joo Sul
- Department of Biological Sciences (BK21 Program) and the Immunomodulation Research Center, University of Ulsan, Ulsan, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Yu W, Chen J, Xiong Y, Pixley FJ, Yeung YG, Stanley ER. Macrophage proliferation is regulated through CSF-1 receptor tyrosines 544, 559, and 807. J Biol Chem 2012; 287:13694-704. [PMID: 22375015 DOI: 10.1074/jbc.m112.355610] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Colony-stimulating factor-1 (CSF-1)-stimulated CSF-1 receptor (CSF-1R) tyrosine phosphorylation initiates survival, proliferation, and differentiation signaling pathways in macrophages. Either activation loop Y807F or juxtamembrane domain (JMD) Y559F mutations severely compromise CSF-1-regulated proliferation and differentiation. YEF, a CSF-1R in which all eight tyrosines phosphorylated in the activated receptor were mutated to phenylalanine, lacks in vitro kinase activity and in vivo CSF-1-regulated tyrosine phosphorylation. The addition of Tyr-807 alone to the YEF backbone (Y807AB) led to CSF-1-independent but receptor kinase-dependent proliferation, without detectable activation loop Tyr-807 phosphorylation. The addition of Tyr-559 alone (Y559AB) supported a low level of CSF-1-independent proliferation that was slightly enhanced by CSF-1, indicating that Tyr-559 has a positive Tyr-807-independent effect. Consistent with the postulated autoinhibitory role of the JMD Tyr-559 and its relief by ligand-induced Tyr-559 phosphorylation, the addition of Tyr-559 to the Y807AB background suppressed proliferation in the absence of CSF-1, but restored most of the CSF-1-stimulated proliferation. Full restoration of kinase activation and proliferation required the additional add back of JMD Tyr-544. Inhibitor experiments indicate that the constitutive proliferation of Y807AB macrophages is mediated by the phosphatidylinositol 3-kinase (PI3K) and ERK1/2 pathways, whereas proliferation of WT and Y559,807AB macrophages is, in addition, contributed to by Src family kinase (SFK)-dependent pathways. Thus Tyr-807 confers sufficient kinase activity for strong CSF-1-independent proliferation, whereas Tyr-559 maintains the receptor in an inactive state. Tyr-559 phosphorylation releases this restraint and may also contribute to the CSF-1-regulated proliferative response by activating Src family kinase.
Collapse
Affiliation(s)
- Wenfeng Yu
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | | | |
Collapse
|
21
|
Zwaenepoel O, Tzenaki N, Vergetaki A, Makrigiannakis A, Vanhaesebroeck B, Papakonstanti EA. Functional CSF-1 receptors are located at the nuclear envelope and activated via the p110δ isoform of PI 3-kinase. FASEB J 2011; 26:691-706. [PMID: 22084313 DOI: 10.1096/fj.11-189753] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Colony stimulating factor-1 (CSF-1) and its receptor (CSF-1R) are key regulators of macrophage biology, and their elevated expression in cancer cells has been linked to poor prognosis. CSF-1Rs are thought to function at the plasma membrane. We show here that functional CSF-1Rs are present at the nuclear envelope of various cell types, including primary macrophages, human cancer cell lines, and primary human carcinomas. In response to CSF-1, added to intact cells or isolated nuclei, nucleus-associated CSF-1R became phosphorylated and triggered the phosphorylation of Akt and p27 inside the nucleus. Extracellularly added CSF-1 was also found to colocalize with nucleus-associated CSF-1Rs. All these activities were found to depend selectively on the activity of the p110δ isoform of phosphoinositide 3-kinase (PI3K). This finding was related to the p110δ-dependent translocation of exogenous CSF-1 to the nucleus-associated CSF-1Rs, correlating with a prominent role of p110δ in activation of the Rab5 GTPase, a key regulator of the endocytic trafficking. siRNA-silencing of Rab5a phenocopied p110δ inactivation and nuclear CSF-1 signaling. Our work demonstrates for the first time the presence of functional nucleus-associated CSF-1Rs, which are activated by extracellular CSF-1 by a mechanism that involves p110δ and Rab5 activity. These findings may have important implications in cancer development.
Collapse
Affiliation(s)
- Olivier Zwaenepoel
- Department of Biochemistry, School of Medicine, University of Crete, Heraklion, Greece
| | | | | | | | | | | |
Collapse
|
22
|
Park H, Ishihara D, Cox D. Regulation of tyrosine phosphorylation in macrophage phagocytosis and chemotaxis. Arch Biochem Biophys 2011; 510:101-11. [PMID: 21356194 PMCID: PMC3114168 DOI: 10.1016/j.abb.2011.02.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Revised: 02/15/2011] [Accepted: 02/18/2011] [Indexed: 12/22/2022]
Abstract
Macrophages display a large variety of surface receptors that are critical for their normal cellular functions in host defense, including finding sites of infection (chemotaxis) and removing foreign particles (phagocytosis). However, inappropriate regulation of these processes can lead to human diseases. Many of these receptors utilize tyrosine phosphorylation cascades to initiate and terminate signals leading to cell migration and clearance of infection. Actin remodeling dominates these processes and many regulators have been identified. This review focuses on how tyrosine kinases and phosphatases regulate actin dynamics leading to macrophage chemotaxis and phagocytosis.
Collapse
Affiliation(s)
- Haein Park
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Dan Ishihara
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Dianne Cox
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| |
Collapse
|
23
|
Xiong Y, Song D, Cai Y, Yu W, Yeung YG, Stanley ER. A CSF-1 receptor phosphotyrosine 559 signaling pathway regulates receptor ubiquitination and tyrosine phosphorylation. J Biol Chem 2010; 286:952-60. [PMID: 21041311 DOI: 10.1074/jbc.m110.166702] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Receptor tyrosine kinase (RTK) activation involves ligand-induced receptor dimerization and transphosphorylation on tyrosine residues. Colony-stimulating factor-1 (CSF-1)-induced CSF-1 receptor (CSF-1R) tyrosine phosphorylation and ubiquitination were studied in mouse macrophages. Phosphorylation of CSF-1R Tyr-559, required for the binding of Src family kinases (SFKs), was both necessary and sufficient for these responses and for c-Cbl tyrosine phosphorylation and all three responses were inhibited by SFK inhibitors. In c-Cbl-deficient macrophages, CSF-1R ubiquitination and tyrosine phosphorylation were substantially inhibited. Reconstitution with wild-type, but not ubiquitin ligase-defective C381A c-Cbl rescued these responses, while expression of C381A c-Cbl in wild-type macrophages suppressed them. Analysis of site-directed mutations in the CSF-1R further suggests that activated c-Cbl-mediated CSF-1R ubiquitination is required for a conformational change in the major kinase domain that allows amplification of receptor tyrosine phosphorylation and full receptor activation. Thus the results indicate that CSF-1-mediated receptor dimerization leads to a Tyr-559/SFK/c-Cbl pathway resulting in receptor ubiquitination that permits full receptor tyrosine phosphorylation of this class III RTK in macrophages.
Collapse
Affiliation(s)
- Ying Xiong
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | | | |
Collapse
|
24
|
Guanine nucleotide exchange factors for RhoGTPases: good therapeutic targets for cancer therapy? Cell Signal 2010; 23:969-79. [PMID: 21044680 DOI: 10.1016/j.cellsig.2010.10.022] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Accepted: 10/23/2010] [Indexed: 12/12/2022]
Abstract
Rho guanosine triphosphatases (GTPases) are a family of small proteins which function as molecular switches in a variety of signaling pathways following stimulation of cell surface receptors. RhoGTPases regulate numerous cellular processes including cytoskeleton organization, gene transcription, cell proliferation, migration, growth and cell survival. Because of their central role in regulating processes that are dysregulated in cancer, it seems reasonable that defects in the RhoGTPase pathway may be involved in the development of cancer. RhoGTPase activity is regulated by a number of protein families: guanine nucleotide exchange factors (GEFs), GTPase activating proteins (GAPs) and guanine nucleotide-dissociation inhibitors (GDIs). This review discusses the participation of RhoGTPases and their regulators, especially GEFs in human cancers. In particular, we focus on the involvement of the RhoGTPase GEF, Vav1, a hematopoietic specific signal transducer which is involved in human neuroblastoma, pancreatic ductal carcinoma and lung cancer. Finally, we summarize recent advances in the design and application of a number of molecules that specifically target individual RhoGTPases or their regulators or effectors, and discuss their potential for cancer therapy.
Collapse
|
25
|
Leishmania interferes with host cell signaling to devise a survival strategy. J Biomed Biotechnol 2010; 2010:109189. [PMID: 20396387 PMCID: PMC2852600 DOI: 10.1155/2010/109189] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Revised: 10/21/2009] [Accepted: 01/28/2010] [Indexed: 01/24/2023] Open
Abstract
The protozoan parasite Leishmania spp. exists as extracellular promastigotes in its vector whereas it resides and replicates as amastigotes within the macrophages of its mammalian host. As a survival strategy, Leishmania modulates macrophage functions directly or indirectly. The direct interference includes prevention of oxidative burst and the effector functions that lead to its elimination. The indirect effects include the antigen presentation and modulation of T cell functions in such a way that the effector T cells help the parasite survive by macrophage deactivation. Most of these direct and indirect effects are regulated by host cell receptor signaling that occurs through cycles of phosphorylation and dephosphorylation in cascades of kinases and phosphatases. This review highlights how Leishmania selectively manipulates the different signaling pathways to ensure its survival.
Collapse
|
26
|
Lin J, Xie Z, Zhu H, Qian J. Understanding protein phosphorylation on a systems level. Brief Funct Genomics 2010; 9:32-42. [PMID: 20056723 DOI: 10.1093/bfgp/elp045] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Protein kinase phosphorylation is central to the regulation and control of protein and cellular function. Over the past decade, the development of many high-throughput approaches has revolutionized the understanding of protein phosphorylation and allowed rapid and unbiased surveys of phosphoproteins and phosphorylation events. In addition to this technological advancement, there have also been computational improvements; recent studies on network models of protein phosphorylation have provided many insights into the cellular processes and pathways regulated by phosphorylation. This article gives an overview of experimental and computational techniques for identifying and analyzing protein phosphorylation on a systems level.
Collapse
Affiliation(s)
- Jimmy Lin
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | |
Collapse
|
27
|
Menke J, Iwata Y, Rabacal WA, Basu R, Yeung YG, Humphreys BD, Wada T, Schwarting A, Stanley ER, Kelley VR. CSF-1 signals directly to renal tubular epithelial cells to mediate repair in mice. J Clin Invest 2009; 119:2330-42. [PMID: 19587445 PMCID: PMC2719924 DOI: 10.1172/jci39087] [Citation(s) in RCA: 137] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2009] [Accepted: 05/06/2009] [Indexed: 01/10/2023] Open
Abstract
Tubular damage following ischemic renal injury is often reversible, and tubular epithelial cell (TEC) proliferation is a hallmark of tubular repair. Macrophages have been implicated in tissue repair, and CSF-1, the principal macrophage growth factor, is expressed by TECs. We therefore tested the hypothesis that CSF-1 is central to tubular repair using an acute renal injury and repair model, ischemia/reperfusion (I/R). Mice injected with CSF-1 following I/R exhibited hastened healing, as evidenced by decreased tubular pathology, reduced fibrosis, and improved renal function. Notably, CSF-1 treatment increased TEC proliferation and reduced TEC apoptosis. Moreover, administration of a CSF-1 receptor-specific (CSF-1R-specific) antibody after I/R increased tubular pathology and fibrosis, suppressed TEC proliferation, and heightened TEC apoptosis. To determine the contribution of macrophages to CSF-1-dependent renal repair, we assessed the effect of CSF-1 on I/R in mice in which CD11b+ cells were genetically ablated and determined that macrophages only partially accounted for CSF-1-dependent tubular repair. We found that TECs expressed the CSF-1R and that this receptor was upregulated and coexpressed with CSF-1 in TECs following renal injury in mice and humans. Furthermore, signaling via the CSF-1R stimulated proliferation and reduced apoptosis in human and mouse TECs. Taken together, these data suggest that CSF-1 mediates renal repair by both a macrophage-dependent mechanism and direct autocrine/paracrine action on TECs.
Collapse
Affiliation(s)
- Julia Menke
- Laboratory of Molecular Autoimmune Disease, Renal Division, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Hunter M, Wang Y, Eubank T, Baran C, Nana-Sinkam P, Marsh C. Survival of monocytes and macrophages and their role in health and disease. FRONT BIOSCI-LANDMRK 2009; 14:4079-102. [PMID: 19273336 PMCID: PMC3708298 DOI: 10.2741/3514] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Macrophages are versatile cells involved in health and disease. These cells act as scavengers to rid the body of apoptotic and senescent cells and debris through their phagocytic function. Although this is a primary function of these cells, macrophages play vital roles in inflammation and repair of damaged tissue. Macrophages secrete a large number of cytokines, chemokines and growth factors that recruit and activate a variety of cell types to inflamed tissue compartments. These cells are also critical in cell-mediated immunity and in the resolution of inflammation. Since macrophages, and their precursors, blood monocytes, are important in regulating and resolving inflammation, prolonged cellular survival in tissue compartments could be detrimental. Thus, factors that regulate the fate of monocyte and macrophage survival are important in cellular homeostasis. In this article, we will explore stimuli and the intracellular pathways important in regulating macrophage survival and implication in human disease.
Collapse
Affiliation(s)
- Melissa Hunter
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine and the Center for Critical Care Medicine, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | | | | | | | | | | |
Collapse
|
29
|
Riechers A, Grauer A, Ritter S, Sperl B, Berg T, König B. Binding of phosphorylated peptides and inhibition of their interaction with disease-relevant human proteins by synthetic metal-chelate receptors. J Mol Recognit 2009; 23:329-34. [DOI: 10.1002/jmr.986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
30
|
Dinh H, Scholz GM, Hamilton JA. Regulation of WAVE1 expression in macrophages at multiple levels. J Leukoc Biol 2008; 84:1483-91. [DOI: 10.1189/jlb.0308216] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
31
|
Yu W, Chen J, Xiong Y, Pixley FJ, Dai XM, Yeung YG, Stanley ER. CSF-1 receptor structure/function in MacCsf1r-/- macrophages: regulation of proliferation, differentiation, and morphology. J Leukoc Biol 2008; 84:852-863. [PMID: 18519746 PMCID: PMC2516905 DOI: 10.1189/jlb.0308171] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2008] [Revised: 04/23/2008] [Accepted: 05/01/2008] [Indexed: 12/19/2022] Open
Abstract
CSF-1 is the major regulator of tissue macrophage development and function. A GM-CSF-dependent, CSF-1 receptor (CSF-1R)-deficient F4/80(hi)Mac-1(+)Gr1(-)CD11c(+) bone marrow macrophage (BMM) line (MacCsf1r-/-) was developed to study the roles of the eight intracellular CSF-1R tyrosines phosphorylated upon receptor activation. Retroviral expression of the wild-type CSF-1R rescued the CSF-1-induced survival, proliferation, differentiation, and morphological characteristics of primary BMM. Mutation of all eight tyrosines failed to rescue, whereas the individual Y --> F mutants (544, 559, 697, 706, 721, 807, 921, 974) rescued these CSF-1-inducible phenotypes to varying degrees. The juxtamembrane domain Y559F and activation loop Y807F mutations severely compromised proliferation and differentiation, whereas Y706, Y721F, and Y974F mutations altered morphological responses, and Y706F increased differentiation. Despite their retention of significant in vitro tyrosine kinase activity, Y559F and Y807F mutants exhibited severely impaired in vivo receptor tyrosine phosphorylation, consistent with the existence of cellular mechanisms inhibiting CSF-1R tyrosine phosphorylation that are relieved by phosphorylation of these two sites. The MacCsf1r-/- macrophage line will facilitate genetic and proteomic approaches to CSF-1R structure/function studies in the major disease-related CSF-1R-expressing cell type.
Collapse
Affiliation(s)
- Wenfeng Yu
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Screening of proteins that interact with human thrombopoietin receptor c-Mpl using yeast two-hybrid system. SCIENCE IN CHINA. SERIES C, LIFE SCIENCES 2008; 43:239-44. [PMID: 18726378 DOI: 10.1007/bf02879282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/1999] [Indexed: 10/22/2022]
Abstract
Thrombopoietin (TPO) is the major cytokine involved in platelet production and exerts its effects via the receptor c-Mpl. The yeast two-hybrid system has been used to screen the proteins interacting with c-Mpl. First, the cDNA fragment of c-Mpl intracellular domain was cloned into two-hybrid vector pAS2, and the resulting plasmid is designated as pASMM. Then a human placenta cDNA library was screened using the pASMM as a target plasmid. Seven positive clones were isolated from 150 000 independent transformants. Sequence analysis of one of the positive clones demonstrates that a part of coding sequence of vimentin from 611 bp to 3' end and flanking non-translation region was obtained. Therefore, there is an interaction between vimentin and TPO receptor. The results suggest that cytoskeletal protein may play an important role in TPO signal transduction pathway.
Collapse
|
33
|
Sehgal PB. Paradigm shifts in the cell biology of STAT signaling. Semin Cell Dev Biol 2008; 19:329-40. [PMID: 18691663 PMCID: PMC2597702 DOI: 10.1016/j.semcdb.2008.07.003] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Revised: 07/15/2008] [Accepted: 07/17/2008] [Indexed: 01/25/2023]
Abstract
In recent years several of the key tenets of the original cytokine-STAT-signaling paradigm had to be revised. First, the notion that nonphosphorylated "inactive" STATs are present in the cytoplasm as free monomers which dimerized only subsequent to Tyr-phosphorylation has been replaced by the understanding that nonphosphorylated STATs in the cytoplasm exist largely as dimers and high molecular mass "statosome" complexes. Second, the notion that phosphorylation, either of Tyr or Ser residues or both, in STAT species is required for transcriptional activation has been replaced by the realization that nonphosphorylated STATs can be transcriptionally active albeit with respect to sets of target genes distinct from phosphorylated STATs. Third, the notion that it is the activation by phosphorylation of STATs at the plasma membrane that then leads to their import into the nucleus has been replaced by the recognition that even nonphosphorylated STATs shuttle between the cytoplasm and nucleus at all times in a constitutive manner. Fourth, the notion that the trans-cytoplasmic transit of STATs from the plasma membrane to the nuclear import machinery takes place exclusively as a free cytosolic process has been replaced by the understanding that at least a portion of this trans-cytoplasmic transit is mediated via membrane-associated caveolar and endocytic trafficking (the "signaling endosome" hypothesis). Fifth, the targeting and sequestration of activated STAT3 to long-lived endosomes in the cytoplasm requires consideration of STAT3-mediated "signal transduction" from the plasma membrane to cytoplasmic membrane destinations potentially for function(s) in the cytoplasm. Indeed, in tissue sections many discrete histologic cell types display PY-STAT3 almost exclusively in the cytoplasm with little, if any, in the nucleus. New challenges include determining the structural bases for the recruitment of nonphosphorylated dimeric STAT species to the cytosolic face of membranes including at the cytoplasmic tails of respective receptor complexes, the conformational changes subsequent to phosphorylation and the structural bases for the targeting and functions of STAT proteins within the cytoplasm per se.
Collapse
Affiliation(s)
- Pravin B Sehgal
- Department of Cell Biology & Anatomy, New York Medical College, Valhalla, NY 10595, United States.
| |
Collapse
|
34
|
Abstract
Phosphorylation is one of the most relevant and ubiquitous post-translational modifications. Despite its relevance, the analysis of protein phosphorylation has been revealed as one of the most challenging tasks due to its highly dynamic nature and low stoichiometry. However, the development and introduction of new analytical methods are modifying rapidly and substantially this field. Especially important has been the introduction of more sensitive and specific methods for phosphoprotein and phosphopeptide purification as well as the use of more sensitive and accurate MS-based analytical methods. The integration of both approaches has enabled large-scale phosphoproteome studies to be performed, an unimaginable task few years ago. Additionally, methods originally developed for differential proteomics have been adapted making the study of the highly dynamic nature of protein phosphorylation feasible. This review aims at offering an overview on the most frequently used methods in phosphoprotein and phosphopeptide enrichment as well as on the most recent MS-based analysis strategies. Current strategies for quantitative phosphoproteomics and the study of the dynamics of protein phosphorylation are highlighted.
Collapse
Affiliation(s)
- Alberto Paradela
- Departamento de Proteómica, Centro Nacional de Biotecnologia, Consejo Superior de Investigaciones Científicas, Madrid, Spain.
| | | |
Collapse
|
35
|
Pakuts B, Debonneville C, Liontos LM, Loreto MP, McGlade CJ. The Src-like Adaptor Protein 2 Regulates Colony-stimulating Factor-1 Receptor Signaling and Down-regulation. J Biol Chem 2007; 282:17953-17963. [PMID: 17353186 DOI: 10.1074/jbc.m701182200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Src-like adaptor protein 2 (SLAP-2) is a hematopoietic adaptor protein previously implicated as a negative regulator of T-cell antigen receptor (TCR)-mediated signaling. SLAP-2 contains an SH3 and an SH2 domain, followed by a unique carboxyl-terminal tail, which is important for c-Cbl binding. Here we describe a novel role for SLAP-2 in regulation of the colony-stimulating factor 1 receptor (CSF-1R), a receptor tyrosine kinase important for growth and differentiation of myeloid cells. SLAP-2 co-immunoprecipitates with c-Cbl and CSF-1R in primary bone marrow-derived macrophages. Using murine myeloid cells expressing CSF-1R (FD-Fms cells), we show that SLAP-2 is tyrosine-phosphorylated upon stimulation with CSF-1 and associates constitutively with both c-Cbl and CSF-1R. In addition, we show that expression of a dominant negative form of SLAP-2 impairs c-Cbl association with the CSF-1R and receptor ubiquitination. Impaired c-Cbl recruitment also correlated with changes in the kinetics of CSF-1R down-regulation and trafficking. CSF-1-mediated differentiation of FD-Fms cells and activation of downstream signaling events was also enhanced in cells stably expressing dominant negative SLAP-2. Together, these results demonstrate that SLAP-2 plays a role in c-Cbl-dependent down-regulation of CSF-1R signaling.
Collapse
Affiliation(s)
- Benjamin Pakuts
- Department of Medical Biophysics, University of Toronto, Hospital for Sick Children, Toronto, Ontario M5G 1L7, Canada; The Arthur and Sonia Labatt Brain Tumour Research Centre, Hospital for Sick Children, Toronto, Ontario M5G 1L7, Canada
| | - Christophe Debonneville
- The Arthur and Sonia Labatt Brain Tumour Research Centre, Hospital for Sick Children, Toronto, Ontario M5G 1L7, Canada
| | - Larissa M Liontos
- Department of Medical Biophysics, University of Toronto, Hospital for Sick Children, Toronto, Ontario M5G 1L7, Canada; The Arthur and Sonia Labatt Brain Tumour Research Centre, Hospital for Sick Children, Toronto, Ontario M5G 1L7, Canada
| | - Michael P Loreto
- Department of Medical Biophysics, University of Toronto, Hospital for Sick Children, Toronto, Ontario M5G 1L7, Canada; The Arthur and Sonia Labatt Brain Tumour Research Centre, Hospital for Sick Children, Toronto, Ontario M5G 1L7, Canada
| | - C Jane McGlade
- Department of Medical Biophysics, University of Toronto, Hospital for Sick Children, Toronto, Ontario M5G 1L7, Canada; The Arthur and Sonia Labatt Brain Tumour Research Centre, Hospital for Sick Children, Toronto, Ontario M5G 1L7, Canada.
| |
Collapse
|
36
|
Azarkan M, Huet J, Baeyens-Volant D, Looze Y, Vandenbussche G. Affinity chromatography: A useful tool in proteomics studies. J Chromatogr B Analyt Technol Biomed Life Sci 2007; 849:81-90. [PMID: 17113368 DOI: 10.1016/j.jchromb.2006.10.056] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2006] [Revised: 09/26/2006] [Accepted: 10/27/2006] [Indexed: 11/22/2022]
Abstract
Separation or fractionation of a biological sample in order to reduce its complexity is often a prerequisite to qualitative or quantitative proteomic approaches. Affinity chromatography is an efficient protein separation method based on the interaction between target proteins and specific immobilized ligands. The large range of available ligands allows to separate a complex biological extract in different protein classes or to isolate the low abundance species such as post-translationally modified proteins. This method plays an essential role in the isolation of protein complexes and in the identification of protein-protein interaction networks. Affinity chromatography is also required for quantification of protein expression by using isotope-coded affinity tags.
Collapse
Affiliation(s)
- Mohamed Azarkan
- Laboratoire de Chimie Générale (CP: 609), Faculté de Médecine, Université Libre de Bruxelles, Campus Erasme, 808, route de Lennik, B-1070 Bruxelles, Belgium
| | | | | | | | | |
Collapse
|
37
|
Sakai H, Chen Y, Itokawa T, Yu KP, Zhu ML, Insogna K. Activated c-Fms recruits Vav and Rac during CSF-1-induced cytoskeletal remodeling and spreading in osteoclasts. Bone 2006; 39:1290-301. [PMID: 16950670 DOI: 10.1016/j.bone.2006.06.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2005] [Revised: 05/30/2006] [Accepted: 06/17/2006] [Indexed: 12/13/2022]
Abstract
Colony-stimulating factor-1 (CSF-1) induces osteoclast spreading that requires activation of c-Src and phosphatidyl inositol 3-kinase (PI3-K), both of which are recruited to activated c-Fms, the CSF-1 receptor. The present report provides evidence that the hemopoietic guanine nucleotide exchange factor (GEF), Vav, and its target GTPase, Rac, lie downstream from this initial signaling complex. CSF-1 treatment of osteoclast-like cells induced translocation of Vav to the plasma membrane, an increase in its phosphotyrosine content, and a concomitant decline in the amount of phosphoinositol 4,5-bisphosphate bound to Vav, changes known to induce Vav's GEF activity. CSF-1 induced the association of Vav and Rac and increased Rac's GTPase activity. CSF-1 also induced rapid translocation of Rac to the periphery of spreading neonatal rat osteoclasts where it co-localized primarily with Vav3 and to a lesser extent with Vav1. Wortmannin, an inhibitor of PI3-K, blocked CSF-1-induced Rac translocation and prevented CSF-1-induced spreading and actin reorganization in osteoclasts. CSF-1-induced osteoclast spreading was not significantly reduced in osteoclasts isolated from Vav1 knock-out mice and Vav1 knock-out mice had normal bone density. Microinjection of constitutively active Rac, but not constitutively active Cdc42 or RhoA, induced lamellipodia formation and osteoclast spreading, mimicking the effects of CSF-1. Dominant-negative Rac blocked CSF-1-induced osteoclast spreading, whereas neither dominant-negative Cdc42 nor C3, an inhibitor of RhoA, affected the response to CSF-1. These data demonstrate that Vav and Rac lie downstream from activated PI3-K in CSF-1-treated osteoclasts and that Rac is required for CSF-1-induced cytoskeletal remodeling in these cells.
Collapse
Affiliation(s)
- Hiroaki Sakai
- Yale School of Medicine, TAC S-133, PO Box 208020, New Haven, CT 06520-8020, USA. hiro_yale.@yahoo.co.jp
| | | | | | | | | | | |
Collapse
|
38
|
Swaminathan G, Tsygankov AY. The Cbl family proteins: ring leaders in regulation of cell signaling. J Cell Physiol 2006; 209:21-43. [PMID: 16741904 DOI: 10.1002/jcp.20694] [Citation(s) in RCA: 238] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The proto-oncogenic protein c-Cbl was discovered as the cellular form of v-Cbl, a retroviral transforming protein. This was followed over the years by important discoveries, which identified c-Cbl and other Cbl-family proteins as key players in several signaling pathways. c-Cbl has donned the role of a multivalent adaptor protein, capable of interacting with a plethora of proteins, and has been shown to positively influence certain biological processes. The identity of c-Cbl as an E3 ubiquitin ligase unveiled the existence of an important negative regulatory pathway involved in maintaining homeostasis in protein tyrosine kinase (PTK) signaling. Recent years have also seen the emergence of novel regulators of Cbl, which have provided further insights into the complexity of Cbl-influenced pathways. This review will endeavor to provide a summary of current studies focused on the effects of Cbl proteins on various biological processes and the mechanism of these effects. The major sections of the review are as follows: Structure and genomic organization of Cbl proteins; Phosphorylation of Cbl; Interactions of Cbl; Localization of Cbl; Mechanism of effects of Cbl: (a) Ubiquitylation-dependent events: This section elucidates the mechanism of Cbl-mediated downregulation of EGFR and details the PTK and non-PTKs targeted by Cbl. In addition, it addresses the functional requirements for E3 Ubiquitin ligase activity of Cbl and negative regulation of Cbl-mediated downregulation of PTKs, (b) Adaptor functions: This section discusses the mechanisms of adaptor functions of Cbl in mitogen-activated protein kinase (MAPK) activation, insulin signaling, regulation of Ras-related protein 1 (Rap1), PI-3' kinase signaling, and regulation of Rho-family GTPases and cytoskeleton; Biological functions: This section gives an account of the diverse biological functions of Cbl and includes the role of Cbl in transformation, T-cell signaling and thymus development, B-cell signaling, mast-cell degranulation, macrophage functions, bone development, neurite growth, platelet activation, muscle degeneration, and bacterial invasion; Conclusions and perspectives.
Collapse
Affiliation(s)
- Gayathri Swaminathan
- Department of Microbiology and Immunology, Temple University School of Medicine, Philadelphia, Pennsylvania, USA
| | | |
Collapse
|
39
|
Morandell S, Stasyk T, Grosstessner-Hain K, Roitinger E, Mechtler K, Bonn GK, Huber LA. Phosphoproteomics strategies for the functional analysis of signal transduction. Proteomics 2006; 6:4047-56. [PMID: 16791829 DOI: 10.1002/pmic.200600058] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Protein phosphorylation is a key regulatory mechanism of cellular signalling processes. The analysis of phosphorylated proteins and the characterisation of phosphorylation sites under different biological conditions are some of the most challenging tasks in current proteomics research. Reduction of the sample complexity is one major step for the analysis of low-abundance kinase substrates, which can be achieved by various subcellular fractionation techniques. One strategy is the enrichment of phosphorylated proteins or peptides by immunoprecipitation or chromatography, e.g. immobilised metal affinity chromatography, prior to analysis. 2-DE gels are powerful tools for the analysis of phosphoproteins when combined with new multiplexing techniques like DIGE, phosphospecific stains, autoradiography or immunoblotting. In addition, several gel-free methods combining chromatography with highly sensitive MS have been successfully applied for the analysis of complex phosphoproteomes. Recently developed approaches like KESTREL or 'chemical genetics' and also protein microarrays offer new possibilities for the identification of specific kinase targets. This review summarises various strategies for the analyses of phosphoproteins with a special focus on the identification of novel kinase substrates.
Collapse
Affiliation(s)
- Sandra Morandell
- Division Cell Biology, Biocenter, Innsbruck Medical University, Innsbruck, Austria
| | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
Prevention of conditions, such as osteoporosis, requires an understanding of the molecular mechanisms of bone resorption. The understanding that cells of the myeloid lineage are osteoclast precursors suggests that macrophage colony-stimulating factor (M-CSF) plays an important role in osteoclast biology. Signals generated by the binding of M-CSF to the cell-surface receptor c-Fms appear to trigger events leading to osteoclast differentiation. We have created a chimeric variant of the c-Fms receptor, which has allowed study of downstream events activated by M-CSF in a model more relevant to normal physiology than prior studies, which have relied on myeloid tissues. Our studies suggest novel regulatory signaling pathways initiated via the c-Fms receptor.
Collapse
Affiliation(s)
- F Patrick Ross
- Department of Pathology and Immunology, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8118, St. Louis, MO 63110, USA.
| |
Collapse
|
41
|
Abstract
Osteoclasts are multinucleated cells derived from hematopoietic precursors that are primarily responsible for the degradation of mineralized bone during bone development, homeostasis and repair. In various skeletal disorders such as osteoporosis, hypercalcemia of malignancy, tumor metastases and Paget's disease, bone resorption by osteoclasts exceeds bone formation by osteoblasts leading to decreased bone mass, skeletal fragility and bone fracture. The overall rate of osteoclastic bone resorption is regulated either at the level of differentiation of osteoclasts from their monocytic/macrophage precursor pool or through the regulation of key functional proteins whose specific activities in the mature osteoclast control its attachment, migration and resorption. Thus, reducing osteoclast numbers and/or decreasing the bone resorbing activity of osteoclasts are two common therapeutic approaches for the treatment of hyper-resorptive skeletal diseases. In this review, several of the key functional players involved in the regulation of osteoclast activity will be discussed.
Collapse
Affiliation(s)
- Angela Bruzzaniti
- Department of Orthopaedics, Yale University School of Medicine, New Haven, CT 06510, USA.
| | | |
Collapse
|
42
|
Lopez-Perez M, Salazar EP. A role for the cytoskeleton in STAT5 activation in MCF7 human breast cancer cells stimulated with EGF. Int J Biochem Cell Biol 2006; 38:1716-28. [PMID: 16765629 DOI: 10.1016/j.biocel.2006.04.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2005] [Revised: 03/17/2006] [Accepted: 04/02/2006] [Indexed: 11/25/2022]
Abstract
A rapid increase in the tyrosine phosphorylation of signal transducers and activators of transcription (STAT) proteins has been extensively documented in cells stimulated with cytokines and growth factors. However, the mechanisms by which these transcription factors translocate to the nucleus have not been studied in detail. Our results demonstrate that stimulation of MCF7 cells with epidermal growth factor (EGF) promoted an increase in the phosphorylation of STAT5 at Tyr-694, as revealed by site-specific antibodies that recognized the phosphorylated state of this residue. In addition, EGF stimulated STAT5 nuclear translocation and an increased in STAT5 DNA binding activity. Prevention of microtubules and microfilaments polymerization induced a partial inhibition of STAT5 nuclear translocation and STAT5 DNA binding activity. However, STAT5 phosphorylation at Tyr-694 was dependent on the integrity of microtubule network and it was independent of the integrity of actin cytoskeleton. Furthermore, EGF induced the formation of the associations STAT5-tubulin and STAT5-kinesin heavy chain in a fashion dependent of cytoskeleton integrity. In summary, our results demonstrate, for the first time, that cytoskeleton plays an important role in STAT5 activation and translocation into the nucleus in MCF7 cells stimulated with EGF.
Collapse
Affiliation(s)
- Mario Lopez-Perez
- Departamento de Biologia Celular, Cinvestav-IPN, Av IPN# 2508, San Pedro Zacatenco, Mexico, DF 07360, Mexico
| | | |
Collapse
|
43
|
Shah M, Patel K, Mukhopadhyay S, Xu F, Guo G, Sehgal PB. Membrane-associated STAT3 and PY-STAT3 in the Cytoplasm. J Biol Chem 2006; 281:7302-8. [PMID: 16407171 DOI: 10.1074/jbc.m508527200] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Signal transduction from the plasma membrane to the nucleus by STAT proteins is widely represented as exclusively a soluble cytosolic process. Using cell-fractionation methods, we observed that approximately 5% of cytoplasmic STAT3 was constitutively associated with the purified early endosome (EE) fraction in human Hep3B liver cells. By 15-30 min after interleukin-6 (IL-6) treatment, up to two-thirds of cytoplasmic Tyr-phosphorylated STAT3 can be associated with the purified early endosome fraction (Rab-5-, EEA1-, transferrin receptor-, and clathrin-positive fraction). Electron microscopy, immunofluorescence, and detergent dissection approaches confirmed the association of STAT3 and PY-STAT3 with early endosomes. STAT3 was constitutively associated with clathrin heavy chain in membrane and in the 1- to 2-MDa cytosolic complexes. The membrane association was dynamic in that, within 15 min of treatment with the vicinal-thiol cross-linker phenylarsine oxide, there was a dramatic increase in bulk STAT3 association with sedimentable membranes. The functional contribution of PY-STAT3 association with the endocytic pathway was evaluated in transient transfection assays using IL-6-inducible STAT3-reporter-luciferase constructs and selective regulators of this pathway. STAT3-transcriptional activation was inhibited by expression constructs for dominant negative dynamin K44A, epsin 2a, amphiphysin A1, and clathrin light chain but enhanced by that for the active dynamin species MxA. Taken together, these studies emphasize the contribution of the endocytic pathway to productive IL-6/STAT3 signaling.
Collapse
Affiliation(s)
- Mehul Shah
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY 10595, USA
| | | | | | | | | | | |
Collapse
|
44
|
Wheeler AP, Smith SD, Ridley AJ. CSF-1 and PI 3-kinase regulate podosome distribution and assembly in macrophages. ACTA ACUST UNITED AC 2006; 63:132-40. [PMID: 16421924 DOI: 10.1002/cm.20111] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Podosomes are actin-rich adhesive foci found in several cell types, including macrophages. They have a core containing actin and actin-binding proteins and a peripheral ring of integrins and associated proteins. We show that podosomes are abundant in polarized mouse bone marrow-derived macrophages (BMM) and are found primarily in lamellae. We investigated the effects of CSF-1, which induces membrane ruffling, cell spreading, and subsequent polarization and migration, on podosome formation. CSF-1 induces a transient increase in podosome number and enhances the formation of circular arrays of podosomes. Conversely, CSF-1 withdrawal leads to a reduction in podosomes and a decrease in polarized cells. The PI 3-kinase inhibitor LY294002 induces loss of podosomes together with rapid retraction of lamellae and loss of polarity. Our results indicate that CSF-1 acts via PI 3-kinase to enhance podosome assembly and that this is linked to macrophage polarization.
Collapse
Affiliation(s)
- Ann P Wheeler
- Ludwig Institute for Cancer Research, Royal Free and University College School of Medicine, London W1W 7BS, United Kingdom
| | | | | |
Collapse
|
45
|
Ross FP, Teitelbaum SL. alphavbeta3 and macrophage colony-stimulating factor: partners in osteoclast biology. Immunol Rev 2005; 208:88-105. [PMID: 16313343 DOI: 10.1111/j.0105-2896.2005.00331.x] [Citation(s) in RCA: 245] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Osteoclasts, the sole bone-resorbing cells, arise by fusion and differentiation of monocyte/macrophage precursors. Matrix degradation requires adhesion of the osteoclast to bone, an integrin alphavbeta3-mediated event that also stimulates signals which polarize the cell and secrete resorptive molecules such as hydrochloric acid and acidic proteases. Two cytokines are necessary and sufficient for osteoclastogenesis, receptor activator of nuclear factor kappaB ligand (RANKL) and macrophage colony-stimulating factor (M-CSF), both produced by mesenchymal cells in the bone marrow environment. M-CSF promotes survival and proliferation of osteoclast precursors. It also contributes to their differentiation and regulates the cytoskeletal changes that accompany bone resorption. Binding of M-CSF to c-Fms, its receptor, recruits adapter proteins and cytosolic kinases, thereby activating a variety of intracellular signals. We herein review how alphavbeta3 and M-CSF, alone and in concert, impact production, survival, and function of the osteoclast, thereby controlling skeletal mass. Signals from alphavbeta3 and/or c-Fms activate Syk and Vav3, originally defined by their function in lymphoid cells. Genetic depletion of either protein generates a strong bone phenotype, underscoring the promise of osteoimmunobiology.
Collapse
Affiliation(s)
- F Patrick Ross
- Washington University School of Medicine, St. Louis, MO 63110, USA.
| | | |
Collapse
|
46
|
Cross M, Nguyen T, Bogdanoska V, Reynolds E, Hamilton JA. A proteomics strategy for the enrichment of receptor-associated complexes. Proteomics 2005; 5:4754-63. [PMID: 16267818 DOI: 10.1002/pmic.200500058] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Multimeric protein complexes are important for cell function and are being identified by proteomics approaches. Enrichment strategies, such as those employing affinity matrices, are required for the characterization of such complexes, for example, those containing growth factor receptors. The receptor for the macrophage lineage growth factor, macrophage-colony stimulating factor (M-CSF or CSF-1), is the tyrosine kinase, c-Fms. There is evidence that the CSF-1 receptor (CSF-1R) forms distinct multimeric complexes involving autophosphorylated tyrosines in its cytoplasmic region; however, these complexes are difficult to identify by immunoprecipitation, making enrichment necessary. We report here the use of a tyrosine-phosphorylated, GST-fusion construct of the entire CSF-1R cytoplasmic region to characterize proteins putatively associating with the activated CSF-1R. Besides signalling molecules known to associate with the receptor or be involved in CSF-1R-dependent signalling, mass spectrometry identified a number of other molecules binding to the construct. So far among these candidate proteins, dynein, claudin and silencer of death domains co-immunoprecipitated with the CSF-1R, suggesting association. This affinity matrix method, using an entire cytoplasmic region, may have relevance for other growth factor receptors.
Collapse
Affiliation(s)
- Maddalena Cross
- University of Melbourne, Department of Medicine, Royal Melbourne Hospital, Parkville, Victoria 3050, Australia
| | | | | | | | | |
Collapse
|
47
|
Wells CM, Bhavsar PJ, Evans IR, Vigorito E, Turner M, Tybulewicz V, Ridley AJ. Vav1 and Vav2 play different roles in macrophage migration and cytoskeletal organization. Exp Cell Res 2005; 310:303-10. [PMID: 16137676 DOI: 10.1016/j.yexcr.2005.07.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2004] [Revised: 07/25/2005] [Accepted: 07/29/2005] [Indexed: 02/06/2023]
Abstract
Vav family proteins act as guanine nucleotide exchange factors for Rho family proteins, which are known to orchestrate cytoskeletal changes and cell migration in response to extracellular stimuli. Using mice deficient for Vav1, Vav2 and/or Vav3, overlapping and isoform-specific functions of the three Vav proteins have been described in various hematopoietic cell types, but their roles in regulating cell morphology and migration have not been studied in detail. To investigate whether Vav isoforms have redundant or unique functions in regulating adhesion and migration, we investigated the properties of Vav1-deficient and Vav2-deficient macrophages. Both Vav1-deficient and Vav2-deficient cells have a smaller adhesive area; yet, only Vav1-deficient cells have a reduced migration speed, which coincides with a lower level of microtubules. Vav2-deficient macrophages display a high level of constitutive membrane ruffling, but neither Vav1 nor Vav2 is required for colony stimulating factor-1-induced membrane ruffling and cell spreading. Our results suggest that the migration speed of macrophages is regulated independently of spread area or membrane ruffling and that Vav1 is selectively required to maintain a normal migration speed.
Collapse
Affiliation(s)
- Claire M Wells
- Ludwig Institute for Cancer Research, Royal Free and University College Medical School Branch, 91 Riding House Street, London W1W 7BS, UK
| | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
This article presents a brief review of phosphoproteomics with an emphasis on the biological insights into signaling networks that have been derived so far. Developments in the field of phosphoproteomics have been fueled by the need simultaneously to monitor many different phosphoproteins within the signaling networks that coordinate responses to changes in the cellular environment. This article presents a brief review of phosphoproteomics with an emphasis on the biological insights that have been derived so far.
Collapse
Affiliation(s)
- Marc Mumby
- Department of Pharmacology and the Alliance for Cellular Signaling, University of Texas Southwestern Medical Center, Dallas, TX 75390-9041, USA.
| | | |
Collapse
|
49
|
Vedham V, Phee H, Coggeshall KM. Vav activation and function as a rac guanine nucleotide exchange factor in macrophage colony-stimulating factor-induced macrophage chemotaxis. Mol Cell Biol 2005; 25:4211-20. [PMID: 15870290 PMCID: PMC1087731 DOI: 10.1128/mcb.25.10.4211-4220.2005] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Signal transduction mediated by phosphatidylinositol 3-kinase (PI 3-kinase) is regulated by hydrolysis of its products, a function performed by the 145-kDa SH2 domain-containing inositol phosphatase (SHIP). Here, we show that bone marrow macrophages of SHIP(-/-) animals have elevated levels of phosphatidylinositol 3,4,5-trisphosphate [PI (3,4,5)P(3)] and displayed higher and more prolonged chemotactic responses to macrophage colony-stimulating factor (M-CSF) and elevated levels of F-actin relative to wild-type macrophages. We also found that the small GTPase Rac was constitutively active and its upstream activator Vav was constitutively phosphorylated in SHIP(-/-) macrophages. Furthermore, we show that Vav in wild-type macrophages is recruited to the membrane in a PI 3-kinase-dependent manner through the Vav pleckstrin homology domain upon M-CSF stimulation. Dominant inhibitory mutants of both Rac and Vav blocked chemotaxis. We conclude that Vav acts as a PI 3-kinase-dependent activator for Rac activation in macrophages stimulated with M-CSF and that SHIP regulates macrophage M-CSF-triggered chemotaxis by hydrolysis of PI (3,4,5)P(3).
Collapse
Affiliation(s)
- Vidya Vedham
- The Oklahoma Medical Research Foundation, Immunobiology and Cancer Program, 825 N.E. 13th St., Oklahoma City, OK 73104, USA
| | | | | |
Collapse
|
50
|
Olivier M, Gregory DJ, Forget G. Subversion mechanisms by which Leishmania parasites can escape the host immune response: a signaling point of view. Clin Microbiol Rev 2005; 18:293-305. [PMID: 15831826 PMCID: PMC1082797 DOI: 10.1128/cmr.18.2.293-305.2005] [Citation(s) in RCA: 373] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The obligate intracellular parasite Leishmania must survive the antimicrobial activities of its host cell, the macrophage, and prevent activation of an effective immune response. In order to do this, it has developed numerous highly successful strategies for manipulating activities, including antigen presentation, nitric oxide and oxygen radical generation, and cytokine production. This is generally the result of interactions between Leishmania cell surface molecules, particularly gp63 and LPG, and less well identified macrophage surface receptors, causing the distortion of specific intracellular signaling cascades. We describe some of the signaling pathways and intermediates that are repressed in infected cells, including JAK/STAT, Ca(2+)-dependent protein kinase C (PKC) isoforms, and mitogen-activated protein kinases (especially ERK1/2), and proteasome-mediated transcription factor degradation. We also discuss protein tyrosine phosphatases (particularly SHP-1), intracellular Ca2+, Ca(2+)-independent PKC, ceramide, and the suppressors of cytokine signaling family of repressors, which are all reported to be activated following infection, and the role of parasite-secreted cysteine proteases.
Collapse
Affiliation(s)
- Martin Olivier
- Centre for the Study of Host Resistance at the Research Institute of the McGill University Health Centre, Montréal, Québec, Canada.
| | | | | |
Collapse
|