1
|
SL RNA Biogenesis in Kinetoplastids: A Long and Winding Road. RNA METABOLISM IN TRYPANOSOMES 2012. [DOI: 10.1007/978-3-642-28687-2_2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
2
|
Toledo JS, Ferreira TR, Defina TPA, Dossin FDM, Beattie KA, Lamont DJ, Cloutier S, Papadopoulou B, Schenkman S, Cruz AK. Cell homeostasis in a Leishmania major mutant overexpressing the spliced leader RNA is maintained by an increased proteolytic activity. Int J Biochem Cell Biol 2010; 42:1661-71. [PMID: 20601086 DOI: 10.1016/j.biocel.2010.06.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2010] [Revised: 06/04/2010] [Accepted: 06/16/2010] [Indexed: 10/19/2022]
Abstract
Although several stage-specific genes have been identified in Leishmania, the molecular mechanisms governing developmental gene regulation in this organism are still not well understood. We have previously reported an attenuation of virulence in Leishmania major and L. braziliensis carrying extra-copies of the spliced leader RNA gene. Here, we surveyed the major differences in proteome and transcript expression profiles between the spliced leader RNA overexpressor and control lines using two-dimensional gel electrophoresis and differential display reverse transcription PCR, respectively. Thirty-nine genes related to stress response, cytoskeleton, proteolysis, cell cycle control and proliferation, energy generation, gene transcription, RNA processing and post-transcriptional regulation have abnormal patterns of expression in the spliced leader RNA overexpressor line. The evaluation of proteolytic pathways in the mutant revealed a selective increase of cysteine protease activity and an exacerbated ubiquitin-labeled protein population. Polysome profile analysis and measurement of cellular protein aggregates showed that protein translation in the spliced leader RNA overexpressor line is increased when compared to the control line. We found that L. major promastigotes maintain homeostasis in culture when challenged with a metabolic imbalance generated by spliced leader RNA surplus through modulation of intracellular proteolysis. However, this might interfere with a fine-tuned gene expression control necessary for the amastigote multiplication in the mammalian host.
Collapse
Affiliation(s)
- Juliano S Toledo
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade Medicina de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Trypanosoma brucei spliced leader RNA maturation by the cap 1 2'-O-ribose methyltransferase and SLA1 H/ACA snoRNA pseudouridine synthase complex. Mol Cell Biol 2008; 29:1202-11. [PMID: 19103757 DOI: 10.1128/mcb.01496-08] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Kinetoplastid flagellates attach a 39-nucleotide spliced leader (SL) upstream of protein-coding regions in polycistronic RNA precursors through trans splicing. SL modifications include cap 2'-O-ribose methylation of the first four nucleotides and pseudouridine (psi) formation at uracil 28. In Trypanosoma brucei, TbMTr1 performs 2'-O-ribose methylation of the first transcribed nucleotide, or cap 1. We report the characterization of an SL RNA processing complex with TbMTr1 and the SLA1 H/ACA small nucleolar ribonucleoprotein (snoRNP) particle that guides SL psi(28) formation. TbMTr1 is in a high-molecular-weight complex containing the four conserved core proteins of H/ACA snoRNPs, a kinetoplastid-specific protein designated methyltransferase-associated protein (TbMTAP), and the SLA1 snoRNA. TbMTAP-null lines are viable but have decreased SL RNA processing efficiency in cap methylation, 3'-end maturation, and psi(28) formation. TbMTAP is required for association between TbMTr1 and the SLA1 snoRNP but does not affect U1 small nuclear RNA methylation. A complex methylation profile in the mRNA population of TbMTAP-null lines indicates an additional effect on cap 4 methylations. The TbMTr1 complex specializes the SLA1 H/ACA snoRNP for efficient processing of multiple modifications on the SL RNA substrate.
Collapse
|
4
|
Trypanosome spliced-leader-associated RNA (SLA1) localization and implications for spliced-leader RNA biogenesis. EUKARYOTIC CELL 2008; 8:56-68. [PMID: 19028994 DOI: 10.1128/ec.00322-08] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Spliced-leader-associated RNA (SLA1) guides the pseudouridylation at position -12 (relative to the 5' splice site) of the spliced-leader (SL) RNA in all trypanosomatid species. Nevertheless, the exact role of this RNA is currently unknown. Here, we demonstrate that the absence of pseudouridine on Leptomonas collosoma SL RNA has only a minor effect on the ability of this RNA to function in trans splicing in vivo. To investigate the possible role of SLA1 during SL RNA biogenesis, the structure of the SL RNA was examined in permeable Trypanosoma brucei cells depleted for CBF5, the H/ACA pseudouridine synthase, lacking SLA1. Our results suggest that in the absence of SLA1, the SL RNA secondary structure is changed, as was detected by differential sensitivity to oligonucleotide-directed RNase H cleavage, suggesting that the association of SLA1 maintains the SL RNA in a structural form which is distinct from the structure of the SL RNA in the steady state. In T. brucei cells depleted for the SL RNA core protein SmD1, SL RNA first accumulates in large amounts in the nucleus and then is expelled to the cytoplasm. Here, we demonstrate by in vivo aminomethyltrimethyl UV cross-linking studies that under SmD1 depletion, SLA1 remains bound to SL RNA and escorts the SL RNA to the cytoplasm. In situ hybridization with SLA1 and SL RNA demonstrates colocalization between SLA1 and the SL RNA transcription factor tSNAP42, as well as with Sm proteins, suggesting that SLA1 associates with SL RNA early in its biogenesis. These results demonstrate that SLA1 is a unique chaperonic RNA that functions during the early biogenesis of SL RNA to maintain a structure that is most probably suitable for cap 4 modification.
Collapse
|
5
|
Mittra B, Zamudio JR, Bujnicki JM, Stepinski J, Darzynkiewicz E, Campbell DA, Sturm NR. The TbMTr1 spliced leader RNA cap 1 2'-O-ribose methyltransferase from Trypanosoma brucei acts with substrate specificity. J Biol Chem 2007; 283:3161-3172. [PMID: 18048356 DOI: 10.1074/jbc.m707367200] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In metazoa cap 1 (m(7)GpppNmp-RNA) is linked to higher levels of translation; however, the enzyme responsible remains unidentified. We have validated the first eukaryotic encoded cap 1 2'-O-ribose methyltransferase, TbMTr1, a member of a conserved family that modifies the first transcribed nucleotide of spliced leader and U1 small nuclear RNAs in the kinetoplastid protozoan Trypanosoma brucei. In addition to cap 0 (m(7)GpppNp-RNA), mRNA in these parasites has ribose methylations on the first four nucleotides with base methylations on the first and fourth (m(7)Gpppm(6,6)AmpAmpCmpm(3)Ump-SL RNA) conveyed via trans-splicing of a universal spliced leader. The function of this cap 4 is unclear. Spliced leader is the majority RNA polymerase II transcript; the RNA polymerase III-transcribed U1 small nuclear RNA has the same first four nucleotides as spliced leader, but it receives an m(2,2,7)G cap with hypermethylation at position one only (m(2,2,7)Gpppm(6,6)AmpApCpUp-U1 snRNA). Here we examine the biochemical properties of recombinant TbMTr1. Active over a pH range of 6.0 to 9.5, TbMTr1 is sensitive to Mg(2+). Positions Lys(95)-Asp(204)-Lys(259)-Glu(285) constitute the conserved catalytic core. A guanosine cap on RNA independent of its N(7) methylation status is required for substrate recognition, but an m(2,2,7G)-cap is not recognized. TbMTr1 favors the spliced leader 5' sequence, as reflected by a preference for A at position 1 and modulation of activity for substrates with base changes at positions 2 and 3. With similarities to human cap 1 methyltransferase activity, TbMTr1 is an excellent model for higher eukaryotic cap 1 methyltransferases and the consequences of cap 1 modification.
Collapse
Affiliation(s)
- Bidyottam Mittra
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, California 90095
| | - Jesse R Zamudio
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, California 90095
| | - Janusz M Bujnicki
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, ul. ks. Trojdena 4, 02-109 Warsaw, Poland; Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznan, Poland
| | - Janusz Stepinski
- Department of Biophysics, Institute of Experimental Physics, Warsaw University, 93 Zwirki and Wigury St., 02-089 Warsaw, Poland
| | - Edward Darzynkiewicz
- Department of Biophysics, Institute of Experimental Physics, Warsaw University, 93 Zwirki and Wigury St., 02-089 Warsaw, Poland
| | - David A Campbell
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, California 90095.
| | - Nancy R Sturm
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, California 90095
| |
Collapse
|
6
|
Zamudio JR, Mittra B, Foldynová-Trantírková S, Zeiner GM, Lukes J, Bujnicki JM, Sturm NR, Campbell DA. The 2'-O-ribose methyltransferase for cap 1 of spliced leader RNA and U1 small nuclear RNA in Trypanosoma brucei. Mol Cell Biol 2007; 27:6084-92. [PMID: 17606627 PMCID: PMC1952150 DOI: 10.1128/mcb.00647-07] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
mRNA cap 1 2'-O-ribose methylation is a widespread modification that is implicated in processing, trafficking, and translational control in eukaryotic systems. The eukaryotic enzyme has yet to be identified. In kinetoplastid flagellates trans-splicing of spliced leader (SL) to polycistronic precursors conveys a hypermethylated cap 4, including a cap 0 m7G and seven additional methylations on the first 4 nucleotides, to all nuclear mRNAs. We report the first eukaryotic cap 1 2'-O-ribose methyltransferase, TbMTr1, a member of a conserved family of viral and eukaryotic enzymes. Recombinant TbMTr1 methylates the ribose of the first nucleotide of an m7G-capped substrate. Knockdowns and null mutants of TbMTr1 in Trypanosoma brucei grow normally, with loss of 2'-O-ribose methylation at cap 1 on substrate SL RNA and U1 small nuclear RNA. TbMTr1-null cells have an accumulation of cap 0 substrate without further methylation, while spliced mRNA is modified efficiently at position 4 in the absence of 2'-O-ribose methylation at position 1; downstream cap 4 methylations are independent of cap 1. Based on TbMTr1-green fluorescent protein localization, 2'-O-ribose methylation at position 1 occurs in the nucleus. Accumulation of 3'-extended SL RNA substrate indicates a delay in processing and suggests a synergistic role for cap 1 in maturation.
Collapse
Affiliation(s)
- Jesse R Zamudio
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, 609 Charles E. Young Drive East, University of California at Los Angeles, Los Angeles, CA 90095-1489, USA
| | | | | | | | | | | | | | | |
Collapse
|
7
|
The promoter and transcribed regions of the Leishmania tarentolae spliced leader RNA gene array are devoid of nucleosomes. BMC Microbiol 2007; 7:44. [PMID: 17517143 PMCID: PMC1888695 DOI: 10.1186/1471-2180-7-44] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2006] [Accepted: 05/22/2007] [Indexed: 04/13/2023] Open
Abstract
BACKGROUND The spliced leader (SL) RNA provides the 5' m7G cap and first 39 nt for all nuclear mRNAs in kinetoplastids. This small nuclear RNA is transcribed by RNA polymerase II from individual promoters. In Leishmania tarentolae the SL RNA genes reside in two multi-copy tandem arrays designated MINA and MINB. The transcript accumulation from the SL promoter on the drug-selected, episomal SL RNA gene cassette pX-tSL is ~10% that of the genomic array in uncloned L. tarentolae transfectants. This disparity is neither sequence- nor copy-number related, and thus may be due to interference of SL promoter function by epigenetic factors. To explore these possibilities we examined the nucleoplasmic localization of the SL RNA genes as well as their nucleosomal architecture. RESULTS The genomic SL RNA genes and the episome did not co-localize within the nucleus. Each genomic repeat contains one nucleosome regularly positioned within the non-transcribed intergenic region. The 363-bp MINA array was resistant to micrococcal nuclease digestion between the -258 and -72 positions relative to the transcription start point due to nucleosome association, leaving the promoter elements and the entire transcribed region exposed for protein interactions. A pattern of ~164-bp protected segments was observed, corresponding to the amount of DNA typically bound by a nucleosome. By contrast, nucleosomes on the pX-tSL episome were randomly distributed over the episomal SL cassette, reducing transcription factor access to the episomal promoter by approximately 74%. Cloning of the episome transfectants revealed a range of transcriptional activities, implicating a mechanism of epigenetic heredity. CONCLUSION The disorganized nucleosomes on the pX episome are in a permissive conformation for transcription of the SL RNA cassette approximately 25% of the time within a given parasite. Nucleosome interference is likely the major factor in the apparent transcriptional repression of the SL RNA gene cassette. Coupled with the requirement for run-around transcription that drives expression of the selectable drug marker, transcription of the episomal SL may be reduced even further due to sub-optimal nucleoplasmic localization and initiation complex disruption.
Collapse
|
8
|
Thomas S, Yu MC, Sturm NR, Campbell DA. A non-universal transcription factor? The Leishmania tarentolae TATA box-binding protein LtTBP associates with a subset of promoters. Int J Parasitol 2006; 36:1217-26. [PMID: 16753168 DOI: 10.1016/j.ijpara.2006.04.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2006] [Revised: 04/07/2006] [Accepted: 04/12/2006] [Indexed: 11/18/2022]
Abstract
In kinetoplastids a 39-nucleotide spliced leader RNA is trans-spliced to the 5' end of nuclear mRNAs before they can be translated, thus the spliced leader is central to gene expression in kinetoplastid biology. The spliced leader RNA genes in Leishmania tarentolae contain promoters with important sites at approximately -60 and -30. A complex forms specifically on the -60 element as shown by electrophoretic mobility shift. The -60 shift complex has an estimated mass of 159 kDa. An L. tarentolae homologue of TATA-binding protein, LtTBP, co-fractionates with the -60 shift complex. Inclusion of anti-LtTBP antiserum in the shift assay disrupts the shift, indicating that LtTBP is a component of the complex that interacts with the TATA-less -60 element of the spliced leader RNA gene promoter. Both LtTBP and LtSNAP50 are found near the spliced leader RNA gene promoter and the promoters important for tRNAAla and/or U2 snRNA gene transcription, as demonstrated by chromatin immunoprecipitation. The LtTBP appears to interact with a subset of promoters in kinetoplastids with an affinity for short transcription units.
Collapse
Affiliation(s)
- Sean Thomas
- Molecular Biology Institute, University of California, Los Angeles, CA 90095-1489, USA
| | | | | | | |
Collapse
|
9
|
Zamudio JR, Mittra B, Zeiner GM, Feder M, Bujnicki JM, Sturm NR, Campbell DA. Complete cap 4 formation is not required for viability in Trypanosoma brucei. EUKARYOTIC CELL 2006; 5:905-15. [PMID: 16757738 PMCID: PMC1489268 DOI: 10.1128/ec.00080-06] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In kinetoplastids spliced leader (SL) RNA is trans-spliced onto the 5' ends of all nuclear mRNAs, providing a universal exon with a unique cap. Mature SL contains an m(7)G cap, ribose 2'-O methylations on the first four nucleotides, and base methylations on nucleotides 1 and 4 (AACU). This structure is referred to as cap 4. Mutagenized SL RNAs that exhibit reduced cap 4 are trans-spliced, but these mRNAs do not associate with polysomes, suggesting a direct role in translation for cap 4, the primary SL sequence, or both. To separate SL RNA sequence alterations from cap 4 maturation, we have examined two ribose 2'-O-methyltransferases in Trypanosoma brucei. Both enzymes fall into the Rossmann fold class of methyltransferases and model into a conserved structure based on vaccinia virus homolog VP39. Knockdown of the methyltransferases individually or in combination did not affect growth rates and suggests a temporal placement in the cap 4 formation cascade: TbMT417 modifies A(2) and is not required for subsequent steps; TbMT511 methylates C(3), without which U(4) methylations are reduced. Incomplete cap 4 maturation was reflected in substrate SL and mRNA populations. Recombinant methyltransferases bind to a methyl donor and show preference for m(7)G-capped RNAs in vitro. Both enzymes reside in the nucleoplasm. Based on the cap phenotype of substrate SL stranded in the cytosol, A(2), C(3), and U(4) methylations are added after nuclear reimport of Sm protein-complexed substrate SL RNA. As mature cap 4 is dispensable for translation, cap 1 modifications and/or SL sequences are implicated in ribosomal interaction.
Collapse
Affiliation(s)
- Jesse R Zamudio
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095-1489, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Foldynová-Trantírková S, Paris Z, Sturm NR, Campbell DA, Lukes J. The Trypanosoma brucei La protein is a candidate poly(U) shield that impacts spliced leader RNA maturation and tRNA intron removal. Int J Parasitol 2005; 35:359-66. [PMID: 15777912 DOI: 10.1016/j.ijpara.2004.12.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2004] [Revised: 12/17/2004] [Accepted: 12/17/2004] [Indexed: 10/25/2022]
Abstract
By virtue of its preferential binding to poly(U) tails on small RNA precursors and nuclear localisation motif, the La protein has been implicated for a role in the stabilisation and nuclear retention of processing intermediates for a variety of small RNAs in eukaryotic cells. As the universal substrate for trans-splicing, the spliced leader RNA is transcribed as a precursor with just such a tail. La protein was targeted for selective knockdown by inducible RNA interference in Trypanosoma brucei. Of three RNA interference strategies employed, a p2T7-177 vector was the most effective in reducing both the La mRNA as well as the protein itself from induced cells. In the relative absence of La protein T. brucei cells were not viable, in contrast to La gene knockouts in yeast. A variety of potential small RNA substrates were examined under induction, including spliced leader RNA, spliced leader associated RNA, the U1, U2, U4, and U6 small nuclear RNAs, 5S ribosomal RNA, U3 small nucleolar RNA, and tRNATyr. None of these molecules showed significant variance in size or abundance in their mature forms, although a discrete subset of intermediates appear for spliced leader RNA and tRNATyr intron splicing under La depletion conditions. 5'-end methylation in the spliced leader RNA and U1 small nuclear RNA was unaffected. The immediate cause of lethality in T. brucei was not apparent, but may represent a cumulative effect of multiple defects including processing of spliced leader RNA, tRNATyr and other unidentified RNA substrates. This study indicates that La protein binding is not essential for maturation of the spliced leader RNA, but does not rule out the presence of an alternative processing pathway that could compensate for the absence of normally-associated La protein.
Collapse
Affiliation(s)
- Silvie Foldynová-Trantírková
- Institute of Parasitology, Czech Academy of Sciences, Faculty of Biology, University of South Bohemia, 37005 Ceské Budejovice, Czech Republic
| | | | | | | | | |
Collapse
|
11
|
Barth S, Hury A, Liang XH, Michaeli S. Elucidating the role of H/ACA-like RNAs in trans-splicing and rRNA processing via RNA interference silencing of the Trypanosoma brucei CBF5 pseudouridine synthase. J Biol Chem 2005; 280:34558-68. [PMID: 16107339 DOI: 10.1074/jbc.m503465200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Most pseudouridinylation in eukaryotic rRNA and small nuclear RNAs is guided by H/ACA small nucleolar RNAs. In this study, the Trypanosoma brucei pseudouridine synthase, Cbf5p, a snoRNP protein, was identified and silenced by RNAi. Depletion of this protein destabilized all small nucleolar RNAs of the H/ACA-like family. Following silencing, defects in rRNA processing, such as accumulation of precursors and inhibition of cleavages to generate the mature rRNA, were observed. snR30, an H/ACA RNA involved in rRNA maturation, was identified based on prototypical conserved domains characteristic of this RNA in other eukaryotes. The silencing of CBF5 also eliminated the spliced leader-associated (SLA1) RNA that directs pseudouridylation on the spliced leader RNA (SL RNA), which is the substrate for the trans-splicing reaction. Surprisingly, the depletion of Cbf5p not only eliminated the pseudouridine on the SL RNA but also abolished capping at the fourth cap-4 nucleotide. As a result of defects in the SL RNA and decreased modification on the U small nuclear RNA, trans-splicing was inhibited at the first step of the reaction, providing evidence for the essential role of H/ACA RNAs and the modifications they guide on trans-splicing.
Collapse
MESH Headings
- Alternative Splicing
- Animals
- Base Sequence
- Blotting, Northern
- Gene Deletion
- Gene Silencing
- Hydro-Lyases/chemistry
- Hydro-Lyases/genetics
- Hydro-Lyases/metabolism
- Microtubule-Associated Proteins/genetics
- Microtubule-Associated Proteins/metabolism
- Models, Genetic
- Molecular Sequence Data
- Oligonucleotides/chemistry
- Oligonucleotides/genetics
- Phenotype
- Pseudouridine/chemistry
- RNA/metabolism
- RNA Interference
- RNA Splicing
- RNA, Messenger/metabolism
- RNA, Ribosomal/chemistry
- RNA, Ribosomal/metabolism
- RNA, Small Nuclear/metabolism
- RNA, Small Nucleolar/chemistry
- RNA, Small Nucleolar/metabolism
- Ribonucleoproteins, Small Nuclear/genetics
- Ribonucleoproteins, Small Nuclear/metabolism
- Ribonucleoproteins, Small Nucleolar/genetics
- Saccharomyces cerevisiae Proteins/genetics
- Saccharomyces cerevisiae Proteins/metabolism
- Temperature
- Time Factors
- Transfection
- Trypanosoma/metabolism
- Trypanosoma brucei brucei/enzymology
- Trypanosoma brucei brucei/genetics
- Tubulin/chemistry
Collapse
Affiliation(s)
- Sarit Barth
- Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
| | | | | | | |
Collapse
|
12
|
Thomas S, Westenberger SJ, Campbell DA, Sturm NR. Intragenomic spliced leader RNA array analysis of kinetoplastids reveals unexpected transcribed region diversity in Trypanosoma cruzi. Gene 2005; 352:100-8. [PMID: 15925459 DOI: 10.1016/j.gene.2005.04.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2004] [Revised: 01/19/2005] [Accepted: 04/01/2005] [Indexed: 11/17/2022]
Abstract
The spliced leader RNA gene (SL RNA) repeat is present in large multicopy arrays and has been used as a marker for the diversity of kinetoplastid protozoans. Intra-array variation could affect conclusions made using a randomly isolated repeat as a marker. We examined the Leishmania major (Friedlin) and Trypanosoma cruzi (CL Brener) genome projects for SL RNA repeat sequences in order to assess their homogeneity and the possible effects of sequence variation on taxonomic interpretation. Of the dozens of distinct sequence classes examined, no single copy would bias clustering analyses with regard to other closely related species or isolates. Six dimorphic sites within the T. cruzi transcribed region were found to be linked and are predicted to yield a heterogeneous SL RNA population. The variation that exists among the repeats paints a picture of the broad mechanisms of array maintenance and evolution where site-specific mutations in a single repeat may be spread throughout the array and recombined with existing repeats to create new sequence classes, all occurring under selective pressure to maintain or increase the fitness of the cell line in which these events occur.
Collapse
Affiliation(s)
- Sean Thomas
- Molecular Biology Institute, University of California, Los Angeles, CA, USA
| | | | | | | |
Collapse
|
13
|
Zeiner GM, Hitchcock RA, Sturm NR, Campbell DA. 3'-End polishing of the kinetoplastid spliced leader RNA is performed by SNIP, a 3'-->5' exonuclease with a Motley assortment of small RNA substrates. Mol Cell Biol 2005; 24:10390-6. [PMID: 15542846 PMCID: PMC529039 DOI: 10.1128/mcb.24.23.10390-10396.2004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In all trypanosomatids, trans splicing of the spliced leader (SL) RNA is a required step in the maturation of all nucleus-derived mRNAs. The SL RNA is transcribed with an oligo-U 3' extension that is removed prior to trans splicing. Here we report the identification and characterization of a nonexosomal, 3'-->5' exonuclease required for SL RNA 3'-end formation in Trypanosoma brucei. We named this enzyme SNIP (for snRNA incomplete 3' processing). The central 158-amino-acid domain of SNIP is related to the exonuclease III (ExoIII) domain of the 3'-->5' proofreading epsilon subunit of Escherichia coli DNA polymerase III holoenzyme. SNIP had a preference for oligo(U) 3' extensions in vitro. RNA interference-mediated knockdown of SNIP resulted in a growth defect and correlated with the accumulation of one- to two- nucleotide 3' extensions of SL RNA, U2 and U4 snRNAs, a five-nucleotide extension of 5S rRNA, and the destabilization of U3 snoRNA and U2 snRNA. SNIP-green fluorescent protein localized to the nucleoplasm, and substrate SL RNA derived from SNIP knockdown cells showed wild-type cap 4 modification, indicating that SNIP acts on SL RNA after cytosolic trafficking. Since the primary SL RNA transcript was not the accumulating species in SNIP knockdown cells, SL RNA 3'-end formation is a multistep process in which SNIP provides the ultimate 3'-end polishing. We speculate that SNIP is part of an organized nucleoplasmic machinery responsible for processing of SL RNA.
Collapse
Affiliation(s)
- Gusti M Zeiner
- Department of Microbiology, Immunology, and Molecular Genetics, University of California at Los Angeles, 609 Charles E. Young Dr. East, Los Angeles, CA 90095-1489, USA
| | | | | | | |
Collapse
|
14
|
Zhang WW, Matlashewski G. In vivo selection for Leishmania donovani miniexon genes that increase virulence in Leishmania major†. Mol Microbiol 2004; 54:1051-62. [PMID: 15522086 DOI: 10.1111/j.1365-2958.2004.04327.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Different species of Leishmania are responsible for the diverse pathologies associated with leishmaniasis including Leishmania donovani which results in fatal visceral infection and Leishmania major which causes non-fatal cutaneous infection. In an attempt to identify genotypic differences between these related Old World Leishmania species which contribute to their distinct phenotypic characteristics, we have introduced a L. donovani cosmid library into L. major to select for L. donovani sequences which may increase L. major virulence in BALB/c mice. Through this approach, we have identified a region of the L. donovani genome which increased virulence in both visceral and cutaneous sites and was divergent from the corresponding region of the L. major genome. When these L. donovani sequences were reintroduced into L. major, they enhanced the overall virulence of L. major, increasing its ability to survive in both visceral and cutaneous sites. The region responsible for increased infection levels was determined to be the miniexon gene array derived from chromosome 36 of L. donovani. Pulse field electrophoresis revealed that L. donovani contained miniexon gene sequences in several chromosome locations as opposed to L. major which contains miniexon gene sequences only in chromosome 2. Because of the requirement for miniexon-derived transcripts in maturation of pre-mRNAs in trypanosomatids, this observation suggests that the increased expression of miniexon genes is associated with increased virulence. As the genome sequence for Leishmania becomes available, the in vivo selection procedure described within will be useful to identify additional species-specific sequences responsible for different pathogenic phenotypes associated with Leishmania infection.
Collapse
Affiliation(s)
- Wen-Wei Zhang
- Department of Microbiology and Immunology, McGill University, 3775 University Street, Montreal, Canada H3A 2B4
| | | |
Collapse
|
15
|
Liang XH, Haritan A, Uliel S, Michaeli S. trans and cis splicing in trypanosomatids: mechanism, factors, and regulation. EUKARYOTIC CELL 2004; 2:830-40. [PMID: 14555465 PMCID: PMC219355 DOI: 10.1128/ec.2.5.830-840.2003] [Citation(s) in RCA: 251] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Xue-hai Liang
- Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 52900 Israel
| | | | | | | |
Collapse
|
16
|
Zeiner GM, Foldynová S, Sturm NR, Lukes J, Campbell DA. SmD1 is required for spliced leader RNA biogenesis. EUKARYOTIC CELL 2004; 3:241-4. [PMID: 14871954 PMCID: PMC329508 DOI: 10.1128/ec.3.1.241-244.2004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2003] [Accepted: 12/10/2003] [Indexed: 11/20/2022]
Abstract
The Sm-binding site of the kinetoplastid spliced leader RNA has been implicated in accurate spliced leader RNA maturation and trans-splicing competence. In Trypanosoma brucei, RNA interference-mediated knockdown of SmD1 caused defects in spliced leader RNA maturation, displaying aberrant 3'-end formation, partial formation of cap 4, and overaccumulation in the cytoplasm; U28 pseudouridylation was unaffected.
Collapse
Affiliation(s)
- Gusti M Zeiner
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California 90095-1489, USA
| | | | | | | | | |
Collapse
|
17
|
Zeiner GM, Sturm NR, Campbell DA. The Leishmania tarentolae spliced leader contains determinants for association with polysomes. J Biol Chem 2003; 278:38269-75. [PMID: 12878606 DOI: 10.1074/jbc.m304295200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In kinetoplastids, every nuclear-derived mRNA contains an identical 39-nucleotide (nt) spliced leader at its 5'-terminus. The spliced leader is derived from substrate spliced leader RNA and joined to pre-mRNA by trans-splicing, thus providing mature mRNAs with an m7G cap and additional methylations referred to as cap 4. It was shown previously that mutations spanning nucleotides 10-39 of the spliced leader did not affect substrate spliced leader RNA transcription or trans-splicing in Leishmania tarentolae (Saito, R. M., Elgort, M. G., and Campbell, D. A. (1994) EMBO J. 13, 5460-5469). In this study we examined these sequences for a possible role in translation by assaying the association of mRNAs, which possess mutated spliced leaders, with polysomes. For the nt 28-39 mutated spliced leaders, both the substrate spliced leader RNA and the spliced leader demonstrated a wild-type methylation pattern; spliced nt 28-39 mRNA was found in polysomes. Thus, the nt 28-39 region conserved primary sequence is not a determinant of polysome association. An undermethylated cap 4 structure was present on substrate and mRNA spliced leaders in nt 20-29 mutated exons; nt 20-29 mRNA was not present in polysomes. A differential pattern of cap 4 methylation was seen between the nt 10-19 substrate spliced leader RNA and the nt 10-19 spliced leaders found in the poly(A)+ population of RNA; the nt 10-19 mRNA was not seen in polysomes. Undermethylated spliced leaders did not associate efficiently with polysomes, suggesting a requirement for the cap 4 and/or primary sequence of the spliced leader in translation. This is the first report demonstrating that the spliced leader contains critical structural or sequence determinants for association with polysomes and, hence, translation.
Collapse
Affiliation(s)
- Gusti M Zeiner
- Department of Microbiology, Immunology, and Molecular Genetics, University of California at Los Angeles, Los Angeles, California 90095-1489, USA
| | | | | |
Collapse
|
18
|
Zeiner GM, Sturm NR, Campbell DA. Exportin 1 mediates nuclear export of the kinetoplastid spliced leader RNA. EUKARYOTIC CELL 2003; 2:222-30. [PMID: 12684371 PMCID: PMC154853 DOI: 10.1128/ec.2.2.222-230.2003] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2002] [Accepted: 01/28/2003] [Indexed: 01/06/2023]
Abstract
The kinetoplastid protozoan spliced leader (SL) RNA is the common substrate pre-mRNA utilized in all trans-splicing reactions. Here we show by fluorescence in situ hybridization that the SL RNA is present in the cytoplasm of Leishmania tarentolae and Trypanosoma brucei. Treatment with the karyopherin-specific inhibitor leptomycin B was toxic to T. brucei and eliminated the cytoplasmic SL RNA, suggesting that cytoplasmic SL RNA was dependent on the nuclear exporter exportin 1 (XPO1). Ectopic expression of xpo1 with a C506S mutation in T. brucei conferred resistance to leptomycin B. A reduction in SL RNA 3' extension removal and 5' methylation of nucleotide U(4) was observed in wild-type T. brucei treated with leptomycin B, suggesting that the cytoplasmic stage is necessary for SL RNA biogenesis. This study demonstrates spatial and mechanistic similarities between the posttranscriptional trafficking of the kinetoplastid protozoan SL RNA and the metazoan cis-spliceosomal small nuclear RNAs.
Collapse
MESH Headings
- Active Transport, Cell Nucleus/drug effects
- Active Transport, Cell Nucleus/physiology
- Animals
- Cytoplasm/genetics
- Cytoplasm/metabolism
- DNA, Kinetoplast/genetics
- DNA, Kinetoplast/metabolism
- Drug Resistance/genetics
- Fatty Acids, Unsaturated/pharmacology
- Karyopherins/genetics
- Karyopherins/metabolism
- Leishmania/drug effects
- Leishmania/genetics
- Leishmania/metabolism
- Methylation/drug effects
- Mutation/genetics
- RNA Processing, Post-Transcriptional/drug effects
- RNA Processing, Post-Transcriptional/genetics
- RNA, Spliced Leader/genetics
- RNA, Spliced Leader/metabolism
- Receptors, Cytoplasmic and Nuclear
- Trans-Splicing/drug effects
- Trans-Splicing/physiology
- Trypanosoma brucei brucei/genetics
- Trypanosoma brucei brucei/metabolism
- Exportin 1 Protein
Collapse
Affiliation(s)
- Gusti M Zeiner
- Department of Microbiology, University of California at Los Angeles, Los Angeles, California 90095-1489, USA
| | | | | |
Collapse
|
19
|
Yu MC, Orlando TC, Sturm NR, Zhou L, Saito RM, Floeter-Winter LM, Campbell DA. Two distinct functional spliced leader RNA gene arrays in Leishmania tarentolae are found in several lizard Leishmania species. Int J Parasitol 2002; 32:1411-22. [PMID: 12350376 DOI: 10.1016/s0020-7519(02)00131-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
A second distinct array of spliced leader RNA genes has been found in several Leishmania species particular to lizards. This is the first report of two non-allelic arrays of spliced leader RNA genes within a species cell line. The arrays are identical to each other in their transcribed spliced leader RNA gene sequences, but variable in their non-transcribed spacer sequences. In the two arrays from Leishmania tarentolae UC strain the promoter regions are similar, but not identical, at positions shown previously to be critical for spliced leader RNA transcription. These arrays contain similar numbers of genes and are both transcribed in L. tarentolae in vitro transcription extract as well as in vivo. The -66/-58 regions of both genes, which contain an element of the spliced leader RNA gene promoter, bind proteins likely to be transcription factors in a specific manner. A survey of lizard Leishmania spp. revealed a second spliced leader RNA gene array in three of four species. Phylogenetic analyses of these sequences with each other and with the spliced leader RNA gene sequences of non-lizard Leishmania spp. and their near-relatives showed that the lizard groups are more closely related to each other than to arrays from other Leishmania spp. As the transcripts of the two arrays are identical, they may co-exist to fulfil the substantial requirement for spliced leader RNA production; however, they have the potential for differential usage modulated by their distinct promoter elements. The presence of two distinct spliced leader RNA gene arrays within a single cell type may represent dissociated evolution of two redundant loci, or a previously unsuspected level of control in the post-transcriptional gene expression within some kinetoplastids.
Collapse
Affiliation(s)
- Michael C Yu
- Department of Microbiology, Immunology and Molecular Genetics, School of Medicine, 10833 Le Conte Avenue, University of California, Los Angeles, CA 90095-1747, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Mandelboim M, Estraño CL, Tschudi C, Ullu E, Michaeli S. On the role of exon and intron sequences in trans-splicing utilization and cap 4 modification of the trypanosomatid Leptomonas collosoma SL RNA. J Biol Chem 2002; 277:35210-8. [PMID: 12121975 DOI: 10.1074/jbc.m201910200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In trypanosomatid protozoa the biogenesis of mature mRNA involves addition of the spliced leader (SL) sequence from the SL RNA to polycistronic pre-mRNA via trans-splicing. Here we present a mutational analysis of the trypanosomatid Leptomonas collosoma SL RNA to further our understanding of its functional domains important for trans-splicing utilization. Mutant SL RNAs were analyzed for defects in modification of the hypermethylated cap structure (cap 4) characteristic of trypanosomatid SL RNAs, for defects in the first step of the reaction and overall utilization in trans-splicing. Single substitution of the cap 4 nucleotides led to undermethylation of the cap 4 structure, and these mutants were all impaired in their utilization in trans-splicing. Abrogation of the sequence of the Sm-like site and sequences downstream to it also showed cap modification and trans-splicing defects, thus providing further support for a functional linkage between cap modifications and trans-splicing. Further, we report that in L. collosoma both the exon and intron of the SL RNA contribute information for efficient function of the SL RNA in trans-splicing. This study, however, did not provide support for the putative SL RNA-U6 small nuclear RNA (snRNA) interaction at the Sm site like in the nematodes, suggesting differences in the bridging role of U6 in the two trans-splicing systems.
Collapse
Affiliation(s)
- Michal Mandelboim
- Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
| | | | | | | | | |
Collapse
|
21
|
Sturm NR, Maslov DA, Grisard EC, Campbell DA. Diplonema spp. possess spliced leader RNA genes similar to the Kinetoplastida. J Eukaryot Microbiol 2001; 48:325-31. [PMID: 11411841 DOI: 10.1111/j.1550-7408.2001.tb00321.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The phylogenetic placement of the genus Diplonema in relation to fellow phylum members Euglena and Trypanosoma has been uncertain. The spliced leader RNA gene, present in the euglenids and kinetoplastids in distinct forms, was a potential target for resolving this question. The first indication supporting a closer relationship to the kinetoplastids was the recognition of potential spliced leader RNA exon sequences in the genomic DNA of two Diplonema isolates. Examination of total cell RNA revealed transcripts in the anticipated size range at approximately 120 and 130 nt. Specific PCR amplification of a spliced leader RNA gene repeat was performed. The hallmark features of the kinetoplastid-type spliced leader RNA, specifically the 39-nt exon, splice-donor site, Sm-binding site and poly-T tract and the potential to form the requisite stem-loop structures, were found. Diplonema spp. are different from the kinetoplastids by virtue of C residues at positions 4 and 18 in the exon. While the intergenic spacer regions varied in size, each contained the complete sequence or remnants of a 5S ribosomal RNA gene. Possession of a functional spliced leader RNA gene of the kinetoplastid variety in Diplonema supports a closer evolutionary relationship with this group than with the euglenids.
Collapse
MESH Headings
- Animals
- Base Sequence
- DNA, Kinetoplast/chemistry
- DNA, Kinetoplast/genetics
- DNA, Protozoan/chemistry
- DNA, Protozoan/genetics
- Eukaryota/chemistry
- Eukaryota/classification
- Eukaryota/genetics
- Kinetoplastida/chemistry
- Kinetoplastida/genetics
- Molecular Sequence Data
- Phylogeny
- Polymerase Chain Reaction
- RNA, Protozoan/chemistry
- RNA, Protozoan/genetics
- RNA, Protozoan/isolation & purification
- RNA, Ribosomal, 5S/chemistry
- RNA, Ribosomal, 5S/genetics
- RNA, Spliced Leader/chemistry
- RNA, Spliced Leader/genetics
- Sequence Homology, Nucleic Acid
Collapse
Affiliation(s)
- N R Sturm
- Department of Microbiology, Immunology and Molecular Genetics, School of Medicine, University of California, Los Angeles 90095-1747, USA
| | | | | | | |
Collapse
|
22
|
Yu MC, Roberts TG, Sturm NR, Campbell DA. In vitro transcription of mutated Leishmania tarentolae spliced leader RNA genes approximates in vivo patterns. Mol Biochem Parasitol 2000; 111:391-9. [PMID: 11163445 DOI: 10.1016/s0166-6851(00)00332-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
To elucidate the process of transcription in the kinetoplastids and to aid in the purification of transcription factors, we have developed a transcriptionally-competent nuclear extract from Leishmania tarentolae for the study of the spliced leader (SL) RNA gene. The extract was competent to transcribe a tagged SL RNA gene. The in vitro SL RNA transcripts initiated accurately and their synthesis was dependent on the presence of the promoter defined in vivo. The nuclear extract was then challenged rigorously using an exhaustive set of mutated SL RNA gene templates previously tested for transcriptional activity in vivo. Mutation of four nucleotides (CCGG) at positions -34 to -31 had a detrimental effect on transcription in vitro: the CC dinucleotide overlaps one element necessary in vivo. Similarly. four nucleotides (TGAC; positions -67 to -64) important for transcription in vitro overlapped the other core promoter element defined in vivo, but were generally not effective as point mutations. The promoter-binding ability of the transcriptionally-competent extract for the -60 region mutations mirrored the in vitro transcription pattern. Although it does not reflect precisely the in vivo results, this in vitro system provides us with an important tool for monitoring the purification of potential transcription factors, as well as the basis for future reconstitution experiments.
Collapse
Affiliation(s)
- M C Yu
- Department of Microbiology, Immunology and Molecular Genetics, UCLA School of Medicine, University of California, Los Angeles, 90095-1747, USA
| | | | | | | |
Collapse
|
23
|
Xu Y, Liu L, Michaeli S. Functional analyses of positions across the 5' splice site of the trypanosomatid spliced leader RNA. Implications for base-pair interaction with U5 and U6 snRNAs. J Biol Chem 2000; 275:27883-92. [PMID: 10875928 DOI: 10.1074/jbc.m000639200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In this study, we have used a genetic compensatory approach to examine the functional significance of the previously proposed interaction of spliced leader (SL) RNA with U5 small nuclear RNA (snRNA) (Dungan, J. D., Watkins, K. P., and Agabian, N. (1996) EMBO J. 15, 4016-4029; Xu, Y.-X., Ben Shlomo, H., and Michaeli, S. (1997) Proc. Natl. Acad. Sci. U. S. A. 94, 8473-8478) and the interaction of the SL RNA intron with U6 snRNA analogous to cis-splicing. Mutations were introduced at positions -4, -1, +1, +4, +5, and +7/+8 relative to the SL RNA 5' splice site that were proposed to interact with U5 and U6 snRNAs. All mutants exhibited altered splicing phenotypes compared with the parental strain, showing the importance of these intron and exon positions for trans-splicing. Surprisingly, mutation at invariant +1 position did not abolish splicing completely, unlike cis-splicing, but position +2 had the most severe effect on trans-splicing. Compensatory mutations were introduced in U5 and U6 snRNAs to examine whether the defects resulted from failure to interact with these snRNAs by base pairing. Suppression was observed only for positions +5 and +7/+8 with U5 compensatory mutations and for position +5 with a U6 compensatory mutation, supporting the existence of a base pair interaction of U5 and U6 with the SL RNA intron region. The failure to suppress the other SL RNA mutants by the U5 compensatory mutations suggests that another factor(s) interacts with these key SL RNA positions.
Collapse
Affiliation(s)
- Y Xu
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel and the Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
| | | | | |
Collapse
|
24
|
Evans D, Blumenthal T. trans splicing of polycistronic Caenorhabditis elegans pre-mRNAs: analysis of the SL2 RNA. Mol Cell Biol 2000; 20:6659-67. [PMID: 10958663 PMCID: PMC86170 DOI: 10.1128/mcb.20.18.6659-6667.2000] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Genes in Caenorhabditis elegans operons are transcribed as polycistronic pre-mRNAs in which downstream gene products are trans spliced to a specialized spliced leader, SL2. SL2 is donated by a 110-nucleotide RNA, SL2 RNA, present in the cell as an Sm-bound snRNP. SL2 RNA can be conceptually folded into a phylogenetically conserved three-stem-loop secondary structure. Here we report an in vivo mutational analysis of the SL2 RNA. Some sequences can be changed without consequence, while other changes result in a substantial loss of trans splicing. Interestingly, the spliced leader itself can be dramatically altered, such that the first stem-loop cannot form, with only a relatively small loss in trans-splicing efficiency. However, the primary sequence of stem II is crucial for SL2 trans splicing. Similarly, the conserved primary sequence of the third stem-loop plays a key role in trans splicing. While mutations in stem-loop III allow snRNP formation, a single nucleotide substitution in the loop prevents trans splicing. In contrast, the analogous region of SL1 RNA is not highly conserved, and its mutation does not abrogate function. Thus, stem-loop III appears to confer a specific function to SL2 RNA. Finally, an upstream sequence, previously predicted to be a proximal sequence element, is shown to be required for SL2 RNA expression.
Collapse
Affiliation(s)
- D Evans
- Department of Biochemistry and Molecular Genetics, University of Colorado Health Sciences Center, Denver 80262, USA
| | | |
Collapse
|
25
|
Campbell DA, Sturm NR, Yu MC. Transcription of the kinetoplastid spliced leader RNA gene. PARASITOLOGY TODAY (PERSONAL ED.) 2000; 16:78-82. [PMID: 10652494 DOI: 10.1016/s0169-4758(99)01545-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In recent years, much has been learned about the cis-elements controlling transcription of the kinetoplastid spliced leader (SL) RNA gene. The SL RNA gene contains the first 39 nucleotides that are trans-spliced on to all nuclear-derived mRNAs in these organisms. Transcription initiation is determined by two precisely spaced upstream elements and transcription termination is directed by the downstream poly-T tract, although the RNA polymerase responsible for SL RNA synthesis is still questioned. In this article, David Campbell, Nancy Sturm and Michael Yu review the field of kinetoplastid SL RNA gene transcription, address past proposals in light of current data and discuss some of the differences that appear in the literature.
Collapse
Affiliation(s)
- D A Campbell
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90095-1747, USA.
| | | | | |
Collapse
|
26
|
Abstract
In trypanosomatid protozoa, all mRNAs obtain identical 5'-ends by trans-splicing of the 5'-terminal 39 nucleotides of a small spliced leader RNA to appropriate acceptor sites in pre-mRNA. Although this process involves spliceosomal small nuclear (sn) RNAs, it is thought that trypanosomatids do not contain a homolog of the cis-spliceosomal U1 snRNA. We show here that a trypanosomatid protozoon, Crithidia fasciculata, contains a novel small RNA that displays several features characteristic of a U1 snRNA, including (i) a methylguanosine cap and additional 5'-terminal modifications, (ii) a potential binding site for common core proteins that are present in other trans-spliceosomal ribonucleoproteins, (iii) a U1-like 5'-terminal sequence, and (iv) a U1-like stem/loop I structure. Because trypanosomatid pre-mRNAs do not appear to contain cis-spliced introns, we argue that this previously unrecognized RNA species is a good candidate to be a trans-spliceosomal U1 snRNA.
Collapse
Affiliation(s)
- M N Schnare
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4H7, Canada
| | | |
Collapse
|
27
|
Sturm NR, Campbell DA. The role of intron structures in trans-splicing and cap 4 formation for the Leishmania spliced leader RNA. J Biol Chem 1999; 274:19361-7. [PMID: 10383448 DOI: 10.1074/jbc.274.27.19361] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A 39-nucleotide leader is trans-spliced onto all trypanosome nuclear mRNAs. The precursor spliced leader RNA was tested for trans-splicing function in vivo by mutating the intron. We report that in Leishmania tarentolae spliced leader RNA 5' modification is influenced by the primary sequence of stem-loop II, the Sm-binding site, and the secondary structure of stem-loop III. The sequence of stem-loop II was found to be important for cap 4 formation and splicing. As in Ascaris, mutagenesis of the bulge nucleotide in stem-loop II was detrimental to trans-splicing. Because restoration of the L. tarentolae stem-loop II structure was not sufficient to restore splicing, this result contrasts the findings in the kinetoplastid Leptomonas, where mutations that restored stem-loop II structure supported splicing. Methylation of the cap 4 structure and splicing was also dependent on both the Sm-binding site and the structure of stem-loop III and was inhibited by incomplete 3' end processing. The critical nature of the L. tarentolae Sm-binding site is consistent with its essential role in the Ascaris spliced leader RNA, whereas in Leptomonas mutation of the Sm-binding site and deletion of stem-loop III did not affect trans-splicing. A pathway for Leishmania spliced leader RNA processing and maturation is proposed.
Collapse
Affiliation(s)
- N R Sturm
- Department of Microbiology and Immunology, UCLA School of Medicine, Los Angeles, California 90095-1747, USA
| | | |
Collapse
|
28
|
Sturm NR, Yu MC, Campbell DA. Transcription termination and 3'-End processing of the spliced leader RNA in kinetoplastids. Mol Cell Biol 1999; 19:1595-604. [PMID: 9891092 PMCID: PMC116087 DOI: 10.1128/mcb.19.2.1595] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/1998] [Accepted: 11/06/1998] [Indexed: 12/18/2022] Open
Abstract
Addition of a 39-nucleotide (nt) spliced leader (SL) by trans splicing is a basic requirement for all trypanosome nuclear mRNAs. The SL RNA in Leishmania tarentolae is a 96-nt precursor transcript synthesized by a polymerase that resembles polymerase II most closely. To analyze SL RNA genesis, we mutated SL RNA intron structures and sequence elements: stem-loops II and III, the Sm-binding site, and the downstream T tract. Using an exon-tagged SL RNA gene, we examined the phenotypes produced by a second-site 10-bp linker scan mutagenic series and directed mutagenesis. Here we report that transcription is terminated by the T tract, which is common to the 3' end of all kinetoplastid SL RNA genes, and that more than six T's are required for efficient termination in vivo. We describe mutants whose SL RNAs end in the T tract or appear to lack efficient termination but can generate wild-type 3' ends. Transcriptionally active nuclear extracts show staggered products in the T tract, directed by eight or more T's. The in vivo and in vitro data suggest that SL RNA transcription termination is staggered in the T tract and is followed by nucleolytic processing to generate the mature 3' end. We show that the Sm-binding site and stem-loop III structures are necessary for correct 3'-end formation. Thus, we have defined the transcription termination element for the SL RNA gene. The termination mechanism differs from that of vertebrate small nuclear RNA genes and the SL RNA homologue in Ascaris.
Collapse
Affiliation(s)
- N R Sturm
- Department of Microbiology and Immunology, University of California Los Angeles School of Medicine, Los Angeles, California 90095-1747, USA
| | | | | |
Collapse
|
29
|
Sturm NR, Van Valkenburgh H, Kahn RA, Campbell DA. Characterization of a GTP-binding protein in the ADP-ribosylation factor subfamily from Leishmania tarentolae. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1442:347-52. [PMID: 9804987 DOI: 10.1016/s0167-4781(98)00150-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We report the cloning and characterization of a gene, LtARL, which encodes a small GTP-binding protein, from the protozoan Leishmania tarentolae. Hybridization analysis of genomic DNA under high stringency conditions indicates the single-copy nature of LtARL. LtARL is transcribed and yields a approximately 0.9 kb mRNA that is processed at the 5' end by trans-splicing. When expressed in Escherichia coli, LtArl binds GTP with a low stoichiometry and in a phospholipid-independent manner. Based on the greatest sequence identity with Homo sapiens Arl3 and lipid-independent binding of guanine nucleotides we designate this gene LtARL and the encoded protein LtArl.
Collapse
Affiliation(s)
- N R Sturm
- Department of Microbiology and Immunology, UCLA School of Medicine, 10833 Le Conte Avenue, Los Angeles, CA 90095-1747, USA
| | | | | | | |
Collapse
|