1
|
Reynolds MF. New insights into the signal transduction mechanism of O 2-sensing FixL and other biological heme-based sensor proteins. J Inorg Biochem 2024; 259:112642. [PMID: 38908215 DOI: 10.1016/j.jinorgbio.2024.112642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/24/2024] [Accepted: 06/13/2024] [Indexed: 06/24/2024]
Abstract
Recent structural and biophysical studies of O2-sensing FixL, NO-sensing soluble guanylate cyclase, and other biological heme-based sensing proteins have begun to reveal the details of their molecular mechanisms and shed light on how nature regulates important biological processes such as nitrogen fixation, blood pressure, neurotransmission, photosynthesis and circadian rhythm. The O2-sensing FixL protein from S. meliloti, the eukaryotic NO-sensing protein sGC, and the CO-sensing CooA protein from R. rubrum transmit their biological signals through gas-binding to the heme domain of these proteins, which inhibits or activates the regulatory, enzymatic domain. These proteins appear to propagate their signal by specific structural changes in the heme sensor domain initiated by the appropriate gas binding to the heme, which is then propagated through a coiled-coil linker or other domain to the regulatory, enzymatic domain that sends out the biological signal. The current understanding of the signal transduction mechanisms of O2-sensing FixL, NO-sensing sGC, CO-sensing CooA and other biological heme-based gas sensing proteins and their mechanistic themes are discussed, with recommendations for future work to further understand this rapidly growing area of biological heme-based gas sensors.
Collapse
Affiliation(s)
- Mark F Reynolds
- Department of Chemistry and Biochemistry, Saint Joseph's University, 5600 City Avenue, Philadelphia, PA 19131, United States of America.
| |
Collapse
|
2
|
Nishinaga M, Sugimoto H, Nishitani Y, Nagai S, Nagatoishi S, Muraki N, Tosha T, Tsumoto K, Aono S, Shiro Y, Sawai H. Heme controls the structural rearrangement of its sensor protein mediating the hemolytic bacterial survival. Commun Biol 2021; 4:467. [PMID: 33850260 PMCID: PMC8044140 DOI: 10.1038/s42003-021-01987-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 03/16/2021] [Indexed: 02/01/2023] Open
Abstract
Hemes (iron-porphyrins) are critical for biological processes in all organisms. Hemolytic bacteria survive by acquiring b-type heme from hemoglobin in red blood cells from their animal hosts. These bacteria avoid the cytotoxicity of excess heme during hemolysis by expressing heme-responsive sensor proteins that act as transcriptional factors to regulate the heme efflux system in response to the cellular heme concentration. Here, the underlying regulatory mechanisms were investigated using crystallographic, spectroscopic, and biochemical studies to understand the structural basis of the heme-responsive sensor protein PefR from Streptococcus agalactiae, a causative agent of neonatal life-threatening infections. Structural comparison of heme-free PefR, its complex with a target DNA, and heme-bound PefR revealed that unique heme coordination controls a >20 Å structural rearrangement of the DNA binding domains to dissociate PefR from the target DNA. We also found heme-bound PefR stably binds exogenous ligands, including carbon monoxide, a by-product of the heme degradation reaction.
Collapse
Affiliation(s)
- Megumi Nishinaga
- grid.266453.00000 0001 0724 9317Graduate School of Life Science, University of Hyogo, Ako, Hyogo Japan
| | - Hiroshi Sugimoto
- grid.266453.00000 0001 0724 9317Graduate School of Life Science, University of Hyogo, Ako, Hyogo Japan ,RIKEN SPring-8 Center, Sayo, Hyogo Japan
| | - Yudai Nishitani
- grid.266453.00000 0001 0724 9317Graduate School of Life Science, University of Hyogo, Ako, Hyogo Japan
| | - Seina Nagai
- grid.266453.00000 0001 0724 9317Graduate School of Life Science, University of Hyogo, Ako, Hyogo Japan
| | - Satoru Nagatoishi
- grid.26999.3d0000 0001 2151 536XThe Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo Japan
| | - Norifumi Muraki
- grid.250358.90000 0000 9137 6732Institute of Molecular Science, National Institute of Natural Sciences, Okazaki, Aichi Japan
| | - Takehiko Tosha
- grid.266453.00000 0001 0724 9317Graduate School of Life Science, University of Hyogo, Ako, Hyogo Japan ,RIKEN SPring-8 Center, Sayo, Hyogo Japan
| | - Kouhei Tsumoto
- grid.26999.3d0000 0001 2151 536XThe Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo Japan ,grid.26999.3d0000 0001 2151 536XDepartment of Bioengineering, School of Engineering, The University of Tokyo, Minato-ku, Tokyo Japan ,grid.26999.3d0000 0001 2151 536XDepartment of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Minato-ku, Tokyo Japan
| | - Shigetoshi Aono
- grid.250358.90000 0000 9137 6732Institute of Molecular Science, National Institute of Natural Sciences, Okazaki, Aichi Japan
| | - Yoshitsugu Shiro
- grid.266453.00000 0001 0724 9317Graduate School of Life Science, University of Hyogo, Ako, Hyogo Japan
| | - Hitomi Sawai
- grid.266453.00000 0001 0724 9317Graduate School of Life Science, University of Hyogo, Ako, Hyogo Japan ,RIKEN SPring-8 Center, Sayo, Hyogo Japan
| |
Collapse
|
3
|
Germani F, Nardini M, De Schutter A, Cuypers B, Berghmans H, Van Hauwaert ML, Bruno S, Mozzarelli A, Moens L, Van Doorslaer S, Bolognesi M, Pesce A, Dewilde S. Structural and Functional Characterization of the Globin-Coupled Sensors of Azotobacter vinelandii and Bordetella pertussis. Antioxid Redox Signal 2020; 32:378-395. [PMID: 31559835 DOI: 10.1089/ars.2018.7690] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Aims: Structural and functional characterization of the globin-coupled sensors (GCSs) from Azotobacter vinelandii (AvGReg) and Bordetella pertussis (BpeGReg). Results: Ultraviolet/visible and resonance Raman spectroscopies confirm the presence in AvGReg and BpeGReg of a globin domain capable of reversible gaseous ligand binding. In AvGReg, an influence of the transmitter domain on the heme proximal region of the globin domain can be seen, and k'CO is higher than for other GCSs. The O2 binding kinetics suggests the presence of an open and a closed conformation. As for BpeGReg, the fully oxygenated AvGReg show a very high diguanylate cyclase activity. The carbon monoxide rebinding to BpeGReg indicates that intra- and intermolecular interactions influence the ligand binding. The globin domains of both proteins (AvGReg globin domain and BpeGRegGb with cysteines (Cys16, 45, 114, 154) mutated to serines [BpeGReg-Gb*]) share the same GCS fold, a similar proximal but a different distal side structure. They homodimerize through a G-H helical bundle as in other GCSs. However, BpeGReg-Gb* shows also a second dimerization mode. Innovation: This article extends our knowledge on the GCS proteins and contributes to a better understanding of the GCSs role in the formation of bacterial biofilms. Conclusions:AvGReg and BpeGReg conform to the GCS family, share a similar overall structure, but they have different properties in terms of the ligand binding. In particular, AvGReg shows an open and a closed conformation that in the latter form will very tightly bind oxygen. BpeGReg has only one closed conformation. In both proteins, it is the fully oxygenated GCS form that catalyzes the production of the second messenger.
Collapse
Affiliation(s)
- Francesca Germani
- Department of Biomedical Sciences, University of Antwerp, Wilrijk, Belgium
| | - Marco Nardini
- Department of Biosciences, University of Milano, Milano, Italy
| | - Amy De Schutter
- Department of Physics, University of Antwerp, Wilrijk, Belgium
| | - Bert Cuypers
- Department of Physics, University of Antwerp, Wilrijk, Belgium
| | - Herald Berghmans
- Department of Biomedical Sciences, University of Antwerp, Wilrijk, Belgium
| | | | - Stefano Bruno
- Department of Food and Drugs, University of Parma, Parma, Italy
| | | | - Luc Moens
- Department of Biomedical Sciences, University of Antwerp, Wilrijk, Belgium
| | | | | | | | - Sylvia Dewilde
- Department of Biomedical Sciences, University of Antwerp, Wilrijk, Belgium
| |
Collapse
|
4
|
Aono S, Nakajima H. Transcriptional Regulation of Gene Expression by Metalloproteins. PROGRESS IN REACTION KINETICS AND MECHANISM 2019. [DOI: 10.3184/007967400103165128] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
FNR and SoxR are transcriptional regulators containing an iron–sulfur cluster. The iron–sulfur cluster in FNR acts as an oxygen sensor by reacting with oxygen. The structural change of the iron–sulfur cluster takes place when FNR senses oxygen, which regulates the transcriptional regulator activity of FNR through the change of the quaternary structure. SoxR contains the [2Fe–2S] cluster that regulates the transcriptional activator activity of SoxR. Only the oxidized SoxR containing the [2Fe–2S]2+ cluster is active as the transcriptional activator. CooA is a transcriptional activator containing a protoheme that acts as a CO sensor. CO is a physiological effector of CooA and regulates the transcriptional activator activity of CooA. In this review, the biochemical and biophysical properties of FNR, SoxR, and CooA are described.
Collapse
Affiliation(s)
- Shigetoshi Aono
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Tatsunokuchi, Ishikawa 923-1292, Japan
| | - Hiroshi Nakajima
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Tatsunokuchi, Ishikawa 923-1292, Japan
| |
Collapse
|
5
|
Onzuka M, Sekine Y, Uchida T, Ishimori K, Ozaki SI. HmuS from Yersinia pseudotuberculosis is a non-canonical heme-degrading enzyme to acquire iron from heme. Biochim Biophys Acta Gen Subj 2017; 1861:1870-1878. [PMID: 28385652 DOI: 10.1016/j.bbagen.2017.04.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 03/22/2017] [Accepted: 04/02/2017] [Indexed: 01/28/2023]
Abstract
Some Gram-negative pathogens import host heme into the cytoplasm and utilize it as an iron source for their survival. We report here that HmuS, encoded by the heme utilizing system (hmu) locus, cleaves the protoporphyrin ring to release iron from heme. A liquid chromatography/mass spectrometry analysis revealed that the degradation products of this reaction are two biliverdin isomers that result from transformation of a verdoheme intermediate. This oxidative heme degradation by HmuS required molecular oxygen and electrons supplied by either ascorbate or NADPH. Electrons could not be directly transferred from NADPH to heme; instead, ferredoxin-NADP+ reductase (FNR) functioned as a mediator. Although HmuS does not share amino acid sequence homology with heme oxygenase (HO), a well-known heme-degrading enzyme, absorption and resonance Raman spectral analyses suggest that the heme iron is coordinated with an axial histidine residue and a water molecule in both enzymes. The substitution of axial His196 or distal Arg102 with an alanine residue in HmuS almost completely eliminated heme-degradation activity, suggesting that Fe-His coordination and interaction of a distal residue with water molecules in the heme pocket are important for this activity.
Collapse
Affiliation(s)
- Masato Onzuka
- Department of Biological Chemistry, Graduate School of Science and Technology for Innovation, Yamaguchi University, Yoshida, Yamaguchi 753-8515, Japan
| | - Yukari Sekine
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
| | - Takeshi Uchida
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan; Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Koichiro Ishimori
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan; Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Shin-Ichi Ozaki
- Department of Biological Chemistry, Graduate School of Science and Technology for Innovation, Yamaguchi University, Yoshida, Yamaguchi 753-8515, Japan.
| |
Collapse
|
6
|
Otomo A, Ishikawa H, Mizuno M, Kimura T, Kubo M, Shiro Y, Aono S, Mizutani Y. A Study of the Dynamics of the Heme Pocket and C-helix in CooA upon CO Dissociation Using Time-Resolved Visible and UV Resonance Raman Spectroscopy. J Phys Chem B 2016; 120:7836-43. [PMID: 27457181 DOI: 10.1021/acs.jpcb.6b05634] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
CooA is a CO-sensing transcriptional activator from the photosynthetic bacterium Rhodospirillum rubrum that binds CO at the heme iron. The heme iron in ferrous CooA has two axial ligands: His77 and Pro2. CO displaces Pro2 and induces a conformational change in CooA. The dissociation of CO and/or ligation of the Pro2 residue are believed to trigger structural changes in the protein. Visible time-resolved resonance Raman spectra obtained in this study indicated that the ν(Fe-His) mode, arising from the proximal His77-iron stretch, does not shift until 50 μs after the photodissociation of CO. Ligation of the Pro2 residue to the heme iron was observed around 50 μs after the photodissociation of CO, suggesting that the ν(Fe-His) band exhibits no shift until the ligation of Pro2. UV resonance Raman spectra suggested structural changes in the vicinity of Trp110 in the C-helix upon CO binding, but no or very small spectral changes in the time-resolved UV resonance Raman spectra were observed from 100 ns to 100 μs after the photodissociation of CO. These results strongly suggest that the conformational change of CooA is induced by the ligation of Pro2 to the heme iron.
Collapse
Affiliation(s)
- Akihiro Otomo
- Department of Chemistry, Graduate School of Science, Osaka University , 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Haruto Ishikawa
- Department of Chemistry, Graduate School of Science, Osaka University , 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Misao Mizuno
- Department of Chemistry, Graduate School of Science, Osaka University , 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Tetsunari Kimura
- RIKEN SPring-8 Center , 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| | - Minoru Kubo
- RIKEN SPring-8 Center , 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| | - Yoshitsugu Shiro
- RIKEN SPring-8 Center , 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| | - Shigetoshi Aono
- Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences , 5-1 Higashiyama, Myodaiji, Okazaki 444-8786, Japan
| | - Yasuhisa Mizutani
- Department of Chemistry, Graduate School of Science, Osaka University , 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
7
|
Tang K, Knipp M, Liu BB, Cox N, Stabel R, He Q, Zhou M, Scheer H, Zhao KH, Gärtner W. Redox-dependent Ligand Switching in a Sensory Heme-binding GAF Domain of the Cyanobacterium Nostoc sp. PCC7120. J Biol Chem 2015; 290:19067-80. [PMID: 26063806 DOI: 10.1074/jbc.m115.654087] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Indexed: 11/06/2022] Open
Abstract
The genome of the cyanobacterium Nostoc sp. PCC7120 carries three genes (all4978, all7016, and alr7522) encoding putative heme-binding GAF (cGMP-specific phosphodiesterases, adenylyl cyclases, and FhlA) proteins that were annotated as transcriptional regulators. They are composed of an N-terminal cofactor domain and a C-terminal helix-turn-helix motif. All4978 showed the highest affinity for protoheme binding. The heme binding capability of All7016 was moderate, and Alr7522 did not bind heme at all. The "as isolated" form of All4978, identified by Soret band (λmax = 427 nm), was assigned by electronic absorption, EPR, and resonance Raman spectroscopy as a hexa-coordinated low spin Fe(III) heme with a distal cysteine ligand (absorption of δ-band around 360 nm). The protoheme cofactor is noncovalently incorporated. Reduction of the heme could be accomplished by chemically using sodium dithionite and electrospectrochemically; this latter method yielded remarkably low midpoint potentials of -445 and -453 mV (following Soret and α-band absorption changes, respectively). The reduced form of the heme (Fe(II) state) binds both NO and CO. Cysteine coordination of the as isolated Fe(III) protein is unambiguous, but interestingly, the reduced heme instead displays spectral features indicative of histidine coordination. Cys-His ligand switches have been reported as putative signaling mechanisms in other heme-binding proteins; however, these novel cyanobacterial proteins are the first where such a ligand-switch mechanism has been observed in a GAF domain. DNA binding of the helix-turn-helix domain was investigated using a DNA sequence motif from its own promoter region. Formation of a protein-DNA complex preferentially formed in ferric state of the protein.
Collapse
Affiliation(s)
- Kun Tang
- From the State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China, the Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, D-45470 Mülheim, Germany
| | - Markus Knipp
- the Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, D-45470 Mülheim, Germany, Resolv, Faculty for Chemistry and Biochemistry, Ruhr University Bochum, D-44780 Bochum, Germany, and
| | - Bing-Bing Liu
- From the State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Nicholas Cox
- the Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, D-45470 Mülheim, Germany
| | - Robert Stabel
- the Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, D-45470 Mülheim, Germany
| | - Qi He
- From the State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Ming Zhou
- From the State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Hugo Scheer
- the Department of Biologie I, Ludwig-Maximilians-Universität, Menzinger Strasse 67, D-80638 München, Germany
| | - Kai-Hong Zhao
- From the State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China,
| | - Wolfgang Gärtner
- the Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, D-45470 Mülheim, Germany,
| |
Collapse
|
8
|
Ozaki SI, Sato T, Sekine Y, Migita CT, Uchida T, Ishimori K. Spectroscopic studies on HasA from Yersinia pseudotuberculosis. J Inorg Biochem 2014; 138:31-38. [DOI: 10.1016/j.jinorgbio.2014.04.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 04/21/2014] [Accepted: 04/21/2014] [Indexed: 10/25/2022]
|
9
|
Abstract
The haem-based sensors are chimeric multi-domain proteins responsible for the cellular adaptive responses to environmental changes. The signal transduction is mediated by the sensing capability of the haem-binding domain, which transmits a usable signal to the cognate transmitter domain, responsible for providing the adequate answer. Four major families of haem-based sensors can be recognized, depending on the nature of the haem-binding domain: (i) the haem-binding PAS domain, (ii) the CO-sensitive carbon monoxide oxidation activator, (iii) the haem NO-binding domain, and (iv) the globin-coupled sensors. The functional classification of the haem-binding sensors is based on the activity of the transmitter domain and, traditionally, comprises: (i) sensors with aerotactic function; (ii) sensors with gene-regulating function; and (iii) sensors with unknown function. We have implemented this classification with newly identified proteins, that is, the Streptomyces avermitilis and Frankia sp. that present a C-terminal-truncated globin fused to an N-terminal cofactor-free monooxygenase, the structural-related class of non-haem globins in Bacillus subtilis, Moorella thermoacetica, and Bacillus anthracis, and a haemerythrin-coupled diguanylate cyclase in Vibrio cholerae. This review summarizes the structures, the functions, and the structure-function relationships known to date on this broad protein family. We also propose unresolved questions and new possible research approaches.
Collapse
|
10
|
Ishida T, Aono S. A model theoretical study on ligand exchange reactions of CooA. Phys Chem Chem Phys 2013; 15:6139-48. [DOI: 10.1039/c3cp43253j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
11
|
Benabbas A, Karunakaran V, Youn H, Poulos TL, Champion PM. Effect of DNA binding on geminate CO recombination kinetics in CO-sensing transcription factor CooA. J Biol Chem 2012; 287:21729-40. [PMID: 22544803 DOI: 10.1074/jbc.m112.345090] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Carbon monoxide oxidation activator (CooA) proteins are heme-based CO-sensing transcription factors. Here we study the ultrafast dynamics of geminate CO rebinding in two CooA homologues, Rhodospirillum rubrum (RrCooA) and Carboxydothermus hydrogenoformans (ChCooA). The effects of DNA binding and the truncation of the DNA-binding domain on the CO geminate recombination kinetics were specifically investigated. The CO rebinding kinetics in these CooA complexes take place on ultrafast time scales but remain non-exponential over many decades in time. We show that this non-exponential kinetic response is due to a quenched enthalpic barrier distribution resulting from a distribution of heme geometries that is frozen or slowly evolving on the time scale of CO rebinding. We also show that, upon CO binding, the distal pocket of the heme in the CooA proteins relaxes to form a very efficient hydrophobic trap for CO. DNA binding further tightens the narrow distal pocket and slightly weakens the iron-proximal histidine bond. Comparison of the CO rebinding kinetics of RrCooA, truncated RrCooA, and DNA-bound RrCooA proteins reveals that the uncomplexed and inherently flexible DNA-binding domain adds additional structural heterogeneity to the heme doming coordinate. When CooA forms a complex with DNA, the flexibility of the DNA-binding domain decreases, and the distribution of the conformations available in the heme domain becomes restricted. The kinetic studies also offer insights into how the architecture of the heme environment can tune entropic barriers in order to control the geminate recombination of CO in heme proteins, whereas spin selection rules play a minor or non-existent role.
Collapse
Affiliation(s)
- Abdelkrim Benabbas
- Department of Physics and Center for Interdisciplinary Research on Complex Systems, Northeastern University, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
12
|
Marvin KA, Kerby RL, Youn H, Roberts GP, Burstyn JN. The transcription regulator RcoM-2 from Burkholderia xenovorans is a cysteine-ligated hemoprotein that undergoes a redox-mediated ligand switch. Biochemistry 2008; 47:9016-28. [PMID: 18672900 PMCID: PMC2849662 DOI: 10.1021/bi800486x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Spectroscopic characterization of the newly discovered heme-PAS domain sensor protein BxRcoM-2 reveals that this protein undergoes redox-dependent ligand switching and CO- and NO-induced ligand displacement. The aerobic bacterium Burkholderia xenovorans expresses two homologous heme-containing proteins that promote CO-dependent transcription in vivo. These regulators of CO metabolism, BxRcoM-1 and BxRcoM-2, are gas-responsive heme-PAS domain proteins like mammalian neuronal PAS domain protein 2 (NPAS2) and the direct oxygen sensor from Escherichia coli ( EcDos). BxRcoM-2 was studied using electronic absorption, MCD, resonance Raman, and EPR spectroscopies. In the Fe(III) oxidation state, the heme is low-spin and six-coordinate with a cysteine(thiolate) as one of the two ligands. The sixth ligand is a histidine (His (74)), which is present in all states of the protein that were studied. Reduction to the Fe(II) oxidation state results in replacement of the cysteine(thiolate) with a neutral thioether ligand, Met (104). CO and NO bind to the Fe(II) BxRcoM-2 heme opposite the histidine ligand. Thus, BxRcoM-2 employs coordination state changes similar to those known for CO-sensing CooA, with redox-dependent loss of a cysteine(thiolate) ligand and displacement of a relatively weakly bound axial ligand by the effector gas molecule. Like EcDos, the weakly bound axial ligand that is displaced is methionine.
Collapse
Affiliation(s)
- Katherine A. Marvin
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave. Madison, WI, 53706
| | - Robert L. Kerby
- Department of Bacteriology, University of Wisconsin-Madison, 1550 Linden Dr. Madison, WI, 53706
| | - Hwan Youn
- Department of Bacteriology, University of Wisconsin-Madison, 1550 Linden Dr. Madison, WI, 53706
| | - Gary P. Roberts
- Department of Bacteriology, University of Wisconsin-Madison, 1550 Linden Dr. Madison, WI, 53706
| | - Judith N. Burstyn
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave. Madison, WI, 53706
| |
Collapse
|
13
|
Ibrahim M, Kerby RL, Puranik M, Wasbotten IH, Youn H, Roberts GP, Spiro TG. Heme displacement mechanism of CooA activation: mutational and Raman spectroscopic evidence. J Biol Chem 2006; 281:29165-73. [PMID: 16873369 PMCID: PMC2756451 DOI: 10.1074/jbc.m605568200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The heme-containing protein CooA of Rhodospirillum rubrum regulates the expression of genes involved in CO oxidation. CooA binds its target DNA sequence in response to CO binding to its heme. Activity measurements and resonance Raman (RR) spectra are reported for CooA variants that bind DNA even in the absence of CO, those in which the wild-type residues at the 121-126 positions, TSCMRT, are replaced by the residues AYLLRL or RYLLRL, and also for variants that bind DNA poorly in the presence of CO, such as L120S and L120F. The Fe-C and C-O stretching resonance Raman (RR) frequencies of all CooAs examined deviate from the expected back-bonding correlation in a manner indicating weakening of the Fe-His-77 proximal ligand bond, and the extent of weakening correlates positively with DNA binding activity. The (A/R) YLLRL variants have detectable populations of a 5-coordinate heme resulting from partial dissociation of the endogenous distal ligand, Pro-2. Selective excitation of this population reveals downshifted Fe-His-77-stretching RR bands, confirming the proximal bond weakening. These results support our previous hypothesis that the conformational change required for DNA binding is initiated by displacement of the heme into an adjacent hydrophobic cavity once CO displaces the Pro-2 ligand. Examination of the crystal structure reveals a physical basis for these results, and a mechanism is proposed to link heme displacement to conformational change.
Collapse
Affiliation(s)
- Mohammed Ibrahim
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544
| | - Robert L. Kerby
- Department of Bacteriology, University of Wisconsin - Madison, Madison, Wisconsin 53706
| | - Mrinalini Puranik
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544
| | - Ingar H. Wasbotten
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544
| | - Hwan Youn
- Department of Bacteriology, University of Wisconsin - Madison, Madison, Wisconsin 53706
| | - Gary P. Roberts
- Department of Bacteriology, University of Wisconsin - Madison, Madison, Wisconsin 53706
| | - Thomas G. Spiro
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544
| |
Collapse
|
14
|
Kubo M, Inagaki S, Yoshioka S, Uchida T, Mizutani Y, Aono S, Kitagawa T. Evidence for displacements of the C-helix by CO ligation and DNA binding to CooA revealed by UV resonance Raman spectroscopy. J Biol Chem 2006; 281:11271-8. [PMID: 16439368 DOI: 10.1074/jbc.m513261200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The UV and visible resonance Raman spectra are reported for CooA from Rhodospirillum rubrum, which is a transcriptional regulator activated by growth in a CO atmosphere. CO binding to heme in its sensor domain causes rearrangement of its DNA-binding domain, allowing binding of DNA with a specific sequence. The sensor and DNA-binding domains are linked by a hinge region that follows a long C-helix. UV resonance Raman bands arising from Trp-110 in the C-helix revealed local movement around Trp-110 upon CO binding. The indole side chain of Trp-110, which is exposed to solvent in the CO-free ferrous state, becomes buried in the CO-bound state with a slight change in its orientation but maintains a hydrogen bond with a water molecule at the indole nitrogen. This is the first experimental data supporting a previously proposed model involving displacement of the C-helix and heme sliding. The UV resonance Raman spectra for the CooA-DNA complex indicated that binding of DNA to CooA induces a further displacement of the C-helix in the same direction during transition to the complete active conformation. The Fe-CO and C-O stretching bands showed frequency shifts upon DNA binding, but the Fe-His stretching band did not. Moreover, CO-geminate recombination was more efficient in the DNA-bound state. These results suggest that the C-helix displacement in the DNA-bound form causes the CO binding pocket to narrow and become more negative.
Collapse
Affiliation(s)
- Minoru Kubo
- Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, Okazaki 444-8787, Japan
| | | | | | | | | | | | | |
Collapse
|
15
|
Karow DS, Pan D, Davis JH, Behrends S, Mathies RA, Marletta MA. Characterization of functional heme domains from soluble guanylate cyclase. Biochemistry 2005; 44:16266-74. [PMID: 16331987 PMCID: PMC2572136 DOI: 10.1021/bi051601b] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Soluble guanylate cyclase (sGC) is a heterodimeric, nitric oxide (NO)-sensing hemoprotein composed of two subunits, alpha1 and beta1. NO binds to the heme cofactor in the beta1 subunit, forming a five-coordinate NO complex that activates the enzyme several hundred-fold. In this paper, the heme domain has been localized to the N-terminal 194 residues of the beta1 subunit. This fragment represents the smallest construct of the beta1 subunit that retains the ligand-binding characteristics of the native enzyme, namely, tight affinity for NO and no observable binding of O(2). A functional heme domain from the rat beta2 subunit has been localized to the first 217 amino acids beta2(1-217). These proteins are approximately 40% identical to the rat beta1 heme domain and form five-coordinate, low-spin NO complexes and six-coordinate, low-spin CO complexes. Similar to sGC, these constructs have a weak Fe-His stretch [208 and 207 cm(-)(1) for beta1(1-194) and beta2(1-217), respectively]. beta2(1-217) forms a CO complex that is very similar to sGC and has a high nu(CO) stretching frequency at 1994 cm(-)(1). The autoxidation rate of beta1(1-194) was 0.073/min, while the beta2(1-217) was substantially more stable in the ferrous form with an autoxidation rate of 0.003/min at 37 degrees C. This paper has identified and characterized the minimum functional ligand-binding heme domain derived from sGC, providing key details toward a comprehensive characterization.
Collapse
Affiliation(s)
- David S Karow
- Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | | | | | | | |
Collapse
|
16
|
Youn H, Thorsteinsson MV, Conrad M, Kerby RL, Roberts GP. Dual roles of an E-helix residue, Glu167, in the transcriptional activator function of CooA. J Bacteriol 2005; 187:2573-81. [PMID: 15805503 PMCID: PMC1070397 DOI: 10.1128/jb.187.8.2573-2581.2005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
CooA is a transcriptional activator that mediates CO-dependent expression of the genes responsible for CO oxidation in Rhodospirillum rubrum. In this study, we suggest in vitro and in vivo models explaining an unusual requirement of CooA for millimolar levels of divalent cations for high-affinity DNA binding. Several lines of evidence indicate that an E-helix residue, Glu167, plays a central role in this requirement by inhibiting sequence-specific DNA binding via charge repulsion in the absence of any divalent cation and that divalent cations relieve such repulsion in the process of DNA binding by CooA. Unexpectedly, the Glu167 residue is the optimal residue for in vivo transcriptional activity of CooA. We present a model in which the Glu167 from the downstream subunit of CooA helps the protein to interact with RNA polymerase, probably through an interaction between activating region 3 and sigma subunit. The study was further extended to a homologous protein, cyclic AMP receptor protein (CRP), which revealed similar, but not identical, roles of the residue in this protein as well. The results show a unique mechanism of CooA modulating its DNA binding and transcriptional activation in response to divalent cations among the CRP/FNR (fumarate and nitrate reductase activator protein) superfamily of regulators.
Collapse
Affiliation(s)
- Hwan Youn
- Department of Bacteriology, University of Wisconsin--Madison, Madison, WI 53706, USA
| | | | | | | | | |
Collapse
|
17
|
Uchida T, Sato E, Sato A, Sagami I, Shimizu T, Kitagawa T. CO-dependent Activity-controlling Mechanism of Heme-containing CO-sensor Protein, Neuronal PAS Domain Protein 2. J Biol Chem 2005; 280:21358-68. [PMID: 15797872 DOI: 10.1074/jbc.m412350200] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Neuronal PAS domain protein 2, which was recently established to be a heme protein, acts as a CO-dependent transcription factor. The protein consists of the basic helix-loop-helix domain and two heme-containing PAS domains (PAS-A and PAS-B). In this study, we prepared wild type and mutants of the isolated PAS-A domain and measured resonance Raman spectra of these proteins. Upon excitation of the Raman spectrum at 363.8 nm, a band assignable to Fe3+-S stretching was observed at 334 cm(-1) for the ferric wild type protein; in contrast, this band was drastically weaker in the spectrum of C170A, suggesting that Cys170 is an axial ligand of the ferric heme. The Raman spectrum of the reduced form of wild type was mainly of six-coordinate low spin, and the nu11 band, which is sensitive to the donor strength of the axial ligand, was lower than that of reduced cytochrome c3, suggesting coordination of a strong ligand and thus a deprotonated His. In the reduced forms of H119A and H171A, the five-coordinate species became more prevalent, whereas no such changes were observed for C170A, indicating that His119 and His171, but not Cys170, are axial ligands in the ferrous heme. This means that ligand replacement from Cys to His occurs upon heme reduction. The nu(Fe-CO) versus nu(C-O) correlation indicates that a neutral His is a trans ligand of CO. Our results support a mechanism in which CO binding disrupts the hydrogen bonding of His171 with surrounding amino acids, which induces conformational changes in the His171-Cys170 moiety, leading to physiological signaling.
Collapse
Affiliation(s)
- Takeshi Uchida
- Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, Myodaiji, Okazaki, Aichi 444-8787, Japan
| | | | | | | | | | | |
Collapse
|
18
|
Chartier FJM, Couture M. Stability of the heme environment of the nitric oxide synthase from Staphylococcus aureus in the absence of pterin cofactor. Biophys J 2005; 87:1939-50. [PMID: 15345570 PMCID: PMC1304597 DOI: 10.1529/biophysj.104.042119] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We have used resonance Raman spectroscopy to probe the heme environment of a recently discovered NOS from the pathogenic bacterium Staphylococcus aureus, named SANOS. We detect two forms of the CO complex in the absence of L-arginine, with nu(Fe-CO) at 482 and 497 cm(-1) and nu(C-O) at 1949 and 1930 cm(-1), respectively. Similarly to mammalian NOS, the binding of L-arginine to SANOS caused the formation of a single CO complex with nu(Fe-CO) and nu(C-O) frequencies at 504 and 1,917 cm(-1), respectively, indicating that L-arginine induced an electrostatic/steric effect on the CO molecule. The addition of pterins to CO-bound SANOS modified the resonance Raman spectra only when they were added in combination with L-arginine. We found that (6R) 5,6,7,8 tetra-hydro-L-biopterin and tetrahydrofolate were not required for the stability of the reduced protein, which is 5-coordinate, and of the CO complex, which does not change with time to a form with a Soret band at 420 nm that is indicative of a change of the heme proximal coordination. Since SANOS is stable in the absence of added pterin, it suggests that the role of the pterin cofactor in the bacterial NOS may be limited to electron/proton transfer required for catalysis and may not involve maintaining the structural integrity of the protein as is the case for mammalian NOS.
Collapse
Affiliation(s)
- François J M Chartier
- Department of Biochemistry and Microbiology, Laval University, Quebec City, Quebec G2K 7P4, Canada
| | | |
Collapse
|
19
|
Oinuma KI, Kumita H, Ohta T, Konishi K, Hashimoto Y, Higashibata H, Kitagawa T, Shiro Y, Kobayashi M. Stopped-flow spectrophotometric and resonance Raman analyses of aldoxime dehydratase involved in carbon-nitrogen triple bond synthesis. FEBS Lett 2005; 579:1394-8. [PMID: 15733847 DOI: 10.1016/j.febslet.2005.01.037] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2004] [Revised: 12/28/2004] [Accepted: 01/17/2005] [Indexed: 10/25/2022]
Abstract
On stopped-flow analysis of aliphatic aldoxime dehydratase (OxdA), a novel hemoprotein, a spectrum derived from a reaction intermediate was detected on mixing ferrous OxdA with butyraldoxime; it gradually changed into that of ferrous OxdA with an isosbestic point at 421 nm. The spectral change on the addition of butyraldoxime to the ferrous H320A mutant showed the formation of a substrate-coordinated mutant, the absorption spectrum of which closely resembled that of the above intermediate. These observations and the resonance Raman investigation revealed that the substrate actually binds to the heme in OxdA, forming a hexa-coordinate low-spin heme.
Collapse
Affiliation(s)
- Ken-Ichi Oinuma
- Institute of Applied Biochemistry and Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Inagaki S, Masuda C, Akaishi T, Nakajima H, Yoshioka S, Ohta T, Pal B, Kitagawa T, Aono S. Spectroscopic and redox properties of a CooA homologue from Carboxydothermus hydrogenoformans. J Biol Chem 2004; 280:3269-74. [PMID: 15537640 DOI: 10.1074/jbc.m409884200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
CooA is a CO-sensing transcriptional activator that contains a b-type heme as the active site for sensing its physiological effector, CO. In this study, the spectroscopic and redox properties of a new CooA homologue from Carboxydothermus hydrogenoformans (Ch-CooA) were studied. Spectroscopic and mutagenesis studies revealed that His-82 and the N-terminal alpha-amino group were the axial ligands of the Fe(III) and Fe(II) hemes in Ch-CooA and that the N-terminal alpha-amino group was replaced by CO upon CO binding. Two neutral ligands, His-82 and the N-terminal alpha-amino group, are coordinated to the Fe(III) heme in Ch-CooA, whereas two negatively charged ligands, a thiolate from Cys-75 and the nitrogen atom of the N-terminal Pro, are the axial ligands of the Fe(III) heme in Rr-CooA. The difference in the coordination structure of the Fe(III) heme resulted in a large positive shift of redox potentials of Ch-CooA compared with Rr-CooA. Comparing the properties of Ch-CooA and Rr-CooA demonstrates that the essential elements for CooA function will be: (i) the heme is six-coordinate in the Fe(III), Fe(II), and Fe(II)-CO forms; (ii) the N-terminal is coordinated to the heme as an axial ligand, and (iii) CO replaces the N-terminal bound to the heme upon CO binding.
Collapse
Affiliation(s)
- Sayaka Inagaki
- Department of Structural Molecule Science, The Graduate University for Advanced Studies, 38 Nishigo-naka, Myodaiji, Okazaki 444-8585, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
Carbon monoxide (CO) has long been known to have dramatic physiological effects on organisms ranging from bacteria to humans, but recently there have a number of suggestions that organisms might have specific sensors for CO. This article reviews the current evidence for a variety of proteins with demonstrated or potential CO-sensing ability. Particular emphasis is placed on the molecular description of CooA, a heme-containing CO sensor from Rhodospirillum rubrum, since its biological role as a CO sensor is clear and we have substantial insight into the basis of its sensing ability.
Collapse
Affiliation(s)
- Gary P Roberts
- Department of Bacteriology, 420 Henry Mall, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | | | | |
Collapse
|
22
|
Yamashita T, Hoashi Y, Tomisugi Y, Ishikawa Y, Uno T. The C-helix in CooA Rolls upon CO Binding to Ferrous Heme. J Biol Chem 2004; 279:47320-5. [PMID: 15326178 DOI: 10.1074/jbc.m407766200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
CooA is a homodimeric transcriptional activator from Rhodospirillum rubrum containing one heme in each subunit. CO binding to the heme in its sensor domain activates CooA, facilitating the binding to DNA by its DNA-binding domain. The C-helix links the two domains and shapes an interface between the subunits. To probe the nature of CO activation, residues at positions 112-121 on the C-helix were replaced by Asn or Gln and their effects were evaluated by resonance Raman spectroscopy and by the measurements of CO binding affinity. The nu(Fe-CO) stretching Raman line in CO-bound wild-type CooA was up-shifted by 6 cm(-1) in the L116Q, G117N, and L120Q mutants, indicating unequivocally that these residues are close to the bound CO. Residues Leu116 and Leu120 from each subunit form contacts with the corresponding residues in the opposite subunit, enabling hydrophobic interactions in the inactive ferrous form. Thus, in the CO-bound activated form, both C-helices appear to roll to direct these residues toward the heme, forming a hydrophobic pocket for the bound CO. The CO affinity is approximately one order of magnitude higher in the L112Q, I115Q, L116Q, G117N, L120Q, and T121N mutants but reduced in A114N mutant. The variation indicates that these residues are close to the heme in the ferrous and/or CO-bound forms and are responsible for CooA activation. A roll-and-slide mechanism is proposed for CO activation of CooA.
Collapse
Affiliation(s)
- Taku Yamashita
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Oehonmachi, Kumamoto 862-0973, Japan
| | | | | | | | | |
Collapse
|
23
|
Matsuda Y, Uchida T, Hori H, Kitagawa T, Arata H. Structural characterization of a binuclear center of a Cu-containing NO reductase homologue from Roseobacter denitrificans: EPR and resonance Raman studies. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2004; 1656:37-45. [PMID: 15136157 DOI: 10.1016/j.bbabio.2004.01.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2003] [Revised: 12/19/2003] [Accepted: 01/07/2004] [Indexed: 11/19/2022]
Abstract
Aerobic phototrophic bacterium Roseobacter denitrificans has a nitric oxide reductase (NOR) homologue with cytochrome c oxidase (CcO) activity. It is composed of two subunits that are homologous with NorC and NorB, and contains heme c, heme b, and copper in a 1:2:1 stoichiometry. This enzyme has virtually no NOR activity. Electron paramagnetic resonance (EPR) spectra of the air-oxidized enzyme showed signals of two low-spin hemes at 15 K. The high-spin heme species having relatively low signal intensity indicated that major part of heme b3 is EPR-silent due to an antiferromagnetic coupling to an adjacent CuB forming a Fe-Cu binuclear center. Resonance Raman (RR) spectrum of the oxidized enzyme suggested that heme b3 is six-coordinate high-spin species and the other hemes are six-coordinate low-spin species. The RR spectrum of the reduced enzyme showed that all the ferrous hemes are six-coordinate low-spin species. Nu(Fe-CO) and nu(C-O) stretching modes were observed at 523 and 1969 cm(-1), respectively, for CO-bound enzyme. In spite of the similarity to NOR in the primary structure, the frequency of nu(Fe-CO) mode is close to those of aa3- and bo3-type oxidases rather than that of NOR.
Collapse
Affiliation(s)
- Yuji Matsuda
- Department of Biology, Graduate School of Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi, Fukuoka 812-8581, Japan
| | | | | | | | | |
Collapse
|
24
|
Yamashita T, Hoashi Y, Watanabe K, Tomisugi Y, Ishikawa Y, Uno T. Roles of Heme Axial Ligands in the Regulation of CO Binding to CooA. J Biol Chem 2004; 279:21394-400. [PMID: 15026411 DOI: 10.1074/jbc.m400512200] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
CooA is a CO-dependent transcription factor of the bacterium Rhodospirillum rubrum that contains a six-coordinate heme. It has as its heme axial ligands Pro(2) and Cys(75) in the ferric state and Pro(2) and His(77) in the ferrous state. To probe the regulation of CO binding and the ligand switching mechanism in CooA, we have prepared site-directed mutants in which the residues contributing the axial ligands are substituted. The properties of these mutants were investigated by resonance Raman and CO titration methods. Wild-type CooA binds CO with a modest dissociation constant (K(d)) of 11 microm, this value being typical for gas-sensing heme proteins. The K(d) value was greatly decreased in the P2H mutant, indicating that Pro(2) coordination fine tunes CO sensing in CooA. The bound CO in P2H gives rise to a nu(Fe-CO) stretching Raman line at 490 cm(-1), which is similar to that in wild-type CooA. Thus, Pro(2) is the ligand that is replaced by exogenous CO. In the H77A mutant, equilibrium CO binding is biphasic, and at high CO pressures two CO molecules occupy both axial sites. The nu(Fe-CO) stretching Raman line for the first CO molecule was observed at 497 cm(-1). Some of the His(77) mutants showed an additional nu(Fe-CO) line at 525 cm(-1). The binding affinity of the second CO molecule correlates with the five-coordinate component in the ferrous His(77) mutants and also with the acidity of the side chain at position 77. Thus, we propose the Cys(75)-His(77) ligand switch is controlled by His(77) acting as a proton reservoir.
Collapse
Affiliation(s)
- Taku Yamashita
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Oehonmachi, Kumamoto 862-0973, Japan
| | | | | | | | | | | |
Collapse
|
25
|
Igarashi J, Sato A, Kitagawa T, Yoshimura T, Yamauchi S, Sagami I, Shimizu T. Activation of heme-regulated eukaryotic initiation factor 2alpha kinase by nitric oxide is induced by the formation of a five-coordinate NO-heme complex: optical absorption, electron spin resonance, and resonance raman spectral studies. J Biol Chem 2004; 279:15752-62. [PMID: 14752110 DOI: 10.1074/jbc.m310273200] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Heme-regulated eukaryotic initiation factor 2alpha kinase (HRI) regulates the synthesis of hemoglobin in reticulocytes in response to heme availability. HRI contains a tightly bound heme at the N-terminal domain. Earlier reports show that nitric oxide (NO) regulates HRI catalysis. However, the mechanism of this process remains unclear. In the present study, we utilize in vitro kinase assays, optical absorption, electron spin resonance (ESR), and resonance Raman spectra of purified full-length HRI for the first time to elucidate the regulation mechanism of NO. HRI was activated via heme upon NO binding, and the Fe(II)-HRI(NO) complex displayed 5-fold greater eukaryotic initiation factor 2alpha kinase activity than the Fe(III)-HRI complex. The Fe(III)-HRI complex exhibited a Soret peak at 418 nm and a rhombic ESR signal with g values of 2.49, 2.28, and 1.87, suggesting coordination with Cys as an axial ligand. Interestingly, optical absorption, ESR, and resonance Raman spectra of the Fe(II)-NO complex were characteristic of five-coordinate NO-heme. Spectral findings on the coordination structure of full-length HRI were distinct from those obtained for the isolated N-terminal heme-binding domain. Specifically, six-coordinate NO-Fe(II)-His was observed but not Cys-Fe(III) coordination. It is suggested that significant conformational change(s) in the protein induced by NO binding to the heme lead to HRI activation. We discuss the role of NO and heme in catalysis by HRI, focusing on heme-based sensor proteins.
Collapse
Affiliation(s)
- Jotaro Igarashi
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan
| | | | | | | | | | | | | |
Collapse
|
26
|
Taguchi S, Matsui T, Igarashi J, Sasakura Y, Araki Y, Ito O, Sugiyama S, Sagami I, Shimizu T. Binding of Oxygen and Carbon Monoxide to a Heme-regulated Phosphodiesterase from Escherichia coli. J Biol Chem 2004; 279:3340-7. [PMID: 14612459 DOI: 10.1074/jbc.m301013200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The heme-regulated phosphodiesterase, Ec DOS, is a redox sensor that uses the heme in its PAS domain to regulate catalysis. The rate of O(2) association (k(on)) with full-length Ec DOS is extremely slow at 0.0019 microM(-1) s(-1), compared with >9.5 microM(-1) s(-1) for 6-coordinated globin-type hemoproteins, as determined by the stopped-flow method. This rate is dramatically increased (up to 16-fold) in the isolated heme-bound PAS domain. Dissociation constants (K(d)) calculated from the kinetic parameters are 340 and 20 microm for the full-length wild-type enzyme and its isolated PAS domain, respectively. Mutations at Met-95 in the isolated PAS domain, which may be a heme axial ligand in the Fe(II) complex, lead to a further increase in the k(on) value by more than 30-fold, and consequently, a decrease in the K(d) value to less than 1 microM. The k(on) value for CO binding to the full-length wild-type enzyme is also very low (0.00081 microM(-1) s(-1)). The kinetics of CO binding to the isolated PAS domain and its mutants are similar to those observed for O(2). However, the K(d) values for CO are considerably lower than those for O(2).
Collapse
Affiliation(s)
- Sue Taguchi
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Coyle CM, Puranik M, Youn H, Nielsen SB, Williams RD, Kerby RL, Roberts GP, Spiro TG. Activation mechanism of the CO sensor CooA. Mutational and resonance Raman spectroscopic studies. J Biol Chem 2003; 278:35384-93. [PMID: 12796503 DOI: 10.1074/jbc.m301000200] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
CooA is a CO-dependent heme protein transcription factor of the bacterium Rhodospirillum rubrum. CO binding to its heme causes CooA to bind DNA and activate expression of genes for CO metabolism. To understand the nature of CO activation, several CooA mutational variants have been studied by resonance Raman spectroscopy, in vivo activity measurements, and DNA binding assays. Analysis of the Fe-C and C-O stretching Raman spectroscopy bands permits the conclusion that when CO displaces the Pro2 heme ligand, the protein forms a hydrophobic pocket in which the C-helix residues Gly117, Leu116, and Ile113 are close to the bound CO. The displaced Pro2 terminus is expelled from this pocket, unless the pH is raised above the pKa, in which case the terminus remains in H-bond contact. The pKa for this transition is 8.6, two units below that of aqueous proline, reflecting the hydrophobic nature of the pocket. The proximal Fe-His bond in Fe[II]CooA is as strong as it is in myoglobin but is weakened by CO binding, an effect attributable to loss of an H-bond from the proximal His77 ligand to the adjacent Asn42 side chain. A structural model is proposed for the position of the CO-bound heme in the active form of CooA, which has implications for the mechanism of CO activation.
Collapse
Affiliation(s)
- Candace M Coyle
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Igarashi J, Sato A, Kitagawa T, Sagami I, Shimizu T. CO binding study of mouse heme-regulated eIF-2alpha kinase: kinetics and resonance Raman spectra. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1650:99-104. [PMID: 12922173 DOI: 10.1016/s1570-9639(03)00205-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Heme-regulated eukaryotic initiation factor (eIF)-2alpha kinase (HRI) regulates the synthesis of globin chains in reticulocytes with heme availability. In the present study, CO binding kinetics to the 6-coordinated Fe(II) heme of the amino-terminal domain of mouse HRI and resonance Raman spectra of the Fe(II)-CO complex are examined to probe the character of the heme environment. The CO association rate constant, k(on)', and CO dissociation rate constant, k(off), were 0.0029 microM(-1)s(-1) and 0.003 s(-1), respectively. These values are very slow compared with those of mouse neuroglobin and sperm whale myoglobin, while the k(off) value of HRI was close to those of the 6-coordinated hemoglobins from Chlamydomonas and barley (0.0022 and 0.0011 s(-1)). The dissociation rate constant of an endogenous ligand, which occurs prior to CO association, was 18.3 s(-1), which was lower than those (197 and 47 s(-1)) of the same 6-coordinated hemoglobins. Resonance Raman spectra suggest that the Fe-C-O adopts an almost linear and upright structure and that the bound CO interacts only weakly with nearby amino acid residues.
Collapse
Affiliation(s)
- Jotaro Igarashi
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | | | | | | | | |
Collapse
|
29
|
Liebl U, Bouzhir-Sima L, Negrerie M, Martin JL, Vos MH. Ultrafast ligand rebinding in the heme domain of the oxygen sensors FixL and Dos: general regulatory implications for heme-based sensors. Proc Natl Acad Sci U S A 2002; 99:12771-6. [PMID: 12271121 PMCID: PMC130535 DOI: 10.1073/pnas.192311699] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2002] [Indexed: 11/18/2022] Open
Abstract
Heme-based oxygen sensors are part of ligand-specific two-component regulatory systems, which have both a relatively low oxygen affinity and a low oxygen-binding rate. To get insight into the dynamical aspects underlying these features and the ligand specificity of the signal transduction from the heme sensor domain, we used femtosecond spectroscopy to study ligand dynamics in the heme domains of the oxygen sensors FixL from Bradyrhizobium japonicum (FixLH) and Dos from Escherichia coli (DosH). The heme coordination with different ligands and the corresponding ground-state heme spectra of FixLH are similar to myoglobin (Mb). After photodissociation, the excited-state properties and ligand-rebinding kinetics are qualitatively similar for FixLH and Mb for CO and NO as ligands. In contrast to Mb, the transient spectra of FixLH after photodissociation of ligands are distorted compared with the ground-state difference spectra, indicating differences in the heme environment with respect to the unliganded state. This distortion is particularly marked for O(2). Strikingly, heme-O(2) recombination occurs with efficiency unprecedented for heme proteins, in approximately 5 ps for approximately 90% of the dissociated O(2). For DosH-O(2), which shows 60% sequence similarity to FixLH, but where signal detection and transmission presumably are quite different, a similarly fast recombination was found with an even higher yield. Altogether these results indicate that in these sensors the heme pocket acts as a ligand-specific trap. The general implications for the functioning of heme-based ligand sensors are discussed in the light of recent studies on heme-based NO and CO sensors.
Collapse
Affiliation(s)
- Ursula Liebl
- Laboratory for Optical Biosciences, Institut National de la Santé et de la Recherche Médicale U451, Centre National de la Recherche Scientifique Unité Mixte de Recherche 7645, France
| | | | | | | | | |
Collapse
|
30
|
Sato A, Sasakura Y, Sugiyama S, Sagami I, Shimizu T, Mizutani Y, Kitagawa T. Stationary and time-resolved resonance Raman spectra of His77 and Met95 mutants of the isolated heme domain of a direct oxygen sensor from Escherichia coli. J Biol Chem 2002; 277:32650-8. [PMID: 12080073 DOI: 10.1074/jbc.m204559200] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The heme environments of Met(95) and His(77) mutants of the isolated heme-bound PAS domain (Escherichia coli DOS PAS) of a direct oxygen sensing protein from E. coli (E. coli DOS) were investigated with resonance Raman (RR) spectroscopy and compared with the wild type (WT) enzyme. The RR spectra of both the reduced and oxidized WT enzyme were characteristic of six-coordinate low spin heme complexes from pH 4 to 10. The time-resolved RR spectra of the photodissociated CO-WT complex had an iron-His stretching band (nu(Fe-His)) at 214 cm(-1), and the nu(Fe-CO) versus nu(CO) plot of CO-WT E. coli DOS PAS fell on the line of His-coordinated heme proteins. The photodissociated CO-H77A mutant complex did not yield the nu(Fe-His) band but gave a nu(Fe-Im) band in the presence of imidazole. The RR spectrum of the oxidized M95A mutant was that of a six-coordinate low spin complex (i.e. the same as that of the WT enzyme), whereas the reduced mutant appeared to contain a five-coordinate heme complex. Taken together, we suggest that the heme of the reduced WT enzyme is coordinated by His(77) and Met(95), and that Met(95) is displaced by CO and O(2). Presumably, the protein conformational change that occurs upon exchange of an unknown ligand for Met(95) following heme reduction may lead to activation of the phosphodiesterase domain of E. coli DOS.
Collapse
Affiliation(s)
- Akira Sato
- School of Advanced Sciences, The Graduate University for Advanced Studies, Shonan Village, Hayama, Kanagawa 240-0193, Japan
| | | | | | | | | | | | | |
Collapse
|
31
|
Aono S, Kato T, Matsuki M, Nakajima H, Ohta T, Uchida T, Kitagawa T. Resonance Raman and ligand binding studies of the oxygen-sensing signal transducer protein HemAT from Bacillus subtilis. J Biol Chem 2002; 277:13528-38. [PMID: 11821422 DOI: 10.1074/jbc.m112256200] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
HemAT-Bs is a heme-containing signal transducer protein responsible for aerotaxis of Bacillus subtilis. The recombinant HemAT-Bs expressed in Escherichia coli was purified as the oxy form in which oxygen was bound to the ferrous heme. Oxygen binding and dissociation rate constants were determined to be k(on) = 32 microm(-1) s(-1) and k(off) = 23 s(-1), respectively, revealing that HemAT-Bs has a moderate oxygen affinity similar to that of sperm whale myoglobin (Mb). The rate constant for autoxidation at 37 degrees C was 0.06 h(-1), which is also close to that of Mb. Although the electronic absorption spectra of HemAT-Bs were similar to those of Mb, HemAT-Bs showed some unique characteristics in its resonance Raman spectra. Oxygen-bound HemAT-Bs gave the nu(Fe-O(2)) band at a noticeably low frequency (560 cm(-1)), which suggests a unique hydrogen bonding between a distal amino acid residue and the proximal atom of the bound oxygen molecule. Deoxy HemAT-Bs gave the nu(Fe-His) band at a higher frequency (225 cm(-1)) than those of ordinary His-coordinated deoxy heme proteins. CO-bound HemAT-Bs gave the nu(Fe-CO) and nu(C-O) bands at 494 and 1964 cm(-1), respectively, which fall on the same nu(C-O) versus nu(Fe-CO) correlation line as that of Mb. Based on these results, the structural and functional properties of HemAT-Bs are discussed.
Collapse
Affiliation(s)
- Shigetoshi Aono
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Tatsunokuchi, Ishikawa, Japan.
| | | | | | | | | | | | | |
Collapse
|
32
|
Nakajima H, Nakagawa E, Kobayashi K, Tagawa S, Aono S. Ligand-switching intermediates for the CO-sensing transcriptional activator CooA measured by pulse radiolysis. J Biol Chem 2001; 276:37895-9. [PMID: 11487580 DOI: 10.1074/jbc.m105429200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
CooA is a heme-containing and CO-sensing transcriptional activator whose activity is regulated by CO. The protoheme that acts as a CO sensor in CooA shows unique properties for its coordination structure. The Cys75 axial ligand of the ferric heme is replaced by His77 upon the reduction of the heme iron and vice versa. In this work, the ligand-switching process induced by the reduction of the heme was investigated by the technique of pulse radiolysis. Hydrated electron reduced the heme iron in ferric CooA within 1 micros to form the first intermediate with the Soret peak at 440 nm, suggesting that a six-coordinate ferrous heme with a thiolate axial ligand was formed initially. The first intermediate was converted into the second intermediate with the time constant of 40 micros (k = 2.5 x 10(4) x s(-1)). In the second intermediate, the thiolate from Cys75 was thought to be protonated and/or the Fe-S bond was thought to be elongated. The second intermediate was converted into the final reduced form with the time constant of 2.9 ms (k = 3.5 x 10(2) x s(-1)) for wild-type CooA. The ligand exchange between Cys75 and His77 took place during the conversion of the second intermediate into the final reduced form.
Collapse
Affiliation(s)
- H Nakajima
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Tatsunokuchi, Nomi-gun, Ishikawa 923-1292, Japan
| | | | | | | | | |
Collapse
|
33
|
Roberts GP, Thorsteinsson MV, Kerby RL, Lanzilotta WN, Poulos T. CooA: a heme-containing regulatory protein that serves as a specific sensor of both carbon monoxide and redox state. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2001; 67:35-63. [PMID: 11525385 DOI: 10.1016/s0079-6603(01)67024-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
CooA, the heme-containing carbon monoxide (CO) sensor from the bacterium Rhodospirillum rubrum, is a transcriptional factor that activates expression of certain genes in response to CO. As with other heme proteins, CooA is unable to bind CO when the Fe heme is oxidized, consistent with the fact that some of the regulated gene products are oxygen-labile. Upon reduction, there is an unusual switch of protein ligands to the six-coordinate heme and the reduced heme is able to bind CO. CO binding stabilizes a conformation of the dimeric protein that allows sequence-specific DNA binding, and transcription is activated through contacts between CooA and RNA polymerase. CooA is therefore a novel redox sensor as well as a specific CO sensor. CooA is a homolog of catabolite responsive protein (CRP), whose transcriptionally active conformation has been known for some time. The recent solution of the crystal structure of the CO-free (transcriptionally inactive) form of CooA has allowed insights into the mechanism by which both proteins respond to their specific small-molecule effectors.
Collapse
Affiliation(s)
- G P Roberts
- Department of Bacteriology, University of Wisconsin-Madison, 53706, USA
| | | | | | | | | |
Collapse
|
34
|
Yamamoto K, Ishikawa H, Takahashi S, Ishimori K, Morishima I, Nakajima H, Aono S. Binding of CO at the Pro2 side is crucial for the activation of CO-sensing transcriptional activator CooA. (1)H NMR spectroscopic studies. J Biol Chem 2001; 276:11473-6. [PMID: 11278259 DOI: 10.1074/jbc.c100047200] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
CooA is a heme-containing transcriptional activator that anaerobically binds to DNA at CO atmosphere. To obtain information on the conformational transition of CooA induced by CO binding to the heme, we assigned ring current-shifted (1)H NMR signals of CooA using two mutants whose axial ligands of the heme were replaced. In the absence of CO, the NMR spectral pattern of H77Y CooA, in which the axial histidine (His(77)) was replaced with tyrosine, was similar to that of wild-type CooA. In contrast, the spectra of CooADeltaN5, in which the NH(2) termini including the other axial ligand (Pro(2)) were deleted, were drastically modulated. We assigned three signals of wild-type CooA at -4.5, -3.6, and -2.8 ppm to delta(1)-, alpha-, and delta(2)-protons of Pro(2), respectively. The Pro(2) signals were undetectable in the upfield region of the spectrum of the CO-bound state, which confirms that CO displaces Pro(2). Interestingly, the Pro(2) signals were observed for CO-bound H77Y CooA, implying that CO binds to the trans position of Pro(2) in H77Y CooA. The abolished CO-dependent transcriptional activity of H77Y CooA is therefore the consequence of Pro(2) ligation. These observations are consistent with the view that the movement of the NH(2) terminus triggers the conformational transition to the DNA binding form.
Collapse
Affiliation(s)
- K Yamamoto
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto 606-8501, Japan
| | | | | | | | | | | | | |
Collapse
|
35
|
Nakajima H, Honma Y, Tawara T, Kato T, Park SY, Miyatake H, Shiro Y, Aono S. Redox properties and coordination structure of the heme in the co-sensing transcriptional activator CooA. J Biol Chem 2001; 276:7055-61. [PMID: 11096066 DOI: 10.1074/jbc.m003972200] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The CO-sensing transcriptional activator CooA contains a six-coordinate protoheme as a CO sensor. Cys(75) and His(77) are assigned to the fifth ligand of the ferric and ferrous hemes, respectively. In this study, we carried out alanine-scanning mutagenesis and EXAFS analyses to determine the coordination structure of the heme in CooA. Pro(2) is thought to be the sixth ligand of the ferric and ferrous hemes in CooA, which is consistent with the crystal structure of ferrous CooA (Lanzilotta, W. N., Schuller, D. J., Thorsteinsson, M. V., Kerby, R. L., Roberts, G. P., and Poulos, T. L. (2000) Nat. Struct. Biol. 7, 876-880). CooA exhibited anomalous redox chemistry, i.e. hysteresis was observed in electrochemical redox titrations in which the observed reduction and oxidation midpoint potentials were -320 mV and -260 mV, respectively. The redox-controlled ligand exchange of the heme between Cys(75) and His(77) is thought to cause the difference between the reduction and oxidation midpoint potentials.
Collapse
Affiliation(s)
- H Nakajima
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Tatsunokuchi, Nomi-gun, Ishikawa 923-1292, Japan
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Kumazaki S, Nakajima H, Sakaguchi T, Nakagawa E, Shinohara H, Yoshihara K, Aono S. Dissociation and recombination between ligands and heme in a CO-sensing transcriptional activator CooA. A flash photolysis study. J Biol Chem 2000; 275:38378-83. [PMID: 10978334 DOI: 10.1074/jbc.m005533200] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
CooA from Rhodospirillum rubrum is a transcriptional activator in which a heme prosthetic group acts as a CO sensor and regulates the activity of the protein. In this study, the electronic relaxation of the heme, and the concurrent recombination between ligands and the heme at approximately 280 K were examined in an effort to understand the environment around the heme and the dynamics of the ligands. Upon photoexcitation of the reduced CooA at 400 nm, electronic relaxation of the heme occurred with time constants of 0.8 and 1.7 ps. The ligand rebinding was substantially completed with a time constant of 6.5 ps, followed by a slow relaxation process with a time constant of 173 ps. In the case of CO-bound CooA, relaxation of the excited heme occurred with two time constants, 1.1 and 2.4 ps, which were largely similar to those with reduced CooA. The subsequent CO recombination process was remarkably fast compared with that of other CO-bound heme proteins. It was well described as a biphasic geminate recombination process with time constants of 78 ps (60%) and 386 ps (30%). About 10% of the excited heme remained unligated at 1.9 ns. The dynamics of rebinding of CO thus will help us to understand how the physiologically relevant diatomic molecule approaches the heme binding site in CooA with picosecond resolution.
Collapse
Affiliation(s)
- S Kumazaki
- School of Materials Science, Japan Advanced Institute of Science and Technology, Tatsunokuchi, Ishikawa 923-1292, Japan.
| | | | | | | | | | | | | |
Collapse
|
37
|
Aono S, Honma Y, Ohkubo K, Tawara T, Kamiya T, Nakajima H. CO sensing and regulation of gene expression by the transcriptional activator CooA. J Inorg Biochem 2000; 82:51-6. [PMID: 11132638 DOI: 10.1016/s0162-0134(00)00139-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The transcriptional activator CooA from Rhodospirillum rubrum contains a six-coordinate protoheme that acts as a CO sensor in vivo. CO is a physiological effector of CooA and replaces one of the axial ligands of the ferrous heme to form the CO-bound CooA that is active as the transcriptional activator. Cys75 or His77 is coordinated to the ferric and ferrous hemes in CooA, respectively. The redox-controlled ligand exchange between Cys75 and His77 proceeds during the change in the redox state of the heme. The reduction and oxidation midpoint potentials of CooA have been determined to be -320 and -260 mV, respectively. The properties of a functional chimera derived from CRP and CooA suggest that CooA activates the transcription by a similar mechanism to that for CRP at Class II CRP-dependent promoters. Alanine-scanning mutagenesis has revealed that Arg24 and Arg53 of CooA, which will be concerned with the protein-protein interaction with RNA polymerase, are critical amino acid residues for the transcriptional activator activity of CooA, and that Lys26 and Asp94 modulate the activity of CooA.
Collapse
Affiliation(s)
- S Aono
- School of Materials Science, Japan Advanced Institute of Science and Technology, Nomi-gun, Ishikawa.
| | | | | | | | | | | |
Collapse
|
38
|
Nakajima H, Matsuo T, Tawara T, Aono S. Control of CooA activity by the mutation at the C-terminal end of the heme-binding domain. J Inorg Biochem 2000; 78:63-8. [PMID: 10714706 DOI: 10.1016/s0162-0134(99)00210-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A constitutively active mutant of a CooA, in which Met131 was replaced by Leu, was isolated by random mutagenesis. Site-directed mutagenesis at position 131 revealed that M131R-CooA was also constitutively active even in the absence of CO and that M131P-, M131D-, and M131E-CooA were constitutively inactive regardless of the presence or absence of CO. While M131L- and M131E-CooA showed almost the same electronic absorption spectra as those of the wild type in the ferric, ferrous, and CO-bound forms, M131D-CooA showed the typical spectrum of a five-coordinate heme protein in the ferric form. The conformational change around the heme induced by CO binding, which triggers the activation of CooA, is thought to be linked to the rearrangement of the conformation around the hinge region between the heme-binding and DNA-binding domains and/or of the relative orientation of the two domains to activate CooA.
Collapse
Affiliation(s)
- H Nakajima
- School of Materials Science, Japan Advanced Institute of Science and Technology, Nomi-gun, Ishikawa
| | | | | | | |
Collapse
|
39
|
Nakajima H, Aono S. Electrochemical Evidence of the Redox-controlled Ligand Exchange of the Heme in the CO-sensing Transcriptional Activator CooA. CHEM LETT 1999. [DOI: 10.1246/cl.1999.1233] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
40
|
Aono S, Nakajima H. Structure and function of CooA, a novel transcriptional regulator containing a b-type heme as a CO sensor. Coord Chem Rev 1999. [DOI: 10.1016/s0010-8545(99)00070-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
41
|
Aono S, Takasaki H, Unno H, Kamiya T, Nakajima H. Recognition of target DNA and transcription activation by the CO-sensing transcriptional activator CooA. Biochem Biophys Res Commun 1999; 261:270-5. [PMID: 10425177 DOI: 10.1006/bbrc.1999.1046] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
CooA from Rhodospirillum rubrum is a heme-based CO-sensing transcriptional activator, in which CO acts as a physiological effector. In this study, we examined the mechanism of site-specific recognition and transcriptional activation by CooA by elucidating the transcriptional activator activity of the mutant CooA proteins and the chimeric proteins derived from CRP and CooA and the promoter activity of the mutant promoters. Site-directed mutagenesis has revealed that Arg(177), Gln(178), and Ser(181) on the recognition helix of the helix-turn-helix motif in CooA are responsible for the site-specific recognition. The side chains of these amino acid residues at positions 177, 178, and 181 are believed to be hydrogen bonding to the G:A, T:A, and C:G pairs at positions 2/15, 3/14, and 4/13 in the CooA-dependent promoters to recognize the DNA site for CooA. The properties of the CRP/CooA chimeric proteins constructed in this work suggest that CooA activates transcription by a similar mechanism to that of CRP at Class II CRP-dependent promoters.
Collapse
Affiliation(s)
- S Aono
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Tatsunokuchi, Ishikawa, Nomi-gun, 923-1292, Japan.
| | | | | | | | | |
Collapse
|
42
|
Abstract
The past several years have been witness to a staggering rate of advancement in the understanding of how organisms respond to changes in the availability of diatomic molecules that are toxic and/or crucial to survival. Heme-based sensors presently constitute the majority of the proteins known to sense NO, O2 and CO and to initiate the chemistry required to adapt to changes in their availabilities. Knowledge of the three characterized members of this class, soluble guanylate cyclase, FixL and CooA, has grown substantially during the past year. The major advances have resulted from a broad range of approaches to elucidation of both function and mechanism. They include growth in the understanding of the interplay between the heme and protein in soluble guanylate cyclase, as well as alternate means for its stimulation. Insight into the O2-induced structural changes in FixL has been supplied by the single crystal structure of the heme domain of Bradyrhizobium japonicum. Finally, the ligation environment and ligand interchange that facilitates CO sensing by CooA has been established by spectroscopic and mutagenesis techniques.
Collapse
Affiliation(s)
- K R Rodgers
- Department of Chemistry, Ladd Hall, North Dakota State University, Fargo, ND 58105-5516, USA
| |
Collapse
|
43
|
Aono S, Ohkubo K, Matsuo T, Nakajima H. Redox-controlled ligand exchange of the heme in the CO-sensing transcriptional activator CooA. J Biol Chem 1998; 273:25757-64. [PMID: 9748246 DOI: 10.1074/jbc.273.40.25757] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The transcriptional activator CooA from Rhodospirillum rubrum contains a b-type heme that acts as a CO sensor in vivo. CooA is the first example of a transcriptional regulator containing a heme as a prosthetic group and of a hemeprotein in which CO plays a physiological role. In this study, we constructed an in vivo reporter system to measure the transcriptional activator activity of CooA and prepared some CooA mutants in which a mutation was introduced at Cys, His, Met, Lys, or Tyr. Only the mutations of Cys75 and His77 affected the electronic absorption spectra of the heme in CooA. The electronic absorption spectra, EPR spectra, and the transcriptional activator activity of the wild-type and mutant CooA proteins indicate that 1) the thiolate derived from Cys75 is the axial ligand in the ferric heme, but it is not coordinated to the CO-bound ferrous heme; 2) Cys75 is protonated or displaced in the ferrous heme; and 3) His77 is the proximal ligand in the CO-bound ferrous heme and probably also in the ferrous heme, but it is not coordinated to the ferric heme. NMR spectra reveal that the conformational change around the heme, which will trigger the activation of CooA by CO, takes place upon the binding of CO to the heme.
Collapse
Affiliation(s)
- S Aono
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Tatsunokuchi, Nomi-gun, Ishikawa 923-1292, Japan.
| | | | | | | |
Collapse
|