1
|
Ma C, Yang M, Zhou W, Guo S, Zhang H, Gong J, Zhang XE, Li F. The RNA Landscape of In Vivo-Assembled MS2 Virus-Like Particles as mRNA Carriers Reveals RNA Contamination from Host Viruses. NANO LETTERS 2025; 25:3038-3044. [PMID: 39932477 PMCID: PMC11869999 DOI: 10.1021/acs.nanolett.4c04541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 02/06/2025] [Accepted: 02/06/2025] [Indexed: 02/27/2025]
Abstract
Virus-like particles (VLPs) are attractive systems for packaging and delivering therapeutic RNA molecules in vaccine development, protein replacement therapy, and gene editing. Different VLPs carrying target functional RNA have been biosynthesized and demonstrated for biomedical purposes. However, little attention has been paid to what other types of RNA, besides the target RNA, are encapsulated into VLPs, leading to a lack of knowledge of the landscape of RNA cargoes. In this work, we engineered the widely used MS2 VLPs to encapsulate a model cargo mRNA in yeast, with the packaging efficiency and specificity being quantitatively tuned by the copy number of packaging signals. Transcriptome sequencing of the RNA in the VLPs revealed RNA contamination from the hosts and host viruses. This study highlights the necessity of precise VLP and cargo design and a clear background of production hosts to ensure specificity and safety.
Collapse
Affiliation(s)
- Chun Ma
- State
Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese
Academy of Sciences, Wuhan 430071, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Mengsi Yang
- State
Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese
Academy of Sciences, Wuhan 430071, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Zhou
- State
Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese
Academy of Sciences, Wuhan 430071, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Songxin Guo
- State
Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese
Academy of Sciences, Wuhan 430071, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Hui Zhang
- State
Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese
Academy of Sciences, Wuhan 430071, China
| | - Jun Gong
- State
Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese
Academy of Sciences, Wuhan 430071, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Xian-En Zhang
- State
Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese
Academy of Sciences, Wuhan 430071, China
- Faculty
of Synthetic Biology, Shenzhen University
of Advanced Technology, Shenzhen 518107, China
| | - Feng Li
- State
Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese
Academy of Sciences, Wuhan 430071, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Sa'diyah W, Zhao YJ, Chiba Y, Kondo H, Suzuki N, Ban S, Yaguchi T, Urayama SI, Hagiwara D. New lineages of RNA viruses from clinical isolates of Rhizopus microsporus revealed by fragmented and primer-ligated dsRNA sequencing (FLDS) analysis. mSphere 2024; 9:e0034524. [PMID: 39072615 PMCID: PMC11351042 DOI: 10.1128/msphere.00345-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 06/27/2024] [Indexed: 07/30/2024] Open
Abstract
Rhizopus microsporus is a species in the order Mucorales that is known to cause mucormycosis, but it is poorly understood as a host of viruses. Here, we examined 25 clinical strains of R. microsporus for viral infection with a conventional double-stranded RNA (dsRNA) assay using agarose gel electrophoresis (AGE) and the recently established fragmented and primer-ligated dsRNA sequencing (FLDS) protocol. By AGE, five virus-infected strains were detected. Then, full-length genomic sequences of 12 novel RNA viruses were revealed by FLDS, which were related to the families Mitoviridae, Narnaviridae, and Endornaviridae, ill-defined groups of single-stranded RNA (ssRNA) viruses with similarity to the established families Virgaviridae and Phasmaviridae, and the proposed family "Ambiguiviridae." All the characterized viruses, except a potential phasmavirid with a negative-sense RNA genome, had positive-sense RNA genomes. One virus belonged to a previously established species within the family Mitoviridae, whereas the other 11 viruses represented new species or even new genera. These results show that the fungal pathogen R. microsporus harbors diverse RNA viruses and extend our understanding of the diversity of RNA viruses in the fungal order Mucorales, division Mucoromycota. Identifying RNA viruses from clinical isolates of R. microsporus may expand the repertoire of natural therapeutic agents for mucormycosis in the future.IMPORTANCEThe diversity of mycoviruses in fungal hosts in the division Mucoromycota has been underestimated, mainly within the species Rhizopus microsporus. Only five positive-sense RNA genomes had previously been discovered in this species. Because current sequencing methods poorly complete the termini of genomes, we used fragmented and primer-ligated double-stranded RNA sequencing to acquire the full-length genomes. Eleven novel mycoviruses were detected in this study, including the first negative-sense RNA genome reported in R. microsporus. Our findings extend the understanding of the viral diversity in clinical strains of Mucoromycota, may provide insights into the pathogenesis and ecology of this fungus, and may offer therapeutic options.
Collapse
Grants
- Institute for Fermentation, Osaka (IFO)
- 22KJ0440 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 22H04879 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 21K18217 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
Collapse
Affiliation(s)
- Wasiatus Sa'diyah
- Department of Life and Environmental Sciences, Laboratory of Fungal Interaction and Molecular Biology (Donated by IFO), University of Tsukuba, Ibaraki, Japan
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama, Japan
| | - Yan-Jie Zhao
- Department of Life and Environmental Sciences, Laboratory of Fungal Interaction and Molecular Biology (Donated by IFO), University of Tsukuba, Ibaraki, Japan
| | - Yuto Chiba
- Department of Life and Environmental Sciences, Laboratory of Fungal Interaction and Molecular Biology (Donated by IFO), University of Tsukuba, Ibaraki, Japan
| | - Hideki Kondo
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama, Japan
| | - Nobuhiro Suzuki
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama, Japan
| | - Sayaka Ban
- Medical Mycology Research Center, Chiba University, Chiba, Japan
| | - Takashi Yaguchi
- Medical Mycology Research Center, Chiba University, Chiba, Japan
| | - Syun-ichi Urayama
- Department of Life and Environmental Sciences, Laboratory of Fungal Interaction and Molecular Biology (Donated by IFO), University of Tsukuba, Ibaraki, Japan
- Microbiology Research Center for Sustainability (MiCS), University of Tsukuba, Tsukuba, Japan
| | - Daisuke Hagiwara
- Department of Life and Environmental Sciences, Laboratory of Fungal Interaction and Molecular Biology (Donated by IFO), University of Tsukuba, Ibaraki, Japan
- Microbiology Research Center for Sustainability (MiCS), University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
3
|
Abstract
Double synonyms in the genetic code can be used as a tool to test competing hypotheses regarding ambigrammatic narnavirus genomes. Applying the analysis to recent observations of Culex narnavirus 1 and Zhejiang mosquito virus 3 ambigrammatic viruses indicates that the open reading frame on the complementary strand of the segment coding for RNA-dependent RNA polymerase does not code for a functional protein. Culex narnavirus 1 has been shown to possess a second segment, also ambigrammatic, termed 'Robin'. We find a comparable segment for Zhejiang mosquito virus 3, a moderately diverged relative of Culex narnavirus 1. Our analysis of Robin polymorphisms suggests that its reverse open reading frame also does not code for a functional protein. We make a hypothesis about its role.
Collapse
Affiliation(s)
- Gytis Dudas
- Gothenburg Global Biodiversity Centre, Carl Skottsbergs Gata 22B, 413 19 Gothenburg, Sweden
| | - Greg Huber
- Chan Zuckerberg Biohub, 499 Illinois Street, San Francisco, CA 94158, USA
| | - Michael Wilkinson
- Chan Zuckerberg Biohub, 499 Illinois Street, San Francisco, CA 94158, USA
- School of Mathematics and Statistics, The Open University, Walton Hall, Milton Keynes MK7 6AA, UK
| | - David Yllanes
- Chan Zuckerberg Biohub, 499 Illinois Street, San Francisco, CA 94158, USA
| |
Collapse
|
4
|
Espino-Vázquez AN, Bermúdez-Barrientos JR, Cabrera-Rangel JF, Córdova-López G, Cardoso-Martínez F, Martínez-Vázquez A, Camarena-Pozos DA, Mondo SJ, Pawlowska TE, Abreu-Goodger C, Partida-Martínez LP. Narnaviruses: novel players in fungal-bacterial symbioses. ISME JOURNAL 2020; 14:1743-1754. [PMID: 32269378 DOI: 10.1038/s41396-020-0638-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 03/11/2020] [Accepted: 03/17/2020] [Indexed: 12/31/2022]
Abstract
Rhizopus microsporus is an early-diverging fungal species with importance in ecology, agriculture, food production, and public health. Pathogenic strains of R. microsporus harbor an intracellular bacterial symbiont, Mycetohabitans (formerly named Burkholderia). This vertically transmitted bacterial symbiont is responsible for the production of toxins crucial to the pathogenicity of Rhizopus and remarkably also for fungal reproduction. Here we show that R. microsporus can live not only in symbiosis with bacteria but also with two viral members of the genus Narnavirus. Our experiments revealed that both viruses replicated similarly in the growth conditions we tested. Viral copies were affected by the developmental stage of the fungus, the substrate, and the presence or absence of Mycetohabitans. Absolute quantification of narnaviruses in isolated asexual sporangiospores and sexual zygospores indicates their vertical transmission. By curing R. microsporus of its viral and bacterial symbionts and reinfecting bacteria to reestablish symbiosis, we demonstrate that these viruses affect fungal biology. Narnaviruses decrease asexual reproduction, but together with Mycetohabitans, are required for sexual reproductive success. This fungal-bacterial-viral system represents an outstanding model to investigate three-way microbial symbioses and their evolution.
Collapse
Affiliation(s)
- Astrid N Espino-Vázquez
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados, Irapuato, 36824, Mexico
| | - J Roberto Bermúdez-Barrientos
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados, Irapuato, 36824, Mexico.,Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados, Irapuato, 36824, Mexico
| | - J Francisco Cabrera-Rangel
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados, Irapuato, 36824, Mexico
| | - Gonzalo Córdova-López
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados, Irapuato, 36824, Mexico.,Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados, Irapuato, 36824, Mexico
| | - Faviola Cardoso-Martínez
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados, Irapuato, 36824, Mexico
| | - Azul Martínez-Vázquez
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados, Irapuato, 36824, Mexico
| | - David A Camarena-Pozos
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados, Irapuato, 36824, Mexico
| | - Stephen J Mondo
- US Department of Energy Joint Genome Institute, Walnut Creek, CA, 94598, USA.,Bioagricultural Science and Pest Management Department, Colorado State University, Fort Collins, CO, 80521, USA
| | - Teresa E Pawlowska
- School of Integrative Plant Science, Plant Pathology and Plant Microbe-Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Cei Abreu-Goodger
- Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados, Irapuato, 36824, Mexico
| | - Laila P Partida-Martínez
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados, Irapuato, 36824, Mexico.
| |
Collapse
|
5
|
Wang Q, Mu F, Xie J, Cheng J, Fu Y, Jiang D. A Single ssRNA Segment Encoding RdRp Is Sufficient for Replication, Infection, and Transmission of Ourmia-Like Virus in Fungi. Front Microbiol 2020; 11:379. [PMID: 32256466 PMCID: PMC7093599 DOI: 10.3389/fmicb.2020.00379] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 02/20/2020] [Indexed: 01/07/2023] Open
Abstract
Recently, an increasing number of ourmia-like viruses have been found in fungi; however, the features of these viruses remain unknown. Here, we report a novel ourmia-like virus isolated from Sclerotinia sclerotiorum. This virus, named S. sclerotiorum ourmia-like virus 4 (SsOLV4), has a genome 2,982 nt in length with a G-pentamer (GGGGG) at the 5'-terminus and a C-pentamer (CCCCC) at the 3'-terminus. The SsOLV4 genome has only one large putative open reading frame (ORF) predicted with both standard codes and mitochondrial codes and encodes an RNA-dependent RNA polymerase (RdRp). SsOLV4 is closely phylogenetically related to Pyricularia oryzae ourmia-like virus 1, with 42% identity between the RdRp amino acid sequences. We constructed full-length cDNA of SsOLV4 and synthesized RNA in vitro using the T7 RNA polymerase. The synthesized RNA could transfect S. sclerotiorum protoplasts efficiently. We further found that viral RNA could infect mycelia when mixed with PEG buffer. Our study suggests that a novel genus in family Botourmiaviridae should be established for SsOLV4 and other related viruses and demonstrates that one single-stranded RNA segment encoding RdRp is sufficient for ourmia-like viruses in fungi.
Collapse
Affiliation(s)
- Qihua Wang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Fan Mu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jiatao Xie
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jiasen Cheng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yanping Fu
- Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Daohong Jiang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
6
|
Dinan AM, Lukhovitskaya NI, Olendraite I, Firth AE. A case for a negative-strand coding sequence in a group of positive-sense RNA viruses. Virus Evol 2020; 6:veaa007. [PMID: 32064120 PMCID: PMC7010960 DOI: 10.1093/ve/veaa007] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Positive-sense single-stranded RNA viruses form the largest and most diverse group of eukaryote-infecting viruses. Their genomes comprise one or more segments of coding-sense RNA that function directly as messenger RNAs upon release into the cytoplasm of infected cells. Positive-sense RNA viruses are generally accepted to encode proteins solely on the positive strand. However, we previously identified a surprisingly long (∼1,000-codon) open reading frame (ORF) on the negative strand of some members of the family Narnaviridae which, together with RNA bacteriophages of the family Leviviridae, form a sister group to all other positive-sense RNA viruses. Here, we completed the genomes of three mosquito-associated narnaviruses, all of which have the long reverse-frame ORF. We systematically identified narnaviral sequences in public data sets from a wide range of sources, including arthropod, fungal, and plant transcriptomic data sets. Long reverse-frame ORFs are widespread in one clade of narnaviruses, where they frequently occupy >95 per cent of the genome. The reverse-frame ORFs correspond to a specific avoidance of CUA, UUA, and UCA codons (i.e. stop codon reverse complements) in the forward-frame RNA-dependent RNA polymerase ORF. However, absence of these codons cannot be explained by other factors such as inability to decode these codons or GC3 bias. Together with other analyses, we provide the strongest evidence yet of coding capacity on the negative strand of a positive-sense RNA virus. As these ORFs comprise some of the longest known overlapping genes, their study may be of broad relevance to understanding overlapping gene evolution and de novo origin of genes.
Collapse
Affiliation(s)
- Adam M Dinan
- Division of Virology, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK
| | - Nina I Lukhovitskaya
- Division of Virology, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK
| | - Ingrida Olendraite
- Division of Virology, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK
| | - Andrew E Firth
- Division of Virology, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK
| |
Collapse
|
7
|
Vertical transmission in Caenorhabditis nematodes of RNA molecules encoding a viral RNA-dependent RNA polymerase. Proc Natl Acad Sci U S A 2019; 116:24738-24747. [PMID: 31740606 PMCID: PMC6900638 DOI: 10.1073/pnas.1903903116] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In organisms composed of a single cell, RNAs of viral origin may be transmitted to daughter cells at cell division without passing through an extracellular virion stage. These RNAs usually encode an RNA-dependent RNA polymerase that enables their replication. For some of these agents, such as Narnaviruses, no capsid protein is expressed, and thus, they are called capsidless viruses. Here, we identify putative capsidless viral RNAs in animals, in nematodes closely related to the model organism Caenorhabditis elegans. We show that these RNAs are transmitted vertically through the host germline. Our work provides evidence that animal cells harbor capsidless viruses. Here, we report on the discovery in Caenorhabditis nematodes of multiple vertically transmitted RNAs coding for putative RNA-dependent RNA polymerases. Their sequences share similarity to distinct RNA viruses, including bunyaviruses, narnaviruses, and sobemoviruses. The sequences are present exclusively as RNA and are not found in DNA form. The RNAs persist in progeny after bleach treatment of adult animals, indicating vertical transmission of the RNAs. We tested one of the infected strains for transmission to an uninfected strain and found that mating of infected animals with uninfected animals resulted in infected progeny. By in situ hybridization, we detected several of these RNAs in the cytoplasm of the male and female germline of the nematode host. The Caenorhabditis hosts were found defective in degrading exogenous double-stranded RNAs, which may explain retention of viral-like RNAs. Strikingly, one strain, QG551, harbored three distinct virus-like RNA elements. Specific patterns of small RNAs complementary to the different viral-like RNAs were observed, suggesting that the different RNAs are differentially recognized by the RNA interference (RNAi) machinery. While vertical transmission of viruses in the family Narnaviridae, which are known as capsidless viruses, has been described in fungi, these observations provide evidence that multicellular animal cells harbor similar viruses.
Collapse
|
8
|
Jia H, Gong P. A Structure-Function Diversity Survey of the RNA-Dependent RNA Polymerases From the Positive-Strand RNA Viruses. Front Microbiol 2019; 10:1945. [PMID: 31507560 PMCID: PMC6713929 DOI: 10.3389/fmicb.2019.01945] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 08/07/2019] [Indexed: 01/15/2023] Open
Abstract
The RNA-dependent RNA polymerases (RdRPs) encoded by the RNA viruses are a unique class of nucleic acid polymerases. Each viral RdRP contains a 500–600 residue catalytic module with palm, fingers, and thumb domains forming an encircled human right hand architecture. Seven polymerase catalytic motifs are located in the RdRP palm and fingers domains, comprising the most conserved parts of the RdRP and are responsible for the RNA-only specificity in catalysis. Functional regions are often found fused to the RdRP catalytic module, resulting in a high level of diversity in RdRP global structure and regulatory mechanism. In this review, we surveyed all 46 RdRP-sequence available virus families of the positive-strand RNA viruses listed in the 2018b collection of the International Committee on Virus Taxonomy (ICTV) and chose a total of 49 RdRPs as representatives. By locating hallmark residues in RdRP catalytic motifs and by referencing structural and functional information in the literature, we were able to estimate the N- and C-terminal boundaries of the catalytic module in these RdRPs, which in turn serve as reference points to predict additional functional regions beyond the catalytic module. Interestingly, a large number of virus families may have additional regions fused to the RdRP N-terminus, while only a few of them have such regions on the C-terminal side of the RdRP. The current knowledge on these additional regions, either in three-dimensional (3D) structure or in function, is quite limited. In the five RdRP-structure available virus families in the positive-strand RNA viruses, only the Flaviviridae family has the 3D structural information resolved for such regions. Hence, future efforts to solve full-length RdRP structures containing these regions and to dissect the functional contribution of them are necessary to improve the overall understanding of the RdRP proteins as an evolutionarily integrated group, and our analyses here may serve as a guideline for selecting representative RdRP systems in these studies.
Collapse
Affiliation(s)
- Hengxia Jia
- Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Peng Gong
- Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
9
|
Grybchuk D, Kostygov AY, Macedo DH, Votýpka J, Lukeš J, Yurchenko V. RNA Viruses in Blechomonas (Trypanosomatidae) and Evolution of Leishmaniavirus. mBio 2018; 9:e01932-18. [PMID: 30327446 PMCID: PMC6191543 DOI: 10.1128/mbio.01932-18] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 09/11/2018] [Indexed: 01/25/2023] Open
Abstract
In this work, we analyzed viral prevalence in trypanosomatid parasites (Blechomonas spp.) infecting Siphonaptera and discovered nine species of viruses from three different groups (leishbunyaviruses, narnaviruses, and leishmaniaviruses). Most of the flagellate isolates bore two or three viral types (mixed infections). Although no new viral groups were documented in Blechomonas spp., our findings are important for the comprehension of viral evolution. The discovery of bunyaviruses in blechomonads was anticipated, since these viruses have envelopes facilitating their interspecific transmission and have already been found in various trypanosomatids and metatranscriptomes with trypanosomatid signatures. In this work, we also provided evidence that even representatives of the family Narnaviridae are capable of host switching and evidently have accomplished switches multiple times in the course of their evolution. The most unexpected finding was the presence of leishmaniaviruses, a group previously solely confined to the human pathogens Leishmania spp. From phylogenetic inferences and analyses of the life cycles of Leishmania and Blechomonas, we concluded that a common ancestor of leishmaniaviruses most likely infected Leishmania first and was acquired by Blechomonas by horizontal transfer. Our findings demonstrate that evolution of leishmaniaviruses is more complex than previously thought and includes occasional host switching.IMPORTANCE Flagellates belonging to the genus Leishmania are important human parasites. Some strains of different Leishmania species harbor viruses (leishmaniaviruses), which facilitate metastatic spread of the parasites, thus aggravating the disease. Up until now, these viruses were known to be hosted only by Leishmania Here, we analyzed viral distribution in Blechomonas, a related group of flagellates parasitizing fleas, and revealed that they also bear leishmaniaviruses. Our findings shed light on the entangled evolution of these viruses. In addition, we documented that Blechomonas can be also infected by leishbunyaviruses and narnaviruses, viral groups known from other insects' flagellates.
Collapse
Affiliation(s)
- Danyil Grybchuk
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Alexei Y Kostygov
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Diego H Macedo
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Jan Votýpka
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, České Budejovice (Budweis), Czech Republic
| | - Julius Lukeš
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, České Budejovice (Budweis), Czech Republic
- Faculty of Sciences, University of South Bohemia, České Budejovice (Budweis), Czech Republic
| | - Vyacheslav Yurchenko
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, České Budejovice (Budweis), Czech Republic
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov University, Moscow, Russia
| |
Collapse
|
10
|
Viral discovery and diversity in trypanosomatid protozoa with a focus on relatives of the human parasite Leishmania. Proc Natl Acad Sci U S A 2017; 115:E506-E515. [PMID: 29284754 DOI: 10.1073/pnas.1717806115] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Knowledge of viral diversity is expanding greatly, but many lineages remain underexplored. We surveyed RNA viruses in 52 cultured monoxenous relatives of the human parasite Leishmania (Crithidia and Leptomonas), as well as plant-infecting PhytomonasLeptomonas pyrrhocoris was a hotbed for viral discovery, carrying a virus (Leptomonas pyrrhocoris ostravirus 1) with a highly divergent RNA-dependent RNA polymerase missed by conventional BLAST searches, an emergent clade of tombus-like viruses, and an example of viral endogenization. A deep-branching clade of trypanosomatid narnaviruses was found, notable as Leptomonas seymouri bearing Narna-like virus 1 (LepseyNLV1) have been reported in cultures recovered from patients with visceral leishmaniasis. A deep-branching trypanosomatid viral lineage showing strong affinities to bunyaviruses was termed "Leishbunyavirus" (LBV) and judged sufficiently distinct to warrant assignment within a proposed family termed "Leishbunyaviridae" Numerous relatives of trypanosomatid viruses were found in insect metatranscriptomic surveys, which likely arise from trypanosomatid microbiota. Despite extensive sampling we found no relatives of the totivirus Leishmaniavirus (LRV1/2), implying that it was acquired at about the same time the Leishmania became able to parasitize vertebrates. As viruses were found in over a quarter of isolates tested, many more are likely to be found in the >600 unsurveyed trypanosomatid species. Viral loss was occasionally observed in culture, providing potentially isogenic virus-free lines enabling studies probing the biological role of trypanosomatid viruses. These data shed important insights on the emergence of viruses within an important trypanosomatid clade relevant to human disease.
Collapse
|
11
|
Kotta-Loizou I, Coutts RHA. Studies on the Virome of the Entomopathogenic Fungus Beauveria bassiana Reveal Novel dsRNA Elements and Mild Hypervirulence. PLoS Pathog 2017; 13:e1006183. [PMID: 28114361 PMCID: PMC5293280 DOI: 10.1371/journal.ppat.1006183] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 02/06/2017] [Accepted: 01/12/2017] [Indexed: 12/20/2022] Open
Abstract
The entomopathogenic fungus Beauveria bassiana has a wide host range and is used as a biocontrol agent against arthropod pests. Mycoviruses have been described in phytopathogenic fungi while in entomopathogenic fungi their presence has been reported only rarely. Here we show that 21.3% of a collection of B. bassiana isolates sourced from worldwide locations, harbor dsRNA elements. Molecular characterization of these elements revealed the prevalence of mycoviruses belonging to the Partitiviridae and Totiviridae families, the smallest reported virus to date, belonging to the family Narnaviridae, and viruses unassigned to a family or genus. Of particular importance is the discovery of members of a newly proposed family Polymycoviridae in B. bassiana. Polymycoviruses, previously designated as tetramycoviruses, consist of four non-conventionally encapsidated capped dsRNAs. The presence of additional non-homologous genomic segments in B. bassiana polymycoviruses and other fungi illustrates the unprecedented dynamic nature of the viral genome. Finally, a comparison of virus-free and virus-infected isogenic lines derived from an exemplar B. bassiana isolate revealed a mild hypervirulent effect of mycoviruses on the growth of their host isolate and on its pathogenicity against the greater wax moth Galleria mellonella, highlighting for the first time the potential of mycoviruses as enhancers of biocontrol agents.
Collapse
Affiliation(s)
- Ioly Kotta-Loizou
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, United Kingdom
- * E-mail:
| | - Robert H. A. Coutts
- Geography, Environment and Agriculture Division, Department of Biological and Environmental Sciences, School of Life and Medical Sciences, University of Hertfordshire, Hatfield, United Kingdom
| |
Collapse
|
12
|
Cook S, Chung BYW, Bass D, Moureau G, Tang S, McAlister E, Culverwell CL, Glücksman E, Wang H, Brown TDK, Gould EA, Harbach RE, de Lamballerie X, Firth AE. Novel virus discovery and genome reconstruction from field RNA samples reveals highly divergent viruses in dipteran hosts. PLoS One 2013; 8:e80720. [PMID: 24260463 PMCID: PMC3832450 DOI: 10.1371/journal.pone.0080720] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 10/07/2013] [Indexed: 12/17/2022] Open
Abstract
We investigated whether small RNA (sRNA) sequenced from field-collected mosquitoes and chironomids (Diptera) can be used as a proxy signature of viral prevalence within a range of species and viral groups, using sRNAs sequenced from wild-caught specimens, to inform total RNA deep sequencing of samples of particular interest. Using this strategy, we sequenced from adult Anopheles maculipennis s.l. mosquitoes the apparently nearly complete genome of one previously undescribed virus related to chronic bee paralysis virus, and, from a pool of Ochlerotatus caspius and Oc. detritus mosquitoes, a nearly complete entomobirnavirus genome. We also reconstructed long sequences (1503-6557 nt) related to at least nine other viruses. Crucially, several of the sequences detected were reconstructed from host organisms highly divergent from those in which related viruses have been previously isolated or discovered. It is clear that viral transmission and maintenance cycles in nature are likely to be significantly more complex and taxonomically diverse than previously expected.
Collapse
Affiliation(s)
- Shelley Cook
- Department of Life Sciences, Natural History Museum, London, United Kingdom
- * E-mail: (SC); (AEF)
| | - Betty Y.-W. Chung
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - David Bass
- Department of Life Sciences, Natural History Museum, London, United Kingdom
| | - Gregory Moureau
- UMR_D 190 "Emergence des Pathologies Virales" (Aix-Marseille Univ. IRD French Institute of Research for Development EHESP French School of Public Health), Marseille, France
| | - Shuoya Tang
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Erica McAlister
- Department of Life Sciences, Natural History Museum, London, United Kingdom
| | | | - Edvard Glücksman
- Department of General Botany, University Duisburg-Essen, Essen, Germany
| | - Hui Wang
- Centre for Ecology & Hydrology, Wallingford, Oxfordshire, United Kingdom
| | - T. David K. Brown
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Ernest A. Gould
- UMR_D 190 "Emergence des Pathologies Virales" (Aix-Marseille Univ. IRD French Institute of Research for Development EHESP French School of Public Health), Marseille, France
- Centre for Ecology & Hydrology, Wallingford, Oxfordshire, United Kingdom
| | - Ralph E. Harbach
- Department of Life Sciences, Natural History Museum, London, United Kingdom
| | - Xavier de Lamballerie
- UMR_D 190 "Emergence des Pathologies Virales" (Aix-Marseille Univ. IRD French Institute of Research for Development EHESP French School of Public Health), Marseille, France
| | - Andrew E. Firth
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
- * E-mail: (SC); (AEF)
| |
Collapse
|
13
|
Abstract
Saccharomyces cerevisiae has been a key experimental organism for the study of infectious diseases, including dsRNA viruses, ssRNA viruses, and prions. Studies of the mechanisms of virus and prion replication, virus structure, and structure of the amyloid filaments that are the basis of yeast prions have been at the forefront of such studies in these classes of infectious entities. Yeast has been particularly useful in defining the interactions of the infectious elements with cellular components: chromosomally encoded proteins necessary for blocking the propagation of the viruses and prions, and proteins involved in the expression of viral components. Here, we emphasize the L-A dsRNA virus and its killer-toxin-encoding satellites, the 20S and 23S ssRNA naked viruses, and the several infectious proteins (prions) of yeast.
Collapse
|
14
|
A member of the virus family Narnaviridae from the plant pathogenic oomycete Phytophthora infestans. Arch Virol 2011; 157:165-9. [PMID: 21971871 DOI: 10.1007/s00705-011-1126-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Accepted: 09/16/2011] [Indexed: 10/17/2022]
Abstract
A virus that has properties consistent with inclusion in the virus family Narnaviridae was described in Phytophthora infestans, the oomycete that caused the Irish potato famine. The genome of phytophthora infestans RNA virus 4 (PiRV-4) is 2,984 nt with short complementary terminal sequences and a single open reading frame predicted to encode an RNA-dependent RNA polymerase (RdRp) most closely related to saccharomyces cerevisiae narnavirus 20S (ScNV-20S) and ScNV-23S, the members of the genus Narnavirus, family Narnaviridae. This report constitutes the first description of a member of the family Narnaviridae from a host taxon outside of the kingdom Fungi.
Collapse
|
15
|
Rodríguez-Cousiño N, Maqueda M, Ambrona J, Zamora E, Esteban R, Ramírez M. A new wine Saccharomyces cerevisiae killer toxin (Klus), encoded by a double-stranded rna virus, with broad antifungal activity is evolutionarily related to a chromosomal host gene. Appl Environ Microbiol 2011; 77:1822-32. [PMID: 21239561 PMCID: PMC3067279 DOI: 10.1128/aem.02501-10] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Accepted: 12/30/2010] [Indexed: 11/20/2022] Open
Abstract
Wine Saccharomyces cerevisiae strains producing a new killer toxin (Klus) were isolated. They killed all the previously known S. cerevisiae killer strains, in addition to other yeast species, including Kluyveromyces lactis and Candida albicans. The Klus phenotype is conferred by a medium-size double-stranded RNA (dsRNA) virus, Saccharomyces cerevisiae virus Mlus (ScV-Mlus), whose genome size ranged from 2.1 to 2.3 kb. ScV-Mlus depends on ScV-L-A for stable maintenance and replication. We cloned and sequenced Mlus. Its genome structure is similar to that of M1, M2, or M28 dsRNA, with a 5'-terminal coding region followed by two internal A-rich sequences and a 3'-terminal region without coding capacity. Mlus positive strands carry cis-acting signals at their 5' and 3' termini for transcription and replication similar to those of killer viruses. The open reading frame (ORF) at the 5' portion codes for a putative preprotoxin with an N-terminal secretion signal, potential Kex2p/Kexlp processing sites, and N-glycosylation sites. No sequence homology was found either between the Mlus dsRNA and M1, M2, or M28 dsRNA or between Klus and the K1, K2, or K28 toxin. The Klus amino acid sequence, however, showed a significant degree of conservation with that of the product of the host chromosomally encoded ORF YFR020W of unknown function, thus suggesting an evolutionary relationship.
Collapse
Affiliation(s)
- Nieves Rodríguez-Cousiño
- Departamento de Microbiología (Antiguo Rectorado), Facultad de Ciencias, Universidad de Extremadura, 06071 Badajoz, Spain
| | | | | | | | | | | |
Collapse
|
16
|
Abstract
Viroids are the smallest known pathogenic agents. They are noncoding, single-stranded, closed-circular, "naked" RNAs, which replicate through RNA-RNA transcription. Viroids of the Avsunviroidae family possess a hammerhead ribozyme in their sequence, allowing self-cleavage during their replication. To date, viroids have only been detected in plant cells. Here, we investigate the replication of Avocado sunblotch viroid (ASBVd) of the Avsunviroidae family in a nonconventional host, the yeast Saccharomyces cerevisiae. We demonstrate that ASBVd RNA strands of both polarities are able to self-cleave and to replicate in a unicellular eukaryote cell. We show that the viroid monomeric RNA is destabilized by the nuclear 3' and the cytoplasmic 5' RNA degradation pathways. For the first time, our results provide evidence that viroids can replicate in other organisms than plants and that yeast contains all of the essential cellular elements for the replication of ASBVd.
Collapse
|
17
|
Abstract
The anticodon stem-loop of tRNAs requires extensive posttranscriptional modifications in order to maintain structure and stabilize the codon-anticodon interaction. These modifications also play a role in accommodating wobble, allowing a limited pool of tRNAs to recognize degenerate codons. Of particular interest is the formation of a threonylcarbamoyl group on adenosine 37 (t(6)A(37)) of tRNAs that recognize ANN codons. Located adjacent and 3' to the anticodon, t(6)A(37) is a conserved modification that is critical for reading frame maintenance. Recently, the highly conserved YrdC/Sua5 family of proteins was shown to be required for the formation of t(6)A(37). Sua5 was originally identified in a screen by virtue of its ability to affect expression from an aberrant upstream AUG codon in the cyc1 transcript. Together, these findings implicate Sua5 in protein translation at the level of codon recognition. Here, we show that Sua5 is critical for normal translation. The loss of SUA5 causes increased leaky scanning through AUG codons, +1 frameshifting, and nonsense suppression. In addition, the loss of SUA5 amplifies the 20S RNA virus found in Saccharomyces cerevisiae, possibly through an internal ribosome entry site-mediated mechanism. This study reveals a critical role for Sua5 and the t(6)A(37) modification in translational fidelity.
Collapse
|
18
|
Maqueda M, Zamora E, Rodríguez-Cousiño N, Ramírez M. Wine yeast molecular typing using a simplified method for simultaneously extracting mtDNA, nuclear DNA and virus dsRNA. Food Microbiol 2009; 27:205-9. [PMID: 20141937 DOI: 10.1016/j.fm.2009.10.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2009] [Revised: 10/01/2009] [Accepted: 10/05/2009] [Indexed: 11/25/2022]
Abstract
Quick and accurate methods are required for the identification of industrial, environmental, and clinical yeast strains. We propose a rapid method for the simultaneous extraction of yeast mtDNA, nuclear DNA, and virus dsRNA. It is simpler, cheaper, and faster than the previously reported methods. It allows one to choose among a broad range of molecular analysis approaches for yeast typing, avoiding the need to use of several different methods for the separate extraction of each nucleic acid type. The application of this method followed by the combined analysis of mtDNA and dsRNA (ScV-M and W) is a highly attractive option for fast and efficient wine yeast typing.
Collapse
Affiliation(s)
- Matilde Maqueda
- Departamento de Ciencias Biomédicas (Area de Microbiología), Facultad de Ciencias (Antiguo Rectorado), Universidad de Extremadura, 06071 Badajoz, Spain
| | | | | | | |
Collapse
|
19
|
Evolutionary capture of viral and plasmid DNA by yeast nuclear chromosomes. EUKARYOTIC CELL 2009; 8:1521-31. [PMID: 19666779 DOI: 10.1128/ec.00110-09] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
A 10-kb region of the nuclear genome of the yeast Vanderwaltozyma polyspora contains an unusual cluster of five pseudogenes homologous to five different genes from yeast killer viruses, killer plasmids, the 2microm plasmid, and a Penicillium virus. By further database searches, we show that this phenomenon is not unique to V. polyspora but that about 40% of the sequenced genomes of Saccharomycotina species contain integrated copies of genes from DNA plasmids or RNA viruses. We propose the name NUPAVs (nuclear sequences of plasmid and viral origin) for these objects, by analogy to NUMTs (nuclear copies of mitochondrial DNA) and NUPTs (nuclear copies of plastid DNA, in plants) of organellar origin. Although most of the NUPAVs are pseudogenes, one intact and active gene that was formed in this way is the KHS1 chromosomal killer locus of Saccharomyces cerevisiae. We show that KHS1 is a NUPAV related to M2 killer virus double-stranded RNA. Many NUPAVs are located beside tRNA genes, and some contain sequences from a mixture of different extrachromosomal sources. We propose that NUPAVs are sequences that were captured by the nuclear genome during the repair of double-strand breaks that occurred during evolution and that some of their properties may be explained by repeated breakage at fragile chromosomal sites.
Collapse
|
20
|
Esteban R, Vega L, Fujimura T. 20S RNA narnavirus defies the antiviral activity of SKI1/XRN1 in Saccharomyces cerevisiae. J Biol Chem 2008; 283:25812-20. [PMID: 18640978 DOI: 10.1074/jbc.m804400200] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
20S RNA virus is a persistent positive strand RNA virus found in Saccharomyces cerevisiae. We previously observed that the virus generated in vivo from a launching vector possessed the correct RNA termini without extra sequences. Here we present evidence that the SKI1/XRN1 5'-exonuclease plays a major role in the elimination of the non-viral upstream sequences from the primary transcripts. The virus, once generated, however, is fairly unaffected by overexpression or deletion of SKI1/XRN1. By contrast, the copy number of the L-A double-stranded RNA virus in the same host is greatly increased by the deletion of SKI1/XRN1, and overexpression of the gene cured L-A virus from the cells at a high frequency. 20S RNA virus, unlike L-A virus, has a strong secondary structure at its 5'-end: the first four nucleotides are G, and they are buried at the bottom of a long stem structure, features known to inhibit the SKI1/XRN1 5'-exonuclease progression. Mutations that weakened the 5'-stem structure made 20S RNA virus vulnerable to SKI1/XRN1. These results, together with the data on L-A virus, indicate a strong anti-RNA virus activity of SKI1/XRN1. Given that 20S RNA virus resides and replicates in the cytoplasm without a protective capsid, our results suggest that the strong secondary structure at the 5'-end is crucial for the 20S RNA virus to evade the host SKI1/XRN1 defense.
Collapse
Affiliation(s)
- Rosa Esteban
- Instituto de Microbiología Bioquímica, Departamento de Microbiología y Genética, Consejo Superior de Investigaciones Científicas/Universidad de Salamanca, Salamanca 37007, Spain.
| | | | | |
Collapse
|
21
|
Fujimura T, Esteban R. Interactions of the RNA polymerase with the viral genome at the 5'- and 3'-ends contribute to 20S RNA narnavirus persistence in yeast. J Biol Chem 2007; 282:19011-9. [PMID: 17478418 DOI: 10.1074/jbc.m702432200] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
20S RNA narnavirus is a positive strand RNA virus found in the yeast Saccharomyces cerevisiae. The viral genome (2514 nucleotides) only encodes a single protein (p91), the RNA-dependent RNA polymerase and does not have capsid proteins to form intracellular virions. The genomic RNA has no 3' poly(A) tail and perhaps no cap structure at the 5'-end; thus resembling an intermediate of mRNA degradation. The virus, however, escapes the host surveillance and replicates in the yeast cytoplasm persistently. The viral genome is not naked but exists in the form of a ribonucleoprotein complex with p91 in a 1:1 stoichiometry. Here we investigated interactions between p91 and the viral genome. Our results indicate that p91 directly or indirectly interacts with the RNA at the 5'- and 3'-end regions and to a lesser extent at a central part. The 3'-end site is identical to or overlaps with the 3' cis signal for replication identified previously. The 5'-site is at the second stem loop structure from the 5'-end (nucleotides 72-104), and this structure also contains a cis signal for replication. Analysis of mutants in the structure revealed a tight correlation between replication and formation of complexes. These results highlight the importance of ribonucleoprotein complexes for the viral life cycle. We will discuss implications of these findings especially on how the virus escapes from mRNA degradation pathways and resides in the cytoplasm persistently despite the lack of a protective capsid.
Collapse
Affiliation(s)
- Tsutomu Fujimura
- Instituto de Microbiología Bioquímica/Departamento de Microbiología y Genética, Consejo Superior de Investigaciones Científicas/Universidad de Salamanca, 37007 Salamanca, Spain
| | | |
Collapse
|
22
|
Esteban R, Vega L, Fujimura T. Launching of the yeast 20 s RNA narnavirus by expressing the genomic or antigenomic viral RNA in vivo. J Biol Chem 2005; 280:33725-34. [PMID: 16049000 DOI: 10.1074/jbc.m506546200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
20 S RNA virus is a persistent positive strand RNA virus found in Saccharomyces cerevisiae. The viral genome encodes only its RNA polymerase, p91, and resides in the cytoplasm in the form of a ribonucleoprotein complex with p91. We succeeded in generating 20 S RNA virus in vivo by expressing, from a vector, genomic strands fused at the 3'-ends to the hepatitis delta virus antigenomic ribozyme. Using this launching system, we analyzed 3'-cis-signals present in the genomic strand for replication. The viral genome has five-nucleotide inverted repeats at both termini (5'-GGGGC... GCCCC-OH). The fifth G from the 3'-end was dispensable for replication, whereas the third and fourth Cs were essential. The 3'-terminal and penultimate Cs could be eliminated or modified to other nucleotides; however, the generated viruses recovered these terminal Cs. Furthermore, extra nucleotides added at the viral 3'-end were eliminated in the launched viruses. Therefore, 20 S RNA virus has a mechanism(s) to maintain the correct size and sequence of the viral 3'-end. This may contribute to its persistent infection in yeast. We also succeeded in generating 20 S RNA virus similarly from antigenomic strands provided active p91 was supplied from a second vector in trans. Again, a cluster of four Cs at the 3'-end in the antigenomic strand was essential for replication. In this work, we also present the first conclusive evidence that 20 S and 23 S RNA viruses are independent replicons.
Collapse
Affiliation(s)
- Rosa Esteban
- Instituto de Microbiología Bioquímica/Departamento de Microbiología y Genética, Consejo Superior de Investigaciones Científicas/Universidad de Salamanca, Salamanca 37007, Spain. mrosagugu.usal.es
| | | | | |
Collapse
|
23
|
Fujimura T, Solórzano A, Esteban R. Native replication intermediates of the yeast 20 S RNA virus have a single-stranded RNA backbone. J Biol Chem 2004; 280:7398-406. [PMID: 15611054 DOI: 10.1074/jbc.m412048200] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
20 S RNA virus is a positive strand RNA virus found in Saccharomyces cerevisiae. The viral genome (2.5 kb) only encodes its RNA polymerase (p91) and forms a ribonucleoprotein complex with p91 in vivo. A lysate prepared from 20 S RNA-induced cells showed an RNA polymerase activity that synthesized the positive strands of viral genome. When in vitro products, after phenol extraction, were analyzed in a time course, radioactive nucleotides were first incorporated into double-stranded RNA (dsRNA) intermediates and then chased out to the final single-stranded RNA products. The positive and negative strands in these dsRNA intermediates were non-covalently associated, and the release of the positive strand products from the intermediates required a net RNA synthesis. We found, however, that these dsRNA intermediates were an artifact caused by phenol extraction. Native replication intermediates had a single-stranded RNA backbone as judged by RNase sensitivity experiments, and they migrated distinctly from a dsRNA form in non-denaturing gels. Upon completion of RNA synthesis, positive strand RNA products as well as negative strand templates were released from replication intermediates. These results indicate that the native replication intermediates consist of a positive strand of less than unit length and a negative strand template loosely associated, probably through the RNA polymerase p91. Therefore, W, a dsRNA form of 20 S RNA that accumulates in yeast cells grown at 37 degrees C, is not an intermediate in the 20 S RNA replication cycle, but a by-product.
Collapse
Affiliation(s)
- Tsutomu Fujimura
- Instituto de Microbiología Bioquímica, Consejo Superior de Investigaciones Científicas/Universidad de Salamanca, Avda. del Campo Charro s/n Salamanca 37007, Spain.
| | | | | |
Collapse
|
24
|
Fujimura T, Esteban R. The bipartite 3'-cis-acting signal for replication is required for formation of a ribonucleoprotein complex in vivo between the viral genome and its RNA polymerase in yeast 23 S RNA virus. J Biol Chem 2004; 279:44219-28. [PMID: 15308662 DOI: 10.1074/jbc.m408530200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
23 S RNA narnavirus is a persistent positive strand RNA virus found in Saccharomyces cerevisiae. The viral genome (2.9 kb) encodes only its RNA-dependent RNA polymerase, p104, and forms a ribonucleoprotein complex with p104 in vivo. Previously we succeeded in generating 23 S RNA virus in yeast from an expression vector containing the entire viral cDNA sequence. Using this system, we have recently identified a bipartite 3' cis-acting signal for replication. The signal consists of a stretch of four cytidines (Cs) at the 3' end and a mismatched pair of purines in a stem-loop structure that partially overlaps the terminal four Cs. Although the 3' terminal and penultimate Cs are not essential for virus launching, the generated viruses efficiently recovered these terminal nucleotides. In this work, we expressed RNA transcripts containing the entire 23 S RNA genome but incapable of generating the virus because of the presence of non-viral extra sequences at the 3' ends. These transcripts could form complexes with p104 in vivo, and a detailed analysis indicated that the mismatched pair of purines as well as the third and fourth Cs from the viral 3' end was essential for this complex-forming activity. Given that 23 S RNA virus does not have genes for capsid proteins, the binding of p104 to the viral 3' end, in addition to the efficient 3' terminal repair, may play a crucial role in virus persistence by protecting and maintaining the correct viral 3' end in vivo.
Collapse
Affiliation(s)
- Tsutomu Fujimura
- Instituto de Microbiología Bioquímica, Consejo Superior de Investigaciones Científicas/Universidad de Salamanca, 37007 Spain
| | | |
Collapse
|
25
|
Fujimura T, Esteban R. Bipartite 3'-cis-acting signal for replication in yeast 23 S RNA virus and its repair. J Biol Chem 2004; 279:13215-23. [PMID: 14722081 DOI: 10.1074/jbc.m313797200] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
23 S RNA narnavirus is a persistent positive strand RNA virus found in Saccharomyces cerevisiae. The viral genome is small (2.9 kb) and only encodes its RNA-dependent RNA polymerase. Recently, we have succeeded in generating 23 S RNA virus from an expression vector containing the entire viral cDNA sequence. Using this in vivo launching system, we analyzed the 3'-cis-acting signals for replication. The 3'-non-coding region of 23 S RNA contains two cis-elements. One is a stretch of 4 Cs at the 3' end, and the other is a mismatched pair in a stem-loop structure that partially overlaps the terminal 4 Cs. In the latter element, the loop or stem sequence is not important but the stem structure with the mismatch pair is essential. The mismatched bases should be purines. Any combination of purines at the mismatch pair bestowed capability of replication on the RNA, whereas converting it to a single bulge at either side of the stem abolished the activity. The terminal and penultimate Cs at the 3' end could be eliminated or modified to other nucleotides in the launching plasmid without affecting virus generation. However, the viruses generated regained or restored these Cs at the 3' terminus. Considering the importance of the viral 3' ends in RNA replication, these results suggest that this 3' end repair may contribute to the persistence of 23 S RNA virus in yeast by maintaining the genomic RNA termini intact. We discuss possible mechanisms for this 3' end repair in vivo.
Collapse
Affiliation(s)
- Tsutomu Fujimura
- Instituto de Microbiología Bioquímica, Consejo Superior de Investigaciones Científicas/Universidad de Salamanca, Avda. del Campo Charro s/n, Salamanca 37007, Spain.
| | | |
Collapse
|
26
|
Bruenn JA. A structural and primary sequence comparison of the viral RNA-dependent RNA polymerases. Nucleic Acids Res 2003; 31:1821-9. [PMID: 12654997 PMCID: PMC152793 DOI: 10.1093/nar/gkg277] [Citation(s) in RCA: 217] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2002] [Revised: 12/02/2002] [Accepted: 01/22/2003] [Indexed: 12/12/2022] Open
Abstract
A systematic bioinformatic approach to identifying the evolutionarily conserved regions of proteins has verified the universality of a newly described conserved motif in RNA-dependent RNA polymerases (motif F). In combination with structural comparisons, this approach has defined two regions that may be involved in unwinding double-stranded RNA (dsRNA) for transcription. One of these is the N-terminal portion of motif F and the second is a large insertion in motif F present in the RNA-dependent RNA polymerases of some dsRNA viruses.
Collapse
Affiliation(s)
- Jeremy A Bruenn
- Department of Biological Sciences, State University of New York, Buffalo, NY 14260, USA.
| |
Collapse
|
27
|
Esteban R, Fujimura T. Launching the yeast 23S RNA Narnavirus shows 5' and 3' cis-acting signals for replication. Proc Natl Acad Sci U S A 2003; 100:2568-73. [PMID: 12591948 PMCID: PMC151381 DOI: 10.1073/pnas.0530167100] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Narnavirus 23S RNA is a persistent positive-stranded RNA virus found in yeast Saccharomyces cerevisiae. The viral genome (2.9 kb) only encodes its RNA-dependent RNA polymerase, p104. Here we report the generation of 23S RNA virus, with high frequency, from a vector containing the entire viral cDNA sequence. When the conserved GDD (Gly-Asp-Asp) motif of RNA-dependent RNA polymerase was modified, the vector failed to generate the virus, indicating that an active p104 is essential for replication. Successful launching required transcripts having the proper viral 3' terminus generated in vivo. This was accomplished through in vivo processing of the primary transcripts by the hepatitis delta virus antigenomic ribozyme directly fused to the 3' terminus of the 23S RNA genome. Although the primary transcripts also contained extra nucleotides at their 5' ends derived from the vector, the launched virus possessed the authentic 5' terminus of the viral genome without these extra nucleotides. Modifications of the genome sequence at the 5' and 3' termini abolished viral generation, indicating that the viral genome has cis-acting signals for replication at both termini. The great ease to generate the virus will facilitate the identification of these cis-acting signals. Furthermore, the virus, once generated, can be transmitted to daughter cells indefinitely without the vector or any selection, which makes the 23S RNA virus-launching system particularly useful for investigating the basis for RNA virus persistence.
Collapse
Affiliation(s)
- Rosa Esteban
- Instituto de Microbiologia Bioquimica, Consejo Superior de Investigaciones CientificasUniversidad de Salamanca, 37007 Salamanca, Spain.
| | | |
Collapse
|
28
|
Solorzano A, Rodríguez-Cousiño N, Esteban R, Fujimura T. Persistent yeast single-stranded RNA viruses exist in vivo as genomic RNA.RNA polymerase complexes in 1:1 stoichiometry. J Biol Chem 2000; 275:26428-35. [PMID: 10833519 DOI: 10.1074/jbc.m002281200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Yeast narnavirus 20 S and 23 S RNAs encode RNA-dependent RNA polymerases p91 and p104, respectively, but do not encode coat proteins. Both RNAs form ribonucleoprotein complexes with their cognate polymerases. Here we show that these complexes are not localized in mitochondria, unlike the closely related mitoviruses, which reside in these organelles. Cytoplasmic localization of these polymerases was demonstrated by immunofluorescence and by fluorescence emitted from green fluorescent protein-fused polymerases. These fusion proteins were able to form ribonucleoprotein complexes as did the wild-type polymerases. Fluorescent observations and cell fractionation experiments suggested that the polymerases were stabilized by complex formation with their viral RNA genomes. Immunoprecipitation experiments with anti-green fluorescent protein antibodies demonstrated that a single polymerase molecule binds to a single viral RNA genome in the complex. Moreover, the majority (if not all) of 20 S and 23 S RNA molecules were found to form complexes with their cognate RNA polymerases. Since these viral RNAs were not encapsidated, ribonucleoprotein complex formation with their cognate RNA polymerases appears to be their strategy to survive in the host as persistent viruses.
Collapse
Affiliation(s)
- A Solorzano
- Departamento de Microbiologia y Genética, Instituto de Microbiologia Bioquimica, Consejo Superior de Investigaciones Cientificas/Universidad de Salamanca, Salamanca 37007, Spain
| | | | | | | |
Collapse
|