1
|
A Novel Leu92 Mutant of HIV-1 Reverse Transcriptase with a Selective Deficiency in Strand Transfer Causes a Loss of Viral Replication. J Virol 2015; 89:8119-29. [PMID: 25995261 DOI: 10.1128/jvi.00809-15] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 05/11/2015] [Indexed: 12/30/2022] Open
Abstract
UNLABELLED The process of reverse transcription (RTN) in retroviruses is essential to the viral life cycle. This key process is catalyzed exclusively by the viral reverse transcriptase (RT) that copies the viral RNA into DNA by its DNA polymerase activity, while concomitantly removing the original RNA template by its RNase H activity. During RTN, the combination between DNA synthesis and RNA hydrolysis leads to strand transfers (or template switches) that are critical for the completion of RTN. The balance between these RT-driven activities was considered to be the sole reason for strand transfers. Nevertheless, we show here that a specific mutation in HIV-1 RT (L92P) that does not affect the DNA polymerase and RNase H activities abolishes strand transfer. There is also a good correlation between this complete loss of the RT's strand transfer to the loss of the DNA clamp activity of the RT, discovered recently by us. This finding indicates a mechanistic linkage between these two functions and that they are both direct and unique functions of the RT (apart from DNA synthesis and RNA degradation). Furthermore, when the RT's L92P mutant was introduced into an infectious HIV-1 clone, it lost viral replication, due to inefficient intracellular strand transfers during RTN, thus supporting the in vitro data. As far as we know, this is the first report on RT mutants that specifically and directly impair RT-associated strand transfers. Therefore, targeting residue Leu92 may be helpful in selectively blocking this RT activity and consequently HIV-1 infectivity and pathogenesis. IMPORTANCE Reverse transcription in retroviruses is essential for the viral life cycle. This multistep process is catalyzed by viral reverse transcriptase, which copies the viral RNA into DNA by its DNA polymerase activity (while concomitantly removing the RNA template by its RNase H activity). The combination and balance between synthesis and hydrolysis lead to strand transfers that are critical for reverse transcription completion. We show here for the first time that a single mutation in HIV-1 reverse transcriptase (L92P) selectively abolishes strand transfers without affecting the enzyme's DNA polymerase and RNase H functions. When this mutation was introduced into an infectious HIV-1 clone, viral replication was lost due to an impaired intracellular strand transfer, thus supporting the in vitro data. Therefore, finding novel drugs that target HIV-1 reverse transcriptase Leu92 may be beneficial for developing new potent and selective inhibitors of retroviral reverse transcription that will obstruct HIV-1 infectivity.
Collapse
|
2
|
Abstract
The notoriously low fidelity of HIV-1 replication is largely responsible for the virus's rapid mutation rate, facilitating escape from immune or drug control. The error-prone activity of the viral reverse transcriptase (RT) is predicted to be the most influential mechanism for generating mutations. The low fidelity of RT has been successfully exploited by nucleoside and nucleotide analogue reverse transcriptase inhibitors (NRTIs) that halt viral replication upon incorporation. Consequently, drug-resistant strains have arisen in which the viral RT has an increased fidelity of replication, thus reducing analogue incorporation. Higher fidelity, however, impacts on viral fitness. The appearance of compensatory mutations in combination with higher fidelity NRTI resistance mutations and the subsequent reversion of NRTI-resistant mutations upon cessation of antiretroviral treatment lend support to the notion that higher fidelity exacts a fitness cost. Potential mechanisms for reduced viral fitness are a smaller pool of mutant strains available to respond to immune or drug pressure, slower rates of replication, and a limitation to the dNTP tropism of the virus. Unraveling the relationship between replication fidelity and fitness should lead to a greater understanding of the evolution and control of HIV.
Collapse
Affiliation(s)
- Sarah B. Lloyd
- Department of Microbiology and Immunology, The University of Melbourne, Parkville, VIC, Australia
| | - Stephen J. Kent
- Department of Microbiology and Immunology, The University of Melbourne, Parkville, VIC, Australia
| | - Wendy R. Winnall
- Department of Microbiology and Immunology, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
3
|
Vilfan ID, Tsai YC, Clark TA, Wegener J, Dai Q, Yi C, Pan T, Turner SW, Korlach J. Analysis of RNA base modification and structural rearrangement by single-molecule real-time detection of reverse transcription. J Nanobiotechnology 2013; 11:8. [PMID: 23552456 PMCID: PMC3623877 DOI: 10.1186/1477-3155-11-8] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Accepted: 01/25/2013] [Indexed: 01/05/2023] Open
Abstract
Background Zero-mode waveguides (ZMWs) are photonic nanostructures that create highly confined optical observation volumes, thereby allowing single-molecule-resolved biophysical studies at relatively high concentrations of fluorescent molecules. This principle has been successfully applied in single-molecule, real-time (SMRT®) DNA sequencing for the detection of DNA sequences and DNA base modifications. In contrast, RNA sequencing methods cannot provide sequence and RNA base modifications concurrently as they rely on complementary DNA (cDNA) synthesis by reverse transcription followed by sequencing of cDNA. Thus, information on RNA modifications is lost during the process of cDNA synthesis. Results Here we describe an application of SMRT technology to follow the activity of reverse transcriptase enzymes synthesizing cDNA on thousands of single RNA templates simultaneously in real time with single nucleotide turnover resolution using arrays of ZMWs. This method thereby obtains information from the RNA template directly. The analysis of the kinetics of the reverse transcriptase can be used to identify RNA base modifications, shown by example for N6-methyladenine (m6A) in oligonucleotides and in a specific mRNA extracted from total cellular mRNA. Furthermore, the real-time reverse transcriptase dynamics informs about RNA secondary structure and its rearrangements, as demonstrated on a ribosomal RNA and an mRNA template. Conclusions Our results highlight the feasibility of studying RNA modifications and RNA structural rearrangements in ZMWs in real time. In addition, they suggest that technology can be developed for direct RNA sequencing provided that the reverse transcriptase is optimized to resolve homonucleotide stretches in RNA.
Collapse
|
4
|
Álvarez M, Barrioluengo V, Afonso-Lehmann RN, Menéndez-Arias L. Altered error specificity of RNase H-deficient HIV-1 reverse transcriptases during DNA-dependent DNA synthesis. Nucleic Acids Res 2013; 41:4601-12. [PMID: 23444139 PMCID: PMC3632107 DOI: 10.1093/nar/gkt109] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Asp(443) and Glu(478) are essential active site residues in the RNase H domain of human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT). We have investigated the effects of substituting Asn for Asp(443) or Gln for Glu(478) on the fidelity of DNA-dependent DNA synthesis of phylogenetically diverse HIV-1 RTs. In M13mp2 lacZα-based forward mutation assays, HIV-1 group M (BH10) and group O RTs bearing substitutions D443N, E478Q, V75I/D443N or V75I/E478Q showed 2.0- to 6.6-fold increased accuracy in comparison with the corresponding wild-type enzymes. This was a consequence of their lower base substitution error rates. One-nucleotide deletions and insertions represented between 30 and 68% of all errors identified in the mutational spectra of RNase H-deficient HIV-1 group O RTs. In comparison with the wild-type RT, these enzymes showed higher frameshift error rates and higher dissociation rate constants (koff) for DNA/DNA template-primers. The effects on frameshift fidelity were similar to those reported for mutation E89G and suggest that in HIV-1 group O RT, RNase H inactivation could affect template/primer slippage. Our results support a role for the RNase H domain during plus-strand DNA polymerization and suggest that mutations affecting RNase H function could also contribute to retrovirus variability during the later steps of reverse transcription.
Collapse
Affiliation(s)
- Mar Álvarez
- Centro de Biología Molecular Severo Ochoa Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | | | | | | |
Collapse
|
5
|
Pandey N, Mishra CA, Manvar D, Upadhyay AK, Talele TT, Comollo TW, Kaushik-Basu N, Pandey VN. The glutamine side chain at position 91 on the β5a-β5b loop of human immunodeficiency virus type 1 reverse transcriptase is required for stabilizing the dNTP binding pocket. Biochemistry 2011; 50:8067-8077. [PMID: 21800837 PMCID: PMC3204787 DOI: 10.1021/bi200815e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Earlier, we postulated that Gln91 of human immunodeficiency virus type 1 reverse transcriptase (HIV-1 RT) stabilizes the side chain of Tyr183 via hydrogen bonding interaction between O(H) of Tyr183 and CO of Q91 [Harris, D., et al. (1998) Biochemistry 37, 9630-9640]. To test this hypothesis, we generated mutant derivatives of Gln91 and analyzed their biochemical properties. The efficiency of reverse transcription was severely impaired by nonconservative substitution of Gln with Ala, while conservative substitution of Gln with Asn resulted in an approximately 70% loss of activity, a value similar to that observed with the Y183F mutation. The loss of polymerase activity from both Q91A and Q91N was significantly improved by a Met to Val substitution at position 184. Curiously, the Q91N mutant exhibited stringency in discriminating between correct and incorrect nucleotides, suggesting its possible interaction with residues influencing the flexibility of the dNTP binding pocket. In contrast, both double mutants, Q91A/M184V and Q91N/M184V, are found to be as error prone as the wild-type enzyme. We propose a model that suggests that subtle structural changes in the region due to mutation at position 91 may influence the stability of the side chain of Tyr183 in the catalytic YMDD motif of the enzyme, thus altering the active site geometry that may interfere in substrate recognition.
Collapse
Affiliation(s)
- Nootan Pandey
- Department of Biochemistry and Molecular Biology, UMD-New Jersey Medical School 185 South Orange Ave Newark, NJ 07103
| | - Chaturbhuj A. Mishra
- Department of Biochemistry and Molecular Biology, UMD-New Jersey Medical School 185 South Orange Ave Newark, NJ 07103
| | - Dinesh Manvar
- Department of Biochemistry and Molecular Biology, UMD-New Jersey Medical School 185 South Orange Ave Newark, NJ 07103
| | - Alok K. Upadhyay
- Department of Biochemistry and Molecular Biology, UMD-New Jersey Medical School 185 South Orange Ave Newark, NJ 07103
| | - Tanaji T. Talele
- Department of Pharmaceutical Sciences, College of Pharmacy and Allied Health Professions, St. John’s University, 8000 Utopia Parkway, Queens, NY 11439
| | - Thomas W. Comollo
- Department of Biochemistry and Molecular Biology, UMD-New Jersey Medical School 185 South Orange Ave Newark, NJ 07103
| | - Neerja Kaushik-Basu
- Department of Biochemistry and Molecular Biology, UMD-New Jersey Medical School 185 South Orange Ave Newark, NJ 07103
| | - Virendra N. Pandey
- Department of Biochemistry and Molecular Biology, UMD-New Jersey Medical School 185 South Orange Ave Newark, NJ 07103
| |
Collapse
|
6
|
Hamburgh ME, Curr KA, Monaghan M, Rao VR, Tripathi S, Preston BD, Sarafianos S, Arnold E, Darden T, Prasad VR. Structural determinants of slippage-mediated mutations by human immunodeficiency virus type 1 reverse transcriptase. J Biol Chem 2006; 281:7421-8. [PMID: 16423828 DOI: 10.1074/jbc.m511380200] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Single-base deletions at nucleotide runs or -1 frameshifting by human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) result from template slippage during polymerization. In crystal structures of HIV-1 RT complexed with DNA-DNA template-primer, the palm subdomain in the template cleft contacts the template backbone near the proposed site of slippage via the Glu(89) side chain. We investigated the role of Glu(89) in frameshifting by perturbing this interaction. Substitutions with Asp, Gly, Ala, Val, Ser, Thr, Asn, or Lys were created in recombinant HIV RT, and frameshift frequencies of the resulting mutant RTs were measured. All substitutions led to reduced -1 frameshifting by HIV-1 RT (2-40-fold). Interestingly, the suppression of -1 frameshifting frequently coincided with an enhancement of +1 frameshifting (3-47-fold) suggesting that Glu(89) can influence the slippage of both strands. Glu(89) substitutions also led to reduced rates of dNTP misincorporation that paralleled reductions in -1 frameshifting, suggesting a common structural mechanism for both classes of RT error. Our results reveal a major influence of Glu(89) on slippage-mediated errors and dNTP incorporation fidelity. The crystal structure of HIV-1 RT reveals a salt bridge between Glu(89) and Lys(154), which may facilitate -1 frameshifting; this concept is supported by the observed reduction in -1 frameshifting for K154A and K154R mutants.
Collapse
Affiliation(s)
- Monica E Hamburgh
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Mulky A, Kappes JC. Analysis of human immunodeficiency virus type 1 reverse transcriptase subunit structure/function in the context of infectious virions and human target cells. Antimicrob Agents Chemother 2005; 49:3762-9. [PMID: 16127051 PMCID: PMC1195396 DOI: 10.1128/aac.49.9.3762-3769.2005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The reverse transcriptase (RT) of all retroviruses is required for synthesis of the viral DNA genome. The human immunodeficiency virus type 1 (HIV-1) RT exists as a heterodimer made up of 51-kDa and 66-kDa subunits. The crystal structure and in vitro biochemical analyses indicate that the p66 subunit of RT is primarily responsible for the enzyme's polymerase and RNase H activities. Since both the p51 and p66 subunits are generated from the same coding region, as part of the Pr160(Gag-Pol) precursor protein, there are inherent limitations for studying subunit-specific function with intact provirus in a virologically relevant context. Our lab has recently described a novel system for studying the RT heterodimer (p51/p66) wherein a LTR-vpr-p51-IRES-p66 expression cassette provided in trans to an RT-deleted HIV-1 genome allows precise molecular analysis of the RT heterodimer. In this report, we describe in detail the specific approaches, alternative strategies, and pitfalls that may affect the application of this novel assay for analyzing RT subunit structure/function in infectious virions and human target cells. The ability to study HIV-1 RT subunit structure/function in a physiologically relevant context will advance our understanding of both RT and the process of reverse transcription. The study of antiretroviral drugs in a subunit-specific virologic context should provide new insights into drug resistance and viral fitness. Finally, we anticipate that this approach will help elucidate determinants that mediate p51-p66 subunit interactions, which is essential for structure-based drug design targeting RT heterodimerization.
Collapse
Affiliation(s)
- Alok Mulky
- University of Alabama at Birmingham, Department of Microbiology, LHRB 613, 701 South 19th Street, Birmingham, AL 35294, USA
| | | |
Collapse
|
8
|
Fisher TS, Joshi P, Prasad VR. HIV-1 reverse transcriptase mutations that confer decreased in vitro susceptibility to anti-RT DNA aptamer RT1t49 confer cross resistance to other anti-RT aptamers but not to standard RT inhibitors. AIDS Res Ther 2005; 2:8. [PMID: 16207371 PMCID: PMC1266348 DOI: 10.1186/1742-6405-2-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2005] [Accepted: 10/05/2005] [Indexed: 11/25/2022] Open
Abstract
RNA and DNA aptamers specific for HIV-1 reverse transcriptase (RT) can inhibit reverse transcription in vitro. RNA aptamers have been shown to potently block HIV-1 replication in culture. We previously reported mutants of HIV-1 RT with substitutions N255D or N265D that display resistance to the DNA aptamer RT1t49. Variant viruses bearing these mutations singly or in combination were compromised for replication. In order to address the wider applicability of such aptamers, HIV-1 RT variants containing the N255D, N265D or both (Dbl) were tested for the extent of their cross-resistance to other DNA/RNA aptamers as well as to other RT inhibitors. Both N265D and Dbl RTs were resistant to most aptamers tested. N255D mutant displayed mild resistance to two of the DNA aptamers, little change in sensitivity to three and hypersensitivity to one. Although all mutants displayed wild type-like ribonuclease H activity, their activity was compromised under conditions that prevent re-binding. This suggests that the processivity defect caused by these mutations can also affect RNase H function thus contributing further to the replication defect in mutant viruses. These results indicate that mutants conferring resistance to anti-RT aptamers significantly affect many HIV-1 RT enzymatic activities, which could contribute to preventing the development of resistance in vivo. If such mutations were to arise in vivo, our results suggest that variant viruses should remain susceptible to many existing anti-RT inhibitors. This result was tempered by the observation that NRTI-resistance mutations such as K65R can confer resistance to some anti-RT aptamers.
Collapse
Affiliation(s)
- Timothy S Fisher
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
- Division of Cardiovascular Diseases, Merck Research Laboratories, Rahway, New Jersey 07065, USA
| | - Pheroze Joshi
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Vinayaka R Prasad
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
9
|
Quan Y, Brenner BG, Marlink RG, Essex M, Kurimura T, Wainberg MA. Drug resistance profiles of recombinant reverse transcriptases from human immunodeficiency virus type 1 subtypes A/E, B, and C. AIDS Res Hum Retroviruses 2003; 19:743-53. [PMID: 14585205 DOI: 10.1089/088922203769232548] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We have expressed purified recombinant reverse transcriptase (RT) from clinical isolates of human immunodeficiency virus subtypes B, C, and A/E in Escherichia coli. The drug sensitivities of these RTs were then determined for both nucleoside RT inhibitors (NRTIs) and nonnucleoside RT inhibitors (NNRTIs) in cell-free RT assays. Although A/E and C viruses contained numerous polymorphisms relative to subtype B (i.e., naturally occurring variations unrelated to drug resistance), the wild-type enzymes prepared from these or subtype A/E clinical isolates displayed <2-fold differences in drug sensitivities with regard to the active triphosphate active forms of NRTIs, as compared with RT expressed from BH-10 recombinant virus. Recombinant RTs from clinical isolates of subtypes B, C, and A/E that contained multiple resistance-associated mutations displayed expected variations in levels of resistance to the intracellular active forms of 3TC, ddI, ddC, and PMPA, that is, 3TCTP, ddATP, ddCTP, and PMPApp, respectively. Subtype A/E and C RT enzymes contained only minor NNRTI polymorphisms that distinguished them from wild-type subtype B enzymes and wild-type RTs from these various subtypes showed only 1- to 4-fold variability in IC(50) values for each of nevirapine (NVP), delavirdine (DLV), efavirenz (EFV), and calanolide A. In contrast, RT enzymes from subtype B and C viruses harboring specific NNRTI mutations were highly resistant to all four tested NNRTIs. Subtype C variants containing the novel V106M resistance codon showed cross-resistance to all approved NNRTIs in cell-free RT assays.
Collapse
Affiliation(s)
- Yudong Quan
- McGill University AIDS Centre, Lady Davis Institute, Jewish General Hospital, Montreal, Quebec, H3T 1E2, Canada
| | | | | | | | | | | |
Collapse
|
10
|
Menéndez-Arias L. Molecular basis of fidelity of DNA synthesis and nucleotide specificity of retroviral reverse transcriptases. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2003; 71:91-147. [PMID: 12102562 DOI: 10.1016/s0079-6603(02)71042-8] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Reverse transcription involves the conversion of viral genomic RNAinto proviral double-stranded DNA that integrates into the host cell genome. Cellular DNA polymerases replicate the integrated viral DNA and RNA polymerase II transcribes the proviral DNA into RNA genomes that are packaged into virions. Although mutations can be introduced at any of these replication steps, reverse transcriptase (RT) errors play a major role in retroviral mutation. This review summarizes our current knowledge on fidelity of reverse transcriptases. Estimates of retroviral mutation rates or fidelity of retroviral RTs are discussed in the context of the different techniques used for this purpose (i.e., retroviral vectors replicated in culture, misinsertion and mispair extension fidelity assay, etc.). In vitro fidelity assays provide information on the RT's accuracy during the elongation reaction of DNA synthesis. In addition, other steps such as initiation of reverse transcription, or strand transfer, and factors including viral proteins such as Vpr [in the case of the human immunodeficiency virus type 1 (HIV-1)] have been shown to influence fidelity. A comprehensive description of the effect of amino acid substitutions on the fidelity of HIV-1 RT is presented. Published data point to certain dNTP-binding residues, as well as to various amino acids involved in interactions with the template or the primer strand, and to residues in the minor groove-binding track as major components of the fidelity center of retroviral RTs. Implications of these studies include the design of novel therapeutic strategies leading to virus extinction, by increasing the viral mutation rate beyond a tolerable threshold.
Collapse
Affiliation(s)
- Luis Menéndez-Arias
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Cantoblanco, Spain
| |
Collapse
|
11
|
Whitney JB, Oliveira M, Detorio M, Guan Y, Wainberg MA. The M184V mutation in reverse transcriptase can delay reversion of attenuated variants of simian immunodeficiency virus. J Virol 2002; 76:8958-62. [PMID: 12163615 PMCID: PMC136968 DOI: 10.1128/jvi.76.17.8958-8962.2002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We previously constructed a series of simian immunodeficiency virus (SIV) mutants containing deletions within a 97-nucleotide region of the SIVmac239 untranslated region or leader sequence. However, as is common with live attenuated viruses, several of the mutants exhibited a moderate propensity for reversion. Since the M184V mutation in human immunodeficiency virus type 1 reverse transcriptase is associated with diminished fitness as well as lamivudine resistance, we introduced this substitution into several of our deletion mutants to determine its effects on viral replication and compensatory reversion. Our results indicate that M184V impaired viral fitness in pair-wise comparisons of mutants that contained or lacked this substitution. We also observed that M184V significantly impaired the potential for both compensatory mutagenesis and reversion in these mutants both in cell lines and in peripheral blood mononuclear cells.
Collapse
Affiliation(s)
- James B Whitney
- McGill University AIDS Centre, Lady Davis Institute-Jewish General Hospital, Montreal, Quebec, Canada H3T 1E2
| | | | | | | | | |
Collapse
|
12
|
Gorshkova II, Rausch JW, Le Grice SF, Crouch RJ. HIV-1 reverse transcriptase interaction with model RNA-DNA duplexes. Anal Biochem 2001; 291:198-206. [PMID: 11401293 DOI: 10.1006/abio.2001.5053] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
HIV-1 reverse transcriptase (HIV-1 RT) is a multifunctional enzyme responsible for converting viral RNA into preintegrative DNA during the early stages of viral infection. DNA polymerase and RNase H activities are required, and several conformationally distinct primer-templates must be accommodated by the enzyme during the process. Parameters of interaction between model substrates (ligands) and HIV-1 RT (wild type p66/p51 and the RNase H-deficient mutant p66(E478Q)/p51) (analytes) were estimated by surface plasmon resonance at 25 degrees C, pH 8.0. Binding of RT to the ligands is specific and can be analyzed using a conventional 1:1 binding algorithm. RNA-DNA hybrids with 5'-template overhangs of 6 and 12 nucleotides bind to RT approximately one order of magnitude stronger than the corresponding 36-mer with blunt ends due to slower dissociation. Immobilization of the latter through either the 5'-end of RNA or DNA strand does not change the equilibrium constant (K(D)) for wild-type RT but the values of kinetic constants of association and dissociation differ significantly. For the p66(E478Q)/p51 enzyme, orientation effects are notable even altering the K(D) value. Binding of the p66(E478Q)/p51 to any RNA-DNA hybrids is slightly stronger compared with wild type. Data can be interpreted in terms of the mechanism of reverse transcription.
Collapse
Affiliation(s)
- I I Gorshkova
- Laboratory of Molecular Genetics, National Institute of Child Health and Human Development, NIH, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
13
|
Götte M, Kameoka M, McLellan N, Cellai L, Wainberg MA. Analysis of efficiency and fidelity of HIV-1 (+)-strand DNA synthesis reveals a novel rate-limiting step during retroviral reverse transcription. J Biol Chem 2001; 276:6711-9. [PMID: 11096104 DOI: 10.1074/jbc.m009097200] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have analyzed the efficiency and accuracy of polymerization at several different stages during the initiation of human immunodeficiency virus type 1 (HIV-1) (+)-strand DNA synthesis. This reaction is of particular interest, as it involves the recruitment by reverse transcriptase of an RNA primer that serves as substrate for both the polymerase and RNase H activities of the enzyme. We found that the correct incorporation of the first two nucleotides was severely compromised and that formation of mismatches was completely absent at this stage of initiation. Although the fidelity of incorporations decreased concomitantly with ensuing polymerization, the elongation of mispaired primers was literally blocked. Instead, mispaired primer strands initiated a switch from active synthesis of DNA to premature RNase H-mediated primer removal. These findings suggest the existence of a fragile equilibrium between these two enzymatic activities that is shifted toward RNase H cleavage once the polymerization process is aggravated. Our data show that the initiation of HIV-1 (+)-strand DNA synthesis differs significantly from reactions involving other primer/template combinations, including tRNA-primed (-)-strand DNA synthesis.
Collapse
Affiliation(s)
- M Götte
- McGill University AIDS Centre, Lady Davis Institute-Jewish General Hospital, Montréal, Québec H3T 1E2, Canada.
| | | | | | | | | |
Collapse
|
14
|
Kameoka M, Rong L, Götte M, Liang C, Russell RS, Wainberg MA. Role for human immunodeficiency virus type 1 Tat protein in suppression of viral reverse transcriptase activity during late stages of viral replication. J Virol 2001; 75:2675-83. [PMID: 11222691 PMCID: PMC115892 DOI: 10.1128/jvi.75.6.2675-2683.2001] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
We have examined the role of the human immunodeficiency virus type 1 (HIV-1) Tat protein in the regulation of reverse transcription. We show that a two-exon but not a one-exon form of Tat markedly suppressed cell-free reverse transcriptase (RT) activity. Conversely, viruses expressing two-exon Tat (pNL43 and pNL101) showed rapid replication kinetics and more efficient endogenous RT activity compared with viruses expressing one-exon Tat (pM1ex). The pM1ex virions, as well as pM1ex-infected cells, also contained higher levels of viral DNA than did either the pNL43 or pNL101 viruses, indicating that reverse transcription might have continued during later stages of viral replication in the absence of the second Tat exon. Moreover, degradation of viral genomic RNA was more apparent in the pM1ex virions. Accordingly, we propose that the two-exon Tat may help augment viral infectivity by suppressing the reverse transcription reaction during late stages of viral synthesis and by preventing the synthesis of potentially deleterious viral DNA products.
Collapse
MESH Headings
- Cell Line
- DNA, Viral/metabolism
- Exons
- Gene Products, tat/chemistry
- Gene Products, tat/genetics
- Gene Products, tat/metabolism
- Gene Products, tat/physiology
- Genes, tat
- HIV Infections/virology
- HIV Reverse Transcriptase/antagonists & inhibitors
- HIV Reverse Transcriptase/metabolism
- HIV-1/physiology
- Humans
- Jurkat Cells
- RNA, Viral/metabolism
- Templates, Genetic
- Transcription, Genetic
- Transfection
- Virion/metabolism
- Virus Replication/physiology
- tat Gene Products, Human Immunodeficiency Virus
Collapse
Affiliation(s)
- M Kameoka
- McGill University AIDS Centre, Lady Davis Institute-Jewish General Hospital, Montreal, Quebec, Canada H3T 1E2
| | | | | | | | | | | |
Collapse
|
15
|
Gao HQ, Boyer PL, Sarafianos SG, Arnold E, Hughes SH. The role of steric hindrance in 3TC resistance of human immunodeficiency virus type-1 reverse transcriptase. J Mol Biol 2000; 300:403-18. [PMID: 10873473 DOI: 10.1006/jmbi.2000.3823] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Treating HIV infections with drugs that block viral replication selects for drug-resistant strains of the virus. Particular inhibitors select characteristic resistance mutations. In the case of the nucleoside analogs 3TC and FTC, resistant viruses are selected with mutations at amino acid residue 184 of reverse transcriptase (RT). The initial change is usually to M184I; this virus is rapidly replaced by a variant carrying the mutation M184V. 3TC and FTC are taken up by cells and converted into 3TCTP and FTCTP. The triphosphate forms of these nucleoside analogs are incorporated into DNA by HIV-1 RT and act as chain terminators. Both of the mutations, M184I and M184V, provide very high levels of resistance in vivo; purified HIV-1 RT carrying M184V and M184I also shows resistance to 3TCTP and FTCTP in in vitro polymerase assays. Amino acid M184 is part of the dNTP binding site of HIV-1 RT. Structural studies suggest that the mechanism of resistance of HIV-1 RTs carrying the M184V or M184I mutation involves steric hindrance, which could either completely block the binding of 3TCTP and FTCTP or allow binding of these nucleoside triphosphate molecules but only in a configuration that would prevent incorporation. The available kinetic data are ambiguous: one group has reported that the primary effect of the mutations is at the level of 3TCTP binding; another, at the level of incorporation. We have approached this problem using assays that monitor the ability of HIV-1 RT to undergo a conformational change upon binding a dNTP. These studies show that both wild-type RT and the drug-resistant variants can bind 3TCTP at the polymerase active site; however, the binding to M184V and M184I is somewhat weaker and is sensitive to salt. We propose that the drug-resistant variants bind 3TCTP in a strained configuration that is salt-sensitive and is not catalytically competent.
Collapse
Affiliation(s)
- H Q Gao
- ABL-Basic Research Program, NCI-Frederick Cancer Research and Development Center, Frederick, MD 21702-1201, USA
| | | | | | | | | |
Collapse
|
16
|
Götte M, Arion D, Parniak MA, Wainberg MA. The M184V mutation in the reverse transcriptase of human immunodeficiency virus type 1 impairs rescue of chain-terminated DNA synthesis. J Virol 2000; 74:3579-85. [PMID: 10729133 PMCID: PMC111867 DOI: 10.1128/jvi.74.8.3579-3585.2000] [Citation(s) in RCA: 125] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nucleoside analog chain terminators such as 3'-azido-3'-deoxythymidine (AZT) and 2',3'-dideoxy-3'-thiacytidine (3TC) represent an important class of drugs that are used in the clinic to inhibit the reverse transcriptase (RT) of human immunodeficiency virus type 1. Recent data have suggested that mutant enzymes associated with AZT resistance are capable of removing the chain-terminating residue with much greater efficiency than wild-type RT and this may, in turn, facilitate rescue of DNA synthesis; these experiments were performed using physiological concentrations of pyrophosphate or nucleoside triphosphates, respectively. The present study demonstrates that the M184V mutation, which confers high-level resistance to 3TC, can severely compromise the removal of chain-terminating nucleotides. Pyrophosphorolysis on 3TC-terminated primer strands was not detectable with M184V-containing, as opposed to wild-type, RT, and rescue of AZT-terminated DNA synthesis was significantly decreased with the former enzyme. Thus, mutated RTs associated with resistance to AZT and 3TC possess opposing, and therefore incompatible, phenotypes in this regard. These results are consistent with tissue culture and clinical data showing sustained antiviral effects of AZT in the context of viruses that contain the M184V mutation in the RT-encoding gene.
Collapse
Affiliation(s)
- M Götte
- McGill University AIDS Centre, Lady Davis Institute-Jewish General Hospital, Montréal, Québec, Canada
| | | | | | | |
Collapse
|
17
|
Kim B, Ayran JC, Sagar SG, Adman ET, Fuller SM, Tran NH, Horrigan J. New human immunodeficiency virus, type 1 reverse transcriptase (HIV-1 RT) mutants with increased fidelity of DNA synthesis. Accuracy, template binding, and processivity. J Biol Chem 1999; 274:27666-73. [PMID: 10488107 DOI: 10.1074/jbc.274.39.27666] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Infidelity of DNA synthesis by human immunodeficiency virus, type 1 reverse transcriptase (HIV-1 RT) is a presumptive determinant of HIV-1 hypervariability and is incompletely understood at the mechanistic and structural levels. Amino acid substitution at only three residues, including Asp-76 (Kim, B., Hathaway, T. R., and Loeb, L. A. (1996) Biochemistry 37, 5831-5839), is known to increase fidelity. We report here that substitution at Arg-78 can also increase accuracy. Mutant R78A RT showed reduced primer extension in misincorporation assays lacking a complementary dNTP and exhibited a 9-fold decrease in mutation frequency in the M13mp2 lacZ forward mutation assay. Previous structural studies indicate that Arg-78 and Asp-76 lie in a region that interacts with template nucleotides. Interestingly, R78A RT exhibited 6- to 8-fold decreases in binding affinity (K(d)) for RNA and DNA templates relative to wild type RT. In contrast, D76V RT, which also increases fidelity (Kim et al., 1996), showed a 6- to 7-fold increased affinity. The processivity of R78A RT on both RNA and DNA templates was substantially reduced relative to wild type RT, whereas the processivity of D76V RT was increased. We discuss relationships of fidelity, template binding, and processivity in these and other HIV RT mutants.
Collapse
Affiliation(s)
- B Kim
- Department of Microbiology and Immunology, University of Rochester, Rochester, New York 14642, USA.
| | | | | | | | | | | | | |
Collapse
|
18
|
Quan Y, Motakis D, Buckheit R, Xu ZQ, Flavin MT, Parniak MA, Wainberg MA. Sensitivity and Resistance to (+)-Calanolide a of Wild-Type and Mutated Forms of HIV-1 Reverse Transcriptase. Antivir Ther 1999. [DOI: 10.1177/135965359900400403] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We have tested both wild-type and drug-resistant mutated, recombinant human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) molecules for sensitivity to each of two non-nucleoside RT inhibitors (NNRTI), (+)-calanolide A and nevirapine, in primer extension assays. We found that RT containing either the V106A or Y181C substitutions, associated with NNRTI resistance, displayed ≍90-fold resistance to nevirapine but remained fully sensitive to (+)-calanolide A and that the Y181C mutation marginally enhanced susceptibility to the latter drug. In contrast, the Y188H substitution in RT resulted in about 30-fold resistance to (+)-calanolide A in these assays but did not result in diminished sensitivity to nevirapine. Tissue culture results indicated that the combination of (+)-calanolide A and nevirapine possessed an additive to weakly synergistic effect in blocking replication of HIV-1 in tissue culture. These results suggest that (+)-calanolide A and nevirapine might have rationale as a combination therapy for HIV disease.
Collapse
Affiliation(s)
- Yudong Quan
- McGill University AIDS Centre, Lady Davis Institute, Jewish General Hospital, 3755 Côte Ste-Catherine Road, Montréal, Québec, Canada H3T 1E2
| | - Dimitrios Motakis
- McGill University AIDS Centre, Lady Davis Institute, Jewish General Hospital, 3755 Côte Ste-Catherine Road, Montréal, Québec, Canada H3T 1E2
| | - Robert Buckheit
- Southern Research Institute, 431 Aviation Way, Frederick, MD 21701-4756, USA
| | - Ze-Qi Xu
- Sarawak MediChem Pharmaceuticals Inc, 12305 South New Avenue, Lemont, IL 60439, USA
| | - Michael T Flavin
- Sarawak MediChem Pharmaceuticals Inc, 12305 South New Avenue, Lemont, IL 60439, USA
| | - Michael A Parniak
- McGill University AIDS Centre, Lady Davis Institute, Jewish General Hospital, 3755 Côte Ste-Catherine Road, Montréal, Québec, Canada H3T 1E2
| | - Mark A Wainberg
- McGill University AIDS Centre, Lady Davis Institute, Jewish General Hospital, 3755 Côte Ste-Catherine Road, Montréal, Québec, Canada H3T 1E2
| |
Collapse
|