1
|
Mohanan G, Roy R, Malka-Mahieu H, Lamba S, Fabbri L, Kalia S, Biswas A, Martineau S, M Labbé C, Vagner S, Rajyaguru PI. Genotoxic stress triggers Scd6-dependent regulation of translation to modulate the DNA damage response. EMBO Rep 2025; 26:2715-2739. [PMID: 40275106 DOI: 10.1038/s44319-025-00443-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 03/25/2025] [Accepted: 03/27/2025] [Indexed: 04/26/2025] Open
Abstract
The role of mRNA translation and decay in the genotoxic stress response remains poorly explored. Here, we identify the role of yeast RGG motif-containing RNA binding protein Scd6 and its human ortholog LSM14A in genotoxic stress response. Scd6 localizes to cytoplasmic puncta upon cell treatment with various genotoxic agents. Scd6 genetically interacts with SRS2, a DNA helicase with an anti-recombination role in DNA damage repair under HU stress. Scd6 directly interacts with the SRS2 mRNA to repress its translation in cytoplasmic granules upon HU stress in an eIF4G1-independent manner. Scd6-SRS2 interaction is modulated by arginine methylation and the LSm-domain of Scd6, which acts as a cis-regulator of Scd6 arginine methylation. LSM14A regulates the translation of mRNAs encoding key NHEJ (Non-homologous end-joining) proteins such as RTEL1 (SRS2 functional homolog) and LIG4. NHEJ activity in yeast and mammalian cells is regulated by Scd6 and LSM14A, respectively. Overall, this report unveils the role of RNA binding proteins in regulating the translation of specific mRNAs coding for DNA damage response proteins upon genotoxic stress.
Collapse
Affiliation(s)
- Gayatri Mohanan
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Raju Roy
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012, India
- University of Pennsylvania, Philadelphia, PA, USA
| | - Hélène Malka-Mahieu
- Institut Curie, PSL Research University, CNRS UMR3348, INSERM U1278, F-91405, Orsay, France
- Université Paris Sud, Université Paris-Saclay, CNRS UMR3348, INSERM U1278, F-91405, Orsay, France
| | - Swati Lamba
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Lucilla Fabbri
- Institut Curie, PSL Research University, CNRS UMR3348, INSERM U1278, F-91405, Orsay, France
- Université Paris Sud, Université Paris-Saclay, CNRS UMR3348, INSERM U1278, F-91405, Orsay, France
| | - Sidhant Kalia
- Institut Curie, PSL Research University, CNRS UMR3348, INSERM U1278, F-91405, Orsay, France
- Université Paris Sud, Université Paris-Saclay, CNRS UMR3348, INSERM U1278, F-91405, Orsay, France
| | - Anusmita Biswas
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Sylvain Martineau
- Institut Curie, PSL Research University, CNRS UMR3348, INSERM U1278, F-91405, Orsay, France
- Université Paris Sud, Université Paris-Saclay, CNRS UMR3348, INSERM U1278, F-91405, Orsay, France
| | - Céline M Labbé
- Institut Curie, PSL Research University, CNRS UMR3348, INSERM U1278, F-91405, Orsay, France
- Université Paris Sud, Université Paris-Saclay, CNRS UMR3348, INSERM U1278, F-91405, Orsay, France
| | - Stéphan Vagner
- Institut Curie, PSL Research University, CNRS UMR3348, INSERM U1278, F-91405, Orsay, France.
- Université Paris Sud, Université Paris-Saclay, CNRS UMR3348, INSERM U1278, F-91405, Orsay, France.
| | | |
Collapse
|
2
|
Call N, Tomkinson AE. Joining of DNA breaks- interplay between DNA ligases and poly (ADP-ribose) polymerases. DNA Repair (Amst) 2025; 149:103843. [PMID: 40347914 DOI: 10.1016/j.dnarep.2025.103843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 03/28/2025] [Accepted: 04/28/2025] [Indexed: 05/14/2025]
Abstract
The joining of DNA single- and double-strand breaks (SSB and DSB) is essential for maintaining genome stability and integrity. While this is ultimately accomplished in human cells by the DNA ligases encoded by the LIG1, LIG3 and LIG4 genes, these enzymes are recruited to DNA breaks through specific interactions with proteins involved in break sensing and recognition and/or break processing. In this review, we focus on the interplay between the DNA break-activated poly (ADP-ribose) polymerases, PARP1 and PARP2, poly (ADP-ribose) (PAR) and the DNA ligases in DNA replication and repair. The most extensively studied example of this interplay is the recruitment of DNA ligase IIIα (LigIIIα) and other repair proteins to SSBs through an interaction between XRCC1, a scaffold protein and partner protein of nuclear LigIIIα, and PAR synthesized by PARP1 and to a lesser extent PARP2. Recently, these proteins have been implicated in a back-up pathway for joining Okazaki fragments that appears to have a critical function even in cells with no defect in the major LigI-dependent pathway. Finally, we discuss the effects of FDA-approved PARP1/2 inhibitors on DNA replication and repair in cancer and non-malignant cells and the potential utility of DNA ligase inhibitors as cancer therapeutics.
Collapse
Affiliation(s)
- Nicolas Call
- University of New Mexico Comprehensive Cancer Center and the Departments of Internal Medicine, and Molecular Genetics & Microbiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Alan E Tomkinson
- University of New Mexico Comprehensive Cancer Center and the Departments of Internal Medicine, and Molecular Genetics & Microbiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA.
| |
Collapse
|
3
|
Vu DD, Bonucci A, Brenière M, Cisneros-Aguirre M, Pelupessy P, Wang Z, Carlier L, Bouvignies G, Cortes P, Aggarwal AK, Blackledge M, Gueroui Z, Belle V, Stark JM, Modesti M, Ferrage F. Multivalent interactions of the disordered regions of XLF and XRCC4 foster robust cellular NHEJ and drive the formation of ligation-boosting condensates in vitro. Nat Struct Mol Biol 2024; 31:1732-1744. [PMID: 38898102 DOI: 10.1038/s41594-024-01339-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 05/28/2024] [Indexed: 06/21/2024]
Abstract
In mammalian cells, DNA double-strand breaks are predominantly repaired by non-homologous end joining (NHEJ). During repair, the Ku70-Ku80 heterodimer (Ku), X-ray repair cross complementing 4 (XRCC4) in complex with DNA ligase 4 (X4L4) and XRCC4-like factor (XLF) form a flexible scaffold that holds the broken DNA ends together. Insights into the architectural organization of the NHEJ scaffold and its regulation by the DNA-dependent protein kinase catalytic subunit (DNA-PKcs) were recently obtained by single-particle cryo-electron microscopy analysis. However, several regions, especially the C-terminal regions (CTRs) of the XRCC4 and XLF scaffolding proteins, have largely remained unresolved in experimental structures, which hampers the understanding of their functions. Here we used magnetic resonance techniques and biochemical assays to comprehensively characterize the interactions and dynamics of the XRCC4 and XLF CTRs at residue resolution. We show that the CTRs of XRCC4 and XLF are intrinsically disordered and form a network of multivalent heterotypic and homotypic interactions that promotes robust cellular NHEJ activity. Importantly, we demonstrate that the multivalent interactions of these CTRs lead to the formation of XLF and X4L4 condensates in vitro, which can recruit relevant effectors and critically stimulate DNA end ligation. Our work highlights the role of disordered regions in the mechanism and dynamics of NHEJ and lays the groundwork for the investigation of NHEJ protein disorder and its associated condensates inside cells with implications in cancer biology, immunology and the development of genome-editing strategies.
Collapse
Affiliation(s)
- Duc-Duy Vu
- Département de Chimie, LBM, CNRS UMR 7203, École Normale Supérieure, PSL University, Sorbonne University, Paris, France
| | - Alessio Bonucci
- Aix Marseille Univ, CNRS UMR 7281, BIP Bioénergétique et Ingénierie des Protéines, IMM, Marseille, France
| | - Manon Brenière
- Cancer Research Center of Marseille, Department of Genome Integrity, CNRS UMR7258, Inserm U1068, Institut Paoli-Calmettes, Aix-Marseille University, Marseille, France
| | - Metztli Cisneros-Aguirre
- Department of Cancer Genetics and Epigenetics, Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of the City of Hope, Duarte, CA, USA
| | - Philippe Pelupessy
- Département de Chimie, LBM, CNRS UMR 7203, École Normale Supérieure, PSL University, Sorbonne University, Paris, France
| | - Ziqing Wang
- Département de Chimie, LBM, CNRS UMR 7203, École Normale Supérieure, PSL University, Sorbonne University, Paris, France
| | - Ludovic Carlier
- Département de Chimie, LBM, CNRS UMR 7203, École Normale Supérieure, PSL University, Sorbonne University, Paris, France
| | - Guillaume Bouvignies
- Département de Chimie, LBM, CNRS UMR 7203, École Normale Supérieure, PSL University, Sorbonne University, Paris, France
| | - Patricia Cortes
- Department of Molecular, Cellular and Biomedical Sciences, CUNY School of Medicine at City College of New York, New York, NY, USA
| | - Aneel K Aggarwal
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Martin Blackledge
- Institut de Biologie Structurale (IBS), Grenoble Alpes University, CNRS, CEA, Grenoble, France
| | - Zoher Gueroui
- PASTEUR, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne University, CNRS, Paris, France
| | - Valérie Belle
- Aix Marseille Univ, CNRS UMR 7281, BIP Bioénergétique et Ingénierie des Protéines, IMM, Marseille, France
| | - Jeremy M Stark
- Department of Cancer Genetics and Epigenetics, Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of the City of Hope, Duarte, CA, USA
| | - Mauro Modesti
- Cancer Research Center of Marseille, Department of Genome Integrity, CNRS UMR7258, Inserm U1068, Institut Paoli-Calmettes, Aix-Marseille University, Marseille, France.
| | - Fabien Ferrage
- Département de Chimie, LBM, CNRS UMR 7203, École Normale Supérieure, PSL University, Sorbonne University, Paris, France.
| |
Collapse
|
4
|
Sallmyr A, Bhandari SK, Naila T, Tomkinson AE. Mammalian DNA ligases; roles in maintaining genome integrity. J Mol Biol 2024; 436:168276. [PMID: 37714297 PMCID: PMC10843057 DOI: 10.1016/j.jmb.2023.168276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/17/2023]
Abstract
The joining of breaks in the DNA phosphodiester backbone is essential for genome integrity. Breaks are generated during normal processes such as DNA replication, cytosine demethylation during differentiation, gene rearrangement in the immune system and germ cell development. In addition, they are generated either directly by a DNA damaging agent or indirectly due to damage excision during repair. Breaks are joined by a DNA ligase that catalyzes phosphodiester bond formation at DNA nicks with 3' hydroxyl and 5' phosphate termini. Three human genes encode ATP-dependent DNA ligases. These enzymes have a conserved catalytic core consisting of three subdomains that encircle nicked duplex DNA during ligation. The DNA ligases are targeted to different nuclear DNA transactions by specific protein-protein interactions. Both DNA ligase IIIα and DNA ligase IV form stable complexes with DNA repair proteins, XRCC1 and XRCC4, respectively. There is functional redundancy between DNA ligase I and DNA ligase IIIα in DNA replication, excision repair and single-strand break repair. Although DNA ligase IV is a core component of the major double-strand break repair pathway, non-homologous end joining, the other enzymes participate in minor, alternative double-strand break repair pathways. In contrast to the nucleus, only DNA ligase IIIα is present in mitochondria and is essential for maintaining the mitochondrial genome. Human immunodeficiency syndromes caused by mutations in either LIG1 or LIG4 have been described. Preclinical studies with DNA ligase inhibitors have identified potentially targetable abnormalities in cancer cells and evidence that DNA ligases are potential targets for cancer therapy.
Collapse
Affiliation(s)
- Annahita Sallmyr
- University of New Mexico Comprehensive Cancer Center and the Departments of Internal Medicine, and Molecular Genetics & Microbiology, University of New Mexico Health Sciences Center, United States
| | - Seema Khattri Bhandari
- University of New Mexico Comprehensive Cancer Center and the Departments of Internal Medicine, and Molecular Genetics & Microbiology, University of New Mexico Health Sciences Center, United States
| | - Tasmin Naila
- University of New Mexico Comprehensive Cancer Center and the Departments of Internal Medicine, and Molecular Genetics & Microbiology, University of New Mexico Health Sciences Center, United States
| | - Alan E Tomkinson
- University of New Mexico Comprehensive Cancer Center and the Departments of Internal Medicine, and Molecular Genetics & Microbiology, University of New Mexico Health Sciences Center, United States.
| |
Collapse
|
5
|
Kumari N, Antil H, Kumari S, Raghavan SC. Deficiency of ligase IV leads to reduced NHEJ, accumulation of DNA damage, and can sensitize cells to cancer therapeutics. Genomics 2023; 115:110731. [PMID: 37871849 DOI: 10.1016/j.ygeno.2023.110731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 09/14/2023] [Accepted: 10/19/2023] [Indexed: 10/25/2023]
Abstract
Ligase IV is a key enzyme involved during DNA double-strand breaks (DSBs) repair through nonhomologous end joining (NHEJ). However, in contrast to Ligase IV deficient mouse cells, which are embryonic lethal, Ligase IV deficient human cells, including pre-B cells, are viable. Using CRISPR-Cas9 mediated genome editing, we have generated six different LIG4 mutants in cervical cancer and normal kidney epithelial cell lines. While the LIG4 mutant cells showed a significant reduction in NHEJ, joining mediated through microhomology-mediated end joining (MMEJ) and homologous recombination (HR) were significantly high. The reduced NHEJ joining activity was restored by adding purified Ligase IV/XRCC4. Accumulation of DSBs and reduced cell viability were observed in LIG4 mutant cells. LIG4 mutant cells exhibited enhanced sensitivity towards DSB-inducing agents such as ionizing radiation (IR) and etoposide. More importantly, the LIG4 mutant of cervical cancer cells showed increased sensitivity towards FDA approved drugs such as Carboplatin, Cisplatin, Paclitaxel, Doxorubicin, and Bleomycin used for cervical cancer treatment. These drugs, in combination with IR showed enhanced cancer cell death in the background of LIG4 gene mutation. Thus, our study reveals that mutation in LIG4 results in compromised NHEJ, leading to sensitization of cervical cancer cells towards currently used cancer therapeutics.
Collapse
Affiliation(s)
- Nitu Kumari
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Himanshu Antil
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Susmita Kumari
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Sathees C Raghavan
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
6
|
Watanabe G, Lieber MR, Williams DR. Structural analysis of the basal state of the Artemis:DNA-PKcs complex. Nucleic Acids Res 2022; 50:7697-7720. [PMID: 35801871 PMCID: PMC9303282 DOI: 10.1093/nar/gkac564] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 06/05/2022] [Accepted: 06/17/2022] [Indexed: 01/17/2023] Open
Abstract
Artemis nuclease and DNA-dependent protein kinase catalytic subunit (DNA-PKcs) are key components in nonhomologous DNA end joining (NHEJ), the major repair mechanism for double-strand DNA breaks. Artemis activation by DNA-PKcs resolves hairpin DNA ends formed during V(D)J recombination. Artemis deficiency disrupts development of adaptive immunity and leads to radiosensitive T- B- severe combined immunodeficiency (RS-SCID). An activated state of Artemis in complex with DNA-PK was solved by cryo-EM recently, which showed Artemis bound to the DNA. Here, we report that the pre-activated form (basal state) of the Artemis:DNA-PKcs complex is stable on an agarose-acrylamide gel system, and suitable for cryo-EM structural analysis. Structures show that the Artemis catalytic domain is dynamically positioned externally to DNA-PKcs prior to ABCDE autophosphorylation and show how both the catalytic and regulatory domains of Artemis interact with the N-HEAT and FAT domains of DNA-PKcs. We define a mutually exclusive binding site for Artemis and XRCC4 on DNA-PKcs and show that an XRCC4 peptide disrupts the Artemis:DNA-PKcs complex. All of the findings are useful in explaining how a hypomorphic L3062R missense mutation of DNA-PKcs could lead to insufficient Artemis activation, hence RS-SCID. Our results provide various target site candidates to design disruptors for Artemis:DNA-PKcs complex formation.
Collapse
Affiliation(s)
- Go Watanabe
- Department of Pathology, Department of Biochemistry & Molecular Biology, Department of Molecular Microbiology & Immunology, and Section of Computational & Molecular Biology, USC Norris Comprehensive Cancer Center, University of Southern California Keck School of Medicine, 1441 Eastlake Ave, Rm. 5428, Los Angeles, CA 90089, USA
| | - Michael R Lieber
- Department of Pathology, Department of Biochemistry & Molecular Biology, Department of Molecular Microbiology & Immunology, and Section of Computational & Molecular Biology, USC Norris Comprehensive Cancer Center, University of Southern California Keck School of Medicine, 1441 Eastlake Ave, Rm. 5428, Los Angeles, CA 90089, USA
| | - Dewight R Williams
- Eyring Materials Center, John Cowley Center for High Resolution Electron Microscopy, Arizona State University, Tempe, AZ 85281, USA
| |
Collapse
|
7
|
Movahedi A, Wei H, Zhou X, Fountain JC, Chen ZH, Mu Z, Sun W, Zhang J, Li D, Guo B, Varshney RK, Yang L, Zhuge Q. Precise exogenous insertion and sequence replacements in poplar by simultaneous HDR overexpression and NHEJ suppression using CRISPR-Cas9. HORTICULTURE RESEARCH 2022; 9:uhac154. [PMID: 36133672 PMCID: PMC9478684 DOI: 10.1093/hr/uhac154] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 07/22/2022] [Accepted: 06/27/2022] [Indexed: 05/21/2023]
Abstract
CRISPR-mediated genome editing has become a powerful tool for the genetic modification of biological traits. However, developing an efficient, site-specific, gene knock-in system based on homology-directed DNA repair (HDR) remains a significant challenge in plants, especially in woody species like poplar. Here, we show that simultaneous inhibition of non-homologous end joining (NHEJ) recombination cofactor XRCC4 and overexpression of HDR enhancer factors CtIP and MRE11 can improve HDR efficiency for gene knock-in. Using this approach, the BleoR gene was integrated onto the 3' end of the MKK2 MAP kinase gene to generate a BleoR-MKK2 fusion protein. Based on fully edited nucleotides evaluated by TaqMan real-time PCR, the HDR-mediated knock-in efficiency was up to 48% when using XRCC4 silencing incorporated with a combination of CtIP and MRE11 overexpression compared with no HDR enhancement or NHEJ silencing. Furthermore, this combination of HDR enhancer overexpression and NHEJ repression also increased genome targeting efficiency and gave 7-fold fewer CRISPR-induced insertions and deletions (InDels), resulting in no functional effects on MKK2-based salt stress responses in poplar. Therefore, this approach may be useful not only in poplar and plants or crops but also in mammals for improving CRISPR-mediated gene knock-in efficiency.
Collapse
Affiliation(s)
| | - Hui Wei
- College of Biology and the Environment, Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics & Biotechnology, Ministry of Education, Nanjing Forestry University, Nanjing 210037, China
| | | | | | - Zhong-Hua Chen
- School of Science, Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW 2751, Australia
| | - Zhiying Mu
- College of Forestry and Biotechnology, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Weibo Sun
- College of Biology and the Environment, Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics & Biotechnology, Ministry of Education, Nanjing Forestry University, Nanjing 210037, China
| | - Jiaxin Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210046, China
| | - Dawei Li
- College of Biology and the Environment, Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics & Biotechnology, Ministry of Education, Nanjing Forestry University, Nanjing 210037, China
| | - Baozhu Guo
- USDA-ARS, Crop Genetics and Breeding Research Unit, Tifton, GA 31793, USA
| | | | | | | |
Collapse
|
8
|
Ye Z, Shi Y, Lees-Miller SP, Tainer JA. Function and Molecular Mechanism of the DNA Damage Response in Immunity and Cancer Immunotherapy. Front Immunol 2021; 12:797880. [PMID: 34970273 PMCID: PMC8712645 DOI: 10.3389/fimmu.2021.797880] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 11/15/2021] [Indexed: 12/21/2022] Open
Abstract
The DNA damage response (DDR) is an organized network of multiple interwoven components evolved to repair damaged DNA and maintain genome fidelity. Conceptually the DDR includes damage sensors, transducer kinases, and effectors to maintain genomic stability and accurate transmission of genetic information. We have recently gained a substantially improved molecular and mechanistic understanding of how DDR components are interconnected to inflammatory and immune responses to stress. DDR shapes both innate and adaptive immune pathways: (i) in the context of innate immunity, DDR components mainly enhance cytosolic DNA sensing and its downstream STimulator of INterferon Genes (STING)-dependent signaling; (ii) in the context of adaptive immunity, the DDR is needed for the assembly and diversification of antigen receptor genes that is requisite for T and B lymphocyte development. Imbalances between DNA damage and repair impair tissue homeostasis and lead to replication and transcription stress, mutation accumulation, and even cell death. These impacts from DDR defects can then drive tumorigenesis, secretion of inflammatory cytokines, and aberrant immune responses. Yet, DDR deficiency or inhibition can also directly enhance innate immune responses. Furthermore, DDR defects plus the higher mutation load in tumor cells synergistically produce primarily tumor-specific neoantigens, which are powerfully targeted in cancer immunotherapy by employing immune checkpoint inhibitors to amplify immune responses. Thus, elucidating DDR-immune response interplay may provide critical connections for harnessing immunomodulatory effects plus targeted inhibition to improve efficacy of radiation and chemotherapies, of immune checkpoint blockade, and of combined therapeutic strategies.
Collapse
Affiliation(s)
- Zu Ye
- Department of Molecular and Cellular Oncology, and Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Yin Shi
- Department of Immunology, Zhejiang University School of Medicine, Hangzhou, China
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Susan P. Lees-Miller
- Department of Biochemistry and Molecular Biology, Robson DNA Science Centre, Charbonneau Cancer Institute, University of Calgary, Calgary, AB, Canada
| | - John A. Tainer
- Department of Molecular and Cellular Oncology, and Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
9
|
McPherson KS, Korzhnev DM. Targeting protein-protein interactions in the DNA damage response pathways for cancer chemotherapy. RSC Chem Biol 2021; 2:1167-1195. [PMID: 34458830 PMCID: PMC8342002 DOI: 10.1039/d1cb00101a] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 06/20/2021] [Indexed: 12/11/2022] Open
Abstract
Cellular DNA damage response (DDR) is an extensive signaling network that orchestrates DNA damage recognition, repair and avoidance, cell cycle progression and cell death. DDR alteration is a hallmark of cancer, with the deficiency in one DDR capability often compensated by a dependency on alternative pathways endowing cancer cells with survival and growth advantage. Targeting these DDR pathways has provided multiple opportunities for the development of cancer therapies. Traditional drug discovery has mainly focused on catalytic inhibitors that block enzyme active sites, which limits the number of potential drug targets within the DDR pathways. This review article describes the emerging approach to the development of cancer therapeutics targeting essential protein-protein interactions (PPIs) in the DDR network. The overall strategy for the structure-based design of small molecule PPI inhibitors is discussed, followed by an overview of the major DNA damage sensing, DNA repair, and DNA damage tolerance pathways with a specific focus on PPI targets for anti-cancer drug design. The existing small molecule inhibitors of DDR PPIs are summarized that selectively kill cancer cells and/or sensitize cancers to front-line genotoxic therapies, and a range of new PPI targets are proposed that may lead to the development of novel chemotherapeutics.
Collapse
Affiliation(s)
- Kerry Silva McPherson
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center Farmington CT 06030 USA +1 860 679 3408 +1 860 679 2849
| | - Dmitry M Korzhnev
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center Farmington CT 06030 USA +1 860 679 3408 +1 860 679 2849
| |
Collapse
|
10
|
Liang S, Chaplin AK, Stavridi AK, Appleby R, Hnizda A, Blundell TL. Stages, scaffolds and strings in the spatial organisation of non-homologous end joining: Insights from X-ray diffraction and Cryo-EM. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2021; 163:60-73. [PMID: 33285184 PMCID: PMC8224183 DOI: 10.1016/j.pbiomolbio.2020.11.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 11/26/2020] [Indexed: 01/10/2023]
Abstract
Non-homologous end joining (NHEJ) is the preferred pathway for the repair of DNA double-strand breaks in humans. Here we describe three structural aspects of the repair pathway: stages, scaffolds and strings. We discuss the orchestration of DNA repair to guarantee robust and efficient NHEJ. We focus on structural studies over the past two decades, not only using X-ray diffraction, but also increasingly exploiting cryo-EM to investigate the macromolecular assemblies.
Collapse
Affiliation(s)
- Shikang Liang
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1GA, Cambridgeshire, UK
| | - Amanda K Chaplin
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1GA, Cambridgeshire, UK
| | - Antonia Kefala Stavridi
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1GA, Cambridgeshire, UK
| | - Robert Appleby
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1GA, Cambridgeshire, UK
| | - Ales Hnizda
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1GA, Cambridgeshire, UK
| | - Tom L Blundell
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1GA, Cambridgeshire, UK.
| |
Collapse
|
11
|
Tang M, Li S, Chen J. Ubiquitylation in DNA double-strand break repair. DNA Repair (Amst) 2021; 103:103129. [PMID: 33990032 DOI: 10.1016/j.dnarep.2021.103129] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 04/26/2021] [Accepted: 05/05/2021] [Indexed: 12/28/2022]
Abstract
Genome integrity is constantly challenged by various DNA lesions with DNA double-strand breaks (DSBs) as the most cytotoxic lesions. In order to faithfully repair DSBs, DNA damage response (DDR) signaling networks have evolved, which organize many multi-protein complexes to deal with the encountered DNA damage. Spatiotemporal dynamics of these protein complexes at DSBs are mainly modulated by post-translational modifications (PTMs). One of the most well-studied PTMs in DDR is ubiquitylation which can orchestrate cellular responses to DSBs, promote accurate DNA repair, and maintain genome integrity. Here, we summarize the recent advances of ubiquitin-dependent signaling in DDR and discuss how ubiquitylation crosstalks with other PTMs to control fundamental biological processes in DSB repair.
Collapse
Affiliation(s)
- Mengfan Tang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Siting Li
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Junjie Chen
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
12
|
Tomkinson AE, Naila T, Khattri Bhandari S. Altered DNA ligase activity in human disease. Mutagenesis 2021; 35:51-60. [PMID: 31630206 DOI: 10.1093/mutage/gez026] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 09/09/2019] [Indexed: 12/18/2022] Open
Abstract
The joining of interruptions in the phosphodiester backbone of DNA is critical to maintain genome stability. These breaks, which are generated as part of normal DNA transactions, such as DNA replication, V(D)J recombination and meiotic recombination as well as directly by DNA damage or due to DNA damage removal, are ultimately sealed by one of three human DNA ligases. DNA ligases I, III and IV each function in the nucleus whereas DNA ligase III is the sole enzyme in mitochondria. While the identification of specific protein partners and the phenotypes caused either by genetic or chemical inactivation have provided insights into the cellular functions of the DNA ligases and evidence for significant functional overlap in nuclear DNA replication and repair, different results have been obtained with mouse and human cells, indicating species-specific differences in the relative contributions of the DNA ligases. Inherited mutations in the human LIG1 and LIG4 genes that result in the generation of polypeptides with partial activity have been identified as the causative factors in rare DNA ligase deficiency syndromes that share a common clinical symptom, immunodeficiency. In the case of DNA ligase IV, the immunodeficiency is due to a defect in V(D)J recombination whereas the cause of the immunodeficiency due to DNA ligase I deficiency is not known. Overexpression of each of the DNA ligases has been observed in cancers. For DNA ligase I, this reflects increased proliferation. Elevated levels of DNA ligase III indicate an increased dependence on an alternative non-homologous end-joining pathway for the repair of DNA double-strand breaks whereas elevated level of DNA ligase IV confer radioresistance due to increased repair of DNA double-strand breaks by the major non-homologous end-joining pathway. Efforts to determine the potential of DNA ligase inhibitors as cancer therapeutics are on-going in preclinical cancer models.
Collapse
Affiliation(s)
- Alan E Tomkinson
- Departments of Internal Medicine and Molecular Genetics and Microbiology, and the University of New Mexico Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM, USA
| | - Tasmin Naila
- Departments of Internal Medicine and Molecular Genetics and Microbiology, and the University of New Mexico Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM, USA
| | - Seema Khattri Bhandari
- Departments of Internal Medicine and Molecular Genetics and Microbiology, and the University of New Mexico Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM, USA
| |
Collapse
|
13
|
Ferreira S, Dutreix M. DNA repair inhibitors to enhance radiotherapy: Progresses and limitations. Cancer Radiother 2019; 23:883-890. [PMID: 31615730 DOI: 10.1016/j.canrad.2019.08.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 08/29/2019] [Accepted: 08/31/2019] [Indexed: 02/08/2023]
Abstract
Radiotherapy is one of the most common form of treatment in oncology care. Indeed, radiotherapy proved to be very effective in treating a wide range of malignancies. Nevertheless, certain tumours are intrinsically radioresistant or may evolve to become radioresistant. Resistance to radiotherapy is often associated with dysregulated DNA damage response and repair. Recently, a number of strategies have been developed to improve radiotherapy efficacy by targeting the DNA damage response and repair pathways. Ongoing clinical trials showed the potential of some of these approaches in enhancing radiotherapy, but also highlighted the possible limitations. Here, we will describe (i) the main mechanisms involved in double-strand break repair; (ii) available strategies that target these DNA repair processes to improve radiotherapy and (iii) the clinical outcomes and challenges that have emerged so far.
Collapse
Affiliation(s)
- S Ferreira
- Centre universitaire, institut Curie, UMR « Etic », bâtiment 110, 91405 Orsay cedex, France; Université PSL, 91405 Orsay, France; CNRS, UMR 3347, 91405 Orsay, France; Inserm, UMR 3347, 91405 Orsay, France; Université Paris-Sud université Paris-Saclay, 91405 Orsay, France
| | - M Dutreix
- Centre universitaire, institut Curie, UMR « Etic », bâtiment 110, 91405 Orsay cedex, France; Université PSL, 91405 Orsay, France; CNRS, UMR 3347, 91405 Orsay, France; Inserm, UMR 3347, 91405 Orsay, France; Université Paris-Sud université Paris-Saclay, 91405 Orsay, France.
| |
Collapse
|
14
|
DNA Ligase IV Prevents Replication Fork Stalling and Promotes Cellular Proliferation in Triple Negative Breast Cancer. J Nucleic Acids 2019; 2019:9170341. [PMID: 30838131 PMCID: PMC6374816 DOI: 10.1155/2019/9170341] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 11/27/2018] [Accepted: 01/05/2019] [Indexed: 02/07/2023] Open
Abstract
DNA damage is a hallmark of cancer, and mutation and misregulation of proteins that maintain genomic fidelity are associated with the development of multiple cancers. DNA double strand breaks are arguably considered the most deleterious type of DNA damage. The nonhomologous end-joining (NHEJ) pathway is one mechanism to repair DNA double strand breaks, and proteins involved in NHEJ may also regulate DNA replication. We previously established that DNA-PKcs, a NHEJ protein, promotes genomic stability and cell viability following cellular exposure to replication stress; we wanted to discern whether another NHEJ protein, DNA ligase IV (Lig4), shares this phenotype. Our investigations focused on triple negative breast cancer cells, as, compared to nonbasal breast cancer, LIG4 is frequently amplified, and an increased gene dose is associated with higher Lig4 expression. We depleted Lig4 using siRNA and confirmed our knockdown by qPCR and western blotting. Cell survival diminished with Lig4 depletion alone, and this was associated with increased replication fork stalling. Checkpoint protein Chk1 activation and dephosphorylation were unchanged in Lig4-depleted cells. Lig4 depletion resulted in sustained DNA-PKcs phosphorylation following hydroxyurea exposure. Understanding the effect of Lig4 on genomic replication and the replication stress response will clarify the biological ramifications of inhibiting Lig4 activity. In addition, Lig4 is an attractive clinical target for directing CRISPR/Cas9-mediated repair towards homology-directed repair and away from NHEJ, thus understanding of how diminishing Lig4 impacts cell biology is critical.
Collapse
|
15
|
Pannunzio NR, Watanabe G, Lieber MR. Nonhomologous DNA end-joining for repair of DNA double-strand breaks. J Biol Chem 2017; 293:10512-10523. [PMID: 29247009 DOI: 10.1074/jbc.tm117.000374] [Citation(s) in RCA: 363] [Impact Index Per Article: 45.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Nonhomologous DNA end-joining (NHEJ) is the predominant double-strand break (DSB) repair pathway throughout the cell cycle and accounts for nearly all DSB repair outside of the S and G2 phases. NHEJ relies on Ku to thread onto DNA termini and thereby improve the affinity of the NHEJ enzymatic components consisting of polymerases (Pol μ and Pol λ), a nuclease (the Artemis·DNA-PKcs complex), and a ligase (XLF·XRCC4·Lig4 complex). Each of the enzymatic components is distinctive for its versatility in acting on diverse incompatible DNA end configurations coupled with a flexibility in loading order, resulting in many possible junctional outcomes from one DSB. DNA ends can either be directly ligated or, if the ends are incompatible, processed until a ligatable configuration is achieved that is often stabilized by up to 4 bp of terminal microhomology. Processing of DNA ends results in nucleotide loss or addition, explaining why DSBs repaired by NHEJ are rarely restored to their original DNA sequence. Thus, NHEJ is a single pathway with multiple enzymes at its disposal to repair DSBs, resulting in a diversity of repair outcomes.
Collapse
Affiliation(s)
- Nicholas R Pannunzio
- From the Departments of Pathology, Biochemistry and Molecular Biology, and Molecular Microbiology and Immunology, Section of Molecular and Computational Biology, Department of Biological Sciences, Norris Comprehensive Cancer Center, University of Southern California Keck School of Medicine, Los Angeles, California 90033
| | - Go Watanabe
- From the Departments of Pathology, Biochemistry and Molecular Biology, and Molecular Microbiology and Immunology, Section of Molecular and Computational Biology, Department of Biological Sciences, Norris Comprehensive Cancer Center, University of Southern California Keck School of Medicine, Los Angeles, California 90033
| | - Michael R Lieber
- From the Departments of Pathology, Biochemistry and Molecular Biology, and Molecular Microbiology and Immunology, Section of Molecular and Computational Biology, Department of Biological Sciences, Norris Comprehensive Cancer Center, University of Southern California Keck School of Medicine, Los Angeles, California 90033
| |
Collapse
|
16
|
Almasan A, Gurkan-Cavusoglu E. Computational analysis of androgen receptor dependent radiosensitivity in prostate cancer. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2017; 2016:1426-1429. [PMID: 28268594 DOI: 10.1109/embc.2016.7590976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In this study, we quantitatively analyze the mechanism by which androgen deprivation therapy (ADT) is enhancing radiosensitivity in prostate cancer (PCa) patients. It has been shown in laboratory experiments, as well as in patient data in the literature, that the androgen receptor (AR) reduces the effectiveness of ionizing radiation treatment by enhancing the non-homologous end joining (NHEJ) repair of radiation damage. The suppression of AR by ADT suppresses the activity of NHEJ that leads to radiosensitivity in PCa patients. In this paper, we have studied this positive interaction between AR and NHEJ using mathematical models of the NHEJ that we have developed using both the experimental and clinical data for PCa. Our results show that the biological observation of suppression of AR by ADT leading to down-regulation of the first NHEJ protein Ku and NHEJ is a plausible biological mechanism that explains both the experimental and clinical observations in the literature. The presented analysis is the first step in quantitatively analyzing possible treatment scenarios to find the optimal treatment strategies for PCa using the combination treatment with ADT, NHEJ inhibitors, and IR.
Collapse
|
17
|
Fujii N. Potential Strategies to Target Protein-Protein Interactions in the DNA Damage Response and Repair Pathways. J Med Chem 2017; 60:9932-9959. [PMID: 28654754 DOI: 10.1021/acs.jmedchem.7b00358] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This review article discusses some insights about generating novel mechanistic inhibitors of the DNA damage response and repair (DDR) pathways by focusing on protein-protein interactions (PPIs) of the key DDR components. General requirements for PPI strategies, such as selecting the target PPI site on the basis of its functionality, are discussed first. Next, on the basis of functional rationale and biochemical feasibility to identify a PPI inhibitor, 26 PPIs in DDR pathways (BER, MMR, NER, NHEJ, HR, TLS, and ICL repair) are specifically discussed for inhibitor discovery to benefit cancer therapies using a DNA-damaging agent.
Collapse
Affiliation(s)
- Naoaki Fujii
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital , 262 Danny Thomas Place, MS1000, Memphis, Tennessee 38105, United States
| |
Collapse
|
18
|
Non-homologous DNA end joining and alternative pathways to double-strand break repair. Nat Rev Mol Cell Biol 2017; 18:495-506. [PMID: 28512351 DOI: 10.1038/nrm.2017.48] [Citation(s) in RCA: 1130] [Impact Index Per Article: 141.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
DNA double-strand breaks (DSBs) are the most dangerous type of DNA damage because they can result in the loss of large chromosomal regions. In all mammalian cells, DSBs that occur throughout the cell cycle are repaired predominantly by the non-homologous DNA end joining (NHEJ) pathway. Defects in NHEJ result in sensitivity to ionizing radiation and the ablation of lymphocytes. The NHEJ pathway utilizes proteins that recognize, resect, polymerize and ligate the DNA ends in a flexible manner. This flexibility permits NHEJ to function on a wide range of DNA-end configurations, with the resulting repaired DNA junctions often containing mutations. In this Review, we discuss the most recent findings regarding the relative involvement of the different NHEJ proteins in the repair of various DNA-end configurations. We also discuss the shunting of DNA-end repair to the auxiliary pathways of alternative end joining (a-EJ) or single-strand annealing (SSA) and the relevance of these different pathways to human disease.
Collapse
|
19
|
Chang HHY, Watanabe G, Gerodimos CA, Ochi T, Blundell TL, Jackson SP, Lieber MR. Different DNA End Configurations Dictate Which NHEJ Components Are Most Important for Joining Efficiency. J Biol Chem 2016; 291:24377-24389. [PMID: 27703001 PMCID: PMC5114395 DOI: 10.1074/jbc.m116.752329] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 09/26/2016] [Indexed: 02/02/2023] Open
Abstract
The nonhomologous DNA end-joining (NHEJ) pathway is a key mechanism for repairing dsDNA breaks that occur often in eukaryotic cells. In the simplest model, these breaks are first recognized by Ku, which then interacts with other NHEJ proteins to improve their affinity at DNA ends. These include DNA-PKcs and Artemis for trimming the DNA ends; DNA polymerase μ and λ to add nucleotides; and the DNA ligase IV complex to ligate the ends with the additional factors, XRCC4 (X-ray repair cross-complementing protein 4), XLF (XRCC4-like factor/Cernunos), and PAXX (paralog of XRCC4 and XLF). In vivo studies have demonstrated the degrees of importance of these NHEJ proteins in the mechanism of repair of dsDNA breaks, but interpretations can be confounded by other cellular processes. In vitro studies with NHEJ proteins have been performed to evaluate the nucleolytic resection, polymerization, and ligation steps, but a complete system has been elusive. Here we have developed a NHEJ reconstitution system that includes the nuclease, polymerase, and ligase components to evaluate relative NHEJ efficiency and analyze ligated junctional sequences for various types of DNA ends, including blunt, 5' overhangs, and 3' overhangs. We find that different dsDNA end structures have differential dependence on these enzymatic components. The dependence of some end joining on only Ku and XRCC4·DNA ligase IV allows us to formulate a physical model that incorporates nuclease and polymerase components as needed.
Collapse
Affiliation(s)
- Howard H Y Chang
- From the Departments of Pathology, Biochemistry & Molecular Biology, and Molecular Microbiology & Immunology and the Section of Molecular & Computational Biology, Department of Biological Sciences, Norris Comprehensive Cancer Center, University of Southern California Keck School of Medicine, Los Angeles, CA, 90033 and
| | - Go Watanabe
- From the Departments of Pathology, Biochemistry & Molecular Biology, and Molecular Microbiology & Immunology and the Section of Molecular & Computational Biology, Department of Biological Sciences, Norris Comprehensive Cancer Center, University of Southern California Keck School of Medicine, Los Angeles, CA, 90033 and
| | - Christina A Gerodimos
- From the Departments of Pathology, Biochemistry & Molecular Biology, and Molecular Microbiology & Immunology and the Section of Molecular & Computational Biology, Department of Biological Sciences, Norris Comprehensive Cancer Center, University of Southern California Keck School of Medicine, Los Angeles, CA, 90033 and
| | - Takashi Ochi
- the Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge CB2 1QN, United Kingdom
| | - Tom L Blundell
- the Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge CB2 1QN, United Kingdom
| | - Stephen P Jackson
- the Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge CB2 1QN, United Kingdom
| | - Michael R Lieber
- From the Departments of Pathology, Biochemistry & Molecular Biology, and Molecular Microbiology & Immunology and the Section of Molecular & Computational Biology, Department of Biological Sciences, Norris Comprehensive Cancer Center, University of Southern California Keck School of Medicine, Los Angeles, CA, 90033 and.
| |
Collapse
|
20
|
Bee L, Nasca A, Zanolini A, Cendron F, d'Adamo P, Costa R, Lamperti C, Celotti L, Ghezzi D, Zeviani M. A nonsense mutation of human XRCC4 is associated with adult-onset progressive encephalocardiomyopathy. EMBO Mol Med 2016; 7:918-29. [PMID: 25872942 PMCID: PMC4520657 DOI: 10.15252/emmm.201404803] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
We studied two monozygotic twins, born to first cousins, affected by a multisystem disease. At birth, they both presented with bilateral cryptorchidism and malformations. Since early adulthood, they developed a slowly progressive neurological syndrome, with cerebellar and pyramidal signs, cognitive impairment, and depression. Dilating cardiomyopathy is also present in both. By whole-exome sequencing, we found a homozygous nucleotide change in XRCC4 (c.673C>T), predicted to introduce a premature stop codon (p.R225*). XRCC4 transcript levels were profoundly reduced, and the protein was undetectable in patients' skin fibroblasts. XRCC4 plays an important role in non-homologous end joining of DNA double-strand breaks (DSB), a system that is involved in repairing DNA damage from, for example, ionizing radiations. Gamma-irradiated mutant cells demonstrated reduction, but not abolition, of DSB repair. In contrast with embryonic lethality of the Xrcc4 KO mouse, nonsense mutations in human XRCC4 have recently been associated with primordial dwarfism and, in our cases, with adult-onset neurological impairment, suggesting an important role for DNA repair in the brain. Surprisingly, neither immunodeficiency nor predisposition to malignancy was reported in these patients.
Collapse
Affiliation(s)
- Leonardo Bee
- Department of Biology, University of Padua, Padua, Italy
| | - Alessia Nasca
- Molecular Neurogenetics Unit, Foundation IRCCS Institute of Neurology "Carlo Besta", Milan, Italy
| | - Alice Zanolini
- Molecular Neurogenetics Unit, Foundation IRCCS Institute of Neurology "Carlo Besta", Milan, Italy
| | | | - Pio d'Adamo
- Department of Medical Sciences, University of Trieste, Trieste, Italy
| | - Rodolfo Costa
- Department of Biology, University of Padua, Padua, Italy
| | - Costanza Lamperti
- Molecular Neurogenetics Unit, Foundation IRCCS Institute of Neurology "Carlo Besta", Milan, Italy
| | - Lucia Celotti
- Department of Biology, University of Padua, Padua, Italy
| | - Daniele Ghezzi
- Molecular Neurogenetics Unit, Foundation IRCCS Institute of Neurology "Carlo Besta", Milan, Italy
| | - Massimo Zeviani
- Molecular Neurogenetics Unit, Foundation IRCCS Institute of Neurology "Carlo Besta", Milan, Italy MRC Mitochondrial Biology Unit, CB2 0XY, Cambridge, UK
| |
Collapse
|
21
|
Prochazkova J, Loizou JI. Programmed DNA breaks in lymphoid cells: repair mechanisms and consequences in human disease. Immunology 2016; 147:11-20. [PMID: 26455503 PMCID: PMC4988471 DOI: 10.1111/imm.12547] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 10/05/2015] [Accepted: 10/06/2015] [Indexed: 01/08/2023] Open
Abstract
In recent years, several novel congenital human disorders have been described with defects in lymphoid B-cell and T-cell functions that arise due to mutations in known and/or novel components of DNA repair and damage response pathways. Examples include impaired DNA double-strand break repair, as well as compromised DNA damage-induced signal transduction, including phosphorylation and ubiquitination. These disorders reinforce the importance of genome stability pathways in the development of lymphoid cells in humans. Furthermore, these conditions inform our knowledge of the biology of the mechanisms of genome stability and in some cases may provide potential routes to help exploit these pathways therapeutically. Here we review the mechanisms that repair programmed DNA lesions that occur during B-cell and T-cell development, as well as human diseases that arise through defects in these pathways.
Collapse
Affiliation(s)
- Jana Prochazkova
- CeMM Research Centre for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
| | - Joanna I. Loizou
- CeMM Research Centre for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
| |
Collapse
|
22
|
Marriott AS, Copeland NA, Cunningham R, Wilkinson MC, McLennan AG, Jones NJ. Diadenosine 5', 5'''-P(1),P(4)-tetraphosphate (Ap4A) is synthesized in response to DNA damage and inhibits the initiation of DNA replication. DNA Repair (Amst) 2015. [PMID: 26204256 DOI: 10.1016/j.dnarep.2015.06.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The level of intracellular diadenosine 5', 5'''-P(1),P(4)-tetraphosphate (Ap4A) increases several fold in mammalian cells treated with non-cytotoxic doses of interstrand DNA-crosslinking agents such as mitomycin C. It is also increased in cells lacking DNA repair proteins including XRCC1, PARP1, APTX and FANCG, while >50-fold increases (up to around 25 μM) are achieved in repair mutants exposed to mitomycin C. Part of this induced Ap4A is converted into novel derivatives, identified as mono- and di-ADP-ribosylated Ap4A. Gene knockout experiments suggest that DNA ligase III is primarily responsible for the synthesis of damage-induced Ap4A and that PARP1 and PARP2 can both catalyze its ADP-ribosylation. Degradative proteins such as aprataxin may also contribute to the increase. Using a cell-free replication system, Ap4A was found to cause a marked inhibition of the initiation of DNA replicons, while elongation was unaffected. Maximum inhibition of 70-80% was achieved with 20 μM Ap4A. Ap3A, Ap5A, Gp4G and ADP-ribosylated Ap4A were without effect. It is proposed that Ap4A acts as an important inducible ligand in the DNA damage response to prevent the replication of damaged DNA.
Collapse
Affiliation(s)
- Andrew S Marriott
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Nikki A Copeland
- Division of Biomedical and Life Sciences, University of Lancaster, Lancaster LA1 4YG, UK
| | - Ryan Cunningham
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Mark C Wilkinson
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Alexander G McLennan
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK.
| | - Nigel J Jones
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| |
Collapse
|
23
|
Organization and dynamics of the nonhomologous end-joining machinery during DNA double-strand break repair. Proc Natl Acad Sci U S A 2015; 112:E2575-84. [PMID: 25941401 DOI: 10.1073/pnas.1420115112] [Citation(s) in RCA: 134] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Nonhomologous end-joining (NHEJ) is a major repair pathway for DNA double-strand breaks (DSBs), involving synapsis and ligation of the broken strands. We describe the use of in vivo and in vitro single-molecule methods to define the organization and interaction of NHEJ repair proteins at DSB ends. Super-resolution fluorescence microscopy allowed the precise visualization of XRCC4, XLF, and DNA ligase IV filaments adjacent to DSBs, which bridge the broken chromosome and direct rejoining. We show, by single-molecule FRET analysis of the Ku/XRCC4/XLF/DNA ligase IV NHEJ ligation complex, that end-to-end synapsis involves a dynamic positioning of the two ends relative to one another. Our observations form the basis of a new model for NHEJ that describes the mechanism whereby filament-forming proteins bridge DNA DSBs in vivo. In this scheme, the filaments at either end of the DSB interact dynamically to achieve optimal configuration and end-to-end positioning and ligation.
Collapse
|
24
|
Fukuchi M, Wanotayan R, Liu S, Imamichi S, Sharma MK, Matsumoto Y. Lysine 271 but not lysine 210 of XRCC4 is required for the nuclear localization of XRCC4 and DNA ligase IV. Biochem Biophys Res Commun 2015; 461:687-94. [PMID: 25934149 DOI: 10.1016/j.bbrc.2015.04.093] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 04/18/2015] [Indexed: 11/16/2022]
Abstract
XRCC4 and DNA Ligase IV (LIG4) cooperate to join two DNA ends at the final step of DNA double-strand break (DSB) repair through non-homologous end-joining (NHEJ). However, it is not fully understood how these proteins are localized to the nucleus. Here we created XRCC4(K271R) mutant, as Lys271 lies within the putative nuclear localization signal (NLS), and XRCC4(K210R) mutant, as Lys210 was reported to undergo SUMOylation, implicated in the nuclear localization of XRCC4. Wild-type and mutated XRCC4 with EGFP tag were introduced into HeLa cell, in which endogenous XRCC4 had been knocked down using siRNA directed to 3'-untranslated region, and tested for the nuclear localization function by fluorescence microscopy. XRCC4(K271R) was defective in the nuclear localization of itself and LIG4, whereas XRCC4(K210R) was competent for the nuclear localization with LIG4. To examine DSB repair function, wild-type and mutated XRCC4 were introduced into XRCC4-deficient M10. M10-XRCC4(K271R), but not M10-XRCC4(K210R), showed significantly reduced surviving fraction after 2 Gy γ-ray irradiation as compared to M10-XRCC4(WT). The number of γ-H2AX foci remaining 2 h after 2 Gy γ-ray irradiation was significantly greater in M10-XRCC4(K271R) than in M10-XRCC4(WT), whereas it was only marginally increased in M10-XRCC4(K210R) as compared to M10-XRCC4(WT). The present results collectively indicated that Lys271, but not Lys210, of XRCC4 is required for the nuclear localization of XRCC4 and LIG4 and that the nuclear localizing ability is essential for DSB repair function of XRCC4.
Collapse
Affiliation(s)
- Mikoto Fukuchi
- Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, Tokyo 152-8550, Japan
| | - Rujira Wanotayan
- Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, Tokyo 152-8550, Japan
| | - Sicheng Liu
- Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, Tokyo 152-8550, Japan
| | - Shoji Imamichi
- Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, Tokyo 152-8550, Japan
| | - Mukesh Kumar Sharma
- Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, Tokyo 152-8550, Japan
| | - Yoshihisa Matsumoto
- Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, Tokyo 152-8550, Japan.
| |
Collapse
|
25
|
Role of the yeast DNA repair protein Nej1 in end processing during the repair of DNA double strand breaks by non-homologous end joining. DNA Repair (Amst) 2015; 31:1-10. [PMID: 25942368 DOI: 10.1016/j.dnarep.2015.04.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 04/06/2015] [Accepted: 04/13/2015] [Indexed: 11/22/2022]
Abstract
DNA double strand breaks (DSB)s often require end processing prior to joining during their repair by non-homologous end joining (NHEJ). Although the yeast proteins, Pol4, a Pol X family DNA polymerase, and Rad27, a nuclease, participate in the end processing reactions of NHEJ, the mechanisms underlying the recruitment of these factors to DSBs are not known. Here we demonstrate that Nej1, a NHEJ factor that interacts with and modulates the activity of the NHEJ DNA ligase complex (Dnl4/Lif1), physically and functionally interacts with both Pol4 and Rad27. Notably, Nej1 and Dnl4/Lif1, which also interacts with both Pol4 and Rad27, independently recruit the end processing factors to in vivo DSBs via mechanisms that are additive rather than redundant. As was observed with Dnl4/Lif1, the activities of both Pol4 and Rad27 were enhanced by the interaction with Nej1. Furthermore, Nej1 increased the joining of incompatible DNA ends in reconstituted reactions containing Pol4, Rad27 and Dnl4/Lif1, indicating that the stimulatory activities of Nej1 and Dnl4/Lif1 are also additive. Together our results reveal novel roles for Nej1 in the recruitment of Pol4 and Rad27 to in vivo DSBs and the coordination of the end processing and ligation reactions of NHEJ.
Collapse
|
26
|
Wanotayan R, Fukuchi M, Imamichi S, Sharma MK, Matsumoto Y. Asparagine 326 in the extremely C-terminal region of XRCC4 is essential for the cell survival after irradiation. Biochem Biophys Res Commun 2015; 457:526-31. [PMID: 25597996 DOI: 10.1016/j.bbrc.2015.01.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 01/07/2015] [Indexed: 12/25/2022]
Abstract
XRCC4 is one of the crucial proteins in the repair of DNA double-strand break (DSB) through non-homologous end-joining (NHEJ). As XRCC4 consists of 336 amino acids, N-terminal 200 amino acids include domains for dimerization and for association with DNA ligase IV and XLF and shown to be essential for XRCC4 function in DSB repair and V(D)J recombination. On the other hand, the role of the remaining C-terminal region of XRCC4 is not well understood. In the present study, we noticed that a stretch of ∼20 amino acids located at the extreme C-terminus of XRCC4 is highly conserved among vertebrate species. To explore its possible importance, series of mutants in this region were constructed and assessed for the functionality in terms of ability to rescue radiosensitivity of M10 cells lacking XRCC4. Among 13 mutants, M10 transfectant with N326L mutant (M10-XRCC4(N326L)) showed elevated radiosensitivity. N326L protein showed defective nuclear localization. N326L sequence matched the consensus sequence of nuclear export signal. Leptomycin B treatment accumulated XRCC4(N326L) in the nucleus but only partially rescued radiosensitivity of M10-XRCC4(N326L). These results collectively indicated that the functional defects of XRCC4(N326L) might be partially, but not solely, due to its exclusion from nucleus by synthetic nuclear export signal. Further mutation of XRCC4 Asn326 to other amino acids, i.e., alanine, aspartic acid or glutamine did not affect the nuclear localization but still exhibited radiosensitivity. The present results indicated the importance of the extremely C-terminal region of XRCC4 and, especially, Asn326 therein.
Collapse
Affiliation(s)
- Rujira Wanotayan
- Research Laboratory for Nuclear Reactors and Department of Nuclear Engineering, Graduate School of Science and Engineering, Tokyo Institute of Technology, Tokyo 152-8550, Japan
| | - Mikoto Fukuchi
- Research Laboratory for Nuclear Reactors and Department of Nuclear Engineering, Graduate School of Science and Engineering, Tokyo Institute of Technology, Tokyo 152-8550, Japan
| | - Shoji Imamichi
- Research Laboratory for Nuclear Reactors and Department of Nuclear Engineering, Graduate School of Science and Engineering, Tokyo Institute of Technology, Tokyo 152-8550, Japan
| | - Mukesh Kumar Sharma
- Research Laboratory for Nuclear Reactors and Department of Nuclear Engineering, Graduate School of Science and Engineering, Tokyo Institute of Technology, Tokyo 152-8550, Japan
| | - Yoshihisa Matsumoto
- Research Laboratory for Nuclear Reactors and Department of Nuclear Engineering, Graduate School of Science and Engineering, Tokyo Institute of Technology, Tokyo 152-8550, Japan.
| |
Collapse
|
27
|
Francis DB, Kozlov M, Chavez J, Chu J, Malu S, Hanna M, Cortes P. DNA Ligase IV regulates XRCC4 nuclear localization. DNA Repair (Amst) 2014; 21:36-42. [PMID: 24984242 DOI: 10.1016/j.dnarep.2014.05.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 05/22/2014] [Accepted: 05/29/2014] [Indexed: 11/17/2022]
Abstract
DNA Ligase IV, along with its interacting partner XRCC4, are essential for repairing DNA double strand breaks by non-homologous end joining (NHEJ). Together, they complete the final ligation step resolving the DNA break. Ligase IV is regulated by XRCC4 and XLF. However, the mechanism(s) by which Ligase IV control the NHEJ reaction and other NHEJ factor(s) remains poorly characterized. Here, we show that a C-terminal region of Ligase IV (aa 620-800), which encompasses a NLS, the BRCT I, and the XRCC4 interacting region (XIR), is essential for nuclear localization of its co-factor XRCC4. In Ligase IV deficient cells, XRCC4 showed deregulated localization remaining in the cytosol even after induction of DNA double strand breaks. DNA Ligase IV was also required for efficient localization of XLF into the nucleus. Additionally, human fibroblasts that harbor hypomorphic mutations within the Ligase IV gene displayed decreased levels of XRCC4 protein, implicating that DNA Ligase IV is also regulating XRCC4 stability. Our results provide evidence for a role of DNA Ligase IV in controlling the cellular localization and protein levels of XRCC4.
Collapse
Affiliation(s)
- Dailia B Francis
- Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Graduate School of Biological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Mikhail Kozlov
- Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Jose Chavez
- Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Jennifer Chu
- Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Shruti Malu
- Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Mary Hanna
- Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Patricia Cortes
- Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Graduate School of Biological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States.
| |
Collapse
|
28
|
Genome-wide screens for sensitivity to ionizing radiation identify the fission yeast nonhomologous end joining factor Xrc4. G3-GENES GENOMES GENETICS 2014; 4:1297-306. [PMID: 24847916 PMCID: PMC4455778 DOI: 10.1534/g3.114.011841] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Nonhomologous end joining (NHEJ) is the main means for repairing DNA double-strand breaks (DSBs) in human cells. Molecular understanding of NHEJ has benefited from analyses in the budding yeast Saccharomyces cerevisiae and the fission yeast Schizosaccharomyces pombe. In human cells, the DNA ligation reaction of the classical NHEJ pathway is carried out by a protein complex composed of DNA ligase IV (LigIV) and XRCC4. In S. cerevisiae, this reaction is catalyzed by a homologous complex composed of Dnl4 and Lif1. Intriguingly, no homolog of XRCC4 has been found in S. pombe, raising the possibility that such a factor may not always be required for classical NHEJ. Here, through screening the ionizing radiation (IR) sensitivity phenotype of a genome-wide fission yeast deletion collection in both the vegetative growth state and the spore state, we identify Xrc4, a highly divergent homolog of human XRCC4. Like other fission yeast NHEJ factors, Xrc4 is critically important for IR resistance of spores, in which no homologous recombination templates are available. Using both extrachromosomal and chromosomal DSB repair assays, we show that Xrc4 is essential for classical NHEJ. Exogenously expressed Xrc4 colocalizes with the LigIV homolog Lig4 at the chromatin region of the nucleus in a mutually dependent manner. Furthermore, like their human counterparts, Xrc4 and Lig4 interact with each other and this interaction requires the inter-BRCT linker and the second BRCT domain of Lig4. Our discovery of Xrc4 suggests that an XRCC4 family protein is universally required for classical NHEJ in eukaryotes.
Collapse
|
29
|
Woodbine L, Gennery AR, Jeggo PA. Reprint of "The clinical impact of deficiency in DNA non-homologous end-joining". DNA Repair (Amst) 2014; 17:9-20. [PMID: 24780557 DOI: 10.1016/j.dnarep.2014.04.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 01/27/2014] [Accepted: 02/10/2014] [Indexed: 01/10/2023]
Abstract
DNA non-homologous end-joining (NHEJ) is the major DNA double strand break (DSB) repair pathway in mammalian cells. Defects in NHEJ proteins confer marked radiosensitivity in cell lines and mice models, since radiation potently induces DSBs. The process of V(D)J recombination functions during the development of the immune response, and involves the introduction and rejoining of programmed DSBs to generate an array of diverse T and B cells. NHEJ rejoins these programmed DSBs. Consequently, NHEJ deficiency confers (severe) combined immunodeficiency - (S)CID - due to a failure to carry out V(D)J recombination efficiently. NHEJ also functions in class switch recombination, another step enhancing T and B cell diversity. Prompted by these findings, a search for radiosensitivity amongst (S)CID patients revealed a radiosensitive sub-class, defined as RS-SCID. Mutations in NHEJ genes, defining human syndromes deficient in DNA ligase IV (LIG4 Syndrome), XLF-Cernunnos, Artemis or DNA-PKcs, have been identified in such patients. Mutations in XRCC4 or Ku70,80 in patients have not been identified. RS-SCID patients frequently display additional characteristics including microcephaly, dysmorphic facial features and growth delay. Here, we overview the clinical spectrum of RS-SCID patients and discuss our current understanding of the underlying biology.
Collapse
Affiliation(s)
- Lisa Woodbine
- Genome Damage and Stability Centre, Life Sciences, University of Sussex, Brighton BN1 9RQ, UK
| | - Andrew R Gennery
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Penny A Jeggo
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK.
| |
Collapse
|
30
|
Woodbine L, Gennery AR, Jeggo PA. The clinical impact of deficiency in DNA non-homologous end-joining. DNA Repair (Amst) 2014; 16:84-96. [PMID: 24629483 DOI: 10.1016/j.dnarep.2014.02.011] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 01/27/2014] [Accepted: 02/10/2014] [Indexed: 12/22/2022]
Abstract
DNA non-homologous end-joining (NHEJ) is the major DNA double strand break (DSB) repair pathway in mammalian cells. Defects in NHEJ proteins confer marked radiosensitivity in cell lines and mice models, since radiation potently induces DSBs. The process of V(D)J recombination functions during the development of the immune response, and involves the introduction and rejoining of programmed DSBs to generate an array of diverse T and B cells. NHEJ rejoins these programmed DSBs. Consequently, NHEJ deficiency confers (severe) combined immunodeficiency - (S)CID - due to a failure to carry out V(D)J recombination efficiently. NHEJ also functions in class switch recombination, another step enhancing T and B cell diversity. Prompted by these findings, a search for radiosensitivity amongst (S)CID patients revealed a radiosensitive sub-class, defined as RS-SCID. Mutations in NHEJ genes, defining human syndromes deficient in DNA ligase IV (LIG4 Syndrome), XLF-Cernunnos, Artemis or DNA-PKcs, have been identified in such patients. Mutations in XRCC4 or Ku70,80 in patients have not been identified. RS-SCID patients frequently display additional characteristics including microcephaly, dysmorphic facial features and growth delay. Here, we overview the clinical spectrum of RS-SCID patients and discuss our current understanding of the underlying biology.
Collapse
Affiliation(s)
- Lisa Woodbine
- Genome Damage and Stability Centre, Life Sciences, University of Sussex, Brighton BN1 9RQ, UK
| | - Andrew R Gennery
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Penny A Jeggo
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK.
| |
Collapse
|
31
|
Murray JE, Bicknell LS, Yigit G, Duker AL, van Kogelenberg M, Haghayegh S, Wieczorek D, Kayserili H, Albert MH, Wise CA, Brandon J, Kleefstra T, Warris A, van der Flier M, Bamforth JS, Doonanco K, Adès L, Ma A, Field M, Johnson D, Shackley F, Firth H, Woods CG, Nürnberg P, Gatti RA, Hurles M, Bober MB, Wollnik B, Jackson AP. Extreme growth failure is a common presentation of ligase IV deficiency. Hum Mutat 2013; 35:76-85. [PMID: 24123394 PMCID: PMC3995017 DOI: 10.1002/humu.22461] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 09/24/2013] [Indexed: 12/20/2022]
Abstract
Ligase IV syndrome is a rare differential diagnosis for Nijmegen breakage syndrome owing to a shared predisposition to lympho-reticular malignancies, significant microcephaly, and radiation hypersensitivity. Only 16 cases with mutations in LIG4 have been described to date with phenotypes varying from malignancy in developmentally normal individuals, to severe combined immunodeficiency and early mortality. Here, we report the identification of biallelic truncating LIG4 mutations in 11 patients with microcephalic primordial dwarfism presenting with restricted prenatal growth and extreme postnatal global growth failure (average OFC -10.1 s.d., height -5.1 s.d.). Subsequently, most patients developed thrombocytopenia and leucopenia later in childhood and many were found to have previously unrecognized immunodeficiency following molecular diagnosis. None have yet developed malignancy, though all patients tested had cellular radiosensitivity. A genotype-phenotype correlation was also noted with position of truncating mutations corresponding to disease severity. This work extends the phenotypic spectrum associated with LIG4 mutations, establishing that extreme growth retardation with microcephaly is a common presentation of bilallelic truncating mutations. Such growth failure is therefore sufficient to consider a diagnosis of LIG4 deficiency and early recognition of such cases is important as bone marrow failure, immunodeficiency, and sometimes malignancy are long term sequelae of this disorder.
Collapse
Affiliation(s)
- Jennie E Murray
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Wu HC, Delgado-Cruzata L, Machella N, Wang Q, Santella RM, Terry MB. DNA double-strand break repair genotype and phenotype and breast cancer risk within sisters from the New York site of the Breast Cancer Family Registry (BCFR). Cancer Causes Control 2013; 24:2157-68. [PMID: 24062231 DOI: 10.1007/s10552-013-0292-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 09/13/2013] [Indexed: 12/11/2022]
Abstract
PURPOSE We previously observed that poor DNA repair phenotype is associated with increased breast cancer (BC) risk within families. Here, we examined whether genetic variation in double-strand break repair (DSBR) genes is associated with BC risk and if genotypes are related to phenotype in unaffected women. METHODS Using data from the New York site of the Breast Cancer Family Registry, we investigated 25 single-nucleotide polymorphism (SNPs) involved in DSBR using biospecimens from 337 BC cases and 410 unaffected sister controls. RESULTS Genotypes in XRCC4 were associated with BC risk, with ORs of 1.67 (95 % CI 1.01-2.76) for the combined GA/AA of rs1805377 and 1.69 (95 % CI 1.03-2.77) for rs1056503 TG/GG; these associations were no longer statistically significant in multivariable conditional logistic regression models. When examining the association of SNPs with phenotype, we found that genotypes of XRCC5 rs3834 and rs1051685, which were highly correlated with each other, were associated with end-joining (EJ) capacity; women with the XRCC5 rs3834 GA genotype had better DNA repair as measured by higher levels of EJ capacity (37.8 ± 14.1 % for GA vs. 27.9 ± 11.8 % for GG carriers p = 0.0006). Women with the AA genotype of BRCA1 rs799917 also had higher EJ capacity (35.1 ± 9.2 %) than those with GG (26.4 ± 10.1 %, p = 0.02). CONCLUSIONS Overall, we found that selected DSBR genotypes were associated with phenotype, although they were not associated with BC risk itself, suggesting that phenotypic measures are influenced by endogenous and exogenous factors across the life course and may be better markers than genotypic measures for ascertaining BC risk.
Collapse
Affiliation(s)
- Hui-Chen Wu
- Department of Epidemiology, Mailman School of Public Health of Columbia University, 722 West 168th St., 724A, New York, NY, 10032, USA
| | | | | | | | | | | |
Collapse
|
33
|
McFadden MJ, Lee WKY, Brennan JD, Junop MS. Delineation of key XRCC4/Ligase IV interfaces for targeted disruption of non-homologous end joining DNA repair. Proteins 2013; 82:187-94. [PMID: 23794378 DOI: 10.1002/prot.24349] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 06/04/2013] [Accepted: 06/10/2013] [Indexed: 01/04/2023]
Abstract
Efficient DNA repair mechanisms frequently limit the effectiveness of chemotherapeutic agents that act through DNA damaging mechanisms. Consequently, proteins involved in DNA repair have increasingly become attractive targets of high-throughput screening initiatives to identify modulators of these pathways. Disruption of the XRCC4-Ligase IV interaction provides a novel means to efficiently halt repair of mammalian DNA double strand break repair; however; the extreme affinity of these proteins presents a major obstacle for drug discovery. A better understanding of the interaction surfaces is needed to provide a more specific target for inhibitor studies. To clearly define key interface(s) of Ligase IV necessary for interaction with XRCC4, we developed a competitive displacement assay using ESI-MS/MS and determined the minimal inhibitory fragment of the XRCC4-interacting region (XIR) capable of disrupting a complex of XRCC4/XIR. Disruption of a single helix (helix 2) within the helix-loop-helix clamp of Ligase IV was sufficient to displace XIR from a preformed complex. Dose-dependent response curves for the disruption of the complex by either helix 2 or helix-loop-helix fragments revealed that potency of inhibition was greater for the larger helix-loop-helix peptide. Our results suggest a susceptibility to inhibition at the interface of helix 2 and future studies would benefit from targeting this surface of Ligase IV to identify modulators that disrupt its interaction with XRCC4. Furthermore, helix 1 and loop regions of the helix-loop-helix clamp provide secondary target surfaces to identify adjuvant compounds that could be used in combination to more efficiently inhibit XRCC4/Ligase IV complex formation and DNA repair.
Collapse
Affiliation(s)
- Meghan J McFadden
- Chemical Biology Graduate Program, Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario, Canada, L8S 4M1; Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada, L8N 3Z5
| | | | | | | |
Collapse
|
34
|
Malu S, Malshetty V, Francis D, Cortes P. Role of non-homologous end joining in V(D)J recombination. Immunol Res 2013; 54:233-46. [PMID: 22569912 DOI: 10.1007/s12026-012-8329-z] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The pathway of V(D)J recombination was discovered almost three decades ago. Yet it continues to baffle scientists because of its inherent complexity and the multiple layers of regulation that are required to efficiently generate a diverse repertoire of T and B cells. The non-homologous end-joining (NHEJ) DNA repair pathway is an integral part of the V(D)J reaction, and its numerous players perform critical functions in generating this vast diversity, while ensuring genomic stability. In this review, we summarize the efforts of a number of laboratories including ours in providing the mechanisms of V(D)J regulation with a focus on the NHEJ pathway. This involves discovering new players, unraveling unknown roles for known components, and understanding how deregulation of these pathways contributes to generation of primary immunodeficiencies. A long-standing interest of our laboratory has been to elucidate various mechanisms that control RAG activity. Our recent work has focused on understanding the multiple protein-protein interactions and protein-DNA interactions during V(D)J recombination, which allow efficient and regulated generation of the antigen receptors. Exploring how deregulation of this process contributes to immunodeficiencies also continues to be an important area of research for our group.
Collapse
Affiliation(s)
- Shruti Malu
- Department of Medicine, Immunology Institute, Mount Sinai School of Medicine, 1425 Madison Avenue, New York, NY 10029, USA
| | | | | | | |
Collapse
|
35
|
Detection and repair of ionizing radiation-induced DNA double strand breaks: new developments in nonhomologous end joining. Int J Radiat Oncol Biol Phys 2013; 86:440-9. [PMID: 23433795 DOI: 10.1016/j.ijrobp.2013.01.011] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 01/07/2013] [Indexed: 01/13/2023]
Abstract
DNA damage can occur as a result of endogenous metabolic reactions and replication stress or from exogenous sources such as radiation therapy and chemotherapy. DNA double strand breaks are the most cytotoxic form of DNA damage, and defects in their repair can result in genome instability, a hallmark of cancer. The major pathway for the repair of ionizing radiation-induced DSBs in human cells is nonhomologous end joining. Here we review recent advances on the mechanism of nonhomologous end joining, as well as new findings on its component proteins and regulation.
Collapse
|
36
|
Mahaney BL, Hammel M, Meek K, Tainer JA, Lees-Miller SP. XRCC4 and XLF form long helical protein filaments suitable for DNA end protection and alignment to facilitate DNA double strand break repair. Biochem Cell Biol 2013; 91:31-41. [PMID: 23442139 DOI: 10.1139/bcb-2012-0058] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
DNA double strand breaks (DSBs), induced by ionizing radiation (IR) and endogenous stress including replication failure, are the most cytotoxic form of DNA damage. In human cells, most IR-induced DSBs are repaired by the nonhomologous end joining (NHEJ) pathway. One of the most critical steps in NHEJ is ligation of DNA ends by DNA ligase IV (LIG4), which interacts with, and is stabilized by, the scaffolding protein X-ray cross-complementing gene 4 (XRCC4). XRCC4 also interacts with XRCC4-like factor (XLF, also called Cernunnos); yet, XLF has been one of the least mechanistically understood proteins and precisely how XLF functions in NHEJ has been enigmatic. Here, we examine current combined structural and mutational findings that uncover integrated functions of XRCC4 and XLF and reveal their interactions to form long, helical protein filaments suitable to protect and align DSB ends. XLF-XRCC4 provides a global structural scaffold for ligating DSBs without requiring long DNA ends, thus ensuring accurate and efficient ligation and repair. The assembly of these XRCC4-XLF filaments, providing both DNA end protection and alignment, may commit cells to NHEJ with general biological implications for NHEJ and DSB repair processes and their links to cancer predispositions and interventions.
Collapse
Affiliation(s)
- Brandi L Mahaney
- Department of Biochemistry, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| | | | | | | | | |
Collapse
|
37
|
Abstract
The breast cancer type 1 susceptibility protein (BRCA1) is involved in several important cellular pathways, including DNA damage repair, chromatin remodeling and checkpoint activation. The BRCA1 tumor suppression function has been attributed to its role in homologous recombination damage repair. In this review, historical facts concerning BRCA1, together with recent research advances regarding our understanding of the BRCA1 interacting proteins that are involved in, homologous recombination (HR) double strand break (DBS) repair and how these interacting proteins maintain chromosomal integrity, are discussed. In addition, this review poses the questions as to what extent HR repair cannot be properly fulfilled when breast cancer related mutations in the BRCA1 gene occur and how the recent and excessive studied poly-ADP ribose polymerase (PARP) inhibiting therapy approach links with the proposed tumor suppression function of the different BRCA1 domains.
Collapse
Affiliation(s)
- Kevin W Caestecker
- Department of Comparative Physiology and Biometrics, Faculty of Veterinary Medicine, Ghent University, B-9820 Merelbeke, Belgium
| | | |
Collapse
|
38
|
Berg E, Christensen MO, Dalla Rosa I, Wannagat E, Jänicke RU, Rösner LM, Dirks WG, Boege F, Mielke C. XRCC4 controls nuclear import and distribution of Ligase IV and exchanges faster at damaged DNA in complex with Ligase IV. DNA Repair (Amst) 2011; 10:1232-42. [DOI: 10.1016/j.dnarep.2011.09.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Revised: 09/07/2011] [Accepted: 09/13/2011] [Indexed: 12/13/2022]
|
39
|
Abstract
BRCA1 C-terminal (BRCT) domains are integral signaling modules in the DNA damage response (DDR). Aside from their established roles as phospho-peptide binding modules, BRCT domains have been implicated in phosphorylation-independent protein interactions, DNA binding and poly(ADP-ribose) (PAR) binding. These numerous functions can be attributed to the diversity in BRCT domain structure and architecture, where domains can exist as isolated single domains or assemble into higher order homo- or hetero- domain complexes. In this review, we incorporate recent structural and biochemical studies to demonstrate how structural features allow single and tandem BRCT domains to attain a high degree of functional diversity.
Collapse
|
40
|
Oberle C, Blattner C. Regulation of the DNA Damage Response to DSBs by Post-Translational Modifications. Curr Genomics 2011; 11:184-98. [PMID: 21037856 PMCID: PMC2878983 DOI: 10.2174/138920210791110979] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Revised: 02/22/2010] [Accepted: 02/23/2010] [Indexed: 11/22/2022] Open
Abstract
Damage to the genetic material can affect cellular function in many ways. Therefore, maintenance of the genetic integrity is of primary importance for all cells. Upon DNA damage, cells respond immediately with proliferation arrest and repair of the lesion or apoptosis. All these consequences require recognition of the lesion and transduction of the information to effector systems. The accomplishment of DNA repair, but also of cell cycle arrest and apoptosis furthermore requires protein-protein interactions and the formation of larger protein complexes. More recent research shows that the formation of many of these aggregates depends on post-translational modifications. In this article, we have summarized the different cellular events in response to a DNA double strand break, the most severe lesion of the DNA.
Collapse
Affiliation(s)
- C Oberle
- Karlsruher Institute of Technology, Institute of Toxicology and Genetics, Karlsruhe PO-Box 3640, 76021 Karlsruhe, Germany
| | | |
Collapse
|
41
|
Multhaup MM, Gurram S, Podetz-Pedersen KM, Karlen AD, Swanson DL, Somia NV, Hackett PB, Cowan MJ, McIvor RS. Characterization of the human artemis promoter by heterologous gene expression in vitro and in vivo. DNA Cell Biol 2011; 30:751-61. [PMID: 21663454 DOI: 10.1089/dna.2011.1244] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Artemis is an endonucleolytic enzyme involved in nonhomologous double-strand break repair and V(D)J recombination. Deficiency of Artemis results in a B- T- radiosensitive severe combined immunodeficiency, which may potentially be treatable by Artemis gene transfer into hematopoietic stem cells. However, we recently found that overexpression of Artemis after lentiviral transduction resulted in global DNA damage and increased apoptosis. These results imply the necessity of effecting natural levels of Artemis expression, so we isolated a 1 kilobase DNA sequence upstream of the human Artemis gene to recover and characterize the Artemis promoter (APro). The sequence includes numerous potential transcription factor-binding sites, and several transcriptional start sites were mapped by 5' rapid amplification of cDNA ends. APro and deletion constructs conferred significant reporter gene expression in vitro that was markedly reduced in comparison to expression regulated by the human elongation factor 1-α promoter. Ex vivo lentiviral transduction of an APro-regulated green fluorescent protein (GFP) construct in mouse marrow supported GFP expression throughout hematopoeitic lineages in primary transplant recipients and was sustained in secondary recipients. The human Artemis promoter thus provides sustained and moderate levels of gene expression that will be of significant utility for therapeutic gene transfer into hematopoeitic stem cells.
Collapse
Affiliation(s)
- Megan M Multhaup
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Beck BD, Lee SS, Williamson E, Hromas RA, Lee SH. Biochemical characterization of metnase's endonuclease activity and its role in NHEJ repair. Biochemistry 2011; 50:4360-70. [PMID: 21491884 PMCID: PMC3388547 DOI: 10.1021/bi200333k] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Metnase (SETMAR) is a SET-transposase fusion protein that promotes nonhomologous end joining (NHEJ) repair in humans. Although both SET and the transposase domains were necessary for its function in DSB repair, it is not clear what specific role Metnase plays in the NHEJ. In this study, we show that Metnase possesses a unique endonuclease activity that preferentially acts on ssDNA and ssDNA-overhang of a partial duplex DNA. Cell extracts lacking Metnase poorly supported DNA end joining, and addition of wt-Metnase to cell extracts lacking Metnase markedly stimulated DNA end joining, while a mutant (D483A) lacking endonuclease activity did not. Given that Metnase overexpression enhanced DNA end processing in vitro, our finding suggests a role for Metnase's endonuclease activity in promoting the joining of noncompatible ends.
Collapse
Affiliation(s)
- Brian D. Beck
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | - Sung-Sook Lee
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | - Elizabeth Williamson
- Department of Medicine, University of Florida and Shands Health Care System, Gainesville, Florida 32610, USA
| | - Robert A. Hromas
- Department of Medicine, University of Florida and Shands Health Care System, Gainesville, Florida 32610, USA
| | - Suk-Hee Lee
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
- Indiana University Simon Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| |
Collapse
|
43
|
XLF regulates filament architecture of the XRCC4·ligase IV complex. Structure 2011; 18:1431-42. [PMID: 21070942 DOI: 10.1016/j.str.2010.09.009] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2010] [Revised: 09/01/2010] [Accepted: 09/02/2010] [Indexed: 12/30/2022]
Abstract
DNA ligase IV (LigIV) is critical for nonhomologous end joining (NHEJ), the major DNA double-strand break (DSB) repair pathway in human cells, and LigIV activity is regulated by XRCC4 and XLF (XRCC4-like factor) interactions. Here, we employ small angle X-ray scattering (SAXS) data to characterize three-dimensional arrangements in solution for full-length XRCC4, XRCC4 in complex with LigIV tandem BRCT domains and XLF, plus the XRCC4·XLF·BRCT2 complex. XRCC4 forms tetramers mediated through a head-to-head interface, and the XRCC4 C-terminal coiled-coil region folds back on itself to support this interaction. The interaction between XLF and XRCC4 is also mediated via head-to-head interactions. In the XLF·XRCC4·BRCT complex, alternating repeating units of XLF and XRCC4·BRCT place the BRCT domain on one side of the filament. Collective results identify XRCC4 and XLF filaments suitable to align DNA molecules and function to facilitate LigIV end joining required for DSB repair in vivo.
Collapse
|
44
|
Demogines A, East AM, Lee JH, Grossman SR, Sabeti PC, Paull TT, Sawyer SL. Ancient and recent adaptive evolution of primate non-homologous end joining genes. PLoS Genet 2010; 6:e1001169. [PMID: 20975951 PMCID: PMC2958818 DOI: 10.1371/journal.pgen.1001169] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Accepted: 09/21/2010] [Indexed: 02/07/2023] Open
Abstract
In human cells, DNA double-strand breaks are repaired primarily by the non-homologous end joining (NHEJ) pathway. Given their critical nature, we expected NHEJ proteins to be evolutionarily conserved, with relatively little sequence change over time. Here, we report that while critical domains of these proteins are conserved as expected, the sequence of NHEJ proteins has also been shaped by recurrent positive selection, leading to rapid sequence evolution in other protein domains. In order to characterize the molecular evolution of the human NHEJ pathway, we generated large simian primate sequence datasets for NHEJ genes. Codon-based models of gene evolution yielded statistical support for the recurrent positive selection of five NHEJ genes during primate evolution: XRCC4, NBS1, Artemis, POLλ, and CtIP. Analysis of human polymorphism data using the composite of multiple signals (CMS) test revealed that XRCC4 has also been subjected to positive selection in modern humans. Crystal structures are available for XRCC4, Nbs1, and Polλ; and residues under positive selection fall exclusively on the surfaces of these proteins. Despite the positive selection of such residues, biochemical experiments with variants of one positively selected site in Nbs1 confirm that functions necessary for DNA repair and checkpoint signaling have been conserved. However, many viruses interact with the proteins of the NHEJ pathway as part of their infectious lifecycle. We propose that an ongoing evolutionary arms race between viruses and NHEJ genes may be driving the surprisingly rapid evolution of these critical genes. Because all cells experience DNA damage, they must also have mechanisms for repairing DNA. When the proteins that repair DNA malfunction, mutation and disease often result. Based on their fundamental importance, DNA repair proteins would be expected to be well preserved over evolutionary time in order to ensure optimal DNA repair function. However, a previous genome-wide study of molecular evolution in Saccharomyces yeast identified the non-homologous end joining (NHEJ) DNA repair pathway as one of the two most rapidly evolving pathways in the yeast genome. In order to analyze the evolution of this pathway in humans, we have generated large evolutionary sequence sets of NHEJ genes from our primate relatives. Similar to the scenario in yeast, several genes in this pathway are evolving rapidly in primate genomes and in modern human populations. Thus, complex and seemingly opposite selective forces are shaping the evolution of these important DNA repair genes. The finding that NHEJ genes are rapidly evolving in species groups as diverse as yeasts and primates indicates a systematic perturbation of the NHEJ pathway, one that is potentially important to human health.
Collapse
Affiliation(s)
- Ann Demogines
- Section of Molecular Genetics and Microbiology, and Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas, United States of America
| | - Alysia M. East
- Section of Molecular Genetics and Microbiology, and Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas, United States of America
| | - Ji-Hoon Lee
- Section of Molecular Genetics and Microbiology, and Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas, United States of America
- The Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - Sharon R. Grossman
- FAS Center for Systems Biology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Pardis C. Sabeti
- FAS Center for Systems Biology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Tanya T. Paull
- Section of Molecular Genetics and Microbiology, and Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas, United States of America
- The Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - Sara L. Sawyer
- Section of Molecular Genetics and Microbiology, and Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas, United States of America
- * E-mail:
| |
Collapse
|
45
|
Multhaup M, Karlen AD, Swanson DL, Wilber A, Somia NV, Cowan MJ, McIvor RS. Cytotoxicity associated with artemis overexpression after lentiviral vector-mediated gene transfer. Hum Gene Ther 2010; 21:865-75. [PMID: 20163250 DOI: 10.1089/hum.2009.162] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Artemis is a hairpin-opening endonuclease involved in nonhomologous end-joining and V(D)J recombination. Deficiency of Artemis results in radiation-sensitive severe combined immunodeficiency (SCID) characterized by complete absence of T and B cells due to an arrest at the receptor recombination stage. We have generated several lentiviral vectors for transduction of the Artemis sequence, intending to complement the deficient phenotype. We found that transduction by a lentiviral vector in which Artemis is regulated by a strong EF-1alpha promoter resulted in a dose-dependent loss of cell viability due to perturbed cell cycle distribution, increased DNA damage, and increased apoptotic cell frequency. This toxic response was not observed in cultures exposed to identical amounts of control vector. Loss of cell viability was also observed in cells transfected with an Artemis expression construct, indicating that toxicity is independent of lentiviral transduction. Reduced toxicity was observed when cells were transduced with a moderate-strength phosphoglycerate kinase promoter to regulate Artemis expression. These results present a novel challenge in the establishment of conditions that support Artemis expression at levels that are nontoxic yet sufficient to correct the T(-)B(-) phenotype, crucial for preclinical studies and clinical application of Artemis gene transfer in the treatment of human SCID-A.
Collapse
Affiliation(s)
- Megan Multhaup
- Gene Therapy Program, Institute of Human Genetics, Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Mani RS, Yu Y, Fang S, Lu M, Fanta M, Zolner AE, Tahbaz N, Ramsden DA, Litchfield DW, Lees-Miller SP, Weinfeld M. Dual modes of interaction between XRCC4 and polynucleotide kinase/phosphatase: implications for nonhomologous end joining. J Biol Chem 2010; 285:37619-29. [PMID: 20852255 DOI: 10.1074/jbc.m109.058719] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
XRCC4 plays a crucial role in the nonhomologous end joining (NHEJ) pathway of DNA double-strand break repair acting as a scaffold protein that recruits other NHEJ proteins to double-strand breaks. Phosphorylation of XRCC4 by protein kinase CK2 promotes a high affinity interaction with the forkhead-associated domain of the end-processing enzyme polynucleotide kinase/phosphatase (PNKP). Here we reveal that unphosphorylated XRCC4 also interacts with PNKP through a lower affinity interaction site within the catalytic domain and that this interaction stimulates the turnover of PNKP. Unexpectedly, CK2-phosphorylated XRCC4 inhibited PNKP activity. Moreover, the XRCC4·DNA ligase IV complex also stimulated PNKP enzyme turnover, and this effect was independent of the phosphorylation of XRCC4 at threonine 233. Our results reveal that CK2-mediated phosphorylation of XRCC4 can have different effects on PNKP activity, with implications for the roles of XRCC4 and PNKP in NHEJ.
Collapse
Affiliation(s)
- Rajam S Mani
- Department of Oncology, University of Alberta, Alberta, and the Cross Cancer Institute, Edmonton, Alberta T6G 1Z2, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Kass EM, Jasin M. Collaboration and competition between DNA double-strand break repair pathways. FEBS Lett 2010; 584:3703-8. [PMID: 20691183 DOI: 10.1016/j.febslet.2010.07.057] [Citation(s) in RCA: 251] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Accepted: 07/28/2010] [Indexed: 12/12/2022]
Abstract
DNA double-strand breaks resulting from normal cellular processes including replication and exogenous sources such as ionizing radiation pose a serious risk to genome stability, and cells have evolved different mechanisms for their efficient repair. The two major pathways involved in the repair of double-strand breaks in eukaryotic cells are non-homologous end joining and homologous recombination. Numerous factors affect the decision to repair a double-strand break via these pathways, and accumulating evidence suggests these major repair pathways both cooperate and compete with each other at double-strand break sites to facilitate efficient repair and promote genomic integrity.
Collapse
Affiliation(s)
- Elizabeth M Kass
- Developmental Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | | |
Collapse
|
48
|
Ding Z, Zhang J, Cheng Q, Shen J, Hu Y, Chen H. The LIG4 Ile658Val polymorphism does not affect the risk of cervical carcinoma. Pathol Res Pract 2010; 206:556-9. [PMID: 20400235 DOI: 10.1016/j.prp.2010.03.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2009] [Revised: 01/25/2010] [Accepted: 03/01/2010] [Indexed: 11/18/2022]
Abstract
The aim of this study was to investigate whether gene LIG4 genetic polymorphism affects the risk of cervical carcinoma. We studied 500 cervical carcinoma patients and 800 normal women as controls. Demographic and epidemiologic risk factors were recorded. Single nucleotide polymorphisms (SNPs) (LIG4 Ile658Val) were genotyped. Compared to LIG4 Ile658Ile (AA) genotype, LIG4 Ile658Val (AG) did not increase or decrease the risk of cervical carcinoma or cervical squamous cell carcinoma [ORs and 95% CIs being 1.07 (0.70-1.63) and 1.01 (0.65-1.55)], while no homozygous LIG4 Val658Val (GG) was found in the cervical carcinoma group. Analyzing the risk of variant LIG4 Ile658Val genotypes for cervical carcinoma of different histologic types or HPV infection status, we found striking similarities between the squamous cell carcinoma group and the HPV-positive group and the overall carcinoma. In conclusion, in the Chinese population, LIG4 Ile658Val has only a slight impact on the risk of developing cervical carcinoma.
Collapse
Affiliation(s)
- Zhiming Ding
- Department of Gynecologic Oncology, Women's Hospital, School of Medicine, Zhejiang University, Xueshi Rd #2, Hangzhou 310006, China
| | | | | | | | | | | |
Collapse
|
49
|
Recuero-Checa MA, Doré AS, Arias-Palomo E, Rivera-Calzada A, Scheres SHW, Maman JD, Pearl LH, Llorca O. Electron microscopy of Xrcc4 and the DNA ligase IV-Xrcc4 DNA repair complex. DNA Repair (Amst) 2010; 8:1380-9. [PMID: 19837014 DOI: 10.1016/j.dnarep.2009.09.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2008] [Revised: 09/16/2009] [Accepted: 09/16/2009] [Indexed: 10/20/2022]
Abstract
The DNA ligase IV-Xrcc4 complex is responsible for the ligation of broken DNA ends in the non-homologous end-joining (NHEJ) pathway of DNA double strand break repair in mammals. Mutations in DNA ligase IV (Lig4) lead to immunodeficiency and radiosensitivity in humans. Only partial structural information for Lig4 and Xrcc4 is available, while the structure of the full-length proteins and their arrangement within the Lig4-Xrcc4 complex is unknown. The C-terminal domain of Xrcc4, whose structure has not been solved, contains phosphorylation sites for DNA-PKcs and is phylogenetically conserved, indicative of a regulatory role in NHEJ. Here, we have purified full length Xrcc4 and the Lig4-Xrcc4 complex, and analysed their structure by single-particle electron microscopy. The three-dimensional structure of Xrcc4 at a resolution of approximately 37A reveals that the C-terminus of Xrcc4 forms a dimeric globular domain connected to the N-terminus by a coiled-coil. The N- and C-terminal domains of Xrcc4 locate at opposite ends of an elongated molecule. The electron microscopy images of the Lig4-Xrcc4 complex were examined by two-dimensional image processing and a double-labelling strategy, identifying the site of the C-terminus of Xrcc4 and the catalytic core of Lig4 within the complex. The catalytic domains of Lig4 were found to be in the vicinity of the N-terminus of Xrcc4. We provide a first sight of the structural organization of the Lig4-Xrcc4 complex, which suggests that the BRCT domains could provide the link of the ligase to Xrcc4 while permitting some movements of the catalytic domains of Lig4. This arrangement may facilitate the ligation of diverse configurations of damaged DNA.
Collapse
Affiliation(s)
- María A Recuero-Checa
- Centro de Investigaciones Biológicas (CIB), Consejo Superior de Investigaciones Científicas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Ismail SM, Prithivirajsingh S, Nimura Y, Stevens CW. Identification of proteins in the hamster DNA end‐binding complex. Int J Radiat Biol 2009; 80:261-8. [PMID: 15204703 DOI: 10.1080/09553000410001679758] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
PURPOSE To identify the protein components of the DNA end-binding complex in hamster cells. MATERIALS AND METHODS DNA end-binding complexes were identified as follows. Nuclear extracts from Chinese hamster ovary cells (0.5-1.0 microg protein/lane) were incubated with 0.5 ng 32P-labelled probe (144 bp) for 20 min at room temperature in the presence of 1 microg closed circular pUC18 plasmid, a non-specific competitor in a final volume of 20 microl. The electrophoretic mobility of the protein-DNA complexes was analysed by electrophoresis in 5% polyacrylamide gels subjected to autoradiography. Antibodies to various DNA repair-associated proteins were added to the DNA end-binding complex reaction and a supershift identified DNA end-binding complex components. These were confirmed by Western analysis of purified DNA end-binding complex contents. RESULTS Using both supershift and Western analysis, the following proteins were identified in the DNA end-binding complex: Ku70, Ku80, DNA-dependent protein kinase catalytic subunit, DNA ligase IV, X-ray cross complementing protein 4, meiotic recombination protein 11 (Mre11), Werner's syndrome protein, Bloom's syndrome protein, p53, poly(ADP-ribose) polymerase, replication protein A (RPA) 14, and RPA32, ataxia telangiectasia mutant, c-Abl, Rad50, Nijmegen breakage syndrome protein 1 (NBS1), and DNA ligase III were not detected in the binding complex by any assay. Using a combination of electro-elution and autoradiography, it was estimated that the single DNA end-binding complex contains at least 15 proteins whose molecular weights of the DNA end-binding proteins ranged from 620 to 12 kDa. CONCLUSIONS A combination of both a supershift assay and Western analysis of the DNA end-binding complexes has identified 12 of at least 15 proteins present in the DNA end-binding complex of Chinese hamster ovary cells. This protein complex contains Mre11, but not Rad50 or NBS1, suggesting that under some conditions, Mre11 might function independently of Rad50 and NBS1.
Collapse
Affiliation(s)
- S M Ismail
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston 77030, USA
| | | | | | | |
Collapse
|