1
|
Xiang D, Liu J, Wang Y, Hu D, Zhang C, Zeng T, Jiang W, Liang X, Dong W, Sun W, Xu L, Li H, Shi Y, Zhang J, Liu H, Ding J. Oncofetal MCB1 Is a Functional Biomarker for HCC Personalized Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401228. [PMID: 39402741 PMCID: PMC11615823 DOI: 10.1002/advs.202401228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 08/21/2024] [Indexed: 12/06/2024]
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related death worldwide and lacks biomarkers for personalized therapy. Herein, it is reported that MCB1 could be a novel oncofetal protein that is upregulated in the preneoplastic lesions and serum of early HCC patients. Functional studies reveal that MCB1 modulated p53 protein degradation to promote T-IC generation and drive HCC initiation. Furthermore, the MCB1/p53 axis is shown to determine the responses of hepatoma cells to conventional chemotherapeutics and predict transcatheter arterial chemoembolization (TACE) benefits in patients. Importantly, MCB1 can mediate sorafenib/lenvatinib resistance by downregulating two essential drug targets fibroblast growth factor receptor 1 (FGFR1) and vascular endothelial growth factor receptor 3 (VEGFR3) expression in a proteasome-dependent manner. Patient-derived tumor organoids (PDOs), patient-derived xenografts (PDXs), and patient cohorts analysis suggested that MCB1 levels in HCCs may determine the distinct responses to conventional therapeutics and targeted drugs. Furthermore, treatment of targeted drugs-resistant HCC with adeno-associated virus (AAV) targeting MCB1 or a proteasome inhibitor restores targeted drug response, suggesting their clinical significance in HCC combinational therapy. In conclusion, these findings demonstrate that MCB1 could act as a driver for HCC initiation, a contributor to drug resistance, and a biomarker for individualized HCC therapy.
Collapse
Affiliation(s)
- Daimin Xiang
- Clinical Cancer InstituteCenter for Translational MedicineNaval Military Medical UniversityShanghai200433China
- Medical Innovation CenterShanghai East HospitalSchool of MedicineTongji UniversityShanghai200120China
- Institute of Hepatobiliary and Pancreatic SurgeryDepartment of Hepatobiliary and Pancreatic SurgeryShanghai East HospitalSchool of MedicineTongji UniversityShanghai200120China
| | - Junyu Liu
- Clinical Cancer InstituteCenter for Translational MedicineNaval Military Medical UniversityShanghai200433China
| | - Yichuan Wang
- Clinical Cancer InstituteCenter for Translational MedicineNaval Military Medical UniversityShanghai200433China
| | - Dingtao Hu
- Clinical Cancer InstituteCenter for Translational MedicineNaval Military Medical UniversityShanghai200433China
| | - Cheng Zhang
- National Center for Liver CancerNaval Military Medical UniversityShanghai200433China
| | - Tanlun Zeng
- Clinical Cancer InstituteCenter for Translational MedicineNaval Military Medical UniversityShanghai200433China
| | - Weiqi Jiang
- National Center for Liver CancerNaval Military Medical UniversityShanghai200433China
| | - Xijun Liang
- Clinical Cancer InstituteCenter for Translational MedicineNaval Military Medical UniversityShanghai200433China
| | - Wei Dong
- Department of PathologyThird Affiliated Hospital of Naval Military Medical UniversityShanghai200438China
| | - Wen Sun
- National Center for Liver CancerNaval Military Medical UniversityShanghai200433China
| | - Li Xu
- Department of Liver SurgeryCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Hengyu Li
- Department of Breast and Thyroid SurgeryChanghai HospitalNaval Military Medical UniversityShanghai200433China
| | - Yihai Shi
- Department of GastroenterologyShanghai Pudong New Area Gongli HospitalShanghai200135China
| | - Jian Zhang
- The State Key Laboratory of Cancer BiologyDepartment of Biochemistry and Molecular BiologyThe Fourth Military Medical UniversityXi'an710032China
| | - Hui Liu
- Department of Hepatic SurgeryThird Affiliated Hospital of Naval Military Medical UniversityShanghai200438China
| | - Jin Ding
- Clinical Cancer InstituteCenter for Translational MedicineNaval Military Medical UniversityShanghai200433China
- National Center for Liver CancerNaval Military Medical UniversityShanghai200433China
| |
Collapse
|
2
|
Lin SY, Lin YL, Usharani R, Radjacommare R, Fu H. The Structural Role of RPN10 in the 26S Proteasome and an RPN2-Binding Residue on RPN13 Are Functionally Important in Arabidopsis. Int J Mol Sci 2024; 25:11650. [PMID: 39519207 PMCID: PMC11546751 DOI: 10.3390/ijms252111650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/17/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024] Open
Abstract
The ubiquitin receptors RPN10 and RPN13 harbor multiple activities including ubiquitin binding; however, solid evidence connecting a particular activity to specific in vivo functions is scarce. Through complementation, the ubiquitin-binding site-truncated Arabidopsis RPN10 (N215) rescued the growth defects of rpn10-2, supporting the idea that the ubiquitin-binding ability of RPN10 is dispensable and N215, which harbors a vWA domain, is fully functional. Instead, a structural role played by RPN10 in the 26S proteasomes is likely vital in vivo. A site-specific variant, RPN10-11A, that likely has a destabilized vWA domain could partially rescue the rpn10-2 growth defects and is not integrated into 26S proteasomes. Native polyacrylamide gel electrophoresis and mass spectrometry with rpn10-2 26S proteasomes showed that the loss of RPN10 reduced the abundance of double-capped proteasomes, induced the integration of specific subunit paralogues, and increased the association of ECM29, a well-known factor critical for quality checkpoints by binding and inhibiting aberrant proteasomes. Extensive Y2H and GST-pulldown analyses identified RPN2-binding residues on RPN13 that overlapped with ubiquitin-binding and UCH2-binding sites in the RPN13 C-terminus (246-254). Interestingly, an analysis of homozygous rpn10-2 segregation in a rpn13-1 background harboring RPN13 variants defective for ubiquitin binding and/or RPN2 binding supports the criticality of the RPN13-RPN2 association in vivo.
Collapse
Affiliation(s)
- Shih-Yun Lin
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 115, Taiwan; (S.-Y.L.); (R.U.); (R.R.)
| | - Ya-Ling Lin
- Program in Biological and Sustainable Technology, Academy of Circular Economy, National Chung Hsing University, Nantou 540, Taiwan;
| | - Raju Usharani
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 115, Taiwan; (S.-Y.L.); (R.U.); (R.R.)
| | - Ramalingam Radjacommare
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 115, Taiwan; (S.-Y.L.); (R.U.); (R.R.)
| | - Hongyong Fu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 115, Taiwan; (S.-Y.L.); (R.U.); (R.R.)
| |
Collapse
|
3
|
Buneeva OA, Kopylov AT, Medvedev AE. Proteasome Interactome and Its Role in the Mechanisms of Brain Plasticity. BIOCHEMISTRY (MOSCOW) 2023; 88:319-336. [PMID: 37076280 DOI: 10.1134/s0006297923030033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
Abstract
Abstract
Proteasomes are highly conserved multienzyme complexes responsible for proteolytic degradation of the short-lived, regulatory, misfolded, and damaged proteins. They play an important role in the processes of brain plasticity, and decrease in their function is accompanied by the development of neurodegenerative pathology. Studies performed in different laboratories both on cultured mammalian and human cells and on preparations of the rat and rabbit brain cortex revealed a large number of proteasome-associated proteins. Since the identified proteins belong to certain metabolic pathways, multiple enrichment of the proteasome fraction with these proteins indicates their important role in proteasome functioning. Extrapolation of the experimental data, obtained on various biological objects, to the human brain suggests that the proteasome-associated proteins account for at least 28% of the human brain proteome. The proteasome interactome of the brain contains a large number of proteins involved in the assembly of these supramolecular complexes, regulation of their functioning, and intracellular localization, which could be changed under different conditions (for example, during oxidative stress) or in different phases of the cell cycle. In the context of molecular functions of the Gene Ontology (GO) Pathways, the proteins of the proteasome interactome mediate cross-talk between components of more than 30 metabolic pathways annotated in terms of GO. The main result of these interactions is binding of adenine and guanine nucleotides, crucial for realization of the nucleotide-dependent functions of the 26S and 20S proteasomes. Since the development of neurodegenerative pathology is often associated with regioselective decrease in the functional activity of proteasomes, a positive therapeutic effect would be obviously provided by the factors increasing proteasomal activity. In any case, pharmacological regulation of the brain proteasomes seems to be realized through the changes in composition and/or activity of the proteins associated with proteasomes (deubiquitinase, PKA, CaMKIIα, etc.).
Collapse
Affiliation(s)
- Olga A Buneeva
- Institute of Biomedical Chemistry, Moscow, 119121, Russia
| | | | | |
Collapse
|
4
|
Sparks A, Kelly CJ, Saville MK. Ubiquitin receptors play redundant roles in the proteasomal degradation of the p53 repressor MDM2. FEBS Lett 2022; 596:2746-2767. [PMID: 35735670 PMCID: PMC9796813 DOI: 10.1002/1873-3468.14436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/01/2022] [Accepted: 06/05/2022] [Indexed: 01/07/2023]
Abstract
Much remains to be determined about the participation of ubiquitin receptors in proteasomal degradation and their potential as therapeutic targets. Suppression of the ubiquitin receptor S5A/PSMD4/hRpn10 alone stabilises p53/TP53 but not the key p53 repressor MDM2. Here, we observed S5A and the ubiquitin receptors ADRM1/PSMD16/hRpn13 and RAD23A and B functionally overlap in MDM2 degradation. We provide further evidence that degradation of only a subset of ubiquitinated proteins is sensitive to S5A knockdown because ubiquitin receptor redundancy is commonplace. p53 can be upregulated by S5A modulation while degradation of substrates with redundant receptors is maintained. Our observations and analysis of Cancer Dependency Map (DepMap) screens show S5A depletion/loss substantially reduces cancer cell line viability. This and selective S5A dependency of proteasomal substrates make S5A a target of interest for cancer therapy.
Collapse
Affiliation(s)
| | - Christopher J. Kelly
- School of MedicineUniversity of DundeeUK,Institute of Infection, Immunity and InflammationUniversity of GlasgowUK
| | - Mark K. Saville
- School of MedicineUniversity of DundeeUK,Silver River EditingDundeeUK
| |
Collapse
|
5
|
González-Penagos CE, Zamora-Briseño JA, Améndola-Pimenta M, Elizalde-Contreras JM, Árcega-Cabrera F, Cruz-Quintana Y, Santana-Piñeros AM, Cañizárez-Martínez MA, Pérez-Vega JA, Ruiz-May E, Rodríguez-Canul R. Integrative description of changes occurring on zebrafish embryos exposed to water-soluble crude oil components and its mixture with a chemical surfactant. Toxicol Appl Pharmacol 2022; 445:116033. [PMID: 35452689 DOI: 10.1016/j.taap.2022.116033] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/09/2022] [Accepted: 04/13/2022] [Indexed: 11/16/2022]
Abstract
The effects of crude oil spills are an ongoing problem for wildlife and human health in both marine and freshwater aquatic environments. Bioassays of model organisms are a convenient way to assess the potential risks of the substances involved in oil spills. Zebrafish embryos (ZFE) are a useful to reach a fast and detailed description of the toxicity of the pollutants, including both the components of the crude oil itself and substances that are commonly used for crude oil spill mitigation (e.g. surfactants). Here, we evaluated the survival rate, as well as histological, morphological, and proteomic changes in ZFE exposed to Water Accumulated Fraction (WAF) of light crude oil and in mixture with dioctyl sulfosuccinate sodium (DOSS, e.g. CEWAF: Chemically Enhanced WAF), a surfactant that is frequently used in chemical dispersant formulations. Furthermore, we compared de hydrocarbon concentration of WAF and CEWAF of the sublethal dilution. In histological, morphological, and gene expression variables, the ZFE exposed to WAF showed less changes than those exposed to CEWAF. Proteomic changes were more dramatic in ZFE exposed to WAF, with important alterations in spliceosomal and ribosomal proteins, as well as proteins related to eye and retinal photoreceptor development and heart function. We also found that the concentration of high molecular weight hydrocarbons in water was slighly higher in presence of DOSS, but the low molecular weight hydrocarbons concentration was higher in WAF. These results provide an important starting point for identifying useful crude-oil exposure biomarkers in fish species.
Collapse
Affiliation(s)
- Carlos Eduardo González-Penagos
- Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN) Unidad Mérida, Antigua carretera a Progreso Km. 6, CP 97310 Mérida, Yucatán, Mexico
| | - Jesús Alejandro Zamora-Briseño
- Laboratorio de Entomología Molecular, Red de Estudios Moleculares Avanzados, Clúster Científico y Tecnológico BioMimic®, El Instituto de Ecología, Carretera antigua a Coatepec 351, El Haya, Xalapa, Veracruz, CP 91070, Mexico
| | - Monica Améndola-Pimenta
- Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN) Unidad Mérida, Antigua carretera a Progreso Km. 6, CP 97310 Mérida, Yucatán, Mexico
| | - José Miguel Elizalde-Contreras
- Laboratorio de Entomología Molecular, Red de Estudios Moleculares Avanzados, Clúster Científico y Tecnológico BioMimic®, El Instituto de Ecología, Carretera antigua a Coatepec 351, El Haya, Xalapa, Veracruz, CP 91070, Mexico
| | - Flor Árcega-Cabrera
- Unidad de Química Sisal, Facultad de Química, Universidad Nacional Autónoma de México, Puerto de Abrigo S/N, Sisal, Yucatán 97356, Mexico
| | - Yanis Cruz-Quintana
- Grupo de Investigación en Sanidad Acuícola, Inocuidad y Salud Ambiental, Facultad de Ciencias Veterinarias, Departamento de Acuicultura y Pesca, Universidad Técnica de Manabí, Ciudadela Universitaria, Bahía de Caráquez, Manabí 130104, Ecuador
| | - Ana María Santana-Piñeros
- Grupo de Investigación en Sanidad Acuícola, Inocuidad y Salud Ambiental, Facultad de Ciencias Veterinarias, Departamento de Acuicultura y Pesca, Universidad Técnica de Manabí, Ciudadela Universitaria, Bahía de Caráquez, Manabí 130104, Ecuador
| | - Mayra Alejandra Cañizárez-Martínez
- Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN) Unidad Mérida, Antigua carretera a Progreso Km. 6, CP 97310 Mérida, Yucatán, Mexico
| | - Juan Antonio Pérez-Vega
- Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN) Unidad Mérida, Antigua carretera a Progreso Km. 6, CP 97310 Mérida, Yucatán, Mexico
| | - Eliel Ruiz-May
- Laboratorio de Entomología Molecular, Red de Estudios Moleculares Avanzados, Clúster Científico y Tecnológico BioMimic®, El Instituto de Ecología, Carretera antigua a Coatepec 351, El Haya, Xalapa, Veracruz, CP 91070, Mexico.
| | - Rossanna Rodríguez-Canul
- Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN) Unidad Mérida, Antigua carretera a Progreso Km. 6, CP 97310 Mérida, Yucatán, Mexico.
| |
Collapse
|
6
|
Huang W, MacLean AM, Sugio A, Maqbool A, Busscher M, Cho ST, Kamoun S, Kuo CH, Immink RGH, Hogenhout SA. Parasitic modulation of host development by ubiquitin-independent protein degradation. Cell 2021; 184:5201-5214.e12. [PMID: 34536345 PMCID: PMC8525514 DOI: 10.1016/j.cell.2021.08.029] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 07/14/2021] [Accepted: 08/24/2021] [Indexed: 01/08/2023]
Abstract
Certain obligate parasites induce complex and substantial phenotypic changes in their hosts in ways that favor their transmission to other trophic levels. However, the mechanisms underlying these changes remain largely unknown. Here we demonstrate how SAP05 protein effectors from insect-vectored plant pathogenic phytoplasmas take control of several plant developmental processes. These effectors simultaneously prolong the host lifespan and induce witches' broom-like proliferations of leaf and sterile shoots, organs colonized by phytoplasmas and vectors. SAP05 acts by mediating the concurrent degradation of SPL and GATA developmental regulators via a process that relies on hijacking the plant ubiquitin receptor RPN10 independent of substrate ubiquitination. RPN10 is highly conserved among eukaryotes, but SAP05 does not bind insect vector RPN10. A two-amino-acid substitution within plant RPN10 generates a functional variant that is resistant to SAP05 activities. Therefore, one effector protein enables obligate parasitic phytoplasmas to induce a plethora of developmental phenotypes in their hosts.
Collapse
Affiliation(s)
- Weijie Huang
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Allyson M MacLean
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Akiko Sugio
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Abbas Maqbool
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Marco Busscher
- Laboratory of Molecular Biology, Wageningen University and Research, Wageningen 6708 PB, the Netherlands; Plant Developmental Systems, Bioscience, Wageningen University and Research, Wageningen 6708 PB, the Netherlands
| | - Shu-Ting Cho
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Sophien Kamoun
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Chih-Horng Kuo
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Richard G H Immink
- Laboratory of Molecular Biology, Wageningen University and Research, Wageningen 6708 PB, the Netherlands; Plant Developmental Systems, Bioscience, Wageningen University and Research, Wageningen 6708 PB, the Netherlands
| | - Saskia A Hogenhout
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK.
| |
Collapse
|
7
|
Ploypetch S, Roytrakul S, Jaresitthikunchai J, Phaonakrop N, Teewasutrakul P, Rungsipipat A, Suriyaphol G. Salivary proteomics in monitoring the therapeutic response of canine oral melanoma. PLoS One 2021; 16:e0256167. [PMID: 34411146 PMCID: PMC8376060 DOI: 10.1371/journal.pone.0256167] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 07/30/2021] [Indexed: 11/18/2022] Open
Abstract
Saliva biomarkers are suitable for monitoring the therapeutic response of canine oral melanoma (COM), because saliva directly contacts the tumor, and saliva collection is non-invasive, convenient and cost effective. The present study aimed to investigate novel biomarkers from the salivary proteome of COM treated with surgery and a chemotherapy drug, carboplatin, 1-6 times, using a liquid chromatography-tandem mass spectrometry approach. The expression of a potential salivary biomarker, ubiquitin D (UBD), was observed and verified by western blot analysis. A significantly increased ratio of free UBD (fUBD) to conjugated UBD (cUBD) was shown in the pre-surgery stage (PreS) in OM dogs with short-term survival (STS) (less than 12 months after surgery) compared with that with long-term survival (more than 12 months after surgery). In dogs with STS, the ratio was also shown to be augmented in PreS compared with that after surgery, followed by treatment with carboplatin twice, 4 and 5 times [After treatment (AT)2, AT4 and AT5]. In addition, the expression of fUBD was enhanced in PreS compared with that of AT2 in the STS group. In conclusion, this study revealed that a ratio of fUBD to cUBD in PreS was plausibly shown to be a potential prognostic biomarker for survival in dogs with OM.
Collapse
Affiliation(s)
- Sekkarin Ploypetch
- Biochemistry Unit, Department of Physiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Companion Animal Cancer Research Unit, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Sittiruk Roytrakul
- Functional Proteomics Technology Laboratory, Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Janthima Jaresitthikunchai
- Functional Proteomics Technology Laboratory, Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Narumon Phaonakrop
- Functional Proteomics Technology Laboratory, Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Patharakrit Teewasutrakul
- Companion Animal Cancer Research Unit, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Oncology Clinic, Faculty of Veterinary Science, Small Animal Teaching Hospital, Chulalongkorn University, Bangkok, Thailand
| | - Anudep Rungsipipat
- Companion Animal Cancer Research Unit, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Gunnaporn Suriyaphol
- Biochemistry Unit, Department of Physiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Companion Animal Cancer Research Unit, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- * E-mail:
| |
Collapse
|
8
|
Abstract
The 26S proteasome is the most complex ATP-dependent protease machinery, of ~2.5 MDa mass, ubiquitously found in all eukaryotes. It selectively degrades ubiquitin-conjugated proteins and plays fundamentally indispensable roles in regulating almost all major aspects of cellular activities. To serve as the sole terminal "processor" for myriad ubiquitylation pathways, the proteasome evolved exceptional adaptability in dynamically organizing a large network of proteins, including ubiquitin receptors, shuttle factors, deubiquitinases, AAA-ATPase unfoldases, and ubiquitin ligases, to enable substrate selectivity and processing efficiency and to achieve regulation precision of a vast diversity of substrates. The inner working of the 26S proteasome is among the most sophisticated, enigmatic mechanisms of enzyme machinery in eukaryotic cells. Recent breakthroughs in three-dimensional atomic-level visualization of the 26S proteasome dynamics during polyubiquitylated substrate degradation elucidated an extensively detailed picture of its functional mechanisms, owing to progressive methodological advances associated with cryogenic electron microscopy (cryo-EM). Multiple sites of ubiquitin binding in the proteasome revealed a canonical mode of ubiquitin-dependent substrate engagement. The proteasome conformation in the act of substrate deubiquitylation provided insights into how the deubiquitylating activity of RPN11 is enhanced in the holoenzyme and is coupled to substrate translocation. Intriguingly, three principal modes of coordinated ATP hydrolysis in the heterohexameric AAA-ATPase motor were discovered to regulate intermediate functional steps of the proteasome, including ubiquitin-substrate engagement, deubiquitylation, initiation of substrate translocation and processive substrate degradation. The atomic dissection of the innermost working of the 26S proteasome opens up a new era in our understanding of the ubiquitin-proteasome system and has far-reaching implications in health and disease.
Collapse
Affiliation(s)
- Youdong Mao
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, 02215, Massachusetts, USA. .,School of Physics, Center for Quantitative Biology, Peking University, Beijing, 100871, China.
| |
Collapse
|
9
|
Fernando LM, Elliot J, Allen AK. The Caenorhabditis elegans proteasome subunit RPN-12 is required for hermaphrodite germline sex determination and oocyte quality. Dev Dyn 2020; 250:145-159. [PMID: 32767462 DOI: 10.1002/dvdy.235] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/16/2020] [Accepted: 07/31/2020] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND The proteasome is a multi-subunit complex and a major proteolytic machinery in cells. Most subunits are essential for proteasome function, and depletion of individual subunits normally results in lethality. RPN-12/Rpn12/PSMD8 is a lid subunit of the 19S regulatory particle (RP) of the 26S proteasome. Studies in Caenorhabditis elegans demonstrated that RNAi depletion of RPN-12 does not result in lethality. RPN-12 has not been well studied in higher eukaryotes. In this study, we investigate the biological significance of RPN-12 in C. elegans. RESULTS We found that the null mutant rpn-12(av93) did not cause major impairment of the proteolytic activity of the proteasome. Most rpn-12(av93) hermaphrodites lack sperm leading to feminization of the germ line that can be partially rescued by mating to males. The lack of sperm phenotype can be suppressed by downregulation of TRA-1, a player in the hermaphrodite germline sex determination pathway. Also, rpn-12(av93) animals show significant nuclear accumulation of the meiotic kinase WEE-1.3, a protein predominantly localized to the perinuclear region. Interestingly, chemical inhibition of the proteasome did not cause nuclear accumulation of WEE-1.3. CONCLUSIONS RPN-12 plays a previously unknown role in oogenesis and the germline sex determination pathway in C. elegans hermaphrodites.
Collapse
Affiliation(s)
- Lourds M Fernando
- Department of Biology, Howard University, Washington, District of Columbia, USA
| | - Jeandele Elliot
- Department of Biology, Howard University, Washington, District of Columbia, USA
| | - Anna K Allen
- Department of Biology, Howard University, Washington, District of Columbia, USA
| |
Collapse
|
10
|
Finley D, Prado MA. The Proteasome and Its Network: Engineering for Adaptability. Cold Spring Harb Perspect Biol 2020; 12:cshperspect.a033985. [PMID: 30833452 DOI: 10.1101/cshperspect.a033985] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The proteasome, the most complex protease known, degrades proteins that have been conjugated to ubiquitin. It faces the unique challenge of acting enzymatically on hundreds and perhaps thousands of structurally diverse substrates, mechanically unfolding them from their native state and translocating them vectorially from one specialized compartment of the enzyme to another. Moreover, substrates are modified by ubiquitin in myriad configurations of chains. The many unusual design features of the proteasome may have evolved in part to endow this enzyme with a robust ability to process substrates regardless of their identity. The proteasome plays a major role in preserving protein homeostasis in the cell, which requires adaptation to a wide variety of stress conditions. Modulation of proteasome function is achieved through a large network of proteins that interact with it dynamically, modify it enzymatically, or fine-tune its levels. The resulting adaptability of the proteasome, which is unique among proteases, enables cells to control the output of the ubiquitin-proteasome pathway on a global scale.
Collapse
Affiliation(s)
- Daniel Finley
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115
| | - Miguel A Prado
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
11
|
Yang JH, Chen WT, Lee MC, Fang WH, Hsu YJ, Chin-Lin, Chen HC, Chang HL, Chen CF, Tu MY, Kuo CW, Lin YH, Hsiao PJ, Su SL. Investigation of the variants at the binding site of inflammatory transcription factor NF-κB in patients with end-stage renal disease. BMC Nephrol 2019; 20:300. [PMID: 31382928 PMCID: PMC6683452 DOI: 10.1186/s12882-019-1471-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 07/19/2019] [Indexed: 12/12/2022] Open
Abstract
Background A chronic inflammatory state is a prominent feature in patients with end-stage renal disease (ESRD). Nuclear factor-kappa B (NF-κB) is a transcription factor that regulates the expression of genes involved in inflammation. Some genetic studies have demonstrated that the NF-κB genetic mutation could cause kidney injury and kidney disease progression. However, the association of a gene polymorphism in the transcription factor binding site of NF-κB with kidney disease is not clear. Methods We used the Taiwan Biobank database, the University of California, Santa Cruz, reference genome, and a chromatin immunoprecipitation sequencing database to find single nucleotide polymorphisms (SNPs) at potential binding sites of NF-κB. In addition, we performed a case–control study and genotyped 847 patients with ESRD and 846 healthy controls at Tri-Service General Hospital from 2015 to 2016. Furthermore, we used the ChIP assay to identify the binding activity of different genotypes and used Luciferase reporter assay to examine the function of the rs9395890 polymorphism. Result The results of biometric screening in the databases revealed 15 SNPs with the potential binding site of NF-κB. Genotype distributions of rs9395890 were significantly different in ESRD cases and healthy controls (P = 0.049). The ChIP assay revealed an approximately 1.49-fold enrichment of NF-κB of the variant type TT when compared to that of the wild-type GG in rs9395890 (P = 0.027; TT = 3.20 ± 0.16, GT = 2.81 ± 0.20, GG = 1.71 ± 0.18). The luciferase reporter assay showed that the NF-κB binding site activity in T allele was slightly higher than that in G allele, though it is not significant. Conclusions Our findings indicate that rs9395890 is associated with susceptibility to ESRD in Taiwan population. Electronic supplementary material The online version of this article (10.1186/s12882-019-1471-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jia-Hwa Yang
- School of Public Health and Graduate institute of Life Sciences, National Defense Medical Center, No.161, Sec. 6, Minquan E. Rd., Neihu Dist., Taipei City, 114, Taiwan, Republic of China.,Division of Nephrology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei City, Taiwan, Republic of China
| | - Wei-Teing Chen
- Division of Chest Medicine, Department of Medicine, Cheng Hsin General Hospital, Taipei, Taiwan, Republic of China.,Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Meng-Chang Lee
- Institute of Preventive Medicine, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Wen-Hui Fang
- Department of Family and Community Medicine, Tri-Service General Hospital, Taipei, Taiwan, Republic of China
| | - Yu-Juei Hsu
- Division of Nephrology, Department of Medicine, Tri-Service General Hospital, Taipei, Taiwan, Republic of China
| | - Chin-Lin
- School of Public Health, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Hsiang-Cheng Chen
- Division of Rheumatology/Immunology/Allergy, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Hsueh-Lu Chang
- School of Public Health, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Chien-Fu Chen
- Department of Orthopedics, Taichung Armed Forces General Hospital, Taichung, Taiwan, Republic of China
| | - Min-Yu Tu
- Department of Orthopedics, Kaohsiung Armed Forces General Hospital, Gangshan Branch, Kaohsiung, Taiwan, Republic of China
| | - Chien-Wei Kuo
- Division of Nephrology Dialysis, Shih-Kang Clinic, New Taipei City, Taiwan, Republic of China
| | - Yuan-Hau Lin
- Division of Nephrology Dialysis, Yuan-Lin Clinic, Taipei, Taiwan, Republic of China
| | - Po-Jen Hsiao
- Division of Nephrology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei City, Taiwan, Republic of China. .,Division of Nephrology, Department of Internal Medicine, Taoyuan Armed Forces General Hospital, Taoyuan City, Taiwan, Republic of China. .,Big Data Research Center, Fu-Jen Catholic University, Taipei, Taiwan, Republic of China. .,Department of Life Sciences, National Central University, Taoyuan City, Taiwan, Republic of China.
| | - Sui-Lung Su
- School of Public Health and Graduate institute of Life Sciences, National Defense Medical Center, No.161, Sec. 6, Minquan E. Rd., Neihu Dist., Taipei City, 114, Taiwan, Republic of China. .,School of Public Health, National Defense Medical Center, Taipei, Taiwan, Republic of China.
| |
Collapse
|
12
|
Kudriaeva AA, Belogurov AA. Proteasome: a Nanomachinery of Creative Destruction. BIOCHEMISTRY (MOSCOW) 2019; 84:S159-S192. [PMID: 31213201 DOI: 10.1134/s0006297919140104] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
In the middle of the 20th century, it was postulated that degradation of intracellular proteins is a stochastic process. More than fifty years of intense studies have finally proven that protein degradation is a very complex and tightly regulated in time and space process that plays an incredibly important role in the vast majority of metabolic pathways. Degradation of more than a half of intracellular proteins is controlled by a hierarchically aligned and evolutionarily perfect system consisting of many components, the main ones being ubiquitin ligases and proteasomes, together referred to as the ubiquitin-proteasome system (UPS). The UPS includes more than 1000 individual components, and most of them are critical for the cell functioning and survival. In addition to the well-known signaling functions of ubiquitination, such as modification of substrates for proteasomal degradation and DNA repair, polyubiquitin (polyUb) chains are involved in other important cellular processes, e.g., cell cycle regulation, immunity, protein degradation in mitochondria, and even mRNA stability. This incredible variety of ubiquitination functions is related to the ubiquitin ability to form branching chains through the ε-amino group of any of seven lysine residues in its sequence. Deubiquitination is accomplished by proteins of the deubiquitinating enzyme family. The second main component of the UPS is proteasome, a multisubunit proteinase complex that, in addition to the degradation of functionally exhausted and damaged proteins, regulates many important cellular processes through controlled degradation of substrates, for example, transcription factors and cyclins. In addition to the ubiquitin-dependent-mediated degradation, there is also ubiquitin-independent degradation, when the proteolytic signal is either an intrinsic protein sequence or shuttle molecule. Protein hydrolysis is a critically important cellular function; therefore, any abnormalities in this process lead to systemic impairments further transforming into serious diseases, such as diabetes, malignant transformation, and neurodegenerative disorders (multiple sclerosis, Alzheimer's disease, Parkinson's disease, Creutzfeldt-Jakob disease and Huntington's disease). In this review, we discuss the mechanisms that orchestrate all components of the UPS, as well as the plurality of the fine-tuning pathways of proteasomal degradation.
Collapse
Affiliation(s)
- A A Kudriaeva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia.
| | - A A Belogurov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia. .,Lomonosov Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
13
|
Marshall RS, Vierstra RD. Dynamic Regulation of the 26S Proteasome: From Synthesis to Degradation. Front Mol Biosci 2019; 6:40. [PMID: 31231659 PMCID: PMC6568242 DOI: 10.3389/fmolb.2019.00040] [Citation(s) in RCA: 156] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 05/09/2019] [Indexed: 01/12/2023] Open
Abstract
All eukaryotes rely on selective proteolysis to control the abundance of key regulatory proteins and maintain a healthy and properly functioning proteome. Most of this turnover is catalyzed by the 26S proteasome, an intricate, multi-subunit proteolytic machine. Proteasomes recognize and degrade proteins first marked with one or more chains of poly-ubiquitin, the addition of which is actuated by hundreds of ligases that individually identify appropriate substrates for ubiquitylation. Subsequent proteasomal digestion is essential and influences a myriad of cellular processes in species as diverse as plants, fungi and humans. Importantly, dysfunction of 26S proteasomes is associated with numerous human pathologies and profoundly impacts crop performance, thus making an understanding of proteasome dynamics critically relevant to almost all facets of human health and nutrition. Given this widespread significance, it is not surprising that sophisticated mechanisms have evolved to tightly regulate 26S proteasome assembly, abundance and activity in response to demand, organismal development and stress. These include controls on transcription and chaperone-mediated assembly, influences on proteasome localization and activity by an assortment of binding proteins and post-translational modifications, and ultimately the removal of excess or damaged particles via autophagy. Intriguingly, the autophagic clearance of damaged 26S proteasomes first involves their modification with ubiquitin, thus connecting ubiquitylation and autophagy as key regulatory events in proteasome quality control. This turnover is also influenced by two distinct biomolecular condensates that coalesce in the cytoplasm, one attracting damaged proteasomes for autophagy, and the other reversibly storing proteasomes during carbon starvation to protect them from autophagic clearance. In this review, we describe the current state of knowledge regarding the dynamic regulation of 26S proteasomes at all stages of their life cycle, illustrating how protein degradation through this proteolytic machine is tightly controlled to ensure optimal growth, development and longevity.
Collapse
Affiliation(s)
- Richard S Marshall
- Department of Biology, Washington University in St. Louis, St. Louis, MO, United States
| | - Richard D Vierstra
- Department of Biology, Washington University in St. Louis, St. Louis, MO, United States
| |
Collapse
|
14
|
iTRAQ-based quantitative proteomics analysis of cold stress-induced mechanisms in grafted watermelon seedlings. J Proteomics 2019; 192:311-320. [DOI: 10.1016/j.jprot.2018.09.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 09/05/2018] [Accepted: 09/20/2018] [Indexed: 12/21/2022]
|
15
|
Kühnle S, Martínez-Noël G, Leclere F, Hayes SD, Harper JW, Howley PM. Angelman syndrome-associated point mutations in the Zn 2+-binding N-terminal (AZUL) domain of UBE3A ubiquitin ligase inhibit binding to the proteasome. J Biol Chem 2018; 293:18387-18399. [PMID: 30257870 PMCID: PMC6254356 DOI: 10.1074/jbc.ra118.004653] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 08/16/2018] [Indexed: 12/26/2022] Open
Abstract
Deregulation of the HECT ubiquitin ligase UBE3A/E6AP has been implicated in Angelman syndrome as well as autism spectrum disorders. We and others have previously identified the 26S proteasome as one of the major UBE3A-interacting protein complexes. Here, we characterize the interaction of UBE3A and the proteasomal subunit PSMD4 (Rpn10/S5a). We map the interaction to the highly conserved Zn2+-binding N-terminal (AZUL) domain of UBE3A, the integrity of which is crucial for binding to PSMD4. Interestingly, two Angelman syndrome point mutations that affect the AZUL domain show an impaired ability to bind PSMD4. Although not affecting the ubiquitin ligase or the estrogen receptor α-mediated transcriptional regulation activities, these AZUL domain mutations prevent UBE3A from stimulating the Wnt/β-catenin signaling pathway. Taken together, our data indicate that impaired binding to the 26S proteasome and consequential deregulation of Wnt/β-catenin signaling might contribute to the functional defect of these mutants in Angelman syndrome.
Collapse
Affiliation(s)
- Simone Kühnle
- From the Departments of Microbiology and Immunobiology and
| | | | | | | | - J Wade Harper
- Cell Biology, Harvard Medical School, Boston, Massachusetts 02115
| | - Peter M Howley
- From the Departments of Microbiology and Immunobiology and.
| |
Collapse
|
16
|
Xuan B, Li ZC, Wang QY, Xu M, Chen X, Jin Y. Inhibition of PSMD4 alters ZP1 ubiquitination state and sperm-oocyte-binding ability in pigs. Reprod Domest Anim 2018; 53:688-694. [PMID: 29575084 DOI: 10.1111/rda.13158] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 01/19/2018] [Indexed: 12/29/2022]
Abstract
The aim of this study was to determine how the duration of culture affects the ubiquitination of zona pellucida (ZP) proteins (ZP1, ZP2 and ZP3) during porcine oocyte maturation in vitro. We analysed the changes in ZP protein ubiquitination under three conditions: (i) during oocyte maturation from stage GV to MII; (ii) in oocytes cultured for different periods of time; and (iii) in oocytes treated with an antibody against PSMD4. Our results show that ZP1 and ZP2 are ubiquitinated at the GV stage, while ZP1, ZP2 and ZP3 are ubiquitinated at the MII stage, and band intensities for these proteins were significantly different between the GV and MII stages (p < .05). We also found that ubiquitination occurs in ZP1, ZP2 and ZP3 after cultured for 46, 52, 58 and 64 hr, and that the level of ubiquitinated ZP1 was significantly different in oocytes that were cultured for different time periods. Finally, treatment with an antibody against PSMD4 resulted in a significant decrease in ZP1 ubiquitination (p < .05), without affecting ZP2 or ZP3. The number of attached sperms per oocyte was also significantly different between control and anti-PSMD4-treated groups. Thus, we concluded that ZP1 and ZP2 are ubiquitinated at the GV stage, and ZP1, ZP2 and ZP3 are ubiquitinated at the MII stage. As the duration of culture increases, the ubiquitination levels of ZP proteins decrease. We also found that PSMD4 improves ZP1 ubiquitination during in vitro culture of porcine oocytes and effectively inhibits sperm-oocyte binding.
Collapse
Affiliation(s)
- B Xuan
- Department of Animal Science, College of Agriculture, Yanbian University, Yanji, China
| | - Z C Li
- Department of Animal Science, College of Agriculture, Yanbian University, Yanji, China
| | - Q Y Wang
- Department of Animal Science, College of Agriculture, Yanbian University, Yanji, China
| | - M Xu
- Department of Animal Science, College of Agriculture, Yanbian University, Yanji, China
| | - X Chen
- Department of Animal Science, College of Agriculture, Yanbian University, Yanji, China
| | - Y Jin
- Department of Animal Science, College of Agriculture, Yanbian University, Yanji, China
| |
Collapse
|
17
|
Marshall RS, Gemperline DC, Vierstra RD. Purification of 26S Proteasomes and Their Subcomplexes from Plants. Methods Mol Biol 2017; 1511:301-334. [PMID: 27730621 DOI: 10.1007/978-1-4939-6533-5_24] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The 26S proteasome is a highly dynamic, multisubunit, ATP-dependent protease that plays a central role in cellular housekeeping and many aspects of plant growth and development by degrading aberrant polypeptides and key cellular regulators that are first modified by ubiquitin. Although the 26S proteasome was originally enriched from plants over 30 years ago, only recently have significant advances been made in our ability to isolate and study the plant particle. Here, we describe two robust methods for purifying the 26S proteasome and its subcomplexes from Arabidopsis thaliana; one that involves conventional chromatography techniques to isolate the complex from wild-type plants, and another that employs the genetic replacement of individual subunits with epitope-tagged variants combined with affinity purification. In addition to these purification protocols, we describe methods commonly used to analyze the activity and composition of the complex.
Collapse
Affiliation(s)
- Richard S Marshall
- Department of Genetics, University of Wisconsin-Madison, 425-G Henry Mall, Madison, WI, USA.,Department of Biology, Washington University in St Louis, Campus Box 1137, One Brookings Drive, St. Louis, MO, 63130, USA
| | - David C Gemperline
- Department of Genetics, University of Wisconsin-Madison, 425-G Henry Mall, Madison, WI, USA
| | - Richard D Vierstra
- Department of Genetics, University of Wisconsin-Madison, 425-G Henry Mall, Madison, WI, USA. .,Department of Biology, Washington University in St Louis, Campus Box 1137, One Brookings Drive, St. Louis, MO, 63130, USA.
| |
Collapse
|
18
|
Structure of ubiquitylated-Rpn10 provides insight into its autoregulation mechanism. Nat Commun 2016; 7:12960. [PMID: 27698474 PMCID: PMC5059453 DOI: 10.1038/ncomms12960] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 08/19/2016] [Indexed: 01/01/2023] Open
Abstract
Ubiquitin receptors decode ubiquitin signals into many cellular responses. Ubiquitin receptors also undergo coupled monoubiquitylation, and rapid deubiquitylation has hampered the characterization of the ubiquitylated state. Using bacteria that express a ubiquitylation apparatus, we purified and determined the crystal structure of the proteasomal ubiquitin-receptor Rpn10 in its ubiquitylated state. The structure shows a novel ubiquitin-binding patch that directs K84 ubiquitylation. Superimposition of ubiquitylated-Rpn10 onto electron-microscopy models of proteasomes indicates that the Rpn10-conjugated ubiquitin clashes with Rpn9, suggesting that ubiquitylation might be involved in releasing Rpn10 from the proteasome. Indeed, ubiquitylation on immobilized proteasomes dissociates the modified Rpn10 from the complex, while unmodified Rpn10 mainly remains associated. In vivo experiments indicate that contrary to wild type, Rpn10-K84R is stably associated with the proteasomal subunit Rpn9. Similarly Rpn10, but not ubiquitylated-Rpn10, binds Rpn9 in vitro. Thus we suggest that ubiquitylation functions to dissociate modified ubiquitin receptors from their targets, a function that promotes cyclic activity of ubiquitin receptors. Ubiquitin (Ub) receptors are responsible for the recognition of ubiquitylated proteins. Here the authors describe the crystal structure of the ubiquitylated form of the Ub-receptor Rpn10, which suggest that ubiquitylation of Rpn10 promotes its dissociation from the proteasome.
Collapse
|
19
|
Cohen-Kaplan V, Livneh I, Avni N, Cohen-Rosenzweig C, Ciechanover A. The ubiquitin-proteasome system and autophagy: Coordinated and independent activities. Int J Biochem Cell Biol 2016; 79:403-418. [DOI: 10.1016/j.biocel.2016.07.019] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 07/13/2016] [Accepted: 07/18/2016] [Indexed: 01/10/2023]
|
20
|
The life cycle of the 26S proteasome: from birth, through regulation and function, and onto its death. Cell Res 2016; 26:869-85. [PMID: 27444871 PMCID: PMC4973335 DOI: 10.1038/cr.2016.86] [Citation(s) in RCA: 233] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The 26S proteasome is a large, ∼2.5 MDa, multi-catalytic ATP-dependent protease complex that serves as the degrading arm of the ubiquitin system, which is the major pathway for regulated degradation of cytosolic, nuclear and membrane proteins in all eukaryotic organisms.
Collapse
|
21
|
Shi Y, Chen X, Elsasser S, Stocks BB, Tian G, Lee BH, Shi Y, Zhang N, de Poot SAH, Tuebing F, Sun S, Vannoy J, Tarasov SG, Engen JR, Finley D, Walters KJ. Rpn1 provides adjacent receptor sites for substrate binding and deubiquitination by the proteasome. Science 2016; 351:351/6275/aad9421. [PMID: 26912900 DOI: 10.1126/science.aad9421] [Citation(s) in RCA: 221] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Hundreds of pathways for degradation converge at ubiquitin recognition by a proteasome. Here, we found that the five known proteasomal ubiquitin receptors in yeast are collectively nonessential for ubiquitin recognition and identified a sixth receptor, Rpn1. A site ( T1: ) in the Rpn1 toroid recognized ubiquitin and ubiquitin-like ( UBL: ) domains of substrate shuttling factors. T1 structures with monoubiquitin or lysine 48 diubiquitin show three neighboring outer helices engaging two ubiquitins. T1 contributes a distinct substrate-binding pathway with preference for lysine 48-linked chains. Proximal to T1 within the Rpn1 toroid is a second UBL-binding site ( T2: ) that assists in ubiquitin chain disassembly, by binding the UBL of deubiquitinating enzyme Ubp6. Thus, a two-site recognition domain intrinsic to the proteasome uses distinct ubiquitin-fold ligands to assemble substrates, shuttling factors, and a deubiquitinating enzyme.
Collapse
Affiliation(s)
- Yuan Shi
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | - Xiang Chen
- Protein Processing Section, Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Suzanne Elsasser
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | - Bradley B Stocks
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA
| | - Geng Tian
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | - Byung-Hoon Lee
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | - Yanhong Shi
- Protein Processing Section, Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA. Department of Analytical Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P. R. China
| | - Naixia Zhang
- Department of Analytical Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P. R. China
| | - Stefanie A H de Poot
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | - Fabian Tuebing
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | - Shuangwu Sun
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | - Jacob Vannoy
- Protein Processing Section, Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA. Linganore High School, Frederick, MD 21701, USA
| | - Sergey G Tarasov
- Biophysics Resource, Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - John R Engen
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA.
| | - Daniel Finley
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA.
| | - Kylie J Walters
- Protein Processing Section, Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA.
| |
Collapse
|
22
|
Nagels Durand A, Pauwels L, Goossens A. The Ubiquitin System and Jasmonate Signaling. PLANTS 2016; 5:plants5010006. [PMID: 27135226 PMCID: PMC4844421 DOI: 10.3390/plants5010006] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 12/21/2015] [Accepted: 12/28/2015] [Indexed: 01/04/2023]
Abstract
The ubiquitin (Ub) system is involved in most, if not all, biological processes in eukaryotes. The major specificity determinants of this system are the E3 ligases, which bind and ubiquitinate specific sets of proteins and are thereby responsible for target recruitment to the proteasome or other cellular processing machineries. The Ub system contributes to the regulation of the production, perception and signal transduction of plant hormones. Jasmonic acid (JA) and its derivatives, known as jasmonates (JAs), act as signaling compounds regulating plant development and plant responses to various biotic and abiotic stress conditions. We provide here an overview of the current understanding of the Ub system involved in JA signaling.
Collapse
Affiliation(s)
- Astrid Nagels Durand
- Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, B-9052 Ghent, Belgium.
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium.
| | - Laurens Pauwels
- Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, B-9052 Ghent, Belgium.
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium.
| | - Alain Goossens
- Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, B-9052 Ghent, Belgium.
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium.
| |
Collapse
|
23
|
Isasa M, Suñer C, Díaz M, Puig-Sàrries P, Zuin A, Bichman A, Gygi SP, Rebollo E, Crosas B. Cold Temperature Induces the Reprogramming of Proteolytic Pathways in Yeast. J Biol Chem 2015; 291:1664-1675. [PMID: 26601941 DOI: 10.1074/jbc.m115.698662] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Indexed: 11/06/2022] Open
Abstract
Despite much evidence of the involvement of the proteasome-ubiquitin signaling system in temperature stress response, the dynamics of the ubiquitylome during cold response has not yet been studied. Here, we have compared quantitative ubiquitylomes from a strain deficient in proteasome substrate recruitment and a reference strain during cold response. We have observed that a large group of proteins showing increased ubiquitylation in the proteasome mutant at low temperature is comprised by reverses suppressor of Ty-phenotype 5 (Rsp5)-regulated plasma membrane proteins. Analysis of internalization and degradation of plasma membrane proteins at low temperature showed that the proteasome becomes determinant for this process, whereas, at 30 °C, the proteasome is dispensable. Moreover, our observations indicate that proteasomes have increased capacity to interact with lysine 63-polyubiquitylated proteins during low temperature in vivo. These unanticipated observations indicate that, during cold response, there is a proteolytic cellular reprogramming in which the proteasome acquires a role in the endocytic-vacuolar pathway.
Collapse
Affiliation(s)
- Marta Isasa
- From the Institut de Biologia Molecular de Barcelona, Consejo Superior de Investigaciones Científicas, Barcelona Science Park, Baldiri i Reixac 15-21, 08028 Barcelona, Spain and; Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115
| | - Clara Suñer
- From the Institut de Biologia Molecular de Barcelona, Consejo Superior de Investigaciones Científicas, Barcelona Science Park, Baldiri i Reixac 15-21, 08028 Barcelona, Spain and
| | - Miguel Díaz
- From the Institut de Biologia Molecular de Barcelona, Consejo Superior de Investigaciones Científicas, Barcelona Science Park, Baldiri i Reixac 15-21, 08028 Barcelona, Spain and
| | - Pilar Puig-Sàrries
- From the Institut de Biologia Molecular de Barcelona, Consejo Superior de Investigaciones Científicas, Barcelona Science Park, Baldiri i Reixac 15-21, 08028 Barcelona, Spain and
| | - Alice Zuin
- From the Institut de Biologia Molecular de Barcelona, Consejo Superior de Investigaciones Científicas, Barcelona Science Park, Baldiri i Reixac 15-21, 08028 Barcelona, Spain and
| | - Anne Bichman
- From the Institut de Biologia Molecular de Barcelona, Consejo Superior de Investigaciones Científicas, Barcelona Science Park, Baldiri i Reixac 15-21, 08028 Barcelona, Spain and
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115
| | - Elena Rebollo
- From the Institut de Biologia Molecular de Barcelona, Consejo Superior de Investigaciones Científicas, Barcelona Science Park, Baldiri i Reixac 15-21, 08028 Barcelona, Spain and
| | - Bernat Crosas
- From the Institut de Biologia Molecular de Barcelona, Consejo Superior de Investigaciones Científicas, Barcelona Science Park, Baldiri i Reixac 15-21, 08028 Barcelona, Spain and.
| |
Collapse
|
24
|
Xu J, Xing S, Cui H, Chen X, Wang X. Genome-wide identification and characterization of the apple (Malus domestica) HECT ubiquitin-protein ligase family and expression analysis of their responsiveness to abiotic stresses. Mol Genet Genomics 2015; 291:635-46. [PMID: 26510744 DOI: 10.1007/s00438-015-1129-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 10/04/2015] [Indexed: 02/04/2023]
Abstract
The ubiquitin-protein ligases (E3s) directly participate in ubiquitin (Ub) transferring to the target proteins in the ubiquitination pathway. The HECT ubiquitin-protein ligase (UPL), one type of E3s, is characterized as containing a conserved HECT domain of approximately 350 amino acids in the C terminus. Some UPLs were found to be involved in trichome development and leaf senescence in Arabidopsis. However, studies on plant UPLs, such as characteristics of the protein structure, predicted functional motifs of the HECT domain, and the regulatory expression of UPLs have all been limited. Here, we present genome-wide identification of the genes encoding UPLs (HECT gene) in apple. The 13 genes (named as MdUPL1-MdUPL13) from ten different chromosomes were divided into four groups by phylogenetic analysis. Among these groups, the encoding genes in the intron-exon structure and the included additional functional domains were quite different. Notably, the F-box domain was first found in MdUPL7 in plant UPLs. The HECT domain in different MdUPL groups also presented different spatial features and three types of conservative motifs were identified. The promoters of each MdUPL member carried multiple stress-response related elements by cis-acting element analysis. Experimental results demonstrated that the expressions of several MdUPLs were quite sensitive to cold-, drought-, and salt-stresses by qRT-PCR assay. The results of this study helped to elucidate the functions of HECT proteins, especially in Rosaceae plants.
Collapse
Affiliation(s)
- Jianing Xu
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Taian, 271018, Shandong, People's Republic of China
- Jinan Academy of Agricultural Sciences, Jinan, 250316, Shandong, People's Republic of China
| | - Shanshan Xing
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Taian, 271018, Shandong, People's Republic of China
| | - Haoran Cui
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Taian, 271018, Shandong, People's Republic of China
| | - Xuesen Chen
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Taian, 271018, Shandong, People's Republic of China.
| | - Xiaoyun Wang
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Taian, 271018, Shandong, People's Republic of China.
| |
Collapse
|
25
|
Rpn10 monoubiquitination orchestrates the association of the ubiquilin-type DSK2 receptor with the proteasome. Biochem J 2015; 472:353-65. [PMID: 26450923 DOI: 10.1042/bj20150609] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 10/07/2015] [Indexed: 11/17/2022]
Abstract
Despite the progress made in understanding the roles of proteasome polyubiquitin receptors, such as the subunits Rpn10 (regulatory particle non-ATPase 10) and Rpn13, and the transient interactors Rad23 (radiation sensitivity abnormal 23) and Dsk2 (dual-specificity protein kinase 2), the mechanisms involved in their regulation are virtually unknown. Rpn10, which is found in the cell in proteasome-bound and -unbound pools, interacts with Dsk2, and this interaction has been proposed to regulate the amount of Dsk2 that gains access to the proteasome. Rpn10 monoubiquitination has emerged as a conserved mechanism with a strong effect on Rpn10 function. In the present study, we show that functional yeast proteasomes have the capacity to associate and dissociate with Rpn10 and that Rpn10 monoubiquitination decreases the Rpn10-proteasome and Rpn10-Dsk2 associations. Remarkably, this process facilitates the formation of Dsk2-proteasomes in vivo. Therefore, Rpn10 monoubiquitination acts as mechanism that serves to switch the proteasome from an 'Rpn10 high/Dsk2 low' state to an 'Rpn10 low/Dsk2 high' state. Interestingly, Rpn10-ubiquitin, with an inactivated ubiquitin-interacting motif (UIM), and Dsk2(I45S), with an inactive ubiquitin-like domain (UBL), show temperature-dependent phenotypes with multiple functional interactions.
Collapse
|
26
|
An intrinsically disordered region of RPN10 plays a key role in restricting ubiquitin chain elongation in RPN10 monoubiquitination. Biochem J 2015. [DOI: 10.1042/bj20141571] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The proteasomal ubiquitin receptor Rpn10 (regulatory particle non-ATPase 10) is monoubiquitinated by Rsp5 (reverses SPT-phenotype protein 5). We show that a disordered region flanking the ubiquitin-interacting motif of Rpn10 is required for restricting polyubiquitination in the process of Rpn10 monoubiquitination. A novel role of an unstructured protein domain in controlling ubiquitin chain elongation is proposed.
Collapse
|
27
|
Marshall RS, Li F, Gemperline DC, Book AJ, Vierstra RD. Autophagic Degradation of the 26S Proteasome Is Mediated by the Dual ATG8/Ubiquitin Receptor RPN10 in Arabidopsis. Mol Cell 2015; 58:1053-66. [PMID: 26004230 DOI: 10.1016/j.molcel.2015.04.023] [Citation(s) in RCA: 323] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 03/19/2015] [Accepted: 04/17/2015] [Indexed: 02/02/2023]
Abstract
Autophagic turnover of intracellular constituents is critical for cellular housekeeping, nutrient recycling, and various aspects of growth and development in eukaryotes. Here we show that autophagy impacts the other major degradative route involving the ubiquitin-proteasome system by eliminating 26S proteasomes, a process we termed proteaphagy. Using Arabidopsis proteasomes tagged with GFP, we observed their deposition into vacuoles via a route requiring components of the autophagy machinery. This transport can be initiated separately by nitrogen starvation and chemical or genetic inhibition of the proteasome, implying distinct induction mechanisms. Proteasome inhibition stimulates comprehensive ubiquitylation of the complex, with the ensuing proteaphagy requiring the proteasome subunit RPN10, which can simultaneously bind both ATG8 and ubiquitin. Collectively, we propose that Arabidopsis RPN10 acts as a selective autophagy receptor that targets inactive 26S proteasomes by concurrent interactions with ubiquitylated proteasome subunits/targets and lipidated ATG8 lining the enveloping autophagic membranes.
Collapse
Affiliation(s)
- Richard S Marshall
- Department of Genetics, University of Wisconsin-Madison, 425 Henry Mall, Madison, WI 53706, USA
| | - Faqiang Li
- Department of Genetics, University of Wisconsin-Madison, 425 Henry Mall, Madison, WI 53706, USA
| | - David C Gemperline
- Department of Genetics, University of Wisconsin-Madison, 425 Henry Mall, Madison, WI 53706, USA
| | - Adam J Book
- Department of Genetics, University of Wisconsin-Madison, 425 Henry Mall, Madison, WI 53706, USA
| | - Richard D Vierstra
- Department of Genetics, University of Wisconsin-Madison, 425 Henry Mall, Madison, WI 53706, USA.
| |
Collapse
|
28
|
Sinha A, Datta SP, Ray A, Sarkar S. A reduced VWA domain-containing proteasomal ubiquitin receptor of Giardia lamblia localizes to the flagellar pore regions in microtubule-dependent manner. Parasit Vectors 2015; 8:120. [PMID: 25888841 PMCID: PMC4352536 DOI: 10.1186/s13071-015-0737-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 02/13/2015] [Indexed: 11/22/2022] Open
Abstract
Background Giardia lamblia switches its lifecycle between trophozoite and cyst forms and the proteasome plays a pivotal role in this switching event. Compared to most model eukaryotes, the proteasome of this parasite has already been documented to have certain variations. This study was undertaken to characterize the ubiquitin receptor, GlRpn10, of the 19S regulatory particle of the Giardia proteasome and determine its cellular localization in trophozoites, encysting trophozoites and cysts. Method Sequence alignment and domain architecture analyses were performed to characterize GlRpn10. In vitro ubiquitin binding assay, functional complementation and biochemical studies verified the protein’s ability to function as ubiquitin receptor in the context of the yeast proteasome. Immunofluorescence localization was performed with antibody against GlRpn10 to determine its distribution in trophozoites, encysting trophozoites and cysts. Real-time PCR and Western blotting were performed to monitor the expression pattern of GlRpn10 during encystation. Result GlRpn10 contained a functional ubiquitin interacting motif, which was capable of binding to ubiquitin. Although it contained a truncated VWA domain, it was still capable of partially complementing the function of the yeast Rpn10 orthologue. Apart from localizing to the nucleus and cytosol, GlRpn10 was also present at flagellar pores of trophozoites and this localization was microtubule-dependent. Although there was no change in the cellular levels of GlRpn10 during encystation, its selective distribution at the flagellar pores was absent. Conclusion GlRpn10 contains a noncanonical VWA domain that is partially functional in yeast. Besides the expected nuclear and cytosolic distribution, the protein displays microtubule-dependent flagellar pore localization in trophozoites. While the protein remained in the nucleus and cytosol in encysting trophozoites, it could no longer be detected at the flagellar pores. This absence at the flagellar pore regions in encysting trophozoites is likely to involve redistribution of the protein, rather than decreased gene expression or selective protein degradation. Electronic supplementary material The online version of this article (doi:10.1186/s13071-015-0737-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Abhishek Sinha
- Department of Biochemistry, Bose Institute, P 1/12, C. I. T. Road, Scheme - VII M, Kolkata, 700054, West Bengal, India.
| | - Shankari Prasad Datta
- Department of Biochemistry, Bose Institute, P 1/12, C. I. T. Road, Scheme - VII M, Kolkata, 700054, West Bengal, India.
| | - Atrayee Ray
- Department of Biochemistry, Bose Institute, P 1/12, C. I. T. Road, Scheme - VII M, Kolkata, 700054, West Bengal, India.
| | - Srimonti Sarkar
- Department of Biochemistry, Bose Institute, P 1/12, C. I. T. Road, Scheme - VII M, Kolkata, 700054, West Bengal, India.
| |
Collapse
|
29
|
Angelman syndrome-associated ubiquitin ligase UBE3A/E6AP mutants interfere with the proteolytic activity of the proteasome. Cell Death Dis 2015; 6:e1625. [PMID: 25633294 PMCID: PMC4669770 DOI: 10.1038/cddis.2014.572] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 11/25/2014] [Accepted: 11/26/2014] [Indexed: 11/08/2022]
Abstract
Angelman syndrome, a severe neurodevelopmental disease, occurs primarily due to genetic defects, which cause lack of expression or mutations in the wild-type E6AP/UBE3A protein. A proportion of the Angelman syndrome patients bear UBE3A point mutations, which do not interfere with the expression of the full-length protein, however, these individuals still develop physiological conditions of the disease. Interestingly, most of these mutations are catalytically defective, thereby indicating the importance of UBE3A enzymatic activity role in the Angelman syndrome pathology. In this study, we show that Angelman syndrome-associated mutants interact strongly with the proteasome via the S5a proteasomal subunit, resulting in an overall inhibitory effect on the proteolytic activity of the proteasome. Our results suggest that mutated catalytically inactive forms of UBE3A may cause defects in overall proteasome function, which could have an important role in the Angelman syndrome pathology.
Collapse
|
30
|
Piterman R, Braunstein I, Isakov E, Ziv T, Navon A, Cohen S, Stanhill A. VWA domain of S5a restricts the ability to bind ubiquitin and Ubl to the 26S proteasome. Mol Biol Cell 2014; 25:3988-98. [PMID: 25318673 PMCID: PMC4263443 DOI: 10.1091/mbc.e13-11-0697] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The only stoichiometric proteasomal subunit found to reside outside the proteasome is the ubiquitin receptor S5a. S5a-dependent binding of substrates and shuttle factors is restricted to occur only on the proteasome, thus increasing efficiency of substrate degradation by the 26S proteasome. The 26S proteasome recognizes a vast number of ubiquitin-dependent degradation signals linked to various substrates. This recognition is mediated mainly by the stoichiometric proteasomal resident ubiquitin receptors S5a and Rpn13, which harbor ubiquitin-binding domains. Regulatory steps in substrate binding, processing, and subsequent downstream proteolytic events by these receptors are poorly understood. Here we demonstrate that mammalian S5a is present in proteasome-bound and free states. S5a is required for efficient proteasomal degradation of polyubiquitinated substrates and the recruitment of ubiquitin-like (Ubl) harboring proteins; however, S5a-mediated ubiquitin and Ubl binding occurs only on the proteasome itself. We identify the VWA domain of S5a as a domain that limits ubiquitin and Ubl binding to occur only upon proteasomal association. Multiubiquitination events within the VWA domain can further regulate S5a association. Our results provide a molecular explanation to how ubiquitin and Ubl binding to S5a is restricted to the 26S proteasome.
Collapse
Affiliation(s)
- Ravit Piterman
- Department of Biochemistry, Rappaport Family Institute for Research in the Medical Sciences, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Ilana Braunstein
- Department of Biochemistry, Rappaport Family Institute for Research in the Medical Sciences, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Elada Isakov
- Department of Biochemistry, Rappaport Family Institute for Research in the Medical Sciences, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Tamar Ziv
- Smoler Proteomics Center, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Ami Navon
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Shenhav Cohen
- Department of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Ariel Stanhill
- Department of Biochemistry, Rappaport Family Institute for Research in the Medical Sciences, Technion-Israel Institute of Technology, Haifa 31096, Israel
| |
Collapse
|
31
|
Callis J. The ubiquitination machinery of the ubiquitin system. THE ARABIDOPSIS BOOK 2014; 12:e0174. [PMID: 25320573 PMCID: PMC4196676 DOI: 10.1199/tab.0174] [Citation(s) in RCA: 243] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The protein ubiquitin is a covalent modifier of proteins, including itself. The ubiquitin system encompasses the enzymes required for catalysing attachment of ubiquitin to substrates as well as proteins that bind to ubiquitinated proteins leading them to their final fate. Also included are activities that remove ubiquitin independent of, or in concert with, proteolysis of the substrate, either by the proteasome or proteases in the vacuole. In addition to ubiquitin encoded by a family of fusion proteins, there are proteins with ubiquitin-like domains, likely forming ubiquitin's β-grasp fold, but incapable of covalent modification. However, they serve as protein-protein interaction platforms within the ubiquitin system. Multi-gene families encode all of these types of activities. Within the ubiquitination machinery "half" of the ubiquitin system are redundant, partially redundant, and unique components affecting diverse developmental and environmental responses in plants. Notably, multiple aspects of biotic and abiotic stress responses require, or are modulated by, ubiquitination. Finally, aspects of the ubiquitin system have broad utility: as components to enhance gene expression or to regulate protein abundance. This review focuses on the ubiquitination machinery: ubiquitin, unique aspects about the synthesis of ubiquitin and organization of its gene family, ubiquitin activating enzymes (E1), ubiquitin conjugating enzymes (E2) and ubiquitin ligases, or E3s. Given the large number of E3s in Arabidopsis this review covers the U box, HECT and RING type E3s, with the exception of the cullin-based E3s.
Collapse
Affiliation(s)
- Judy Callis
- Department of Molecular and Cellular Biology, University of California-Davis, Davis CA 95616
| |
Collapse
|
32
|
A novel interplay between the ubiquitin–proteasome system and serine proteases during Drosophila development. Biochem J 2013; 454:571-83. [PMID: 23805892 DOI: 10.1042/bj20130040] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 06/26/2013] [Accepted: 06/28/2013] [Indexed: 11/17/2022]
Abstract
The concentrations of the Drosophila proteasomal and extraproteasomal polyubiquitin receptors fluctuate in a developmentally regulated fashion. This fluctuation is generated by a previously unidentified proteolytic activity. In the present paper, we describe the purification, identification and characterization of this protease (endoproteinase I). Its expression increases sharply at the L1-L2 larval stages, remains high until the second half of the L3 stage, then declines dramatically. This sharp decrease coincides precisely with the increase of polyubiquitin receptor concentrations in late L3 larvae, which suggests a tight developmental co-regulation. RNAi-induced down-regulation of endoproteinase I results in pupal lethality. Interestingly, we found a cross-talk between the 26S proteasome and this larval protease: transgenic overexpression of the in vivo target of endoproteinase I, the C-terminal half of the proteasomal polyubiquitin receptor subunit p54/Rpn10 results in transcriptional down-regulation of endoproteinase I and consequently a lower level of proteolytic elimination of the polyubiquitin receptors. Another larval protease, Jonah65A-IV, which degrades only unfolded proteins and exhibits similar cross-talk with the proteasome has also been purified and characterized. It may prevent the accumulation of polyubiquitylated proteins in larvae contrary to the low polyubiquitin receptor concentration.
Collapse
|
33
|
Sparks A, Dayal S, Das J, Robertson P, Menendez S, Saville MK. The degradation of p53 and its major E3 ligase Mdm2 is differentially dependent on the proteasomal ubiquitin receptor S5a. Oncogene 2013; 33:4685-96. [PMID: 24121268 PMCID: PMC4051618 DOI: 10.1038/onc.2013.413] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Revised: 07/10/2013] [Accepted: 08/09/2013] [Indexed: 01/24/2023]
Abstract
p53 and its major E3 ligase Mdm2 are both ubiquitinated and targeted to the proteasome for degradation. Despite the importance of this in regulating the p53 pathway, little is known about the mechanisms of proteasomal recognition of ubiquitinated p53 and Mdm2. In this study, we show that knockdown of the proteasomal ubiquitin receptor S5a/PSMD4/Rpn10 inhibits p53 protein degradation and results in the accumulation of ubiquitinated p53. Overexpression of a dominant-negative deletion of S5a lacking its ubiquitin-interacting motifs (UIM)s, but which can be incorporated into the proteasome, also causes the stabilization of p53. Furthermore, small-interferring RNA (siRNA) rescue experiments confirm that the UIMs of S5a are required for the maintenance of low p53 levels. These observations indicate that S5a participates in the recognition of ubiquitinated p53 by the proteasome. In contrast, targeting S5a has no effect on the rate of degradation of Mdm2, indicating that proteasomal recognition of Mdm2 can be mediated by an S5a-independent pathway. S5a knockdown results in an increase in the transcriptional activity of p53. The selective stabilization of p53 and not Mdm2 provides a mechanism for p53 activation. Depletion of S5a causes a p53-dependent decrease in cell proliferation, demonstrating that p53 can have a dominant role in the response to targeting S5a. This study provides evidence for alternative pathways of proteasomal recognition of p53 and Mdm2. Differences in recognition by the proteasome could provide a means to modulate the relative stability of p53 and Mdm2 in response to cellular signals. In addition, they could be exploited for p53-activating therapies. This work shows that the degradation of proteins by the proteasome can be selectively dependent on S5a in human cells, and that this selectivity can extend to an E3 ubiquitin ligase and its substrate.
Collapse
Affiliation(s)
- A Sparks
- Division of Cancer Research, Medical Research Institute, Jacqui Wood Cancer Centre, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - S Dayal
- Division of Cancer Research, Medical Research Institute, Jacqui Wood Cancer Centre, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - J Das
- Division of Cancer Research, Medical Research Institute, Jacqui Wood Cancer Centre, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - P Robertson
- Division of Molecular Medicine, College of Life Sciences, University of Dundee, Dundee, UK
| | - S Menendez
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
| | - M K Saville
- Division of Cancer Research, Medical Research Institute, Jacqui Wood Cancer Centre, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| |
Collapse
|
34
|
Abstract
The plant cytotoxin ricin enters mammalian cells by receptor-mediated endocytosis, undergoing retrograde transport to the ER (endoplasmic reticulum) where its catalytic A chain (RTA) is reductively separated from the holotoxin to enter the cytosol and inactivate ribosomes. The currently accepted model is that the bulk of ER-dislocated RTA is degraded by proteasomes. We show in the present study that the proteasome has a more complex role in ricin intoxication than previously recognized, that the previously reported increase in sensitivity of mammalian cells to ricin in the presence of proteasome inhibitors simply reflects toxicity of the inhibitors themselves, and that RTA is a very poor substrate for proteasomal degradation. Denatured RTA and casein compete for a binding site on the regulatory particle of the 26S proteasome, but their fates differ. Casein is degraded, but the mammalian 26S proteasome AAA (ATPase associated with various cellular activities)-ATPase subunit RPT5 acts as a chaperone that prevents aggregation of denatured RTA and stimulates recovery of catalytic RTA activity in vitro. Furthermore, in vivo, the ATPase activity of Rpt5p is required for maximal toxicity of RTA dislocated from the Saccharomyces cerevisiae ER. The results of the present study implicate RPT5/Rpt5p in the triage of substrates in which either activation (folding) or inactivation (degradation) pathways may be initiated.
Collapse
|
35
|
Structural and functional characterization of Rpn12 identifies residues required for Rpn10 proteasome incorporation. Biochem J 2013; 448:55-65. [PMID: 22906049 PMCID: PMC3481250 DOI: 10.1042/bj20120542] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The ubiquitin–proteasome system targets selected proteins for degradation by the 26S proteasome. Rpn12 is an essential component of the 19S regulatory particle and plays a role in recruiting the extrinsic ubiquitin receptor Rpn10. In the present paper we report the crystal structure of Rpn12, a proteasomal PCI-domain-containing protein. The structure helps to define a core structural motif for the PCI domain and identifies potential sites through which Rpn12 might form protein–protein interactions. We demonstrate that mutating residues at one of these sites impairs Rpn12 binding to Rpn10 in vitro and reduces Rpn10 incorporation into proteasomes in vivo.
Collapse
|
36
|
Medina B, Paraskevopoulos K, Boehringer J, Sznajder A, Robertson M, Endicott J, Gordon C. The ubiquitin-associated (UBA) 1 domain of Schizosaccharomyces pombe Rhp23 is essential for the recognition of ubiquitin-proteasome system substrates both in vitro and in vivo. J Biol Chem 2012; 287:42344-51. [PMID: 23038266 PMCID: PMC3516777 DOI: 10.1074/jbc.m112.419838] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Indexed: 11/06/2022] Open
Abstract
The ubiquitin-proteasome system is essential for maintaining a functional cell. Not only does it remove incorrectly folded proteins, it also regulates protein levels to ensure their appropriate spatial and temporal distribution. Proteins marked for degradation by the addition of Lys(48)-linked ubiquitin (Ub) chains are recognized by shuttle factors and transported to the 26 S proteasome. One of these shuttle factors, Schizosaccharomyces pombe Rhp23, has an unusual domain architecture. It comprises an N-terminal ubiquitin-like domain that can recognize the proteasome followed by two ubiquitin-associated (UBA) domains, termed UBA1 and UBA2, which can bind Ub. This architecture is conserved up to humans, suggesting that both domains are important for Rhp23 function. Such an extent of conservation raises the question as to why, in contrast to all other shuttle proteins, does Rhp23 require two UBA domains? We performed in vitro Ub binding assays using domain swap chimeric proteins and mutated domains in isolation as well as in the context of the full-length protein to reveal that the Ub binding properties of the UBA domains are context-dependent. In vivo, the internal Rhp23 UBA1 domain provides sufficient Ub recognition for the protein to function without UBA2.
Collapse
Affiliation(s)
- Bethan Medina
- From the Medical Research Council Human Genetics Unit, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, Scotland, United Kingdom and
| | - Konstantinos Paraskevopoulos
- From the Medical Research Council Human Genetics Unit, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, Scotland, United Kingdom and
| | - Jonas Boehringer
- Laboratory of Molecular Biophysics, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Anna Sznajder
- From the Medical Research Council Human Genetics Unit, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, Scotland, United Kingdom and
| | - Morag Robertson
- From the Medical Research Council Human Genetics Unit, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, Scotland, United Kingdom and
| | - Jane Endicott
- Laboratory of Molecular Biophysics, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Colin Gordon
- From the Medical Research Council Human Genetics Unit, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, Scotland, United Kingdom and
| |
Collapse
|
37
|
Keren-Kaplan T, Prag G. Purification and crystallization of mono-ubiquitylated ubiquitin receptor Rpn10. Acta Crystallogr Sect F Struct Biol Cryst Commun 2012; 68:1120-3. [PMID: 22949210 PMCID: PMC3433213 DOI: 10.1107/s1744309112034331] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2012] [Accepted: 08/01/2012] [Indexed: 01/23/2023]
Abstract
Protein ubiquitylation controls nearly all cellular pathways in eukaryotes. A repertoire of proteins named ubiquitin (Ub) receptors harbouring ubiquitin-binding domains (UBDs) recognize ubiquitylated proteins. These Ub receptors decode the Ub signal by tethering a UBD or UBDs to a functional domain or domains, thus linking the ubiquitylated target to a specific function. The rapid dynamics of ubiquitylation/deubiquitylation has impeded the characterization of ubiquitylated proteins. To bypass this obstacle, a recently developed synthetic system that reconstructs the entire eukaryotic ubiquitylation cascade in Escherichia coli was used to purify the mono-ubiquitylated form of the regulatory proteasomal non-ATPase subunit (Ub-Rpn10) from Saccharomyces cerevisiae. Here, the first crystallization and data collection of Ub-Rpn10 is reported. Purified Ub-Rpn10 was crystallized in 12%(w/v) PEG 20,000, 0.1 M MES pH 6.5 and yielded thin rhombus-shaped crystals. X-ray analysis revealed that these crystals belonged to the monoclinic system C2, with unit-cell parameters a = 107.3, b = 49.7, c = 81.3 Å, α = γ = 90.0, β = 130.5°. A full synchrotron data set has been collected, merged and scaled with a diffraction limit of 3.14 Å.
Collapse
Affiliation(s)
- Tal Keren-Kaplan
- Department of Biochemistry and Molecular Biology and The Institute for Structural Biology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Gali Prag
- Department of Biochemistry and Molecular Biology and The Institute for Structural Biology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
38
|
Lin YL, Fu H. In vivo relevance of substrate recognition function of major Arabidopsis ubiquitin receptors. PLANT SIGNALING & BEHAVIOR 2012; 7:722-727. [PMID: 22751321 PMCID: PMC3583950 DOI: 10.4161/psb.20360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Ubiquitylation marks proteins for destruction by the 26S proteasome. These signals are deciphered and targeted by distinct direct and indirect pathways involving a set of evolutionarily conserved ubiquitin receptors. Although biochemical and structural studies have revealed the mechanistic complexity of these substrate recognition pathways, conclusive evidence of the in vivo relevance of their substrate recognition function is currently not available. We recently showed that the structural elements involved in substrate recognition are not responsible for the important roles of the ubiquitin receptor RPN10 in vegetative and reproductive growth or for the abundance of the two-capped proteasomes (RP2-CP). Moreover, Arabidopsis plants subjected to severe knockdown or knockout any of the major ubiquitin receptors displayed wild-type phenotypes. Our results clearly suggest a functional redundancy of the major Arabidopsis ubiquitin receptors, and this evolved multiplicity is probably used to secure the substrates delivery. Based on the reduced abundance of RP2-CP in rpn10-2 and a role of RPN10 in lid-base association, a structural role of RPN10 in 26S proteasome stability is likely to be more relevant in vivo. Further efforts using structural and functional analyses in higher-order mutants to identify the specific biological functions of substrate recognition for the major Arabidopsis ubiquitin receptors are described here.
Collapse
Affiliation(s)
- Ya-Ling Lin
- Institute of Plant and Microbial Biology; Academia Sinica; Taipei, Taiwan
- Graduate Institute of Biotechnology; National Chung-Hsing University; Taichung, Taiwan
- Molecular and Biological Agricultural Sciences Program; Taiwan International Graduate Program; National Chung-Hsing University and Academia Sinica; Taipei, Taiwan
| | - Hongyong Fu
- Institute of Plant and Microbial Biology; Academia Sinica; Taipei, Taiwan
- Department of Life Sciences; National Chung-Hsing University; Taichung, Taiwan
| |
Collapse
|
39
|
Rani N, Aichem A, Schmidtke G, Kreft SG, Groettrup M. FAT10 and NUB1L bind to the VWA domain of Rpn10 and Rpn1 to enable proteasome-mediated proteolysis. Nat Commun 2012; 3:749. [DOI: 10.1038/ncomms1752] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Accepted: 02/16/2012] [Indexed: 11/09/2022] Open
|
40
|
Abstract
The assay of the activity of ubiquitin (Ub) ligases (E3s) and screens for pharmacological agents that alter their function are a continual challenge for basic investigators as well as in drug development. The assay of different E3s requires distinct detection methods and reagents (e.g., specific antibodies against each E3 or substrate). So, a single assay applicable to many E3s could be very useful. Here, we demonstrate that S5a/Rpn10 binds to the growing polyUb chain formed on a substrate (or on the Ub ligase during autoubiquitination) and then itself becomes extensively ubiquitinated. S5a thus can serve as a universal substrate for ubiquitination. This biochemical property of S5a provides a method for measuring the enzymatic activity of any E3. This approach is valuable when substrates are not known or not available and when multiple ubiquitination reactions are being studied (e.g., in high-throughput screens).
Collapse
Affiliation(s)
- Hyoung Tae Kim
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
41
|
Isasa M, Zuin A, Crosas B. Integration of multiple ubiquitin signals in proteasome regulation. Methods Mol Biol 2012; 910:337-70. [PMID: 22821603 DOI: 10.1007/978-1-61779-965-5_15] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The ubiquitin-proteasome system has emerged in the last decades as a new paradigm in cell physiology. Ubiquitin is found in fundamental levels of cell regulation, as a target for degradation to the proteasome or as a signal that controls protein function in a complex manner. Even though many aspects of the ubiquitin system remain unexplored, the contributions on the field uncover that ubiquitin represents one of the most sophisticated codes in cellular biology. The proteasome is an ATP-dependent protease that degrades a large number of protein substrates in the cell. The proteasome recruits substrates by a number of receptors that interact with polyubiquitin. Recently, it has been shown that one of these receptors, Rpn10, is regulated by monoubiquitination. In this chapter, we show an overview of the central aspects of the pathway and describe the methodology to characterize in vitro the monoubiquitination of proteasome subunits.
Collapse
Affiliation(s)
- Marta Isasa
- Proteasome Regulation Lab, Cell Biology Department, Institute of Molecular Biology of Barcelona (CSIC), Barcelona, Spain
| | | | | |
Collapse
|
42
|
Lee KH, Minami A, Marshall RS, Book AJ, Farmer LM, Walker JM, Vierstra RD. The RPT2 subunit of the 26S proteasome directs complex assembly, histone dynamics, and gametophyte and sporophyte development in Arabidopsis. THE PLANT CELL 2011; 23:4298-317. [PMID: 22158466 PMCID: PMC3269867 DOI: 10.1105/tpc.111.089482] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The regulatory particle (RP) of the 26S proteasome contains a heterohexameric ring of AAA-ATPases (RPT1-6) that unfolds and inserts substrates into the core protease (CP) for degradation. Through genetic analysis of the Arabidopsis thaliana gene pair encoding RPT2, we show that this subunit plays a critical role in 26S proteasome assembly, histone dynamics, and plant development. rpt2a rpt2b double null mutants are blocked in both male and female gamete transmission, demonstrating that the subunit is essential. Whereas rpt2b mutants are phenotypically normal, rpt2a mutants display a range of defects, including impaired leaf, root, trichome, and pollen development, delayed flowering, stem fasciation, hypersensitivity to mitomycin C and amino acid analogs, hyposensitivity to the proteasome inhibitor MG132, and decreased 26S complex stability. The rpt2a phenotype can be rescued by both RPT2a and RPT2b, indicative of functional redundancy, but not by RPT2a mutants altered in ATP binding/hydrolysis or missing the C-terminal hydrophobic sequence that docks the RPT ring onto the CP. Many rpt2a phenotypes are shared with mutants lacking the chromatin assembly factor complex CAF1. Like caf1 mutants, plants missing RPT2a or reduced in other RP subunits contain less histones, thus implicating RPT2 specifically, and the 26S proteasome generally, in plant nucleosome assembly.
Collapse
|
43
|
Lipinszki Z, Pál M, Nagy O, Deák P, Hunyadi-Gulyas E, Udvardy A. Overexpression of Dsk2/dUbqln results in severe developmental defects and lethality in Drosophila melanogaster that can be rescued by overexpression of the p54/Rpn10/S5a proteasomal subunit. FEBS J 2011; 278:4833-44. [DOI: 10.1111/j.1742-4658.2011.08383.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
44
|
Gomez TA, Kolawa N, Gee M, Sweredoski MJ, Deshaies RJ. Identification of a functional docking site in the Rpn1 LRR domain for the UBA-UBL domain protein Ddi1. BMC Biol 2011; 9:33. [PMID: 21627799 PMCID: PMC3126750 DOI: 10.1186/1741-7007-9-33] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Accepted: 05/31/2011] [Indexed: 11/10/2022] Open
Abstract
Background The proteasome is a multi-subunit protein machine that is the final destination for cellular proteins that have been marked for degradation via an ubiquitin (Ub) chain appendage. These ubiquitylated proteins either bind directly to the intrinsic proteasome ubiqutin chain receptors Rpn10, Rpn13, or Rpt5, or are shuttled to the proteasome by Rad23, Dsk2, or Ddi1. The latter proteins share an Ub association domain (UBA) for binding poly-Ub chains and an Ub-like-domain (UBL) for binding to the proteasome. It has been proposed that shuttling receptors dock on the proteasome via Rpn1, but the precise nature of the docking site remains poorly defined. Results To shed light on the recruitment of shuttling receptors to the proteasome, we performed both site-directed mutagenesis and genetic screening to identify mutations in Rpn1 that disrupt its binding to UBA-UBL proteins. Here we demonstrate that delivery of Ub conjugates and docking of Ddi1 (and to a lesser extent Dsk2) to the proteasome are strongly impaired by an aspartic acid to alanine point mutation in the highly-conserved D517 residue of Rpn1. Moreover, degradation of the Ddi1-dependent proteasome substrate, Ufo1, is blocked in rpn1-D517A yeast cells. By contrast, Rad23 recruitment to the proteasome is not affected by rpn1-D517A. Conclusions These studies provide insight into the mechanism by which the UBA-UBL protein Ddi1 is recruited to the proteasome to enable Ub-dependent degradation of its ligands. Our studies suggest that different UBA-UBL proteins are recruited to the proteasome by distinct mechanisms.
Collapse
Affiliation(s)
- Tara A Gomez
- Division of Biology, Beckman Institute, California Institute of Technology, Pasadena, CA 91125, USA
| | | | | | | | | |
Collapse
|
45
|
Henderson A, Erales J, Hoyt MA, Coffino P. Dependence of proteasome processing rate on substrate unfolding. J Biol Chem 2011; 286:17495-502. [PMID: 21454622 DOI: 10.1074/jbc.m110.212027] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein degradation by eukaryotic proteasomes is a multi-step process involving substrate recognition, ATP-dependent unfolding, translocation into the proteolytic core particle, and finally proteolysis. To date, most investigations of proteasome function have focused on the first and the last steps in this process. Here we examine the relationship between the stability of a folded protein domain and its degradation rate. Test proteins were targeted to the proteasome independently of ubiquitination by directly tethering them to the protease. Degradation kinetics were compared for test protein pairs whose stability was altered by either point mutation or ligand binding, but were otherwise identical. In both intact cells and in reactions using purified proteasomes and substrates, increased substrate stability led to an increase in substrate turnover time. The steady-state time for degradation ranged from ∼5 min (dihydrofolate reductase) to 40 min (I27 domain of titin). ATP turnover was 110/min./proteasome, and was not markedly changed by substrate. Proteasomes engage tightly folded substrates in multiple iterative rounds of ATP hydrolysis, a process that can be rate-limiting for degradation.
Collapse
Affiliation(s)
- Allen Henderson
- Department of Microbiology & Immunology, University of California, San Francisco, San Francisco, California 94127, USA
| | | | | | | |
Collapse
|
46
|
Tang X, Zhang ZY, Zhang WJ, Zhao XM, Li X, Zhang D, Liu QQ, Tang WH. Global gene profiling of laser-captured pollen mother cells indicates molecular pathways and gene subfamilies involved in rice meiosis. PLANT PHYSIOLOGY 2010; 154:1855-70. [PMID: 20959420 PMCID: PMC2996036 DOI: 10.1104/pp.110.161661] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Accepted: 10/15/2010] [Indexed: 05/19/2023]
Abstract
Pollen mother cells (PMCs) represent a critical early stage in plant sexual reproduction in which the stage is set for male gamete formation. Understanding the global molecular genetics of this early meiotic stage has so far been limited to whole stamen or floret transcriptome studies, but since PMCs are a discrete population of cells in developmental synchrony, they provide the potential for precise transcriptome analysis and for enhancing our understanding of the transition to meiosis. As a step toward identifying the premeiotic transcriptome, we performed microarray analysis on a homogenous population of rice (Oryza sativa) PMCs isolated by laser microdissection and compared them with those of tricellular pollen and seedling. Known meiotic genes, including OsSPO11-1, PAIR1, PAIR2, PAIR3, OsDMC1, OsMEL1, OsRAD21-4, OsSDS, and ZEP1, all showed preferential expression in PMCs. The Kyoto Encyclopedia of Genes and Genomes pathways significantly enriched in PMC-preferential genes are DNA replication and repair pathways. Our genome-wide survey showed that, in the buildup to meiosis, PMCs accumulate the molecular machinery for meiosis at the mRNA level. We identified 1,158 PMC-preferential genes and suggested candidate genes and pathways involved in meiotic recombination and meiotic cell cycle control. Regarding the developmental context for meiosis, the DEF-like, AGL2-like, and AGL6-like subclades of MADS box transcription factors are PMC-preferentially expressed, the trans-zeatin type of cytokinin might be preferentially synthesized, and the gibberellin signaling pathway is likely active in PMCs. The ubiquitin-mediated proteolysis pathway is enriched in the 127 genes that are expressed in PMCs but not in tricellular pollen or seedling.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Wei-Hua Tang
- National Key Laboratory of Plant Molecular Genetics (X.T., Z.-Y.Z., D.Z., W.-H.T.) and Key Laboratory of Synthetic Biology (X.L.), Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China; Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China (X.T., Q.-Q.L.); and Institute of Systems Biology, Shanghai University, Shanghai 200444, China (W.-J.Z., X.-M.Z.)
| |
Collapse
|
47
|
Riedinger C, Boehringer J, Trempe JF, Lowe ED, Brown NR, Gehring K, Noble MEM, Gordon C, Endicott JA. Structure of Rpn10 and its interactions with polyubiquitin chains and the proteasome subunit Rpn12. J Biol Chem 2010; 285:33992-4003. [PMID: 20739285 PMCID: PMC2962499 DOI: 10.1074/jbc.m110.134510] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Revised: 08/03/2010] [Indexed: 11/06/2022] Open
Abstract
Schizosaccharomyces pombe Rpn10 (SpRpn10) is a proteasomal ubiquitin (Ub) receptor located within the 19 S regulatory particle where it binds to subunits of both the base and lid subparticles. We have solved the structure of full-length SpRpn10 by determining the crystal structure of the von Willebrand factor type A domain and characterizing the full-length protein by NMR. We demonstrate that the single Ub-interacting motif (UIM) of SpRpn10 forms a 1:1 complex with Lys(48)-linked diUb, which it binds selectively over monoUb and Lys(63)-linked diUb. We further show that the SpRpn10 UIM binds to SpRpn12, a subunit of the lid subparticle, with an affinity comparable with Lys(48)-linked diUb. This is the first observation of a UIM binding other than a Ub fold and suggests that SpRpn12 could modulate the activity of SpRpn10 as a proteasomal Ub receptor.
Collapse
Affiliation(s)
- Christiane Riedinger
- From the Laboratory of Molecular Biophysics, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Jonas Boehringer
- From the Laboratory of Molecular Biophysics, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Jean-Francois Trempe
- the Department of Biochemistry, McGill University, 3655 Promenade Sir William Osler, Montreal, Quebec H3G 1Y6, Canada, and
| | - Edward D. Lowe
- From the Laboratory of Molecular Biophysics, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Nicholas R. Brown
- From the Laboratory of Molecular Biophysics, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Kalle Gehring
- the Department of Biochemistry, McGill University, 3655 Promenade Sir William Osler, Montreal, Quebec H3G 1Y6, Canada, and
| | - Martin E. M. Noble
- From the Laboratory of Molecular Biophysics, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Colin Gordon
- the Medical Research Council Human Genetics Unit, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, Scotland, United Kingdom
| | - Jane A. Endicott
- From the Laboratory of Molecular Biophysics, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| |
Collapse
|
48
|
Chandra A, Chen L, Madura K. Synthetic lethality of rpn11-1 rpn10Δ is linked to altered proteasome assembly and activity. Curr Genet 2010; 56:543-57. [PMID: 20941496 DOI: 10.1007/s00294-010-0321-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Revised: 09/08/2010] [Accepted: 09/08/2010] [Indexed: 11/26/2022]
Abstract
An rpn11-1 temperature-sensitive mutant shows defect in proteolysis, mitochondrial function and proteasome assembly. The Rpn11 protein is a proteasome subunit that deubiquitinates proteolytic substrates. Multiubiquitinated proteins interact with proteasome receptors, such as Rpn10, which intriguingly is also required for promoting proteasome stability. We report here that Rpn10 binds Rpn11, and genetic studies revealed synthetic lethality of an rpn11-1 rpn10Δ double mutant. The carboxy-terminus of Rpn11 is critical for function, as deletion of 7 C-terminal residues prevented suppression of rpn11-1 rpn10Δ. Native gel electrophoresis showed increased levels of the proteasome 20S catalytic particle in rpn11-1 rpn10Δ, and altered assembly. The inviability of rpn11-1 rpn10Δ was suppressed by rpn10(uim), a mutant that can bind the proteasome, but not multiubiquitin chains. rpn10(uim) reduced the levels of free 20S, and increased formation of intact proteasomes. In contrast, rpn10(vwa), which binds multiubiquitin chains but not the proteasome, failed to suppress rpn11-1 rpn10Δ. Moreover, high levels of multiubiquitinated proteins were bound to rpn10(vwa), but were not delivered to the proteasome. Based on these findings, we propose that the lethality of rpn11-1 rpn10Δ results primarily from altered proteasome integrity. It is conceivable that Rpn10/Rpn11 interaction couples proteasome assembly to substrate binding.
Collapse
Affiliation(s)
- Abhishek Chandra
- Department of Biochemistry, Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | | | | |
Collapse
|
49
|
Sun X, Meng X, Xu Z, Song R. Expression of the 26S proteasome subunit RPN10 is upregulated by salt stress in Dunaliella viridis. JOURNAL OF PLANT PHYSIOLOGY 2010; 167:1003-1008. [PMID: 20430475 DOI: 10.1016/j.jplph.2010.01.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Revised: 01/29/2010] [Accepted: 01/29/2010] [Indexed: 05/29/2023]
Abstract
Green algae of the genus Dunaliella can adapt to hypersaline environments and are considered model organisms for salinity tolerance. In an EST analysis in Dunaliella viridis under salt stress, we isolated a salt-inducible cDNA coding for the 26S proteasome subunit RPN10, designated DvRPN10. The DvRPN10 cDNA is 1472 bp and encodes a polypeptide of 377 amino acids. The DvRPN10 protein shares a high similarity to orthologs from other species. The function of DvRPN10 was confirmed by complementation of the yeast Deltarpn10 mutant. Q-PCR analysis of D. viridis cells grown in different salinities revealed that the transcript level of DvRPN10 increased in proportion to the external salinity within a range of 0.5-3 M NaCl, but decreased significantly at extremely high salinities (4-5 M NaCl). When a salinity shock of 1-3 M NaCl was applied to D. viridis cells, DvRPN10 mRNA levels remained steady during the first 36 h, and then gradually elevated to the level observed at 3 M NaCl. The gene structure of DvRPN10 was revealed by sequencing of a BAC clone containing this gene. Possible transcription factor binding sites related to stress tolerance were found in the promoter region of DvRPN10. The expression of DvRPN10 in response to the external salinity suggests that RPN10-mediated protein degradation plays a role in the salinity tolerance of D. viridis.
Collapse
Affiliation(s)
- Xiaobin Sun
- Shanghai Key Laboratory of Bio-energy Crops, School of Life Sciences, Shanghai University, Shanghai, China
| | | | | | | |
Collapse
|
50
|
Fu H, Lin YL, Fatimababy AS. Proteasomal recognition of ubiquitylated substrates. TRENDS IN PLANT SCIENCE 2010; 15:375-86. [PMID: 20399133 DOI: 10.1016/j.tplants.2010.03.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2009] [Revised: 03/10/2010] [Accepted: 03/18/2010] [Indexed: 05/08/2023]
Abstract
Ubiquitin/26S proteasome-mediated proteolysis controls the half-life of numerous critical regulatory proteins and is an intimate regulatory component for nearly all aspects of cellular processes. In addition to ubiquitin conjugation, an additional level of substrate specificity is regulated at the step of proteasomal recognition of ubiquitylated substrates, which serves as an important mechanistic and regulatory component to connect the substrate from the conjugation machinery to the 26S proteasome. In this review, we discuss current knowledge and future challenges relevant to understanding the mechanism, regulation, functions and substrate specificity of proteasomal recognition mediated by a multitude of ubiquitin receptors. The mechanistic details of major recognition pathways for ubiquitylated substrates are clearly divergent within and across species, which implies functional differentiation.
Collapse
Affiliation(s)
- Hongyong Fu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan 115, ROC.
| | | | | |
Collapse
|