1
|
Marar TT, Boffa MB. Identification of heparin interaction sites on thrombin-activatable fibrinolysis inhibitor that modulate plasmin-mediated activation, thermal stability, and antifibrinolytic potential. Res Pract Thromb Haemost 2024; 8:102459. [PMID: 38983903 PMCID: PMC11231710 DOI: 10.1016/j.rpth.2024.102459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 05/17/2024] [Indexed: 07/11/2024] Open
Abstract
Background Thrombin-activatable fibrinolysis inhibitor (TAFI) is a plasma zymogen that provides a molecular link between coagulation and fibrinolysis. Studies have shown that the presence of glycosaminoglycans accelerates TAFI activation by plasmin and stabilizes activated TAFI (TAFIa). Objectives We aimed to define the elements of TAFI structure that allow these effects. Methods Based on crystallographic studies and homology to heparin-binding proteins, we performed mutagenesis of surface-exposed charged residues on TAFI that putatively constitute heparin-binding sites. We determined heparin binding, kinetics of activation by plasmin in the presence or absence of heparin, thermal stability, and antifibrinolytic potential of each variant. Results Mutagenesis of Lys211 and Lys212 did not impair heparin binding but affected the ability of TAFI to be activated by plasmin. Mutagenesis of Lys306 and His308 did not impair heparin binding, but mutation of His308 had a severe negative effect on TAFI/TAFIa function. Mutation of Arg320 and Lys324 in combination markedly decreased heparin binding but had no effect on heparin-mediated acceleration of TAFI activation by plasmin while somewhat decreasing TAFIa stabilization by heparin. Mutagenesis of Lys327 and Arg330 decreased (but did not eliminate) heparin binding while decreasing the ability of heparin to accelerate plasmin-mediated TAFI activation, stabilize TAFIa, and increase the antifibrinolytic ability of TAFIa. A quadruple mutant of Arg320, Lys324, Lys327, and Arg330 completely lost heparin-binding ability and stabilization of the enzyme by heparin. Conclusion Basic residues in the dynamic flap of TAFIa define a functionally relevant heparin-binding site, but additional heparin-binding sites may be present on TAFI.
Collapse
Affiliation(s)
- Tanya T Marar
- Robarts Research Institute, The University of Western Ontario, London, Ontario, Canada
| | - Michael B Boffa
- Robarts Research Institute, The University of Western Ontario, London, Ontario, Canada
- Department of Biochemistry, The University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
2
|
Zhao L, Leung LL, Morser J. Methods to Investigate Thrombin Cleavage of Osteopontin (OPN). Methods Mol Biol 2024; 2747:95-117. [PMID: 38038935 DOI: 10.1007/978-1-0716-3589-6_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Osteopontin (OPN) is a matricellular protein containing binding sites for a variety of ligands including an RGD sequence for binding to αvβ3 integrins. OPN is a conserved substrate for thrombin, the effector protease of the coagulation cascade. Thrombin cleaves OPN at a single site revealing new functionalities such as a previously cryptic α4β1 and α9β1 integrin-binding site. That integrin-binding site is abolished upon treatment with a basic carboxypeptidase. The thrombin cleavage of OPN has been demonstrated to play a role in regulating tumor growth.This report describes methods for production of full-length OPN as well as the enzymatically cleaved OPN fragments resulting from thrombin and carboxypeptidase treatments. Quantification procedures for the various OPN proteins are described as well as functional assays on mouse melanoma and myeloid cell lines.
Collapse
Affiliation(s)
- Lei Zhao
- Division of Hematology, Stanford University School of Medicine, Stanford, CA, USA
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - Lawrence L Leung
- Division of Hematology, Stanford University School of Medicine, Stanford, CA, USA.
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA.
| | - John Morser
- Division of Hematology, Stanford University School of Medicine, Stanford, CA, USA.
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA.
| |
Collapse
|
3
|
Gruzdys V, Wang L, Wang D, Huang R, Sun XL. Investigation of cofactor activities of endothelial microparticle-thrombomodulin with liposomal surrogate. Biochem Biophys Res Commun 2023; 651:79-84. [PMID: 36801612 PMCID: PMC9992332 DOI: 10.1016/j.bbrc.2023.02.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 02/09/2023] [Indexed: 02/12/2023]
Abstract
Thrombomodulin (TM) is a type I transmembrane glycoprotein mainly expressed on the endothelial cells, where it binds thrombin to form the thrombin-TM complex that can activate protein C and thrombin-activable fibrinolysis inhibitor (TAFI) and induce anticoagulant and anti-fibrinolytic reactions, respectively. Cell activation and injury often sheds microparticles that contain membrane TM, which circulate in biofluids like blood. However, the biological function of circulating microparticle-TM is still unknown even though it has been recognized as a biomarker of endothelial cell injury and damage. In comparison with cell membrane, different phospholipids are exposed on the microparticle surface due to cell membrane ''flip-flop'' upon cell activation and injury. Liposomes can be used as a microparticle mimetics. In this report, we prepared TM-containing liposomes with different phospholipids as surrogates of endothelial microparticle-TM and investigated their cofactor activities. We found that liposomal TM with phosphatidylethanolamine (PtEtn) showed increased protein C activation but decreased TAFI activation in comparison to liposomal TM with phosphatidylcholine (PtCho). In addition, we investigated whether protein C and TAFI compete for the thrombin/TM complex on the liposomes. We found that protein C and TAFI did not compete for the thrombin/TM complex on the liposomes with PtCho alone and with low concentration (5%) of PtEtn and phosphatidylserine (PtSer), but competed each other on the liposomes with higher concentration (10%) of PtEtn and PtSer. These results indicate that membrane lipids affect protein C and TAFI activation and microparticle-TM may have different cofactor activities in comparison to cell membrane TM.
Collapse
Affiliation(s)
- Valentinas Gruzdys
- Department of Chemistry, Chemical and Biomedical Engineering, Center for Gene Regulation in Health and Disease (GRHD), Cleveland State University, Cleveland, OH, 44115, USA
| | - Lin Wang
- Department of Chemistry, Chemical and Biomedical Engineering, Center for Gene Regulation in Health and Disease (GRHD), Cleveland State University, Cleveland, OH, 44115, USA
| | - Dan Wang
- Department of Chemistry, Chemical and Biomedical Engineering, Center for Gene Regulation in Health and Disease (GRHD), Cleveland State University, Cleveland, OH, 44115, USA
| | - Rachel Huang
- Department of Chemistry, Chemical and Biomedical Engineering, Center for Gene Regulation in Health and Disease (GRHD), Cleveland State University, Cleveland, OH, 44115, USA
| | - Xue-Long Sun
- Department of Chemistry, Chemical and Biomedical Engineering, Center for Gene Regulation in Health and Disease (GRHD), Cleveland State University, Cleveland, OH, 44115, USA.
| |
Collapse
|
4
|
Risser F, López-Morales J, Nash MA. Adhesive Virulence Factors of Staphylococcus aureus Resist Digestion by Coagulation Proteases Thrombin and Plasmin. ACS BIO & MED CHEM AU 2022; 2:586-599. [PMID: 36573096 PMCID: PMC9782320 DOI: 10.1021/acsbiomedchemau.2c00042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/22/2022] [Accepted: 08/22/2022] [Indexed: 12/30/2022]
Abstract
Staphylococcus aureus (S. aureus) is an invasive and life-threatening pathogen that has undergone extensive coevolution with its mammalian hosts. Its molecular adaptations include elaborate mechanisms for immune escape and hijacking of the coagulation and fibrinolytic pathways. These capabilities are enacted by virulence factors including microbial surface components recognizing adhesive matrix molecules (MSCRAMMs) and the plasminogen-activating enzyme staphylokinase (SAK). Despite the ability of S. aureus to modulate coagulation, until now the sensitivity of S. aureus virulence factors to digestion by proteases of the coagulation system was unknown. Here, we used protein engineering, biophysical assays, and mass spectrometry to study the susceptibility of S. aureus MSCRAMMs to proteolytic digestion by human thrombin, plasmin, and plasmin/SAK complexes. We found that MSCRAMMs were highly resistant to proteolysis, and that SAK binding to plasmin enhanced this resistance. We mapped thrombin, plasmin, and plasmin/SAK cleavage sites of nine MSCRAMMs and performed biophysical, bioinformatic, and stability analysis to understand structural and sequence features common to protease-susceptible sites. Overall, our study offers comprehensive digestion patterns of S. aureus MSCRAMMs by thrombin, plasmin, and plasmin/SAK complexes and paves the way for new studies into this resistance and virulence mechanism.
Collapse
Affiliation(s)
- Fanny Risser
- Institute
of Physical Chemistry, Department of Chemistry, University of Basel, 4058 Basel, Switzerland,Department
of Biosystems Sciences and Engineering, ETH Zurich, 4058 Basel, Switzerland
| | - Joanan López-Morales
- Institute
of Physical Chemistry, Department of Chemistry, University of Basel, 4058 Basel, Switzerland,Department
of Biosystems Sciences and Engineering, ETH Zurich, 4058 Basel, Switzerland
| | - Michael A. Nash
- Institute
of Physical Chemistry, Department of Chemistry, University of Basel, 4058 Basel, Switzerland,Department
of Biosystems Sciences and Engineering, ETH Zurich, 4058 Basel, Switzerland,E-mail:
| |
Collapse
|
5
|
Mochizuki L, Sano H, Honkura N, Masumoto K, Urano T, Suzuki Y. Visualization of Domain- and Concentration-Dependent Impact of Thrombomodulin on Differential Regulation of Coagulation and Fibrinolysis. Thromb Haemost 2022; 123:16-26. [PMID: 36307100 PMCID: PMC9831690 DOI: 10.1055/s-0042-1757407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND Thrombomodulin (TM) functions as a dual modulator-anticoagulant and antifibrinolytic potential-by the thrombin-dependent activation of protein C and thrombin-activatable fibrinolysis inhibitor (TAFI). Activated TAFI cleaves the C-terminal lysine of partially degraded fibrin and inhibits both plasminogen binding and its activation on the fibrin surface. We have reported previously that activated platelets initiate fibrin network formation and trigger fibrinolysis after the accumulation of tissue-type plasminogen activator and plasminogen. OBJECTIVE To analyze the effects of domain-deletion variants of TM on coagulation and fibrinolysis at different concentrations. METHODS Domain-deletion variants of TM, such as D123 (all extracellular regions), E3456 (minimum domains for thrombin-dependent activation of protein C and TAFI), and E456 (minimum domains for that of protein C but not TAFI), were used at 0.25 to 125 nM for turbidimetric assay to determine the clotting time and clot lysis time and to visualize fibrin network formation and lysis in platelet-containing plasma. RESULTS AND CONCLUSIONS A low concentration of either D123 or E3456, but not of E456, prolonged clot lysis time, and delayed the accumulation of fluorescence-labeled plasminogen at the activated platelets/dense fibrin area due to effective TAFI activation. Conversely, only the highest concentrations of all three TM variants delayed the clotting time, though fibrin network formation in the vicinity of activated platelets was almost intact. TAFI activation might be affected by attenuation in thrombin activity after the clot formation phase. These findings suggest that the spatiotemporal balance between the anticoagulant and antifibrinolytic potential of TM is controlled in domain- and concentration-dependent manners.
Collapse
Affiliation(s)
- Liina Mochizuki
- Department of Medical Physiology, Hamamatsu University School of Medicine, Hamamatsu, Japan,Department of Dentistry and Oral and Maxillofacial Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Hideto Sano
- Department of Medical Physiology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Naoki Honkura
- Department of Medical Physiology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Kazuma Masumoto
- Department of Dentistry and Oral and Maxillofacial Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Tetsumei Urano
- Department of Medical Physiology, Hamamatsu University School of Medicine, Hamamatsu, Japan,Shizuoka Graduate University of Public Health, Shizuoka, Japan
| | - Yuko Suzuki
- Department of Medical Physiology, Hamamatsu University School of Medicine, Hamamatsu, Japan,Address for correspondence Yuko Suzuki, MD, PhD Department of Medical Physiology, Hamamatsu University School of Medicine1-20-1, Handa-yama, Higashi-ku, Hamamatsu, 431-3192Japan
| |
Collapse
|
6
|
Mathews NS, Suzuki Y, Honkura N, Sano H, Iwashita T, Urano T. Pre-administration of a carboxypeptidase inhibitor enhances tPA-induced thrombolysis in mouse microthrombi: Evidence from intravital imaging analysis. Thromb Res 2022; 210:78-86. [PMID: 35030422 DOI: 10.1016/j.thromres.2021.12.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/21/2021] [Accepted: 12/30/2021] [Indexed: 11/28/2022]
Abstract
INTRODUCTION Thrombolysis using recombinant tissue-type plasminogen activator (rt-PA) is the pharmacological treatment of choice in acute thrombotic events. However, a narrow therapeutic window and bleeding complications limit its use. We describe the role of carboxypeptidase inhibitor from potato tuber (PTCI), an inhibitor of activated thrombin-activatable fibrinolysis inhibitor (TAFIa), on Glu-plasminogen accumulation and microthrombus dynamics in vivo and demonstrate its influence on rt-PA-mediated thrombolysis. MATERIALS AND METHODS In conjunction with real-time intravital two-photon excitation fluorescence microscopy, we produced and imaged laser-induced microthrombi in the mesenteric venules of Green Fluorescent Protein (GFP)-expressing mice. We examined microthrombus dynamics and thrombolysis patterns in vivo by measuring the changes in the fluorescence intensity of labeled Glu-plasminogen following administration of epsilon aminocaproic acid (EACA), PTCI, and rt-PA. RESULTS PTCI enhanced Glu-plasminogen accumulation at the core of the thrombus by inhibiting TAFIa, while EACA inhibited this process. Exogenous rt-PA effectively triggered Glu-plasminogen activation within the thrombus and promoted thrombolysis. Administration of PTCI and rt-PA together showed no significant benefit on thrombolysis compared to rt-PA administration alone. However, early-phase systemic administration of PTCI before thrombolytic therapy by rt-PA expedited clot lysis as evidenced by significantly faster time to reach peak Glu-plasminogen fluorescence intensity and shorter time to achieve near-complete clot lysis (P = 0.014 and P = 0.003, respectively). CONCLUSIONS PTCI potentiates rt-PA-mediated thrombolysis when administered early in acute thrombotic events. Further studies are warranted to explore the potential of TAFI inhibitors as adjunct agents in thrombolysis or thromboprophylaxis.
Collapse
Affiliation(s)
- Nitty Skariah Mathews
- Department of Medical Physiology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu city, Shizuoka 431-3192, Japan.
| | - Yuko Suzuki
- Department of Medical Physiology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu city, Shizuoka 431-3192, Japan.
| | - Naoki Honkura
- Department of Medical Physiology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu city, Shizuoka 431-3192, Japan.
| | - Hideto Sano
- Department of Medical Physiology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu city, Shizuoka 431-3192, Japan.
| | - Toshihide Iwashita
- Department of Regenerative & Infectious Pathology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu city, Shizuoka 431-3192, Japan.
| | - Tetsumei Urano
- Department of Medical Physiology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu city, Shizuoka 431-3192, Japan; Shizuoka Graduate University of Public Health, 4-17-2, Kita-Ando, Aoi-ku Shizuoka 420-0882, Japan.
| |
Collapse
|
7
|
Fibrinogen and Antifibrinolytic Proteins: Interactions and Future Therapeutics. Int J Mol Sci 2021; 22:ijms222212537. [PMID: 34830419 PMCID: PMC8625824 DOI: 10.3390/ijms222212537] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 12/13/2022] Open
Abstract
Thrombus formation remains a major cause of morbidity and mortality worldwide. Current antiplatelet and anticoagulant therapies have been effective at reducing vascular events, but at the expense of increased bleeding risk. Targeting proteins that interact with fibrinogen and which are involved in hypofibrinolysis represents a more specific approach for the development of effective and safe therapeutic agents. The antifibrinolytic proteins alpha-2 antiplasmin (α2AP), thrombin activatable fibrinolysis inhibitor (TAFI), complement C3 and plasminogen activator inhibitor-2 (PAI-2), can be incorporated into the fibrin clot by FXIIIa and affect fibrinolysis by different mechanisms. Therefore, these antifibrinolytic proteins are attractive targets for the development of novel therapeutics, both for the modulation of thrombosis risk, but also for potentially improving clot instability in bleeding disorders. This review summarises the main properties of fibrinogen-bound antifibrinolytic proteins, their effect on clot lysis and association with thrombotic or bleeding conditions. The role of these proteins in therapeutic strategies targeting the fibrinolytic system for thrombotic diseases or bleeding disorders is also discussed.
Collapse
|
8
|
Sillen M, Declerck PJ. Thrombin Activatable Fibrinolysis Inhibitor (TAFI): An Updated Narrative Review. Int J Mol Sci 2021; 22:ijms22073670. [PMID: 33916027 PMCID: PMC8036986 DOI: 10.3390/ijms22073670] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/26/2021] [Accepted: 03/29/2021] [Indexed: 01/02/2023] Open
Abstract
Thrombin activatable fibrinolysis inhibitor (TAFI), a proenzyme, is converted to a potent attenuator of the fibrinolytic system upon activation by thrombin, plasmin, or the thrombin/thrombomodulin complex. Since TAFI forms a molecular link between coagulation and fibrinolysis and plays a potential role in venous and arterial thrombotic diseases, much interest has been tied to the development of molecules that antagonize its function. This review aims at providing a general overview on the biochemical properties of TAFI, its (patho)physiologic function, and various strategies to stimulate the fibrinolytic system by interfering with (activated) TAFI functionality.
Collapse
|
9
|
Claesen K, Mertens JC, Leenaerts D, Hendriks D. Carboxypeptidase U (CPU, TAFIa, CPB2) in Thromboembolic Disease: What Do We Know Three Decades after Its Discovery? Int J Mol Sci 2021; 22:ijms22020883. [PMID: 33477318 PMCID: PMC7830380 DOI: 10.3390/ijms22020883] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 02/01/2023] Open
Abstract
Procarboxypeptidase U (proCPU, TAFI, proCPB2) is a basic carboxypeptidase zymogen that is converted by thrombin(-thrombomodulin) or plasmin into the active carboxypeptidase U (CPU, TAFIa, CPB2), a potent attenuator of fibrinolysis. As CPU forms a molecular link between coagulation and fibrinolysis, the development of CPU inhibitors as profibrinolytic agents constitutes an attractive new concept to improve endogenous fibrinolysis or to increase the efficacy of thrombolytic therapy in thromboembolic diseases. Furthermore, extensive research has been conducted on the in vivo role of CPU in (the acute phase of) thromboembolic disease, as well as on the hypothesis that high proCPU levels and the Thr/Ile325 polymorphism may cause a thrombotic predisposition. In this paper, an overview is given of the methods available for measuring proCPU, CPU, and inactivated CPU (CPUi), together with a summary of the clinical data generated so far, ranging from the current knowledge on proCPU concentrations and polymorphisms as potential thromboembolic risk factors to the positioning of different CPU forms (proCPU, CPU, and CPUi) as diagnostic markers for thromboembolic disease, and the potential benefit of pharmacological inhibition of the CPU pathway.
Collapse
|
10
|
A high-fat diet delays plasmin generation in a thrombomodulin-dependent manner in mice. Blood 2020; 135:1704-1717. [PMID: 32315384 DOI: 10.1182/blood.2019004267] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 02/02/2020] [Indexed: 01/14/2023] Open
Abstract
Obesity is a prevalent prothrombotic risk factor marked by enhanced fibrin formation and suppressed fibrinolysis. Fibrin both promotes thrombotic events and drives obesity pathophysiology, but a lack of essential analytical tools has left fibrinolytic mechanisms affected by obesity poorly defined. Using a plasmin-specific fluorogenic substrate, we developed a plasmin generation (PG) assay for mouse plasma that is sensitive to tissue plasminogen activator, α2-antiplasmin, active plasminogen activator inhibitor (PAI-1), and fibrin formation, but not fibrin crosslinking. Compared with plasmas from mice fed a control diet, plasmas from mice fed a high-fat diet (HFD) showed delayed PG and reduced PG velocity. Concurrent to impaired PG, HFD also enhanced thrombin generation (TG). The collective impact of abnormal TG and PG in HFD-fed mice produced normal fibrin formation kinetics but delayed fibrinolysis. Functional and proteomic analyses determined that delayed PG in HFD-fed mice was not due to altered levels of plasminogen, α2-antiplasmin, or fibrinogen. Changes in PG were also not explained by elevated PAI-1 because active PAI-1 concentrations required to inhibit the PG assay were 100-fold higher than circulating concentrations in mice. HFD-fed mice had increased circulating thrombomodulin, and inhibiting thrombomodulin or thrombin-activatable fibrinolysis inhibitor (TAFI) normalized PG, revealing a thrombomodulin- and TAFI-dependent antifibrinolytic mechanism. Integrating kinetic parameters to calculate the metric of TG/PG ratio revealed a quantifiable net shift toward a prothrombotic phenotype in HFD-fed mice. Integrating TG and PG measurements may define a prothrombotic risk factor in diet-induced obesity.
Collapse
|
11
|
Wyseure T, Yang T, Zhou JY, Cooke EJ, Wanko B, Olmer M, Agashe R, Morodomi Y, Behrendt N, Lotz M, Morser J, von Drygalski A, Mosnier LO. TAFI deficiency causes maladaptive vascular remodeling after hemophilic joint bleeding. JCI Insight 2019; 4:128379. [PMID: 31465300 PMCID: PMC6795396 DOI: 10.1172/jci.insight.128379] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 08/23/2019] [Indexed: 12/23/2022] Open
Abstract
Excessive vascular remodeling is characteristic of hemophilic arthropathy (HA) and may contribute to joint bleeding and the progression of HA. Mechanisms for pathological vascular remodeling after hemophilic joint bleeding are unknown. In hemophilia, activation of thrombin-activatable fibrinolysis inhibitor (TAFI) is impaired, which contributes to joint bleeding and may also underlie the aberrant vascular remodeling. Here, hemophilia A (factor VIII-deficient; FVIII-deficient) mice or TAFI-deficient mice with transient (antibody-induced) hemophilia A were used to determine the role of FVIII and TAFI in vascular remodeling after joint bleeding. Excessive vascular remodeling and vessel enlargement persisted in FVIII-deficient and TAFI-deficient mice, but not in transient hemophilia WT mice, after similar joint bleeding. TAFI-overexpression in FVIII-deficient mice prevented abnormal vessel enlargement and vascular leakage. Age-related vascular changes were observed with FVIII or TAFI deficiency and correlated positively with bleeding severity after injury, supporting increased vascularity as a major contributor to joint bleeding. Antibody-mediated inhibition of uPA also prevented abnormal vascular remodeling, suggesting that TAFI's protective effects include inhibition of uPA-mediated plasminogen activation. In conclusion, the functional TAFI deficiency in hemophilia drives maladaptive vascular remodeling in the joints after bleeding. These mechanistic insights allow targeted development of potentially new strategies to normalize vascularity and control rebleeding in HA.
Collapse
Affiliation(s)
- Tine Wyseure
- Deptartment of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Tingyi Yang
- Deptartment of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Jenny Y. Zhou
- Department of Medicine, UCSD, San Diego, California, USA
| | - Esther J. Cooke
- Deptartment of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
- Department of Medicine, UCSD, San Diego, California, USA
| | - Bettina Wanko
- Division of Hematology, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
- Veterans Affairs Palo Alto Health Care System, Palo Alto, California, USA
- Clinical Division of Endocrinology and Metabolism, Department of Medicine III, Medical University Vienna, Vienna, Austria
| | - Merissa Olmer
- Deptartment of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Ruchi Agashe
- Deptartment of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Yosuke Morodomi
- Deptartment of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Niels Behrendt
- The Finsen Laboratory, Rigshospitalet/Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Martin Lotz
- Deptartment of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - John Morser
- Division of Hematology, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Annette von Drygalski
- Deptartment of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
- Department of Medicine, UCSD, San Diego, California, USA
| | - Laurent O. Mosnier
- Deptartment of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| |
Collapse
|
12
|
Mutch NJ. Regulation of Fibrinolysis by Platelets. Platelets 2019. [DOI: 10.1016/b978-0-12-813456-6.00023-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
13
|
Zhang X, Zhang L, Li J. Peptide-modified nanochannel system for carboxypeptidase B activity detection. Anal Chim Acta 2019; 1057:36-43. [DOI: 10.1016/j.aca.2019.01.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 01/08/2019] [Accepted: 01/15/2019] [Indexed: 10/27/2022]
|
14
|
Pamuk S, Çay İ, Sazcı A. A 2D mathematical model for tumor angiogenesis: The roles of certain cells in the extra cellular matrix. Math Biosci 2018; 306:32-48. [DOI: 10.1016/j.mbs.2018.10.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 09/28/2018] [Accepted: 10/25/2018] [Indexed: 01/04/2023]
|
15
|
Wyseure T, Cooke EJ, Declerck PJ, Behrendt N, Meijers JCM, von Drygalski A, Mosnier LO. Defective TAFI activation in hemophilia A mice is a major contributor to joint bleeding. Blood 2018; 132:1593-1603. [PMID: 30026184 PMCID: PMC6182268 DOI: 10.1182/blood-2018-01-828434] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 07/11/2018] [Indexed: 02/02/2023] Open
Abstract
Joint bleeds are common in congenital hemophilia but rare in acquired hemophilia A (aHA) for reasons unknown. To identify key mechanisms responsible for joint-specific bleeding in congenital hemophilia, bleeding phenotypes after joint injury and tail transection were compared in aHA wild-type (WT) mice (receiving an anti-factor VIII [FVIII] antibody) and congenital HA (FVIII-/-) mice. Both aHA and FVIII-/- mice bled severely after tail transection, but consistent with clinical findings, joint bleeding was notably milder in aHA compared with FVIII-/- mice. Focus was directed to thrombin-activatable fibrinolysis inhibitor (TAFI) to determine its potentially protective effect on joint bleeding in aHA. Joint bleeding in TAFI-/- mice with anti-FVIII antibody was increased, compared with WT aHA mice, and became indistinguishable from joint bleeding in FVIII-/- mice. Measurements of circulating TAFI zymogen consumption after joint injury indicated severely defective TAFI activation in FVIII-/- mice in vivo, consistent with previous in vitro analyses in FVIII-deficient plasma. In contrast, notable TAFI activation was observed in aHA mice, suggesting that TAFI protected aHA joints against bleeding. Pharmacological inhibitors of fibrinolysis revealed that urokinase-type plasminogen activator (uPA)-induced fibrinolysis drove joint bleeding, whereas tissue-type plasminogen activator-mediated fibrinolysis contributed to tail bleeding. These data identify TAFI as an important modifier of hemophilic joint bleeding in aHA by inhibiting uPA-mediated fibrinolysis. Moreover, our data suggest that bleed protection by TAFI was absent in congenital FVIII-/- mice because of severely defective TAFI activation, underscoring the importance of clot protection in addition to clot formation when considering prohemostatic strategies for hemophilic joint bleeding.
Collapse
Affiliation(s)
- Tine Wyseure
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA
| | - Esther J Cooke
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA
- Department of Medicine, University of California San Diego, San Diego, CA
| | - Paul J Declerck
- Department of Pharmaceutical and Pharmacological Sciences, University of Leuven, Leuven, Belgium
| | - Niels Behrendt
- The Finsen Laboratory, Rigshospitalet/Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Joost C M Meijers
- Department of Plasma Proteins, Sanquin Research, Amsterdam, The Netherlands; and
- Department of Experimental Vascular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Annette von Drygalski
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA
- Department of Medicine, University of California San Diego, San Diego, CA
| | - Laurent O Mosnier
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA
| |
Collapse
|
16
|
Leung LLK, Morser J. Carboxypeptidase B2 and carboxypeptidase N in the crosstalk between coagulation, thrombosis, inflammation, and innate immunity. J Thromb Haemost 2018; 16:S1538-7836(22)02219-X. [PMID: 29883024 DOI: 10.1111/jth.14199] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Indexed: 02/06/2023]
Abstract
Two basic carboxypeptidases, carboxypeptidase B2 (CPB2) and carboxypeptidase N (CPN) are present in plasma. CPN is constitutively active, whereas CPB2 circulates as a precursor, procarboxypeptidase B2 (proCPB2), that needs to be activated by the thrombin-thrombomodulin complex or plasmin bound to glycosaminoglycans. The substrate specificities of CPB2 and CPN are similar; they both remove C-terminal basic amino acids from bioactive peptides and proteins, thereby inactivating them. The complement cascade is a cascade of proteases and cofactors activated by pathogens or dead cells, divided into two phases, with the second phase only being triggered if sufficient C3b is present. Complement activation generates anaphylatoxins: C3a, which stimulates macrophages; and C5a, which is an activator and attractant for neutrophils. Pharmacological intervention with inhibitors has shown that CPB2 delays fibrinolysis, whereas CPN is responsible for systemic inactivation of C3a and C5a. Among mice genetically deficient in either CPB2 or CPN, in a model of hemolytic-uremic syndrome, Cpb2-/- mice had the worst disease, followed by Cpn-/- mice, with wild-type (WT) mice being the most protected. This model is driven by C5a, and shows that CPB2 is important in inactivating C5a. In contrast, when mice were challenged acutely with cobra venom factor, the reverse phenotype was observed; Cpn-/- mice had markedly worse disease than Cpb2-/- mice, and WT mice were resistant. These observations need to be confirmed in humans. Therefore, CPB2 and CPN have different roles. CPN inactivates C3a and C5a generated spontaneously, whereas proCPB2 is activated at specific sites, where it inactivates bioactive peptides that would overwhelm CPN.
Collapse
Affiliation(s)
- L L K Leung
- Division of Hematology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - J Morser
- Division of Hematology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| |
Collapse
|
17
|
Urano T, Castellino FJ, Suzuki Y. Regulation of plasminogen activation on cell surfaces and fibrin. J Thromb Haemost 2018; 16:S1538-7836(22)02204-8. [PMID: 29779246 PMCID: PMC6099326 DOI: 10.1111/jth.14157] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Indexed: 01/27/2023]
Abstract
The fibrinolytic system dissolves fibrin and maintains vascular patency. Recent advances in imaging analyses allowed visualization of the spatiotemporal regulatory mechanism of fibrinolysis, as well as its regulation by other plasma hemostasis cofactors. Vascular endothelial cells (VECs) retain tissue-type plasminogen activator (tPA) after secretion and maintain high plasminogen (plg) activation potential on their surfaces. As in plasma, the serpin, plasminogen activator inhibitor type 1 (PAI-1), regulates fibrinolytic potential via inhibition of the VEC surface-bound plg activator, tPA. Once fibrin is formed, plg activation by tPA is initiated and effectively amplified on the surface of fibrin, and fibrin is rapidly degraded. The specific binding of plg and tPA to lytic edges of partly degraded fibrin via newly generated C-terminal lysine residues, which amplifies fibrin digestion, is a central aspect of this pathophysiological mechanism. Thrombomodulin (TM) plays a role in the attenuation of plg binding on fibrin and the associated fibrinolysis, which is reversed by a carboxypeptidase B inhibitor. This suggests that the plasma procarboxypeptidase B, thrombin-activatable fibrinolysis inhibitor (TAFI), which is activated by thrombin bound to TM on VECs, is a critical aspect of the regulation of plg activation on VECs and subsequent fibrinolysis. Platelets also contain PAI-1, TAFI, TM, and the fibrin cross-linking enzyme, factor (F) XIIIa, and either secrete or expose these agents upon activation in order to regulate fibrinolysis. In this review, the native machinery of plg activation and fibrinolysis, as well as their spatiotemporal regulatory mechanisms, as revealed by imaging analyses, are discussed.
Collapse
Affiliation(s)
- T. Urano
- Department of Medical PhysiologyHamamatsu University School of MedicineHamamatsuJapan
| | - F. J. Castellino
- W.M. Keck Center for Transgene ResearchUniversity of Notre DameUniversity of Notre DameNotre DameINUSA
| | - Y. Suzuki
- Department of Medical PhysiologyHamamatsu University School of MedicineHamamatsuJapan
| |
Collapse
|
18
|
Lin JHH, Novakovic D, Rizzo CM, Zagorac B, Garand M, Filipieva A, Koschinsky ML, Boffa MB. The mRNA encoding TAFI is alternatively spliced in different cell types and produces intracellular forms of the protein lacking TAFIa activity. Thromb Haemost 2017; 109:1033-44. [DOI: 10.1160/th12-09-0668] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 02/27/2013] [Indexed: 11/05/2022]
Abstract
SummaryTAFI (thrombin-activatable fibrinolysis inhibitor) is a pro-carboxypeptidase, encoded by the CPB2 gene in humans that links the coagulation cascade to fibrinolysis and inflammation. The liver is the main source for plasma TAFI, and TAFI expression has been documented in platelets and monocyte-derived macrophages. A recent study reported an alternatively spliced CPB2 mRNA variant lacking exon 7 (Δ7) in HepG2 cells and liver. Another study identified a CPB2 mRNA variant lacking exon 7 and a 52 bp deletion in exon 11 (Δ7+11) in human hippocampus. We have examined alternative splicing of CPB2 mRNA in various cell types by RT-PCR and have assessed the functional properties of TAFI variants encoded by these transcripts by recombinant expression in mammalian cells. We identified the Δ7 exon skipping event in liver, Dami megakaryoblasts, THP-1-derived macrophages, peripheral blood mononuclear cells, platelets, testis, cerebellum, and SH-SY5Y neuroblastoma cells. The Δ11 alternative splicing event was notably absent in liver cells. We also detected a novel exon Δ7+8 skipping event in liver and megakaryocytes. Of note, we detected non-alternatively spliced CPB2 transcripts in brain tissues, suggesting the expression of full-length TAFI in brain. Experiments using cultured mammalian cells transfected with wild-type CPB2-, Δ7-, Δ7+11 -, and_Δ11 -cDNA revealed that alternatively spliced TAFI is stored inside the cells, cannot be activated by thrombin-thrombomodulin, and does not have TAFIa activity. The alternative splicing events clearly do not give rise to a secreted protein with basic carboxy-peptidase activity, but the intracellular forms may possess novel functions related to intracellular proteolysis.
Collapse
|
19
|
Zwingerman N, Medina-Rivera A, Kassam I, Wilson MD, Morange PE, Trégouët DA, Gagnon F. Sex-specific effect of CPB2 Ala147Thr but not Thr325Ile variants on the risk of venous thrombosis: A comprehensive meta-analysis. PLoS One 2017; 12:e0177768. [PMID: 28552956 PMCID: PMC5446132 DOI: 10.1371/journal.pone.0177768] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 05/03/2017] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Thrombin activatable fibrinolysis inhibitor (TAFI), encoded by the Carboxypeptidase B2 gene (CPB2), is an inhibitor of fibrinolysis and plays a role in the pathogenesis of venous thrombosis. Experimental findings support a functional role of genetic variants in CPB2, while epidemiological studies have been unable to confirm associations with risk of venous thrombosis. Sex-specific effects could underlie the observed inconsistent associations between CPB2 genetic variants and venous thrombosis. METHODS A comprehensive literature search was conducted for associations between Ala147Thr and Thr325Ile variants with venous thrombosis. Authors were contacted to provide sex-specific genotype counts from their studies. Combined and sex-specific random effects meta-analyses were used to estimate a pooled effect estimate for primary and secondary genetic models. RESULTS A total of 17 studies met the inclusion criteria. A sex-specific meta-analysis applying a dominant model supported a protective effect of Ala147Thr on venous thrombosis in females (OR = 0.81, 95%CI: 0.68,0.97; p = 0.018), but not in males (OR = 1.06, 95%CI:0.96-1.16; p = 0.263). The Thr325Ile did not show a sex-specific effect but showed variation in allele frequencies by geographic region. A subgroup analysis of studies in European countries showed decreased risk, with a recessive model (OR = 0.83, 95%CI:0.71-0.97, p = 0.021) for venous thrombosis. CONCLUSIONS A comprehensive literature review, including unpublished data, provided greater statistical power for the analyses and decreased the likelihood of publication bias influencing the results. Sex-specific analyses explained apparent discrepancies across genetic studies of Ala147Thr and venous thrombosis. While, careful selection of genetic models based on population genetics, evolutionary and biological knowledge can increase power by decreasing the need to adjust for testing multiple models.
Collapse
Affiliation(s)
- Nora Zwingerman
- Division of Epidemiology, Dalla Lana School of Public Health, University of Toronto, Toronto, Canada
| | - Alejandra Medina-Rivera
- Genetics and Genome Biology Program, SickKids Research Institute, Toronto, Canada
- Laboratorio Internacional de Investigación sobre el Genoma Humano, Universidad Nacional Autónoma de México, Juriquilla, Santiago de Querétaro, Querétaro, Mexico
| | - Irfahan Kassam
- Division of Epidemiology, Dalla Lana School of Public Health, University of Toronto, Toronto, Canada
| | - Michael D. Wilson
- Genetics and Genome Biology Program, SickKids Research Institute, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Pierre-Emmanuel Morange
- Institut National de la Santé et de la Recherche Médicale (INSERM), Unité Mixte de Recherche (UMR) en Santé 1062, Nutrition Obesity and Risk of Thrombosis, Marseille, France
- Faculté de Médecine, Aix Marseille Université, Marseille, France
| | - David-Alexandre Trégouët
- Institut National de la Santé et de la Recherche Médicale (INSERM), Unité Mixte de Recherche en Santé (UMR_S) 1166, Paris, France
- Institute for Cardiometabolism and Nutrition, Paris, France
- Sorbonne Universités, Université Pierre et Marie Curie (UPMC Univ Paris 06), UMR_S 1166, Team Genomics & Pathophysiology of Cardiovascular Diseases, Paris, France
| | - France Gagnon
- Division of Epidemiology, Dalla Lana School of Public Health, University of Toronto, Toronto, Canada
| |
Collapse
|
20
|
Chhikara A, Sharma S, Chandra J, Nangia A. Thrombin Activable Fibrinolysis Inhibitor in Beta Thalassemia. Indian J Pediatr 2017; 84:25-30. [PMID: 27487812 DOI: 10.1007/s12098-016-2208-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 07/25/2016] [Indexed: 11/29/2022]
Abstract
OBJECTIVES To study plasma levels of Thrombin activable fibrinolysis inhibitor (TAFI) in children with β-thalassemia major. METHODS Fifty β-thalassemia major patients, 1.4 to 17 y of age, with number of transfusions received varying from 21 to 162 were selected at random and complete blood count (CBC), coagulation parameters [Prothrombin time (PT), Activated partial thromboplastin time (aPTT), fibrinogen, D-dimer, protein C, protein S, antithrombin, Tissue plasminogen activator (t-PA), Plasminogen activator inhibitor (PAI-1)] and TAFI were performed. RESULTS PT and aPTT were prolonged in 18 % and 30 % of cases respectively. Reduced activity of Protein C (PC) was observed in 50 % of cases and Protein S (PS) was reduced in 54 % of cases. t-PA levels were significantly higher in cases. TAFI levels were 17.24 ± 4.05 ng/ml which were significantly higher than the control group (15.01 ± 3.28; p = 0.003) No significant correlation of TAFI was observed with Hb, platelet counts, liver enzymes, serum ferritin, PC, PS, D-dimer, t-PA or PAI-1. CONCLUSIONS There is an ongoing subclinical activation of coagulation cascade and fibrinolytic system in thalassemia major (TM) patients. Higher levels of TAFI in the present study with no significant correlation with other parameters were noted, thus pointing out to its independent role in contribution to hypercoagulable state in thalassemia. TAFI serves as a link between two limbs of hemostasis, with its higher levels promoting inhibition of fibrinolytic system and thus promoting a hypercoagulable state. Performing TAFI levels in thalassemic patients could help to detect the early coagulopathy in these patients and hence these patients can be closely monitored for any evidence of thrombosis.
Collapse
Affiliation(s)
- Aruna Chhikara
- Department of Pathology, Lady Hardinge Medical College, New Delhi, India.
| | - Sunita Sharma
- Department of Pathology, Lady Hardinge Medical College, New Delhi, India
| | - Jagdish Chandra
- Department of Pediatrics, Lady Hardinge Medical College, New Delhi, India
| | - Anita Nangia
- Department of Pathology, Lady Hardinge Medical College, New Delhi, India
| |
Collapse
|
21
|
Plug T, Meijers JC. Stimulation of thrombin- and plasmin-mediated activation of thrombin-activatable fibrinolysis inhibitor by anionic molecules. Thromb Res 2016; 146:7-14. [DOI: 10.1016/j.thromres.2016.08.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 06/29/2016] [Accepted: 08/14/2016] [Indexed: 11/25/2022]
|
22
|
Isolation, Co-Crystallization and Structure-Based Characterization of Anabaenopeptins as Highly Potent Inhibitors of Activated Thrombin Activatable Fibrinolysis Inhibitor (TAFIa). Sci Rep 2016; 6:32958. [PMID: 27604544 PMCID: PMC5015106 DOI: 10.1038/srep32958] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 08/17/2016] [Indexed: 12/01/2022] Open
Abstract
Mature thrombin activatable fibrinolysis inhibitor (TAFIa) is a carboxypeptidase that stabilizes fibrin clots by removing C-terminal arginines and lysines from partially degraded fibrin. Inhibition of TAFIa stimulates the degradation of fibrin clots and may help to prevent thrombosis. Applying a lead finding approach based on literature-mining, we discovered that anabaenopeptins, cyclic peptides produced by cyanobacteria, were potent inhibitors of TAFIa with IC50 values as low as 1.5 nM. We describe the isolation and structure elucidation of 20 anabaenopeptins, including 13 novel congeners, as well as their pronounced structure-activity relationships (SAR) with respect to inhibition of TAFIa. Crystal structures of the anabaenopeptins B, C and F bound to the surrogate protease carboxypeptidase B revealed the binding modes of these large (~850 Da) compounds in detail and explained the observed SAR, i.e. the strong dependence of the potency on a basic (Arg, Lys) exocyclic residue that addressed the S1’ binding pocket, and a broad tolerance towards substitutions in the pentacyclic ring that acted as a plug of the active site.
Collapse
|
23
|
Timofeev АV. [Basic carboxypeptidases of blood: significance for coagulology]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2016; 62:141-9. [PMID: 27143370 DOI: 10.18097/pbmc20166202141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This review considers the basic metallocarboxypeptidases of human blood and their role in coagulologic disorders. In includes information on the history of the discovery and biological characteristics of potential enzymes-regulators of the fibrinolytic process: carboxypeptidase U and carboxypeptidase N. Certain attention is paid to the biochemical mechanisms and the main modern concepts of the antifibrinolytic effects of these enzymes.
Collapse
Affiliation(s)
- А V Timofeev
- Russian Research Institute of Haematology and Transfusiology, Saint Petersburg, Russia
| |
Collapse
|
24
|
Bazzi ZA, Lanoue D, El-Youssef M, Romagnuolo R, Tubman J, Cavallo-Medved D, Porter LA, Boffa MB. Activated thrombin-activatable fibrinolysis inhibitor (TAFIa) attenuates breast cancer cell metastatic behaviors through inhibition of plasminogen activation and extracellular proteolysis. BMC Cancer 2016; 16:328. [PMID: 27221823 PMCID: PMC4879731 DOI: 10.1186/s12885-016-2359-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 05/11/2016] [Indexed: 11/23/2022] Open
Abstract
Background Thrombin activatable fibrinolysis inhibitor (TAFI) is a plasma zymogen, which can be converted to activated TAFI (TAFIa) through proteolytic cleavage by thrombin, plasmin, and most effectively thrombin in complex with the endothelial cofactor thrombomodulin (TM). TAFIa is a carboxypeptidase that cleaves carboxyl terminal lysine and arginine residues from protein and peptide substrates, including plasminogen-binding sites on cell surface receptors. Carboxyl terminal lysine residues play a pivotal role in enhancing cell surface plasminogen activation to plasmin. Plasmin has many critical functions including cleaving components of the extracellular matrix (ECM), which enhances invasion and migration of cancer cells. We therefore hypothesized that TAFIa could act to attenuate metastasis. Methods To assess the role of TAFIa in breast cancer metastasis, in vitro migration and invasion assays, live cell proteolysis and cell proliferation using MDA-MB-231 and SUM149 cells were carried out in the presence of a TAFIa inhibitor, recombinant TAFI variants, or soluble TM. Results Inhibition of TAFIa with potato tuber carboxypeptidase inhibitor increased cell invasion, migration and proteolysis of both cell lines, whereas addition of TM resulted in a decrease in all these parameters. A stable variant of TAFIa, TAFIa-CIIYQ, showed enhanced inhibitory effects on cell invasion, migration and proteolysis. Furthermore, pericellular plasminogen activation was significantly decreased on the surface of MDA-MB-231 and SUM149 cells following treatment with various concentrations of TAFIa. Conclusions Taken together, these results indicate a vital role for TAFIa in regulating pericellular plasminogen activation and ultimately ECM proteolysis in the breast cancer microenvironment. Enhancement of TAFI activation in this microenvironment may be a therapeutic strategy to inhibit invasion and prevent metastasis of breast cancer cells.
Collapse
Affiliation(s)
- Zainab A Bazzi
- Department of Chemistry & Biochemistry, University of Windsor, Windsor, ON, N9J 3P4, Canada
| | - Danielle Lanoue
- Department of Chemistry & Biochemistry, University of Windsor, Windsor, ON, N9J 3P4, Canada
| | - Mouhanned El-Youssef
- Department of Chemistry & Biochemistry, University of Windsor, Windsor, ON, N9J 3P4, Canada
| | - Rocco Romagnuolo
- Department of Chemistry & Biochemistry, University of Windsor, Windsor, ON, N9J 3P4, Canada
| | - Janice Tubman
- Department of Biological Sciences, University of Windsor, Windsor, ON, N9J 3P4, Canada
| | - Dora Cavallo-Medved
- Department of Biological Sciences, University of Windsor, Windsor, ON, N9J 3P4, Canada
| | - Lisa A Porter
- Department of Biological Sciences, University of Windsor, Windsor, ON, N9J 3P4, Canada
| | - Michael B Boffa
- Department of Chemistry & Biochemistry, University of Windsor, Windsor, ON, N9J 3P4, Canada.
| |
Collapse
|
25
|
Marar TT, Boffa MB. Identification of a thrombomodulin interaction site on thrombin-activatable fibrinolysis inhibitor that mediates accelerated activation by thrombin. J Thromb Haemost 2016; 14:772-83. [PMID: 26816270 DOI: 10.1111/jth.13275] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Indexed: 11/26/2022]
Abstract
BACKGROUND Thrombin-activatable fibrinolysis inhibitor (TAFI) is a human plasma zymogen that provides a molecular connection between coagulation and fibrinolysis. TAFI is activated through proteolytic cleavage by thrombin, thrombin in complex with the endothelial cell cofactor thrombomodulin (TM) or plasmin. Evidence from several studies suggests that TM and TAFI make direct contact at sites remote from the activating cleavage site to facilitate acceleration of thrombin-mediated TAFI activation. The elements of TAFI structure that allow accelerated activation of thrombin by TM are incompletely defined. OBJECTIVES To identify TM interaction regions on TAFI that mediate acceleration of activation by thrombin and therefore indicate TM binding sites on TAFI. METHODS We mutated selected surface-exposed charged residues on TAFI to alanine in order to identify sites that mediate acceleration of activation by TM. The kinetics of activation of the mutants by thrombin in the presence or absence of TM, as well as their thermal stabilities and antifibrinolytic potentials, were determined. RESULTS TAFI variants R15A, E28A, K59A, D75A/E77A/D78A, E99A and E106A all exhibited moderately reduced catalytic efficiencies of activation by thrombin-TM. TAFI variants R377A and, particularly, R12A and R12A/R15A exhibited severely reduced activation by thrombin-TM that was not explained by differences in activation by thrombin alone. CONCLUSIONS We have identified R12 as a critical residue for the activation of TAFI by thrombin-TM, extending a previous report that identified a role for this residue. R12 is likely to directly bind to TM while another key residue, R377, may affect the thrombin-TAFI interaction specifically in the presence of TM.
Collapse
Affiliation(s)
- T T Marar
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON, Canada
| | - M B Boffa
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON, Canada
| |
Collapse
|
26
|
Plug T, Meijers JCM. Structure-function relationships in thrombin-activatable fibrinolysis inhibitor. J Thromb Haemost 2016; 14:633-44. [PMID: 26786060 DOI: 10.1111/jth.13261] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Indexed: 11/30/2022]
Abstract
Thrombin-activatable fibrinolysis inhibitor (TAFI) is an important regulator in the balance of coagulation and fibrinolysis. TAFI is a metallocarboxypeptidase that circulates in plasma as zymogen. Activated TAFI (TAFIa) cleaves C-terminal lysine or arginine residues from peptide substrates. The removal of C-terminal lysine residues from partially degraded fibrin leads to reduced plasmin formation and thus attenuation of fibrinolysis. TAFI also plays a role in inflammatory processes via the removal of C-terminal arginine or lysine residues from bradykinin, thrombin-cleaved osteopontin, C3a, C5a and chemerin. TAFI has been studied extensively over the past three decades and recent publications provide a wealth of information, including crystal structures, mutants and structural data obtained with antibodies and peptides. In this review, we combined and compared available data on structure/function relationships of TAFI.
Collapse
Affiliation(s)
- T Plug
- Department of Experimental Vascular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - J C M Meijers
- Department of Experimental Vascular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
- Department of Plasma Proteins, Sanquin Research, Amsterdam, the Netherlands
| |
Collapse
|
27
|
Wu C, Kim PY, Swystun LL, Liaw PC, Weitz JI. Activation of protein C and thrombin activable fibrinolysis inhibitor on cultured human endothelial cells. J Thromb Haemost 2016; 14:366-74. [PMID: 26663133 DOI: 10.1111/jth.13222] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 11/23/2015] [Indexed: 12/01/2022]
Abstract
UNLABELLED ESSENTIALS: It is unknown if thrombin activatable fibrinolysis inhibitor (TAFI) and protein C compete on cells. TAFI and protein C activation on endothelial cells was simultaneously quantified. TAFI and protein C do not compete for activation on endothelial cells. TAFI and protein C are independently recognized by the thrombin-thrombomodulin complex. BACKGROUND When bound to thrombomodulin (TM), thrombin is a potent activator of protein C (PC) and thrombin activable fibrinolysis inhibitor (TAFI). By binding PC and presenting it to the thrombin-TM complex, endothelial cell PC receptor (EPCR) enhances PC activation. It is unknown whether PC and TAFI compete for the thrombin-TM complex on endothelial cells. OBJECTIVE To compare PC and TAFI activation on the surface of cultured human endothelial cells in the absence or presence of JRK1535 and/or CTM1009, inhibitory antibodies directed against EPCR and TM, respectively, and to determine whether PC and TAFI compete with each other for activation. METHODS PC and TAFI activation on endothelial cells were compared, and the effect of PC on TAFI activation and TAFI on PC activation was determined in the absence or presence of JRK1535 and/or CTM1009. RESULTS In the absence of antibodies, activation of PC was four-fold faster than that of TAFI. Blocking EPCR with JRK1535 resulted in a 53-fold decrease in PC activation and no effect on TAFI activation. Blocking TM with CTM1009 inhibited both TAFI and PC activation. Neither TAFI nor PC competed with each other in the absence or presence of JRK1535. CONCLUSIONS PC and TAFI are concurrently activated in a TM-dependent manner and do not compete for the thrombin-TM complex, raising the possibility that they interact with distinct activation complexes. EPCR selectively enhances PC activation so that PC and TAFI activation kinetics become comparable on endothelial cells.
Collapse
Affiliation(s)
- C Wu
- Thrombosis and Atherosclerosis Research Institute, Hamilton, ON, Canada
- Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - P Y Kim
- Thrombosis and Atherosclerosis Research Institute, Hamilton, ON, Canada
- Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - L L Swystun
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON, Canada
| | - P C Liaw
- Thrombosis and Atherosclerosis Research Institute, Hamilton, ON, Canada
- Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - J I Weitz
- Thrombosis and Atherosclerosis Research Institute, Hamilton, ON, Canada
- Department of Medicine, McMaster University, Hamilton, ON, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
28
|
Plug T, Marquart JA, Marx PF, Meijers JCM. Selective modulation of thrombin-activatable fibrinolysis inhibitor (TAFI) activation by thrombin or the thrombin-thrombomodulin complex using TAFI-derived peptides. J Thromb Haemost 2015; 13:2093-101. [PMID: 26341360 DOI: 10.1111/jth.13133] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Indexed: 11/27/2022]
Abstract
BACKGROUND Thrombin-activatable fibrinolysis inhibitor (TAFI) is a risk factor for coronary heart disease. TAFI is proteolytically activated by thrombin, the thrombin-thrombomodulin complex and plasmin. Once active, it dampens fibrinolysis and inflammation. The aim of this study was to generate TAFI-derived peptides that specifically modulate TAFI activation and activity. METHODS Thirty-four overlapping TAFI peptides, and modifications thereof, were synthesized. The effects of these peptides on TAFI activation and TAFIa activity were determined. In addition, the binding of the peptides to thrombin were determined. RESULTS Four peptides (peptides 2, 18, 19 and 34) inhibited TAFI activation and two peptides (peptides 14 and 24) inhibited TAFIa activity directly. Peptide 2 (Arg12-Glu28) and peptide 34 (Cys383-Val401) inhibited TAFI activation by the thrombin-thrombomodulin complex with IC50 values of 7.3 ± 1.8 and 6.1 ± 0.9 μm, respectively. However, no inhibition was observed in the absence of thrombomodulin. This suggests that the regions Arg12-Glu28 and Cys383-Val401 in TAFI are involved in thrombomodulin-mediated TAFI activation. Peptide 18 (Gly205-Ser221) and peptide 19 (Arg214-Asp232) inhibited TAFI activation by thrombin and the thrombin-thrombomodulin complex. Furthermore, these peptides bound to thrombin (KD : 1.5 ± 0.4 and 0.52 ± 0.07 μm for peptides 18 and 19, respectively), suggesting that Gly205-Asp232 of TAFI is involved in binding to thrombin. Peptide 14 (His159-His175) inhibited TAFIa activity. The inhibition was TAFIa specific, because no effect on the homologous enzyme carboxypeptidase B was observed. CONCLUSIONS Thrombin-activatable fibrinolysis inhibitor-derived peptides show promise as new tools to modulate TAFI activation and TAFIa activity. Furthermore, these peptides revealed potential binding sites on TAFI for thrombin and the thrombin-thrombomodulin complex.
Collapse
Affiliation(s)
- T Plug
- Department of Experimental Vascular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - J A Marquart
- Department of Experimental Vascular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
- Department of Plasma Proteins, Sanquin Research, Amsterdam, the Netherlands
| | - P F Marx
- Department of Experimental Vascular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - J C M Meijers
- Department of Experimental Vascular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
- Department of Plasma Proteins, Sanquin Research, Amsterdam, the Netherlands
| |
Collapse
|
29
|
Plug T, Meijers JCM. New clues regarding the mysterious mechanism of activated thrombin-activatable fibrinolysis inhibitor self-destruction. J Thromb Haemost 2015; 13:1081-3. [PMID: 25777152 DOI: 10.1111/jth.12900] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 03/02/2015] [Indexed: 12/01/2022]
Affiliation(s)
- T Plug
- Department of Experimental Vascular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - J C M Meijers
- Department of Experimental Vascular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
- Department of Plasma Proteins, Sanquin Research, Amsterdam, the Netherlands
| |
Collapse
|
30
|
Halland N, Brönstrup M, Czech J, Czechtizky W, Evers A, Follmann M, Kohlmann M, Schiell M, Kurz M, Schreuder HA, Kallus C. Novel Small Molecule Inhibitors of Activated Thrombin Activatable Fibrinolysis Inhibitor (TAFIa) from Natural Product Anabaenopeptin. J Med Chem 2015; 58:4839-44. [PMID: 25990761 DOI: 10.1021/jm501840b] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Anabaenopeptins isolated from cyanobacteria were identified as inhibitors of carboxypeptidase TAFIa. Cocrystal structures of these macrocyclic natural product inhibitors in a modified porcine carboxypeptidase B revealed their binding mode and provided the basis for the rational design of small molecule inhibitors with a previously unknown central urea motif. Optimization based on these design concepts allowed for a rapid evaluation of the SAR and delivered potent small molecule inhibitors of TAFIa with a promising overall profile.
Collapse
Affiliation(s)
| | - Mark Brönstrup
- ‡Helmholtz Institute for Infection Research, Inhoffenstraße 7, D-38124 Braunschweig, Germany
| | | | | | | | - Markus Follmann
- §Bayer Healthcare, Aprather Weg 18A, D-42113 Wuppertal, Germany
| | | | | | | | | | | |
Collapse
|
31
|
Plug T, Kramer G, Meijers JCM. A role for arginine-12 in thrombin-thrombomodulin-mediated activation of thrombin-activatable fibrinolysis inhibitor. J Thromb Haemost 2014; 12:1717-25. [PMID: 25066897 DOI: 10.1111/jth.12674] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 07/14/2014] [Indexed: 11/28/2022]
Abstract
BACKGROUND Thrombin-activatable fibrinolysis inhibitor (TAFI) is a proenzyme that links coagulation and fibrinolysis. TAFI can be activated by thrombin, the thrombin-thrombomodulin complex and plasmin through cleavage of the first 92 amino acids from the enzyme. In silico analysis of the TAFI sequence revealed a potential thrombin cleavage site at Arg12. The aim of this study was to determine whether TAFI can be cleaved at Arg12 and whether this cleavage plays a role in TAFI activation. METHODS A peptide based on the first 18 amino acids of TAFI was used to determine whether thrombin was able to cleave at Arg12. Mass spectrometry was performed to determine whether the Arg12-cleaved peptide was released from full-length TAFI. Furthermore, a TAFI mutant in which Arg12 was replaced by a glutamine (TAFI-R12Q) was constructed and characterized with respect to its activation kinetics. RESULTS The peptide and mass spectrometry data showed that thrombin was able to cleave TAFI at Arg12, but with low efficiency in full-length TAFI. Characterization of TAFI-R12Q showed no difference in thrombin-mediated activation from wild-type TAFI. However, there was an approximately 60-fold impairment in activation of TAFI-R12Q by the thrombin-thrombomodulin complex. CONCLUSIONS Arg12 of TAFI plays an important role in thrombomodulin-mediated TAFI activation by thrombin. Thrombin is able to cleave TAFI at Arg12, but it remains to be determined whether Arg12 is part of an exosite for thrombomodulin or whether cleavage at Arg12 accelerates thrombomodulin-mediated TAFI activation.
Collapse
Affiliation(s)
- T Plug
- Department of Experimental Vascular Medicine, Academic Medical Center, Amsterdam, The Netherlands
| | | | | |
Collapse
|
32
|
Hendrickx MLV, Zatloukalova M, Hassanzadeh-Ghassabeh G, Muyldermans S, Gils A, Declerck PJ. Identification of a novel, nanobody-induced, mechanism of TAFI inactivation and its in vivo application. J Thromb Haemost 2014; 12:229-36. [PMID: 24354544 DOI: 10.1111/jth.12473] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Indexed: 11/29/2022]
Abstract
BACKGROUND Down-regulation of fibrinolysis due to cleavage of C-terminal lysine residues from partially degraded fibrin is mainly exerted by the carboxypeptidase activity of activated thrombin-activatable fibrinolysis inhibitor (TAFIa). Recently, some intrinsic carboxypeptidase activity (i.e. zymogen activity) was reported for the proenzyme (TAFI); however, there is some discussion about its ability to cleave high molecular weight substrates. OBJECTIVE We aimed to identify and characterize nanobodies toward mouse TAFI (mTAFI) that stimulate the zymogen activity and to test their effect in an in vitro clot lysis assay and an in vivo mouse thromboembolism model. METHODS AND RESULTS Screening of a library of nanobodies toward mTAFI revealed one nanobody (VHH-mTAFI-i49) that significantly stimulates the zymogen activity of mTAFI from undetectable (< 0.35 U mg⁻¹) to 4.4 U mg⁻¹ (at a 16-fold molar ratio over mTAFI). The generated carboxypeptidase activity is unstable at 37 °C. Incubation of mTAFI with VHH-mTAFI-i49 revealed a time-dependent reduced activatability of mTAFI. Epitope mapping revealed that Arg227 and Lys212 are important for the nanobody/mTAFI interaction and suggest destabilization of mTAFI by disrupting the stabilizing interaction between the activation peptide and the dynamic flap region. In vitro clot lysis experiments revealed an enhanced clot lysis due to a reduced activation of mTAFI during clot formation. In vivo application of VHH-mTAFI-i49 in a mouse thromboembolism model decreased dose-dependently the fibrin deposition in the lungs of thromboembolism-induced mice. CONCLUSION The novel, nanobody-induced, reduced activatability of mTAFI demonstrates to be a very potent approach to enhance clot lysis.
Collapse
Affiliation(s)
- M L V Hendrickx
- Laboratory for Therapeutic and Diagnostic Antibodies, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Brussels, Belgium
| | | | | | | | | | | |
Collapse
|
33
|
Hendrickx MLV, Zatloukalova M, Hassanzadeh-Ghassabeh G, Muyldermans S, Gils A, Declerck PJ. In vitro and in vivo characterisation of the profibrinolytic effect of an inhibitory anti-rat TAFI nanobody. Thromb Haemost 2014; 111:824-32. [PMID: 24402608 DOI: 10.1160/th13-08-0645] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 12/03/2013] [Indexed: 11/05/2022]
Abstract
One of the main disadvantages of current t-PA thrombolytic treatment is the increased bleeding risk. Upon activation, thrombin activatable fibrinolysis inhibitor (TAFI) is a very powerful antifibrinolytic enzyme. Therefore, co-administration of a TAFI inhibitor during thrombolysis could reduce the required t-PA dose without compromising the thrombolytic efficacy. In this study we generated and characterised a nanobody that is inhibitory towards rat TAFI and evaluated its profibrinolytic property in vitro and in vivo. Nanobody VHH-rTAFI-i81 inhibits (at a 16-fold molar ratio nanobody over TAFI) the thrombin/thrombomodulin (T/TM)-mediated activation of rat TAFI (rTAFI) by 83 ± 1.8% with an IC50 of 0.46 (molar ratio nanobody over TAFI). The affinity (KA) of VHH-rTAFI-i81 for rTAFI, as determined by surface plasmon resonance (Biacore®), is 2.5 ± 0.2 x 10(10) M(-1) and illustrates a very strong binding. In an in vitro clot lysis assay, administration of VHH-rTAFI-i81 strongly enhances the degree of lysis and reduces time to reach full lysis of t-PA-mediated clot lysis. Epitope mapping discloses that Lys392 is of primary importance for the nanobody/rTAFI interaction besides minor contributions of Tyr175 and Glu183. In vivo application of VHH-rTAFI-i81 in a tissue factor-induced mouse thromboembolism model significantly decreases fibrin deposition in the lungs in the absence of exogenous administered t-PA. Nanobody VHH-rTAFI-i81 is a very potent inhibitor of T/TM-mediated TAFI activation. Co-administration of this nanobody and t-PA enhances the fibrinolytic efficacy. In an in vivo mouse thromboembolism model, VHH-rTAFI-i81 reduces fibrin deposition in the lungs.
Collapse
Affiliation(s)
| | | | | | | | | | - Paul J Declerck
- Paul Declerck, Laboratory for Therapeutic and Diagnostic Antibodies, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Campus Gasthuisberg, O&N2, PB 820, Herestraat 49, B-3000 Leuven, Belgium, Tel.: +32 16 32 34 31, Fax: +32 16 32 34 60, E-mail:
| |
Collapse
|
34
|
Yoshimoto N, Itoh T, Inaba Y, Ishii H, Yamamoto K. Structural Basis for Inhibition of Carboxypeptidase B by Selenium-Containing Inhibitor: Selenium Coordinates to Zinc in Enzyme. J Med Chem 2013; 56:7527-35. [DOI: 10.1021/jm400816v] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Nobuko Yoshimoto
- High
Technology Research Center, ‡Laboratory of Drug Design and Medicinal Chemistry and §Laboratory of
Molecular and Cellular Pathophysiology, Showa Pharmaceutical University, 3-3165
Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan
| | - Toshimasa Itoh
- High
Technology Research Center, ‡Laboratory of Drug Design and Medicinal Chemistry and §Laboratory of
Molecular and Cellular Pathophysiology, Showa Pharmaceutical University, 3-3165
Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan
| | - Yuka Inaba
- High
Technology Research Center, ‡Laboratory of Drug Design and Medicinal Chemistry and §Laboratory of
Molecular and Cellular Pathophysiology, Showa Pharmaceutical University, 3-3165
Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan
| | - Hidemi Ishii
- High
Technology Research Center, ‡Laboratory of Drug Design and Medicinal Chemistry and §Laboratory of
Molecular and Cellular Pathophysiology, Showa Pharmaceutical University, 3-3165
Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan
| | - Keiko Yamamoto
- High
Technology Research Center, ‡Laboratory of Drug Design and Medicinal Chemistry and §Laboratory of
Molecular and Cellular Pathophysiology, Showa Pharmaceutical University, 3-3165
Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan
| |
Collapse
|
35
|
Kovács A, Szabó L, Longstaff C, Tenekedjiev K, Machovich R, Kolev K. Ambivalent roles of carboxypeptidase B in the lytic susceptibility of fibrin. Thromb Res 2013; 133:80-7. [PMID: 24094605 PMCID: PMC3891004 DOI: 10.1016/j.thromres.2013.09.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 09/10/2013] [Accepted: 09/17/2013] [Indexed: 11/29/2022]
Abstract
BACKGROUND Removal of C-terminal lysine residues that are continuously exposed in lysing fibrin is an established anti-fibrinolytic mechanism dependent on the plasma carboxypeptidase TAFIa, which also removes arginines that are exposed at the time of fibrinogen clotting by thrombin. OBJECTIVE To evaluate the impact of alterations in fibrin structure mediated by constitutive carboxypeptidase activity on the function of fibrin as a template for tissue plasminogen activator-(tPA) induced plasminogen activation and its susceptibility to digestion by plasmin. METHODS AND RESULTS We used the stable carboxypeptidase B (CPB), which shows the same substrate specificity as TAFIa. If 1.5 - 6μM fibrinogen was clotted in the presence of 8U/mL CPB, a denser fibrin network was formed with thinner fibers (the median fiber diameter decreased from 138 - 144nm to 89 - 109nm as established with scanning electron microscopy). If clotting was initiated in the presence of 5 - 10μM arginine, a similar decrease in fiber diameter (82 -95nm) was measured. The fine structure of arginine-treated fibrin enhanced plasminogen activation by tPA, but slowed down lysis monitored using fluorescent tPA and confocal laser microscopy. However, if lysis was initiated with plasmin in CPB-treated fibrin, the rate of dissolution increased to a degree corresponding to doubling of the plasmin concentration. CONCLUSION The present data evidence that CPB activity generates fine-mesh fibrin which is more difficult to lyse by tPA, but conversely, CPB and plasmin together can stimulate fibrinolysis, possibly by enhancing plasmin diffusion.
Collapse
Affiliation(s)
- András Kovács
- Department of Medical Biochemistry, Semmelweis University, Budapest, Hungary
| | - László Szabó
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Colin Longstaff
- Biotherapeutics, Haemostasis Section, National Institute for Biological Standards and Control, South Mimms, Potters Bar, UK
| | | | - Raymund Machovich
- Department of Medical Biochemistry, Semmelweis University, Budapest, Hungary
| | - Krasimir Kolev
- Department of Medical Biochemistry, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
36
|
Tokgoz S, Zamani AG, Durakbasi-Dursun HG, Yılmaz O, Ilhan N, Demirel S, Tavli M, Sinan A. TAFI gene polymorphisms in patients with cerebral venous thrombosis. Acta Neurol Belg 2013; 113:291-7. [PMID: 23264082 DOI: 10.1007/s13760-012-0170-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 11/26/2012] [Indexed: 10/27/2022]
Abstract
Gene polymorphisms of thrombin activatable fibrinolysis inhibition (TAFI) factor have been investigated in various studies in terms of etiology (recurrence) and treatment (fibrinolytic effect) of thrombus formation. Cerebral venous thrombosis (CVT) is a life-threatening disease observed in young persons. Fifty-nine patients with CVT and 100 healthy control subjects were enrolled in the case/control study. The association between TAFI gene polymorphisms -438G>A, +505A>G and +1040C>T and cerebral venous thrombosis was investigated. It was found that frequencies of polymorphic genotype and allele were not different in patients than in control group and that they were not significant for cerebral venous thrombosis.
Collapse
|
37
|
Zhang Y, Liang Z, Glinton K, Ploplis VA, Castellino FJ. Functional differences between Streptococcus pyogenes cluster 1 and cluster 2b streptokinases are determined by their β-domains. FEBS Lett 2013; 587:1304-9. [PMID: 23474243 PMCID: PMC3740169 DOI: 10.1016/j.febslet.2013.02.033] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 02/04/2013] [Accepted: 02/14/2013] [Indexed: 10/27/2022]
Abstract
Cluster 1 streptokinases (SK1) from Streptococcus pyogenes (GAS) show substantially higher human plasminogen (hPg) activation activities and tighter hPg binding affinities than cluster 2b streptokinases (SK2b) in solution. The extent to which the different domains of SK are responsible for these differences is unknown. We exchanged each of the three known SK domains (α, β, and γ) between SK1 and SK2b and assessed the function of the resulting variants. Our results show that primary structural differences in the β-domains dictate these functional differences. This first report on the primary structure-functional relationship between naturally occurring SK1 and SK2b sheds new light on the mechanism of hPg activation by SK, a critical virulence determinant in this species of human pathogenic bacteria.
Collapse
Affiliation(s)
- Yueling Zhang
- W.M. Keck Center for Transgene Research and Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Zhong Liang
- W.M. Keck Center for Transgene Research and Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Kristofor Glinton
- W.M. Keck Center for Transgene Research and Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Victoria A. Ploplis
- W.M. Keck Center for Transgene Research and Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Francis J. Castellino
- W.M. Keck Center for Transgene Research and Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
38
|
Połać I, Borowiecka M, Wilamowska A, Nowak P. Coagulation and fibrynolitic parameters in women and the effects of hormone therapy; comparison of transdermal and oral administration. Gynecol Endocrinol 2013; 29:165-8. [PMID: 23116237 DOI: 10.3109/09513590.2012.730567] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
It is established that hormone therapy (HT) is related with significant increased prothrombotic risk factor. The aim of our study was to assess the effects of oral hormone therapy (o-HT) and transdermal hormone therapy (t-HT) on hemostasis parameters: fibrinogen (Fg) concentration, the maximum velocity of polymerization of clot formation, fibrin half-time lysis, plasma level of thrombin inhibitor of fibrinolysis (TAFI) and activity of generated thrombin and plasmin amidolytic activity. We observed that values of initial velocity of polymerization in o-HT group were increased (94.64 mOD/min vs. 131.50 mOD/min, p < 0.001) compared to control group. Fibrin lysis half-time increased in both groups with HT (controls - 18.26 min vs. 32.43 min (o-HT); 23.34 min transdermal hormone therapy (t-HT) p < 0.001) compared to controls. The activity of thrombin was statistically higher in plasma of women after o-HT (72.6 ± 8.5 mOD/min) than in patients with t-HT (53.7 ± 10.1 mOD/min) and controls (51.2 ± 10 mOD/min. Plasmin activity was the highest in controls (84.5 ± 10.2 mOD/min). The highest level of TAFI we observed in patients after oral hormones (80.38 ± 8.23%); women on transdermal HT had 61.58 ± 9.81% and the lowest concentration of TAFI we noted in controls 44.70 ± 10.16). The results of our study show that HT may partly explain the increase in venous thrombosis (VTE) and cardiovascular events reported after the use of it, especially the oral form of treatment.
Collapse
Affiliation(s)
- Ireneusz Połać
- Department of Gynecology and Menopausal Disorders, Polish Mother's Memorial Hospital-Research Institute, Lodz, Poland.
| | | | | | | |
Collapse
|
39
|
Yoshimoto N, Sasaki T, Sugimoto K, Ishii H, Yamamoto K. Design and characterization of a selenium-containing inhibitor of activated thrombin-activatable fibrinolysis inhibitor (TAFIa), a zinc-containing metalloprotease. J Med Chem 2012; 55:7696-705. [PMID: 22891675 DOI: 10.1021/jm300735t] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Available therapies for thromboembolic disorders include thrombolytics, anticoagulants, and antiplatelets, but these are associated with complications such as bleeding. To develop an alternative drug which is clinically safe, we focused on activated thrombin-activatable fibrinolysis inhibitor (TAFIa) as the target molecule. TAFIa is a zinc-containing carboxypeptidase that significantly inhibits fibrinolysis. Here we designed and synthesized selenium-containing compounds 5-13 to discover novel TAFIa inhibitors having a superior zinc-coordinating group. Compounds 5-13 significantly inhibited TAFIa activity (IC(50) 2.2 × 10(-12) M - 2.6 × 10(-6) M). We found that selenol is a better functional group than thiol for coordinating to zinc at the active site of TAFIa. Furthermore, compound 12, which has an amino-chloro-pyridine ring, was found to be a potent and selective TAFIa inhibitor that lacks carboxypeptidase N inhibitory activity. Therefore, compound 12 is a promising candidate for the treatment of thromboembolic disorders. This is the first report of a selenium-containing inhibitor for TAFIa.
Collapse
Affiliation(s)
- Nobuko Yoshimoto
- High Technology Research Center, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan.
| | | | | | | | | |
Collapse
|
40
|
Ozkan G, Ulusoy S, Sönmez M, Karahan SC, Menteşe A, Kaynar K, Bektaş O. Thrombin activatable fibrinolysis inhibitor (TAFI) levels in hypertensive patients and a comparison of the effects of amlodipine and ramipril on TAFI levels. Clin Exp Hypertens 2012; 35:134-40. [PMID: 22799880 DOI: 10.3109/10641963.2012.702833] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Hypertension is associated with fibrinolysis abnormality. Thrombin-activatable fibrinolysis inhibitor (TAFI) is a novel molecule-linking coagulation and fibrinolysis. The aim of this study was to investigate the levels of TAFI in primary hypertensive patients and to compare the effects of amlodipine and ramipril on TAFI levels. The study was performed with 58 hypertensive subjects and 27 healthy volunteers. Biochemical and hematological parameters and TAFI levels were measured at baseline and after 1-month follow-up. TAFI concentrations increased in hypertensive patients compared with the controls (P = .030). Additionally, TAFI levels decreased with blood pressure control at 1-month follow-up (P = .026). There was no significant difference between TAFI levels in the amlodipine and ramipril groups at baseline. However, after 1-month follow-up, TAFI levels were decreased in the amlodipine group (P = .037) but not in the ramipril group. Our study is the first in the literature to determine increased TAFI levels in primary hypertension patients. In addition, we determined a decrease in TAFI levels in the amlodipine group after 1 month, but none in the ramipril group.
Collapse
Affiliation(s)
- Gulsum Ozkan
- Department of Nephrology, School of Medicine, Karadeniz Technical University, Trabzon, Turkey.
| | | | | | | | | | | | | |
Collapse
|
41
|
Kim PY, Kim PYG, Taylor FB, Nesheim ME. Thrombin-activatable fibrinolysis inhibitor is activated in vivo in a baboon model of Escherichia coli induced sepsis. J Thromb Thrombolysis 2012; 33:412-5. [DOI: 10.1007/s11239-011-0676-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
42
|
Abstract
Pneumococcal meningitis continues to be associated with high rates of mortality and long-term neurological sequelae. The most common route of infection starts by nasopharyngeal colonization by Streptococcus pneumoniae, which must avoid mucosal entrapment and evade the host immune system after local activation. During invasive disease, pneumococcal epithelial adhesion is followed by bloodstream invasion and activation of the complement and coagulation systems. The release of inflammatory mediators facilitates pneumococcal crossing of the blood-brain barrier into the brain, where the bacteria multiply freely and trigger activation of circulating antigen-presenting cells and resident microglial cells. The resulting massive inflammation leads to further neutrophil recruitment and inflammation, resulting in the well-known features of bacterial meningitis, including cerebrospinal fluid pleocytosis, cochlear damage, cerebral edema, hydrocephalus, and cerebrovascular complications. Experimental animal models continue to further our understanding of the pathophysiology of pneumococcal meningitis and provide the platform for the development of new adjuvant treatments and antimicrobial therapy. This review discusses the most recent views on the pathophysiology of pneumococcal meningitis, as well as potential targets for (adjunctive) therapy.
Collapse
|
43
|
Hendrickx MLV, DE Winter A, Buelens K, Compernolle G, Hassanzadeh-Ghassabeh G, Muyldermans S, Gils A, Declerck PJ. TAFIa inhibiting nanobodies as profibrinolytic tools and discovery of a new TAFIa conformation. J Thromb Haemost 2011; 9:2268-77. [PMID: 21883886 DOI: 10.1111/j.1538-7836.2011.04495.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Because activated thrombin activatable fibrinolysis inhibitor (TAFIa) has very powerful antifibrinolytic properties, co-administration of t-PA and a TAFIa inhibitor enhances t-PA treatment. OBJECTIVE We aimed to generate nanobodies specifically inhibiting the TAFIa activity and to test their effect on t-PA induced clot lysis. RESULTS Five nanobodies, raised towards an activated more stable TAFIa mutant (TAFIa A(147) -C(305) -I(325) -I(329) -Y(333) -Q(335) ), are described. These nanobodies inhibit specifically TAFIa activity, resulting in an inhibition of up to 99% at a 16-fold molar excess of nanobody over TAFIa, IC(50) 's range between 0.38- and > 16-fold molar excess. In vitro clot lysis experiments in the absence of thrombomodulin (TM) demonstrate that the nanobodies exhibit profibrinolytic effects. However, in the presence of TM, one nanobody exhibits an antifibrinolytic effect whereas the other nanobodies show a slight antifibrinolytic effect at low concentrations and a pronounced profibrinolytic effect at higher concentrations. This biphasic pattern was highly dependent on TM and t-PA concentration. The nanobodies were found to bind in the active-site region of TAFIa and their time-dependent differential binding behavior during TAFIa inactivation revealed the occurrence of a yet unknown intermediate conformational transition. CONCLUSION These nanobodies are very potent TAFIa inhibitors and constitute useful tools to accelerate fibrinolysis. Our data also demonstrate that the profibrinolytic effect of TAFIa inhibition may be reversed by the presence of TM. The identification of a new conformational transition provides new insights into the conformational inactivation of the unstable TAFIa.
Collapse
Affiliation(s)
- M L V Hendrickx
- Laboratory for Pharmaceutical Biology, Faculty of Pharmaceutical Sciences, Katholieke Universiteit Leuven, Leuven, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Declerck PJ. Thrombin activatable fibrinolysis inhibitor. Hamostaseologie 2011; 31:165-6, 168-73. [PMID: 21629966 DOI: 10.5482/ha-1155] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Accepted: 05/26/2011] [Indexed: 12/14/2022] Open
Abstract
Thrombin activatable fibrinolysis inhibitor (TAFI) was discovered two decades ago as a consequence of the identification of an unstable carboxypeptidase (CPU), which was formed upon thrombin activation of the respective pro-enzyme (proCPU). The antifibrinolytic function of the activated form (TAFIa, CPU) is directly linked to its capacity to remove C-terminal lysines from the surface of the fibrin clot. No endogenous inhibitors have been identified, but TAFIa activity is regulated by its intrinsic temperature-dependent instability with a half-life of 8 to 15 min at 37 °C. A variety of studies have demonstrated a role for TAFI/TAFIa in venous and arterial diseases. In addition, a role in inflammation and cell migration has been shown. Since an elevated level of TAFIa it is a potential risk factor for thrombotic disorders, many inhibitors, both at the level of activation or at the level of activity, have been developed and were proven to exhibit a profibrinolytic effect in animal models. Pharmacologically active inhibitors of the TAFI/TAFIa system may open new ways for the prevention of thrombotic diseases or for the establishment of adjunctive treatments during thrombolytic therapy.
Collapse
Affiliation(s)
- P J Declerck
- Katholieke Universiteit Leuven, Campus Gasthuisberg, Herestraat 49, Leuven, Belgium.
| |
Collapse
|
45
|
Mishra N, Vercauteren E, Develter J, Bammens R, Declerck PJ, Gils A. Identification and characterisation of monoclonal antibodies that impair the activation of human thrombin activatable fibrinolysis inhibitor through different mechanisms. Thromb Haemost 2011; 106:90-101. [PMID: 21544309 DOI: 10.1160/th10-08-0546] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2010] [Accepted: 03/18/2011] [Indexed: 11/05/2022]
Abstract
Thrombin activatable fibrinolysis inhibitor (TAFI) forms a molecular link between coagulation and fibrinolysis and is a putative target to develop profibrinolytic drugs. Out of a panel of monoclonal antibodies (MA) raised against TAFI-ACIIYQ, we selected MA-TCK11A9, MA-TCK22G2 and MA-TCK27A4, which revealed high affinity towards human TAFI-TI-wt. MA-TCK11A9 was able to inhibit mainly plasmin-mediated TAFI activation, MA-TCK22G2 inhibited plasmin- and thrombin-mediated TAFI activation and MA-TCK27A4 inhibited TAFI activation by plasmin, thrombin and thrombin/thrombomodulin (T/TM) in a dose-dependent manner. These MA did not interfere with TAFIa activity. Using an eight-fold molar excess of MA over TAFI, all three MA were able to reduce clot lysis time significantly, i.e. in the presence of exogenous TM, MA-TCK11A9, MA-TCK22G2 and MA-TCK27A4 reduced clot lysis time by 47 ± 9.1%, 80 ± 8.6% and 92 ± 14%, respectively, compared to PTCI. This effect was even more pronounced in the absence of TM i.e. MA-TCK11A9, MA-TCK22G2 and MA-TCK27A4 reduced clot lysis time by 90 ± 14%, 140 ± 12% and 147 ± 29%, respectively, compared to PTCI. Mutagenesis analysis revealed that residues at position 268, 272 and 276 are involved in the binding of MA-TCK11A9, residues 147 and 148 in the binding of MA-TCK22G2 and residue 113 in the binding of MA-TCK27A4. The present study identified three MA, with distinct epitopes, that impair the activation of human TAFI and demonstrated that MA-TCK11A9 which mainly impairs plasmin-mediated TAFI activation can also reduce significantly clot lysis time in vitro.
Collapse
Affiliation(s)
- Niraj Mishra
- Laboratory for Pharmaceutical Biology, Faculty of Pharmaceutical Sciences, Katholieke Universiteit Leuven, O&N II, Leuven, Belgium
| | | | | | | | | | | |
Collapse
|
46
|
Lin JHH, Garand M, Zagorac B, Schadinger SL, Scipione C, Koschinsky ML, Boffa MB. Identification of human thrombin-activatable fibrinolysis inhibitor in vascular and inflammatory cells. Thromb Haemost 2011; 105:999-1009. [PMID: 21505719 DOI: 10.1160/th10-06-0413] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Accepted: 03/10/2011] [Indexed: 11/05/2022]
Abstract
TAFI (thrombin-activatable fibrinolysis inhibitor) is a carboxypeptidase zymogen originally identified in plasma. The TAFI pathway helps to regulate the balance between the coagulation and fibrinolytic cascades. Activated TAFI (TAFIa) can also inactivate certain pro-inflammatory mediators, suggesting that the TAFI pathway may also regulate communication between coagulation and inflammation. Expression in the liver is considered to be the source of plasma TAFI. TAFI has also been identified in platelets and CPB2 (the gene encoding TAFI) mRNA has been detected in megakaryocytic cell lines as well as in endothelial cells. We have undertaken a quantitative analysis of CPB2 mRNA and TAFI protein in extrahepatic cell types relevant to vascular disease. Using RT-PCR and quantitative RT-PCR, we detected CPB2 mRNA in the human megakaryoblastic cell lines MEG-01 and Dami, the human monocytoid cell line THP-1 as well as THP-1 cells differentiated into a macrophage-like phenotype, and in primary human umbilical vein and coronary artery endothelial cells. CPB2 mRNA abundance in MEG-01, Dami, and THP-1 cells was modulated by the state of differentiation of these cells. Using a recently developed TAFIa assay, we detected TAFI protein in the lysates of the human hepatocellular carcinoma cell line HepG2 as well as in MEG-01 and Dami cells and in the conditioned medium of HepG2 cells, differentiated Dami cells, and THP-1 macrophages. We have obtained clear evidence for extrahepatic expression of TAFI, which has clear implications for the physiological and pathophysiological functions of the TAFI pathway.
Collapse
Affiliation(s)
- J H H Lin
- Department of Chemistry & Biochemistry, University of Windsor, Windsor, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
47
|
Foley JH, Cook PF, Nesheim ME. Kinetics of activated thrombin-activatable fibrinolysis inhibitor (TAFIa)-catalyzed cleavage of C-terminal lysine residues of fibrin degradation products and removal of plasminogen-binding sites. J Biol Chem 2011; 286:19280-6. [PMID: 21467042 DOI: 10.1074/jbc.m110.215061] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Partial digestion of fibrin by plasmin exposes C-terminal lysine residues, which comprise new binding sites for both plasminogen and tissue-type plasminogen activator (tPA). This binding increases the catalytic efficiency of plasminogen activation by 3000-fold compared with tPA alone. The activated thrombin-activatable fibrinolysis inhibitor (TAFIa) attenuates fibrinolysis by removing these residues, which causes a 97% reduction in tPA catalytic efficiency. The aim of this study was to determine the kinetics of TAFIa-catalyzed lysine cleavage from fibrin degradation products and the kinetics of loss of plasminogen-binding sites. We show that the k(cat) and K(m) of Glu(1)-plasminogen (Glu-Pg)-binding site removal are 2.34 s(-1) and 142.6 nm, respectively, implying a catalytic efficiency of 16.21 μm(-1) s(-1). The corresponding values of Lys(77)/Lys(78)-plasminogen (Lys-Pg)-binding site removal are 0.89 s(-1) and 96 nm implying a catalytic efficiency of 9.23 μm(-1) s(-1). These catalytic efficiencies of plasminogen-binding site removal by TAFIa are the highest of any TAFIa-catalyzed reaction with a biological substrate reported to date and suggest that plasmin-modified fibrin is a primary physiological substrate for TAFIa. We also show that the catalytic efficiency of cleavage of all C-terminal lysine residues, whether they are involved in plasminogen binding or not, is 1.10 μm(-1) s(-1). Interestingly, this value increases to 3.85 μm(-1) s(-1) in the presence of Glu-Pg. These changes are due to a decrease in K(m). This suggests that an interaction between TAFIa and plasminogen comprises a component of the reaction mechanism, the plausibility of which was established by showing that TAFIa binds both Glu-Pg and Lys-Pg.
Collapse
Affiliation(s)
- Jonathan H Foley
- Department of Biochemistry, Queen's University, Kingston, Ontario, Canada
| | | | | |
Collapse
|
48
|
Kahraman S, Bediz CS, Pişkin O, Aksu I, Topçu A, Yüksel F, Demirkan F. The effect of the acute submaximal exercise on thrombin activatable fibrinolysis inhibitor levels in young sedentary males. Clin Appl Thromb Hemost 2010; 17:414-20. [PMID: 21078613 DOI: 10.1177/1076029610385672] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Depending on type, duration, and intensity of the exercise, changes occur in hemostasis. In this study, we evaluated the changes in the parameters of coagulation and fibrinolytic systems that happened after the submaximal aerobic exercises by bicycle ergomater. Twelve healthy male participants whose ages were between 21 and 28 have been included. The venous samples have been drawn before the exercise as well as at the 0 th, 15th, and 60th minutes after the submaximal exercise. The values of prothrombin time (PT), active partial thromboplastin time (aPTT), D-dimer, fibrinogen, plasminogen activator inhibitor 1 (PAI-1) and thrombin-activatable fibrinolysis inhibitor (TAFI) have been measured. Plasminogen activator inhibitor 1 values have shown an insignificant increase after exercise (P = .328), whereas, it has decreased significantly during the resting period (P = .033) Postexercise 15th and 60th minutes TAFI values have decreased significantly comparing to basal and postexercise (0 th minute) values (P = .001). Fibrinolytic system activation is observed after acute submaximal aerobic exercise of sedentary healthy participants.
Collapse
Affiliation(s)
- Selda Kahraman
- Department of Internal Medicine, Division of Hematology, Dokuz Eylul University, Izmir, Turkey
| | | | | | | | | | | | | |
Collapse
|
49
|
Schadinger SL, Lin JHH, Garand M, Boffa MB. Secretion and antifibrinolytic function of thrombin-activatable fibrinolysis inhibitor from human platelets. J Thromb Haemost 2010; 8:2523-9. [PMID: 20723026 DOI: 10.1111/j.1538-7836.2010.04024.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND The thrombin-activatable fibrinolysis inhibitor (TAFI) is a zymogen first characterized in human plasma that is activated through proteolytic cleavage by thrombin, thrombin in complex with thrombomodulin, or plasmin. Active TAFI attenuates fibrinolysis by removing C-terminal lysine residues from partially degraded fibrin, thereby inhibiting a potent positive feedback loop in the fibrinolytic cascade. The existence of a separate pool of TAFI within platelets has been described. OBJECTIVES AND METHODS We aimed to confirm the presence of TAFI in the medium of washed, thrombin-stimulated platelets and to evaluate the characteristics of platelet TAFI by western blot analysis and with a quantitative assay for activated TAFI. We also assessed the ability of platelet TAFI to inhibit fibrinolysis in vitro, using a platelet-rich thrombus lysis assay. RESULTS Our data are consistent with the presence of TAFI in the α-granules of resting platelets. In contrast to previous reports, platelet TAFI is very similar in electrophoretic mobility to plasma-derived TAFI. We also show, for the first time, that platelet-derived TAFI is capable of attenuating platelet-rich thrombus lysis in vitro independently of plasma TAFI. Moreover, we demonstrate additive effects on thrombolysis of platelet-derived TAFI and TAFI present in plasma. CONCLUSIONS Taken together, these observations indicate that the secretion of platelet-derived TAFI can augment the concentrations of TAFI already present in plasma to enhance attenuation of the fibrinolytic cascade. This could be significant in regions of vascular damage or pathologic thrombosis, where activated platelets are known to accumulate.
Collapse
Affiliation(s)
- S L Schadinger
- Department of Biochemistry, Queen's University, Kingston, ON, Canada
| | | | | | | |
Collapse
|
50
|
Effect of obesity on TAFI in postmenopausal period. Obes Res Clin Pract 2010; 4:e247-342. [DOI: 10.1016/j.orcp.2010.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2009] [Revised: 05/18/2010] [Accepted: 05/27/2010] [Indexed: 11/22/2022]
|