1
|
Carlson WD, Bosukonda D, Keck PC, Bey P, Tessier SN, Carlson FR. Cardiac preservation using ex vivo organ perfusion: new therapies for the treatment of heart failure by harnessing the power of growth factors using BMP mimetics like THR-184. Front Cardiovasc Med 2025; 12:1535778. [PMID: 40171539 PMCID: PMC11960666 DOI: 10.3389/fcvm.2025.1535778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 02/27/2025] [Indexed: 04/03/2025] Open
Abstract
As heart transplantation continues to be the gold standard therapy for end-stage heart failure, the imbalance between the supply of hearts, and the demand for them, continues to get worse. In the US alone, with less than 4,000 hearts suitable for transplant and over 100,000 potential recipients, this therapy is only available to a very few. The use of hearts Donated after Circulatory Death (DCD) and Donation after Brain Death (DBD) using ex vivo machine perfusion (EVMP) is a promising approach that has already increased the availability of suitable organs for heart transplantation. EVMP offers the promise of enabling the expansion of the overall number of heart transplants and lower rates of early graft dysfunction. These are realized through (1) safe extension of the time between procurement and transplantation and (2) ex vivo assessment of preserved hearts. Notably, ex vivo perfusion has facilitated the donation of DCD hearts and improved the success of transplantation. Nevertheless, DCD hearts suffer from serious preharvest ischemia/reperfusion injury (IRI). Despite these developments, only 40% of hearts offered for transplantation can be utilized. These devices do offer an opportunity to evaluate donor hearts for transplantation, resuscitate organs previously deemed unsuitable for transplantation, and provide a platform for the development of novel therapeutics to limit cardiac injury. Bone Morphogenetic Protein (BMP) signaling is a new target which holds the potential for ameliorating myocardial IRI. Recent studies have demonstrated that BMP signaling has a significant role in blocking the deleterious effects of injury to the heart. We have designed novel small peptide BMP mimetics that act via activin receptor-like kinase (ALK3), a type I BMP receptor. They are capable of (1) inhibiting inflammation and apoptosis, (2) blocking/reversing the epithelial-mesenchymal transition (EMT) and fibrosis, and (3) promoting tissue regeneration. In this review, we explore the promise that novel therapeutics, including these BMP mimetics, offer for the protection of hearts against myocardial injury during ex vivo transportation for cardiac transplantation. This protection represents a significant advance and a promising ex vivo therapeutic approach to expanding the donor pool by increasing the number of transplantable hearts.
Collapse
Affiliation(s)
- William D. Carlson
- Division of Cardiology, Mass General Hospital/Harvard, Boston, MA, United States
- Department of Medicine, Harvard Medical School, Boston, MA, United States
- Therapeutics by Design, Weston, MA, United States
| | - Dattatreyamurty Bosukonda
- Division of Cardiology, Mass General Hospital/Harvard, Boston, MA, United States
- Therapeutics by Design, Weston, MA, United States
| | | | - Philippe Bey
- Therapeutics by Design, Weston, MA, United States
| | - Shannon N. Tessier
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, and Shriners Children’s Hospital, Boston, MA, United States
| | | |
Collapse
|
2
|
Huang T, Fei M, Zhou X, He K, Yang S, Zhao A. Effects of Different Photoperiods on the Transcriptome of the Ovary and Small White Follicles in Zhedong White Geese. Animals (Basel) 2024; 14:2747. [PMID: 39335336 PMCID: PMC11428510 DOI: 10.3390/ani14182747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
Photoperiod can regulate the broodiness of geese and thus increase their egg-laying rate. The laying performance of geese is mainly determined by ovary and follicle development. To understand the effect of photoperiod on the ovary and small white follicles, sixteen 220-day-old healthy female Zhedong white geese were randomly divided into two groups for long photoperiods (15L:9D) and short photoperiods (9L:15D). The geese were euthanized after two months of feeding, and their ovaries and follicles were collected for transcriptome sequencing. RNA-seq analysis identified 187 and 448 differentially expressed genes in ovaries and small white follicles of different photoperiod groups, respectively. A long photoperiod promotes high expression of SPP1, C6, MZB1, GP1BA, and FCGBP genes in the ovaries, and increases the expression of SPP1, ANGPTL5, ALPL, ZP1, and CHRNA4 genes in small white follicles. Functional enrichment analysis showed that photoperiod could affect respiratory system development, smooth muscle cell proliferation in ovaries, and extracellular matrix-related function in small white follicles. WGCNA revealed 31 gene modules, of which 2 were significantly associated with ovarian weight and 17 with the number of small white follicles. Our results provide a better understanding of the molecular regulation in the photoperiod affecting goose reproduction.
Collapse
Affiliation(s)
| | | | | | | | | | - Ayong Zhao
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, China; (T.H.); (M.F.); (X.Z.); (K.H.); (S.Y.)
| |
Collapse
|
3
|
Towler OW, Shore EM, Kaplan FS. Molecular Developmental Biology of Fibrodysplasia Ossificans Progressiva: Measuring the Giant by Its Toe. Biomolecules 2024; 14:1009. [PMID: 39199396 PMCID: PMC11353020 DOI: 10.3390/biom14081009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 09/01/2024] Open
Abstract
When a genetic disease is characterized by the abnormal activation of normal molecular pathways and cellular events, it is illuminating to critically examine the places and times of these activities both in health and disease. Therefore, because heterotopic ossification (HO) in fibrodysplasia ossificans progressiva (FOP) is by far the disease's most prominent symptom, attention is also directed toward the pathways and processes of bone formation during skeletal development. FOP is recognizable by effects of the causative mutation on skeletal development even before HO manifests, specifically in the malformation of the great toes. This signature skeletal phenotype is the most highly penetrant, but is only one among several skeletal abnormalities associated with FOP. Patients may present clinically with joint malformation and ankylosis, particularly in the cervical spine and costovertebral joints, as well as characteristic facial features and a litany of less common, non-skeletal symptoms, all stemming from missense mutations in the ACVR1 gene. In the same way that studying the genetic cause of HO advanced our understanding of HO initiation and progression, insight into the roles of ACVR1 signaling during tissue development, particularly in the musculoskeletal system, can be gained from examining altered skeletal development in individuals with FOP. This review will detail what is known about the molecular mechanisms of developmental phenotypes in FOP and the early role of ACVR1 in skeletal patterning and growth, as well as highlight how better understanding these processes may serve to advance patient care, assessments of patient outcomes, and the fields of bone and joint biology.
Collapse
Affiliation(s)
- O. Will Towler
- Division of Plastic Surgery, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA;
| | - Eileen M. Shore
- Center for Research in FOP and Related Disorders, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Frederick S. Kaplan
- Center for Research in FOP and Related Disorders, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
4
|
Wei D, Su Y, Leung PCK, Li Y, Chen ZJ. Roles of bone morphogenetic proteins in endometrial remodeling during the human menstrual cycle and pregnancy. Hum Reprod Update 2024; 30:215-237. [PMID: 38037193 DOI: 10.1093/humupd/dmad031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/17/2023] [Indexed: 12/02/2023] Open
Abstract
BACKGROUND During the human menstrual cycle and pregnancy, the endometrium undergoes a series of dynamic remodeling processes to adapt to physiological changes. Insufficient endometrial remodeling, characterized by inadequate endometrial proliferation, decidualization and spiral artery remodeling, is associated with infertility, endometriosis, dysfunctional uterine bleeding, and pregnancy-related complications such as preeclampsia and miscarriage. Bone morphogenetic proteins (BMPs), a subset of the transforming growth factor-β (TGF-β) superfamily, are multifunctional cytokines that regulate diverse cellular activities, such as differentiation, proliferation, apoptosis, and extracellular matrix synthesis, are now understood as integral to multiple reproductive processes in women. Investigations using human biological samples have shown that BMPs are essential for regulating human endometrial remodeling processes, including endometrial proliferation and decidualization. OBJECTIVE AND RATIONALE This review summarizes our current knowledge on the known pathophysiological roles of BMPs and their underlying molecular mechanisms in regulating human endometrial proliferation and decidualization, with the goal of promoting the development of innovative strategies for diagnosing, treating and preventing infertility and adverse pregnancy complications associated with dysregulated human endometrial remodeling. SEARCH METHODS A literature search for original articles published up to June 2023 was conducted in the PubMed, MEDLINE, and Google Scholar databases, identifying studies on the roles of BMPs in endometrial remodeling during the human menstrual cycle and pregnancy. Articles identified were restricted to English language full-text papers. OUTCOMES BMP ligands and receptors and their transduction molecules are expressed in the endometrium and at the maternal-fetal interface. Along with emerging technologies such as tissue microarrays, 3D organoid cultures and advanced single-cell transcriptomics, and given the clinical availability of recombinant human proteins and ongoing pharmaceutical development, it is now clear that BMPs exert multiple roles in regulating human endometrial remodeling and that these biomolecules (and their receptors) can be targeted for diagnostic and therapeutic purposes. Moreover, dysregulation of these ligands, their receptors, or signaling determinants can impact endometrial remodeling, contributing to infertility or pregnancy-related complications (e.g. preeclampsia and miscarriage). WIDER IMPLICATIONS Although further clinical trials are needed, recent advancements in the development of recombinant BMP ligands, synthetic BMP inhibitors, receptor antagonists, BMP ligand sequestration tools, and gene therapies have underscored the BMPs as candidate diagnostic biomarkers and positioned the BMP signaling pathway as a promising therapeutic target for addressing infertility and pregnancy complications related to dysregulated human endometrial remodeling.
Collapse
Affiliation(s)
- Daimin Wei
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong, China
- Medical Integration and Practice Center, Shandong University, Jinan, Shandong, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, Shandong, China
| | - Yaxin Su
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong, China
| | - Peter C K Leung
- Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Yan Li
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong, China
- Medical Integration and Practice Center, Shandong University, Jinan, Shandong, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, Shandong, China
| | - Zi-Jiang Chen
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, Shandong, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, Shandong, China
| |
Collapse
|
5
|
Akiyama T, Raftery LA, Wharton KA. Bone morphogenetic protein signaling: the pathway and its regulation. Genetics 2024; 226:iyad200. [PMID: 38124338 PMCID: PMC10847725 DOI: 10.1093/genetics/iyad200] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/27/2023] [Indexed: 12/23/2023] Open
Abstract
In the mid-1960s, bone morphogenetic proteins (BMPs) were first identified in the extracts of bone to have the remarkable ability to induce heterotopic bone. When the Drosophila gene decapentaplegic (dpp) was first identified to share sequence similarity with mammalian BMP2/BMP4 in the late-1980s, it became clear that secreted BMP ligands can mediate processes other than bone formation. Following this discovery, collaborative efforts between Drosophila geneticists and mammalian biochemists made use of the strengths of their respective model systems to identify BMP signaling components and delineate the pathway. The ability to conduct genetic modifier screens in Drosophila with relative ease was critical in identifying the intracellular signal transducers for BMP signaling and the related transforming growth factor-beta/activin signaling pathway. Such screens also revealed a host of genes that encode other core signaling components and regulators of the pathway. In this review, we provide a historical account of this exciting time of gene discovery and discuss how the field has advanced over the past 30 years. We have learned that while the core BMP pathway is quite simple, composed of 3 components (ligand, receptor, and signal transducer), behind the versatility of this pathway lies multiple layers of regulation that ensures precise tissue-specific signaling output. We provide a sampling of these discoveries and highlight many questions that remain to be answered to fully understand the complexity of BMP signaling.
Collapse
Affiliation(s)
- Takuya Akiyama
- Department of Biology, Rich and Robin Porter Cancer Research Center, The Center for Genomic Advocacy, Indiana State University, Terre Haute, IN 47809, USA
| | - Laurel A Raftery
- School of Life Sciences, University of Nevada, 4505 S. Maryland Parkway, Las Vegas, NV 89154, USA
| | - Kristi A Wharton
- Department of Molecular Biology, Cell Biology, and Biochemistry, Carney Institute for Brain Science, Brown University, Providence, RI 02912, USA
| |
Collapse
|
6
|
Wang H, Kaplan FS, Pignolo RJ. The HIF-1α and mTOR Pathways Amplify Heterotopic Ossification. Biomolecules 2024; 14:147. [PMID: 38397384 PMCID: PMC10887042 DOI: 10.3390/biom14020147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/16/2024] [Accepted: 01/23/2024] [Indexed: 02/25/2024] Open
Abstract
Fibrodysplasia ossificans progressiva (FOP; MIM# 135100) is an ultra-rare congenital disorder caused by gain-of-function point mutations in the Activin receptor A type I (ACVR1, also known as ALK2) gene. FOP is characterized by episodic heterotopic ossification (HO) in skeletal muscles, tendons, ligaments, or other soft tissues that progressively causes irreversible loss of mobility. FOP mutations cause mild ligand-independent constitutive activation as well as ligand-dependent bone morphogenetic protein (BMP) pathway hypersensitivity of mutant ACVR1. BMP signaling is also a key pathway for mediating acquired HO. However, HO is a highly complex biological process involving multiple interacting signaling pathways. Among them, the hypoxia-inducible factor (HIF) and mechanistic target of rapamycin (mTOR) pathways are intimately involved in both genetic and acquired HO formation. HIF-1α inhibition or mTOR inhibition reduces HO formation in mouse models of FOP or acquired HO in part by de-amplifying the BMP pathway signaling. Here, we review the recent progress on the mechanisms of the HIF-1α and mTOR pathways in the amplification of HO lesions and discuss the future directions and strategies to translate the targeting of HIF-1α and the mTOR pathways into clinical interventions for FOP and other forms of HO.
Collapse
Affiliation(s)
- Haitao Wang
- Department of Medicine, Geriatric Medicine & Gerontology, Mayo Clinic, Rochester, MN 55905, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Frederick S. Kaplan
- Department of Orthopaedic Surgery, The Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Medicine, The Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA 19104, USA
- The Center for Research in FOP and Related Disorders, The Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Robert J. Pignolo
- Department of Medicine, Geriatric Medicine & Gerontology, Mayo Clinic, Rochester, MN 55905, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
- Department of Medicine, Divisions of Endocrinology, Hospital Internal Medicine, Rochester, MN 55905, USA
| |
Collapse
|
7
|
Srinivasan D, Arostegui M, Goebel EJ, Hart KN, Aykul S, Lees-Shepard JB, Idone V, Hatsell SJ, Economides AN. How Activin A Became a Therapeutic Target in Fibrodysplasia Ossificans Progressiva. Biomolecules 2024; 14:101. [PMID: 38254701 PMCID: PMC10813747 DOI: 10.3390/biom14010101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Fibrodysplasia ossificans progressiva (FOP) is a rare genetic disorder characterized by episodic yet cumulative heterotopic ossification (HO) of skeletal muscles, tendons, ligaments, and fascia. FOP arises from missense mutations in Activin Receptor type I (ACVR1), a type I bone morphogenetic protein (BMP) receptor. Although initial findings implicated constitutive activity of FOP-variant ACVR1 (ACVR1FOP) and/or hyperactivation by BMPs, it was later shown that HO in FOP requires activation of ACVR1FOP by Activin A. Inhibition of Activin A completely prevents HO in FOP mice, indicating that Activin A is an obligate driver of HO in FOP, and excluding a key role for BMPs in this process. This discovery led to the clinical development of garetosmab, an investigational antibody that blocks Activin A. In a phase 2 trial, garetosmab inhibited new heterotopic bone lesion formation in FOP patients. In contrast, antibodies to ACVR1 activate ACVR1FOP and promote HO in FOP mice. Beyond their potential clinical relevance, these findings have enhanced our understanding of FOP's pathophysiology, leading to the identification of fibroadipogenic progenitors as the cells that form HO, and the discovery of non-signaling complexes between Activin A and wild type ACVR1 and their role in tempering HO, and are also starting to inform biological processes beyond FOP.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Aris N. Economides
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA; (D.S.); (M.A.); (E.J.G.); (K.N.H.); (S.A.); (J.B.L.-S.); (V.I.); (S.J.H.)
| |
Collapse
|
8
|
Groppe JC, Lu G, Tandang-Silvas MR, Pathi A, Konda S, Wu J, Le VQ, Culbert AL, Shore EM, Wharton KA, Kaplan FS. Polypeptide Substrate Accessibility Hypothesis: Gain-of-Function R206H Mutation Allosterically Affects Activin Receptor-like Protein Kinase Activity. Biomolecules 2023; 13:1129. [PMID: 37509165 PMCID: PMC10376983 DOI: 10.3390/biom13071129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/10/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Although structurally similar to type II counterparts, type I or activin receptor-like kinases (ALKs) are set apart by a metastable helix-loop-helix (HLH) element preceding the protein kinase domain that, according to a longstanding paradigm, serves passive albeit critical roles as an inhibitor-to-substrate-binding switch. A single recurrent mutation in the codon of the penultimate residue, directly adjacent the position of a constitutively activating substitution, causes milder activation of ACVR1/ALK2 leading to sporadic heterotopic bone deposition in patients presenting with fibrodysplasia ossificans progressiva, or FOP. To determine the protein structural-functional basis for the gain of function, R206H mutant, Q207D (aspartate-substituted caALK2) and HLH subdomain-truncated (208 Ntrunc) forms were compared to one another and the wild-type enzyme through in vitro kinase and protein-protein interaction analyses that were complemented by signaling read-out (p-Smad) in primary mouse embryonic fibroblasts and Drosophila S2 cells. Contrary to the paradigm, the HLH subdomain actively suppressed the phosphotransferase activity of the enzyme, even in the absence of FKBP12. Unexpectedly, perturbation of the HLH subdomain elevated kinase activity at a distance, i.e., allosterically, at the ATP-binding and polypeptide-interacting active site cleft. Accessibility to polypeptide substrate (BMP Smad C-terminal tails) due to allosterically altered conformations of type I active sites within heterohexameric cytoplasmic signaling complexes-assembled noncanonically by activin-type II receptors extracellularly-is hypothesized to produce a gain of function of the R206H mutant protein responsible for episodic heterotopic ossification in FOP.
Collapse
Affiliation(s)
- Jay C. Groppe
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, 3302 Gaston Ave, Dallas, TX 75246, USA
| | - Guorong Lu
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, 3302 Gaston Ave, Dallas, TX 75246, USA
| | - Mary R. Tandang-Silvas
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, 3302 Gaston Ave, Dallas, TX 75246, USA
| | - Anupama Pathi
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, 3302 Gaston Ave, Dallas, TX 75246, USA
| | - Shruti Konda
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, 3302 Gaston Ave, Dallas, TX 75246, USA
| | - Jingfeng Wu
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, 3302 Gaston Ave, Dallas, TX 75246, USA
| | - Viet Q. Le
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA
- Program in Molecular Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Andria L. Culbert
- Department of Orthopaedics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Eileen M. Shore
- Department of Orthopaedics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Kristi A. Wharton
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA
| | - Frederick S. Kaplan
- Department of Orthopaedics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| |
Collapse
|
9
|
Katagiri T, Tsukamoto S, Kuratani M, Tsuji S, Nakamura K, Ohte S, Kawaguchi Y, Takaishi K. A blocking monoclonal antibody reveals dimerization of intracellular domains of ALK2 associated with genetic disorders. Nat Commun 2023; 14:2960. [PMID: 37231012 PMCID: PMC10212922 DOI: 10.1038/s41467-023-38746-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 05/15/2023] [Indexed: 05/27/2023] Open
Abstract
Mutations in activin receptor-like kinase 2 (ALK2) can cause the pathological osteogenic signaling seen in some patients with fibrodysplasia ossificans progressiva and other conditions such as diffuse intrinsic pontine glioma. Here, we report that intracellular domain of wild-type ALK2 readily dimerizes in response to BMP7 binding to drive osteogenic signaling. This osteogenic signaling is pathologically triggered by heterotetramers of type II receptor kinases and ALK2 mutant forms, which form intracellular domain dimers in response to activin A binding. We develop a blocking monoclonal antibody, Rm0443, that can suppress ALK2 signaling. We solve the crystal structure of the ALK2 extracellular domain complex with a Fab fragment of Rm0443 and show that Rm0443 induces dimerization of ALK2 extracellular domains in a back-to-back orientation on the cell membrane by binding the residues H64 and F63 on opposite faces of the ligand-binding site. Rm0443 could prevent heterotopic ossification in a mouse model of fibrodysplasia ossificans progressiva that carries the human R206H pathogenic mutant.
Collapse
Affiliation(s)
- Takenobu Katagiri
- Division of Biomedical Sciences, Research Center for Genomic Medicine, Saitama Medical University, 1397-1 Yamane, Hidaka-shi, Saitama, 350-1241, Japan.
- Project of Clinical and Basic Research for FOP, Saitama Medical University, 1397-1 Yamane, Hidaka-shi, Saitama, 350-1241, Japan.
| | - Sho Tsukamoto
- Division of Biomedical Sciences, Research Center for Genomic Medicine, Saitama Medical University, 1397-1 Yamane, Hidaka-shi, Saitama, 350-1241, Japan
- Project of Clinical and Basic Research for FOP, Saitama Medical University, 1397-1 Yamane, Hidaka-shi, Saitama, 350-1241, Japan
| | - Mai Kuratani
- Division of Biomedical Sciences, Research Center for Genomic Medicine, Saitama Medical University, 1397-1 Yamane, Hidaka-shi, Saitama, 350-1241, Japan
| | - Shinnosuke Tsuji
- Specialty Medicine Research Laboratories I, R&D Division, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo, 140-8710, Japan
| | - Kensuke Nakamura
- Modality Research Laboratories, Biologics Division, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo, 140-8710, Japan
| | - Satoshi Ohte
- Division of Biomedical Sciences, Research Center for Genomic Medicine, Saitama Medical University, 1397-1 Yamane, Hidaka-shi, Saitama, 350-1241, Japan
- Graduate School of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Yoshiro Kawaguchi
- Modality Research Laboratories, Biologics Division, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo, 140-8710, Japan
| | - Kiyosumi Takaishi
- Specialty Medicine Research Laboratories I, R&D Division, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo, 140-8710, Japan
| |
Collapse
|
10
|
Liu H, Hallauer Hastings M, Kitchen R, Xiao C, Baldovino Guerra JR, Kuznetsov A, Rosenzweig A. Beneficial Effects of Moderate Hepatic Activin A Expression on Metabolic Pathways, Inflammation, and Atherosclerosis. Arterioscler Thromb Vasc Biol 2023; 43:330-349. [PMID: 36453275 DOI: 10.1161/atvbaha.122.318138] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
BACKGROUND Atherosclerosis is an inflammatory vascular disease marked by hyperlipidemia and hematopoietic stem cell expansion. Activin A, a member of the Activin/GDF/TGFβ/BMP (growth/differentiation factor/transforming growth factor beta/bone morphogenetic protein) family is broadly expressed and increases in human atherosclerosis, but its functional effects in vivo in this context remain unclear. METHODS We studied LDLR-/- mice on a Western diet for 12 weeks and used adeno-associated viral vectors with a liver-specific TBG (thyroxine-binding globulin) promoter to express Activin A or GFP (control). Atherosclerotic lesions were analyzed by oil red staining. Blood lipid profiling was performed by high-performance liquid chromatography, and immune cells were evaluated by flow cytometry. Liver RNA-sequencing was performed to explore the underlying mechanisms. RESULTS Activin A expression decreased in both livers and aortae from LDLR-/- mice fed a Western diet compared with standard laboratory diet. Adenoassociated virus-TBG-Activin A increased Activin A hepatic expression ≈10-fold at 12 weeks; P<0.001) and circulating Activin A levels ≈2000 pg/ml versus ≈50 pg/ml; P<0.001, compared with controls). Hepatic Activin A expression decreased plasma total and LDL (low-density lipoprotein) cholesterol ≈60% and ≈40%, respectively), reduced inflammatory cells in aortae and proliferating hematopoietic stem cells in bone marrow, and reduced atherosclerotic lesion and necrotic core area in aortae. Activin A also attenuated liver steatosis and expression of the lipogenesis genes, Srebp1 and Srebp2. RNA sequencing revealed Activin A not only blocked expression of genes involved in hepatic de novo lipogenesis but also fatty acid uptake and liver inflammation. In addition, Activin A expressed in the liver also reduced white fat tissue accumulation, decreased adipocyte size, and improved glucose tolerance. CONCLUSIONS Our studies reveal hepatic Activin A expression reduces inflammation, hematopoietic stem cell expansion, liver steatosis, circulating cholesterol, and fat accumulation, which likely all contribute to the observed protection against atherosclerosis. The reduced Activin A observed in LDLR-/- mice on a Western diet seems maladaptive and deleterious for atherogenesis.
Collapse
Affiliation(s)
- Huan Liu
- Cardiovascular Research Center, Massachusetts General Hospital, and Harvard Medical School, Boston
| | | | - Robert Kitchen
- Cardiovascular Research Center, Massachusetts General Hospital, and Harvard Medical School, Boston
| | - Chunyang Xiao
- Cardiovascular Research Center, Massachusetts General Hospital, and Harvard Medical School, Boston
| | | | - Alexandra Kuznetsov
- Cardiovascular Research Center, Massachusetts General Hospital, and Harvard Medical School, Boston
| | - Anthony Rosenzweig
- Cardiovascular Research Center, Massachusetts General Hospital, and Harvard Medical School, Boston
| |
Collapse
|
11
|
Devendran A, Kar S, Bailey R, Trivieri MG. The Role of Bone Morphogenetic Protein Receptor Type 2 ( BMPR2) and the Prospects of Utilizing Induced Pluripotent Stem Cells (iPSCs) in Pulmonary Arterial Hypertension Disease Modeling. Cells 2022; 11:3823. [PMID: 36497082 PMCID: PMC9741276 DOI: 10.3390/cells11233823] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/25/2022] [Accepted: 11/25/2022] [Indexed: 12/03/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a progressive disease characterized by increased pulmonary vascular resistance (PVR), causing right ventricular hypertrophy and ultimately death from right heart failure. Heterozygous mutations in the bone morphogenetic protein receptor type 2 (BMPR2) are linked to approximately 80% of hereditary, and 20% of idiopathic PAH cases, respectively. While patients carrying a BMPR2 gene mutation are more prone to develop PAH than non-carriers, only 20% will develop the disease, whereas the majority will remain asymptomatic. PAH is characterized by extreme vascular remodeling that causes pulmonary arterial endothelial cell (PAEC) dysfunction, impaired apoptosis, and uncontrolled proliferation of the pulmonary arterial smooth muscle cells (PASMCs). To date, progress in understanding the pathophysiology of PAH has been hampered by limited access to human tissue samples and inadequacy of animal models to accurately mimic the pathogenesis of human disease. Along with the advent of induced pluripotent stem cell (iPSC) technology, there has been an increasing interest in using this tool to develop patient-specific cellular models that precisely replicate the pathogenesis of PAH. In this review, we summarize the currently available approaches in iPSC-based PAH disease modeling and explore how this technology could be harnessed for drug discovery and to widen our understanding of the pathophysiology of PAH.
Collapse
Affiliation(s)
- Anichavezhi Devendran
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sumanta Kar
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Rasheed Bailey
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Maria Giovanna Trivieri
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Medicine, Cardiology Unit, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
12
|
Ungefroren H, Braun R, Lapshyna O, Konukiewitz B, Wellner UF, Lehnert H, Marquardt JU. Suppressive Role of ACVR1/ALK2 in Basal and TGFβ1-Induced Cell Migration in Pancreatic Ductal Adenocarcinoma Cells and Identification of a Self-Perpetuating Autoregulatory Loop Involving the Small GTPase RAC1b. Biomedicines 2022; 10:2640. [PMID: 36289908 PMCID: PMC9599656 DOI: 10.3390/biomedicines10102640] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/10/2022] [Accepted: 10/17/2022] [Indexed: 11/16/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) cells are known for their high invasive/metastatic potential, which is regulated in part by the transforming growth factor β1 (TGFβ1). The involvement of at least two type I receptors, ALK5 and ALK2, that transmit downstream signals of the TGFβ via different Smad proteins, SMAD2/3 and SMAD1/5, respectively, poses the issue of their relative contribution in regulating cell motility. Real-time cell migration assays revealed that the selective inhibition of ALK2 by RNAi or dominant-negative interference with a kinase-dead mutant (ALK2-K233R) strongly enhanced the cells' migratory activity in the absence or presence of TGFβ1 stimulation. Ectopic ALK2-K233R expression was associated with an increase in the protein levels of RAC1 and its alternatively spliced isoform, RAC1b, both of which are implicated in driving cell migration and invasion. Conversely, the RNAi-mediated knockdown or CRISPR/Cas9-mediated knockout of RAC1b resulted in the upregulation of the expression of ALK2, but not that of the related BMP type I receptors, ALK3 or ALK6, and elevated the phosphorylation of SMAD1/5. PDAC is a heterogeneous disease encompassing tumors with different histomorphological subtypes, ranging from epithelial/classical to extremely mesenchymal. Upon treatment of various established and primary PDAC cell lines representing these subtypes with the ALK2 inhibitor, LDN-193189, well-differentiated, epithelial cell lines responded with a much stronger increase in the basal and TGFβ1-dependent migratory activity than poorly differentiated, mesenchymal ones. These data show that (i) ALK2 inhibits migration by suppressing RAC1/RAC1b proteins, (ii) ALK2 and RAC1b act together in a self-perpetuating the autoregulatory negative feedback loop to mutually control their expression, and (iii) the ALK2 antimigratory function appears to be particularly crucial in protecting epithelial subtype cells from becoming invasive, both spontaneously and in a TGFβ-rich tumor microenvironment.
Collapse
Affiliation(s)
- Hendrik Ungefroren
- First Department of Medicine, University Hospital Schleswig-Holstein, Campus Lübeck, D-23538 Lübeck, Germany
- Institute of Pathology, University Hospital Schleswig-Holstein, Campus Kiel, D-24105 Kiel, Germany
| | - Rüdiger Braun
- Clinic for Surgery, University Hospital Schleswig-Holstein, Campus Lübeck, D-23538 Lübeck, Germany
| | - Olha Lapshyna
- Clinic for Surgery, University Hospital Schleswig-Holstein, Campus Lübeck, D-23538 Lübeck, Germany
| | - Björn Konukiewitz
- Institute of Pathology, University Hospital Schleswig-Holstein, Campus Kiel, D-24105 Kiel, Germany
| | - Ulrich F. Wellner
- Clinic for Surgery, University Hospital Schleswig-Holstein, Campus Lübeck, D-23538 Lübeck, Germany
| | | | - Jens-Uwe Marquardt
- First Department of Medicine, University Hospital Schleswig-Holstein, Campus Lübeck, D-23538 Lübeck, Germany
| |
Collapse
|
13
|
BMP3 inhibits TGFβ2-mediated myofibroblast differentiation during wound healing of the embryonic cornea. NPJ Regen Med 2022; 7:36. [PMID: 35879352 PMCID: PMC9314337 DOI: 10.1038/s41536-022-00232-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 07/06/2022] [Indexed: 11/29/2022] Open
Abstract
Often acute damage to the cornea initiates drastic tissue remodeling, resulting in fibrotic scarring that disrupts light transmission and precedes vision impairment. Very little is known about the factors that can mitigate fibrosis and promote scar-free cornea wound healing. We previously described transient myofibroblast differentiation during non-fibrotic repair in an embryonic cornea injury model. Here, we sought to elucidate the mechanistic regulation of myofibroblast differentiation during embryonic cornea wound healing. We found that alpha-smooth muscle actin (αSMA)-positive myofibroblasts are superficial and their presence inversely correlates with wound closure. Expression of TGFβ2 and nuclear localization of pSMAD2 were elevated during myofibroblast induction. BMP3 and BMP7 were localized in the corneal epithelium and corresponded with pSMAD1/5/8 activation and absence of myofibroblasts in the healing stroma. In vitro analyses with corneal fibroblasts revealed that BMP3 inhibits the persistence of TGFβ2-induced myofibroblasts by promoting disassembly of focal adhesions and αSMA fibers. This was confirmed by the expression of vinculin and pFAK. Together, these data highlight a mechanism to inhibit myofibroblast persistence during cornea wound repair.
Collapse
|
14
|
Carlson WD, Keck PC, Bosukonda D, Carlson FR. A Process for the Design and Development of Novel Bone Morphogenetic Protein-7 (BMP-7) Mimetics With an Example: THR-184. Front Pharmacol 2022; 13:864509. [PMID: 35873578 PMCID: PMC9306349 DOI: 10.3389/fphar.2022.864509] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 06/13/2022] [Indexed: 11/29/2022] Open
Abstract
Growth Factors have been evaluated as therapeutic targets for the treatment of a broad spectrum of diseases. Because they are proteins with pleiotropic effects, the quest to harness their beneficial effects has presented challenges. Most Growth Factors operate at the extracellular-receptor level and have natural feedback mechanisms that modulate their effects. As proteins, they are difficult and expensive to manufacture. Frequently proteins must be administered parenterally, may invoke an immune response, and may be neutralized by naturally occurring inhibitors. To circumvent these limitations, we have undertaken an effort to develop mimetics for the Bone Morphogenetic Protein (BMP) signaling pathway effects that incorporate the beneficial effects, eliminate the deleterious effects, and thereby create effective drug-like compounds.To this end, we have designed and tested a family of small peptide BMP mimetics. The design used the three-dimensional structure of BMP-7 to identify likely active surface regions. Lead sequences were then optimized based on in vitro assays that examine the selective binding to BMP receptors, demonstrate the phosphorylation of Smad-1,5,8, detect anti-apoptosis and anti-inflammation, and block the epithelial to mesenchymal transition (EMT) in renal tubular epithelial cells. These sequences were further optimized using in vivo assays of the attenuation of acute kidney injury in a rat-model of unilateral clamp ischemic reperfusion. This process uses a Structure Variance Analysis algorithm (SVA) to identify structure/activity relationships. One member of this family, THR-184, is an agonist of BMP signaling and a potent antagonist of TGFβ signaling. This small peptide mimetic inhibits inflammation, apoptosis, fibrosis and reverses epithelial to mesenchymal transition (EMT) by regulating multiple signaling pathways involved in the cellular injury of multiple organs. Its effects have been shown to control Acute Kidney Injury (AKI). THR-184 has progressed through phase I and II clinical trials for the prevention of Cardio-Vascular Surgery (CVS) associated AKI. This work provides a roadmap for the development of other growth factor mimetics and demonstrates how we might harness their therapeutic potential.
Collapse
Affiliation(s)
- William D. Carlson
- Division of Cardiology, Mass General Hospital/Harvard, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Therapeutics By Design, Boston, MA, United States
- Thrasos Therapeutics, Hopkinton, MA, United States
- *Correspondence: William D. Carlson,
| | - Peter C. Keck
- Therapeutics By Design, Boston, MA, United States
- Thrasos Therapeutics, Hopkinton, MA, United States
| | - Dattatreyamurty Bosukonda
- Division of Cardiology, Mass General Hospital/Harvard, Boston, MA, United States
- Therapeutics By Design, Boston, MA, United States
- Thrasos Therapeutics, Hopkinton, MA, United States
| | - Frederic Roy Carlson
- Therapeutics By Design, Boston, MA, United States
- Thrasos Therapeutics, Hopkinton, MA, United States
| |
Collapse
|
15
|
Sharma T, Kapoor A, Mandal CC. Duality of bone morphogenetic proteins in cancer: A comprehensive analysis. J Cell Physiol 2022; 237:3127-3163. [DOI: 10.1002/jcp.30785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/06/2022] [Accepted: 04/29/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Tanu Sharma
- Department of Biochemistry, School of Life Sciences Central University of Rajasthan Ajmer Rajasthan India
| | - Anmol Kapoor
- Department of Biochemistry, School of Life Sciences Central University of Rajasthan Ajmer Rajasthan India
| | - Chandi C. Mandal
- Department of Biochemistry, School of Life Sciences Central University of Rajasthan Ajmer Rajasthan India
| |
Collapse
|
16
|
Molecular Signature of Neuroinflammation Induced in Cytokine-Stimulated Human Cortical Spheroids. Biomedicines 2022; 10:biomedicines10051025. [PMID: 35625761 PMCID: PMC9138619 DOI: 10.3390/biomedicines10051025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/22/2022] [Accepted: 04/25/2022] [Indexed: 12/04/2022] Open
Abstract
Crucial in the pathogenesis of neurodegenerative diseases is the process of neuroinflammation that is often linked to the pro-inflammatory cytokines Tumor necrosis factor alpha (TNFα) and Interleukin-1beta (IL-1β). Human cortical spheroids (hCSs) constitute a valuable tool to study the molecular mechanisms underlying neurological diseases in a complex three-dimensional context. We recently designed a protocol to generate hCSs comprising all major brain cell types. Here we stimulate these hCSs for three time periods with TNFα and with IL-1β. Transcriptomic analysis reveals that the main process induced in the TNFα- as well as in the IL-1β-stimulated hCSs is neuroinflammation. Central in the neuroinflammatory response are endothelial cells, microglia and astrocytes, and dysregulated genes encoding cytokines, chemokines and their receptors, and downstream NFκB- and STAT-pathway components. Furthermore, we observe sets of neuroinflammation-related genes that are specifically modulated in the TNFα-stimulated and in the IL-1β-stimulated hCSs. Together, our results help to molecularly understand human neuroinflammation and thus a key mechanism of neurodegeneration.
Collapse
|
17
|
Jensen GS, Leon-Palmer NE, Townsend KL. Bone morphogenetic proteins (BMPs) in the central regulation of energy balance and adult neural plasticity. Metabolism 2021; 123:154837. [PMID: 34331962 DOI: 10.1016/j.metabol.2021.154837] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 06/28/2021] [Accepted: 07/19/2021] [Indexed: 12/14/2022]
Abstract
The current worldwide obesity pandemic highlights a need to better understand the regulation of energy balance and metabolism, including the role of the nervous system in controlling energy intake and energy expenditure. Neural plasticity in the hypothalamus of the adult brain has been implicated in full-body metabolic health, however, the mechanisms surrounding hypothalamic plasticity are incompletely understood. Bone morphogenetic proteins (BMPs) control metabolic health through actions in the brain as well as in peripheral tissues such as adipose, together regulating both energy intake and energy expenditure. BMP ligands, receptors, and inhibitors are found throughout plastic adult brain regions and have been demonstrated to modulate neurogenesis and gliogenesis, as well as synaptic and dendritic plasticity. This role for BMPs in adult neural plasticity is distinct from their roles in brain development. Existing evidence suggests that BMPs induce weight loss through hypothalamic pathways, and part of the mechanism of action may be through inducing neural plasticity. In this review, we summarize the data regarding how BMPs affect neural plasticity in the adult mammalian brain, as well as the relationship between central BMP signaling and metabolic health.
Collapse
Affiliation(s)
- Gabriel S Jensen
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, United States of America; Department of Neurological Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, United States of America
| | - Noelle E Leon-Palmer
- School of Biology and Ecology, University of Maine, Orono, ME, United States of America
| | - Kristy L Townsend
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, United States of America; Department of Neurological Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, United States of America; School of Biology and Ecology, University of Maine, Orono, ME, United States of America.
| |
Collapse
|
18
|
Ramachandran A, Mehić M, Wasim L, Malinova D, Gori I, Blaszczyk BK, Carvalho DM, Shore EM, Jones C, Hyvönen M, Tolar P, Hill CS. Pathogenic ACVR1 R206H activation by Activin A-induced receptor clustering and autophosphorylation. EMBO J 2021; 40:e106317. [PMID: 34003511 PMCID: PMC8280795 DOI: 10.15252/embj.2020106317] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 03/25/2021] [Accepted: 03/26/2021] [Indexed: 11/23/2022] Open
Abstract
Fibrodysplasia ossificans progressiva (FOP) and diffuse intrinsic pontine glioma (DIPG) are debilitating diseases that share causal mutations in ACVR1, a TGF-β family type I receptor. ACVR1R206H is a frequent mutation in both diseases. Pathogenic signaling via the SMAD1/5 pathway is mediated by Activin A, but how the mutation triggers aberrant signaling is not known. We show that ACVR1 is essential for Activin A-mediated SMAD1/5 phosphorylation and is activated by two distinct mechanisms. Wild-type ACVR1 is activated by the Activin type I receptors, ACVR1B/C. In contrast, ACVR1R206H activation does not require upstream kinases, but is predominantly activated via Activin A-dependent receptor clustering, which induces its auto-activation. We use optogenetics and live-imaging approaches to demonstrate Activin A-induced receptor clustering and show it requires the type II receptors ACVR2A/B. Our data provide molecular mechanistic insight into the pathogenesis of FOP and DIPG by linking the causal activating genetic mutation to disrupted signaling.
Collapse
Affiliation(s)
- Anassuya Ramachandran
- Developmental Signalling LaboratoryThe Francis Crick InstituteLondonUK
- Present address:
Department of Molecular Medicine and PathologyUniversity of AucklandAucklandNew Zealand
| | - Merima Mehić
- Developmental Signalling LaboratoryThe Francis Crick InstituteLondonUK
| | - Laabiah Wasim
- Immune Receptor Activation LaboratoryThe Francis Crick InstituteLondonUK
| | | | - Ilaria Gori
- Developmental Signalling LaboratoryThe Francis Crick InstituteLondonUK
| | | | - Diana M Carvalho
- Division of Molecular PathologyThe Institute of Cancer ResearchSuttonUK
| | - Eileen M Shore
- Departments of Orthopaedic Surgery and GeneticsPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Chris Jones
- Division of Molecular PathologyThe Institute of Cancer ResearchSuttonUK
| | - Marko Hyvönen
- Department of BiochemistryUniversity of CambridgeCambridgeUK
| | - Pavel Tolar
- Immune Receptor Activation LaboratoryThe Francis Crick InstituteLondonUK
- Present address:
Division of Infection and ImmunityInstitute of Immunity and TransplantationUniversity CollegeLondonUK
| | - Caroline S Hill
- Developmental Signalling LaboratoryThe Francis Crick InstituteLondonUK
| |
Collapse
|
19
|
Qiu W, Kuo CY, Tian Y, Su GH. Dual Roles of the Activin Signaling Pathway in Pancreatic Cancer. Biomedicines 2021; 9:biomedicines9070821. [PMID: 34356885 PMCID: PMC8301451 DOI: 10.3390/biomedicines9070821] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/29/2021] [Accepted: 07/08/2021] [Indexed: 12/12/2022] Open
Abstract
Activin, a member of the TGF-β superfamily, is involved in many physiological processes, such as embryonic development and follicle development, as well as in multiple human diseases including cancer. Genetic mutations in the activin signaling pathway have been reported in many cancer types, indicating that activin signaling plays a critical role in tumorigenesis. Recent evidence reveals that activin signaling may function as a tumor-suppressor in tumor initiation, and a promoter in the later progression and metastasis of tumors. This article reviews many aspects of activin, including the signaling cascade of activin, activin-related proteins, and its role in tumorigenesis, particularly in pancreatic cancer development. The mechanisms regulating its dual roles in tumorigenesis remain to be elucidated. Further understanding of the activin signaling pathway may identify potential therapeutic targets for human cancers and other diseases.
Collapse
Affiliation(s)
- Wanglong Qiu
- The Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA; (W.Q.); (C.K.); (Y.T.)
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Chia-Yu Kuo
- The Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA; (W.Q.); (C.K.); (Y.T.)
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Yu Tian
- The Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA; (W.Q.); (C.K.); (Y.T.)
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Gloria H. Su
- The Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA; (W.Q.); (C.K.); (Y.T.)
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Otolaryngology and Head and Neck Surgery, Columbia University Irving Medical Center, New York, NY 10032, USA
- Correspondence:
| |
Collapse
|
20
|
Abstract
TGF-β family heterodimeric ligands show increased or exclusive signaling compared to homodimeric ligands in both vertebrate and insect development as well as in therapeutically relevant processes, like osteogenesis. However, the mechanisms that differentiate heterodimer and homodimer signaling remain uncharacterized. We show that BMP antagonists do not account for the exclusive signaling of Bmp2/7 heterodimers in zebrafish development. We found that overexpressed homodimers can signal but surprisingly require two distinct type I receptors, like heterodimers, indicating a required activity of the heteromeric type I receptor complex. We further demonstrate that a canonical type I receptor function has been delegated to only one of these receptors, Acvr1. Our findings should inform both basic and translational research in multiple TGF-β family signaling contexts. Heterodimeric TGF-β ligands outperform homodimers in a variety of developmental, cell culture, and therapeutic contexts; however, the mechanisms underlying this increased potency remain uncharacterized. Here, we use dorsal–ventral axial patterning of the zebrafish embryo to interrogate the BMP2/7 heterodimer signaling mechanism. We demonstrate that differential interactions with BMP antagonists do not account for the reduced signaling ability of homodimers. Instead, we find that while overexpressed BMP2 homodimers can signal, they require two nonredundant type I receptors, one from the Acvr1 subfamily and one from the Bmpr1 subfamily. This implies that all BMP signaling within the zebrafish gastrula, even BMP2 homodimer signaling, requires Acvr1. This is particularly surprising as BMP2 homodimers do not bind Acvr1 in vitro. Furthermore, we find that the roles of the two type I receptors are subfunctionalized within the heterodimer signaling complex, with the kinase activity of Acvr1 being essential, while that of Bmpr1 is not. These results suggest that the potency of the Bmp2/7 heterodimer arises from the ability to recruit both Acvr1 and Bmpr1 into the same signaling complex.
Collapse
|
21
|
Shu DY, Ng K, Wishart TFL, Chui J, Lundmark M, Flokis M, Lovicu FJ. Contrasting roles for BMP-4 and ventromorphins (BMP agonists) in TGFβ-induced lens EMT. Exp Eye Res 2021; 206:108546. [PMID: 33773977 DOI: 10.1016/j.exer.2021.108546] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 03/02/2021] [Accepted: 03/16/2021] [Indexed: 12/28/2022]
Abstract
Transforming growth factor beta (TGFβ) and bone morphogenetic protein (BMP) signaling play opposing roles in epithelial-mesenchymal transition (EMT) of lens epithelial cells, a cellular process integral to the pathogenesis of fibrotic cataract. We previously showed that BMP-7-induced Smad1/5 signaling blocks TGFβ-induced Smad2/3-signaling and EMT in rat lens epithelial cell explants. To further explore the antagonistic role of BMPs on TGFβ-signaling, we tested the capability of BMP-4 or newly described BMP agonists, ventromorphins, in blocking TGFβ-induced lens EMT. Primary rat lens epithelial explants were treated with exogenous TGFβ2 alone, or in combination with BMP-4 or ventromorphins. Treatment with TGFβ2 induced lens epithelial cells to undergo EMT and transdifferentiate into myofibroblastic cells with upregulated α-SMA and nuclear translocation of Smad2/3 immunofluorescence. BMP-4 was able to suppress this EMT without blocking TGFβ2-nuclear translocation of Smad2/3. In contrast, the BMP agonists, ventromorphins, were unable to block TGFβ2-induced EMT, despite a transient and early ability to significantly reduce TGFβ2-induced nuclear translocation of Smad2/3. This intriguing disparity highlights new complexities in the responsiveness of the lens to differing BMP-related signaling. Further research is required to better understand the antagonistic relationship between TGFβ and BMPs in lens EMT leading to cataract.
Collapse
Affiliation(s)
- Daisy Y Shu
- School of Medical Sciences, The University of Sydney, NSW, Australia; Save Sight Institute, The University of Sydney, NSW, Australia
| | - Kevin Ng
- School of Medical Sciences, The University of Sydney, NSW, Australia
| | | | - Juanita Chui
- School of Medical Sciences, The University of Sydney, NSW, Australia
| | - Malin Lundmark
- School of Medical Sciences, The University of Sydney, NSW, Australia
| | - Mary Flokis
- School of Medical Sciences, The University of Sydney, NSW, Australia
| | - Frank J Lovicu
- School of Medical Sciences, The University of Sydney, NSW, Australia; Save Sight Institute, The University of Sydney, NSW, Australia.
| |
Collapse
|
22
|
Ventura F, Williams E, Ikeya M, Bullock AN, ten Dijke P, Goumans MJ, Sanchez-Duffhues G. Challenges and Opportunities for Drug Repositioning in Fibrodysplasia Ossificans Progressiva. Biomedicines 2021; 9:biomedicines9020213. [PMID: 33669809 PMCID: PMC7922784 DOI: 10.3390/biomedicines9020213] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/08/2021] [Accepted: 02/15/2021] [Indexed: 01/05/2023] Open
Abstract
Fibrodysplasia ossificans progressiva (FOP) is an ultrarare congenital disease that progresses through intermittent episodes of bone formation at ectopic sites. FOP patients carry heterozygous gene point mutations in activin A receptor type I ACVR1, encoding the bone morphogenetic protein (BMP) type I serine/threonine kinase receptor ALK2, termed activin receptor-like kinase (ALK)2. The mutant ALK2 displays neofunctional responses to activin, a closely related BMP cytokine that normally inhibits regular bone formation. Moreover, the mutant ALK2 becomes hypersensitive to BMPs. Both these activities contribute to enhanced ALK2 signalling and endochondral bone formation in connective tissue. Being a receptor with an extracellular ligand-binding domain and intrinsic intracellular kinase activity, the mutant ALK2 is a druggable target. Although there is no approved cure for FOP yet, a number of clinical trials have been recently initiated, aiming to identify a safe and effective treatment for FOP. Among other targeted approaches, several repurposed drugs have shown promising results. In this review, we describe the molecular mechanisms underlying ALK2 mutation-induced aberrant signalling and ectopic bone formation. In addition, we recapitulate existing in vitro models to screen for novel compounds with a potential application in FOP. We summarize existing therapeutic alternatives and focus on repositioned drugs in FOP, at preclinical and clinical stages.
Collapse
Affiliation(s)
- Francesc Ventura
- Department de Ciències Fisiològiques, Universitat de Barcelona, IDIBELL, L’Hospitalet de Llobregat, 08907 Barcelona, Spain;
| | - Eleanor Williams
- Centre for Medicines Discovery, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK; (E.W.); (A.N.B.)
| | - Makoto Ikeya
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan;
| | - Alex N. Bullock
- Centre for Medicines Discovery, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK; (E.W.); (A.N.B.)
| | - Peter ten Dijke
- Oncode Institute and Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands;
| | - Marie-José Goumans
- Department of Cell and Chemical Biology, Cardiovascular Cell Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands;
| | - Gonzalo Sanchez-Duffhues
- Department of Cell and Chemical Biology, Cardiovascular Cell Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands;
- Correspondence:
| |
Collapse
|
23
|
Ning J, Ye Y, Bu D, Zhao G, Song T, Liu P, Yu W, Wang H, Li H, Ren X, Ying G, Zhao Y, Yu J. Imbalance of TGF-β1/BMP-7 pathways induced by M2-polarized macrophages promotes hepatocellular carcinoma aggressiveness. Mol Ther 2021; 29:2067-2087. [PMID: 33601054 DOI: 10.1016/j.ymthe.2021.02.016] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 01/27/2021] [Accepted: 02/10/2021] [Indexed: 12/27/2022] Open
Abstract
The transforming growth factor-beta (TGF-β) signaling pathway is the predominant cytokine signaling pathway in the development and progression of hepatocellular carcinoma (HCC). Bone morphogenetic protein (BMP), another member of the TGF-β superfamily, has been frequently found to participate in crosstalk with the TGF-β pathway. However, the complex interaction between the TGF-β and BMP pathways has not been fully elucidated in HCC. We found that the imbalance of TGF-β1/BMP-7 pathways was associated with aggressive pathological features and poor clinical outcomes in HCC. The induction of the imbalance of TGF-β1/BMP-7 pathways in HCC cells could significantly promote HCC cell invasion and stemness by increasing inhibitor of differentiation 1 (ID1) expression. We also found that the microRNA (miR)-17-92 cluster, originating from the extracellular vesicles (EVs) of M2-polarized tumor-associated macrophages (M2-TAMs), stimulated the imbalance of TGF-β1/BMP-7 pathways in HCC cells by inducing TGF-β type II receptor (TGFBR2) post-transcriptional silencing and inhibiting activin A receptor type 1 (ACVR1) post-translational ubiquitylation by targeting Smad ubiquitylation regulatory factor 1 (Smurf1). In vivo, short hairpin (sh)-MIR17HG and ACVR1 inhibitors profoundly attenuated HCC cell growth and metastasis by rectifying the imbalance of TGF-β1/BMP-7 pathways. Therefore, we proposed that the imbalance of TGF-β1/BMP-7 pathways is a feasible prognostic biomarker and recovering the imbalance of TGF-β1/BMP-7 pathways might be a potential therapeutic strategy for HCC.
Collapse
Affiliation(s)
- Junya Ning
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Caner, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China; Department of Immunology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Caner, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Yingnan Ye
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Caner, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Dechao Bu
- Key Laboratory of Intelligent Information Processing, Advanced Computer Research Center, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China
| | - Gang Zhao
- Department of Gastrointestinal Cancer Biology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Caner, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Tianqiang Song
- Department of Liver Cancer, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Caner, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Pengpeng Liu
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Caner, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Wenwen Yu
- Department of Immunology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Caner, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Hailong Wang
- Laboratory of Cancer Cell Biology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Caner, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Hui Li
- Department of Gastrointestinal Cancer Biology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Caner, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Xiubao Ren
- Department of Immunology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Caner, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Guoguang Ying
- Laboratory of Cancer Cell Biology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Caner, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Yi Zhao
- Key Laboratory of Intelligent Information Processing, Advanced Computer Research Center, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China; Ningbo Institute of Life and Health Industry, University of China Academy of Sciences, Zhejiang 315000, China.
| | - Jinpu Yu
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Caner, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China; Department of Immunology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Caner, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China.
| |
Collapse
|
24
|
Choi W, Lee HW, Pak B, Han O, Kim M, Jin SW. Transcriptomic analysis identifies novel targets for individual bone morphogenetic protein type 1 receptors in endothelial cells. FASEB J 2021; 35:e21386. [PMID: 33565137 DOI: 10.1096/fj.202002071r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 12/03/2020] [Accepted: 01/07/2021] [Indexed: 11/11/2022]
Abstract
Bone Morphogenetic Protein (BMP) signaling regulates diverse biological processes. Upon ligand binding, BMP receptors (BMPRs) phosphorylate SMAD1/5 and other noncanonical downstream effectors to induce transcription of downstream targets. However, the precise role of individual BMP receptors in this process remains largely unknown due to the complexity of downstream signaling and the innate promiscuity of ligand-receptor interaction. To delineate unique downstream effectors of individual BMPR1s, we analyzed the transcriptome of human umbilical endothelial cells (HUVECs) expressing three distinct constitutively active BMPR1s of which expression was detected in endothelial cells (ECs). From our analyses, we identified a number of novel downstream targets of BMPR1s in ECs. More importantly, we found that each BMPR1 possesses a distinctive set of downstream effectors, suggesting that each BMPR1 is likely to retain unique function in ECs. Taken together, our analyses suggest that each BMPR1 regulates downstream targets non-redundantly in ECs to create context-dependent outcomes of the BMP signaling.
Collapse
Affiliation(s)
- Woosoung Choi
- Cell Logistics Research Center and School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Heon-Woo Lee
- Yale Cardiovascular Research Center and Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Boryeong Pak
- Cell Logistics Research Center and School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Orjin Han
- Cell Logistics Research Center and School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Minjung Kim
- Cell Logistics Research Center and School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Suk-Won Jin
- Cell Logistics Research Center and School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea.,Yale Cardiovascular Research Center and Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
25
|
Nagel S, Pommerenke C, Meyer C, MacLeod RAF, Drexler HG. Establishment of the TALE-code reveals aberrantly activated homeobox gene PBX1 in Hodgkin lymphoma. PLoS One 2021; 16:e0246603. [PMID: 33539429 PMCID: PMC7861379 DOI: 10.1371/journal.pone.0246603] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 01/21/2021] [Indexed: 12/26/2022] Open
Abstract
Homeobox genes encode transcription factors which regulate basic processes in development and cell differentiation and are grouped into classes and subclasses according to sequence similarities. Here, we analyzed the activities of the 20 members strong TALE homeobox gene class in early hematopoiesis and in lymphopoiesis including developing and mature B-cells, T-cells, natural killer (NK)-cells and innate lymphoid cells (ILC). The resultant expression pattern comprised eleven genes and which we termed TALE-code enables discrimination of normal and aberrant activities of TALE homeobox genes in lymphoid malignancies. Subsequent expression analysis of TALE homeobox genes in public datasets of Hodgkin lymphoma (HL) patients revealed overexpression of IRX3, IRX4, MEIS1, MEIS3, PBX1, PBX4 and TGIF1. As paradigm we focused on PBX1 which was deregulated in about 17% HL patients. Normal PBX1 expression was restricted to hematopoietic stem cells and progenitors of T-cells and ILCs but absent in B-cells, reflecting its roles in stemness and early differentiation. HL cell line SUP-HD1 expressed enhanced PBX1 levels and served as an in vitro model to identify upstream regulators and downstream targets in this malignancy. Genomic studies of this cell line therein showed a gain of the PBX1 locus at 1q23 which may underlie its aberrant expression. Comparative expression profiling analyses of HL patients and cell lines followed by knockdown experiments revealed NFIB and TLX2 as target genes activated by PBX1. HOX proteins operate as cofactors of PBX1. Accordingly, our data showed that HOXB9 overexpressed in HL coactivated TLX2 but not NFIB while activating TNFRSF9 without PBX1. Further downstream analyses showed that TLX2 activated TBX15 which operated anti-apoptotically. Taken together, we discovered a lymphoid TALE-code and identified an aberrant network around deregulated TALE homeobox gene PBX1 which may disturb B-cell differentiation in HL by reactivation of progenitor-specific genes. These findings may provide the framework for future studies to exploit possible vulnerabilities of malignant cells in therapeutic scenarios.
Collapse
Affiliation(s)
- Stefan Nagel
- Department of Human and Animal Cell Lines, Leibniz-Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Claudia Pommerenke
- Department of Human and Animal Cell Lines, Leibniz-Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Corinna Meyer
- Department of Human and Animal Cell Lines, Leibniz-Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Roderick A. F. MacLeod
- Department of Human and Animal Cell Lines, Leibniz-Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Hans G. Drexler
- Department of Human and Animal Cell Lines, Leibniz-Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| |
Collapse
|
26
|
Melendez J, Sieiro D, Salgado D, Morin V, Dejardin MJ, Zhou C, Mullen AC, Marcelle C. TGFβ signalling acts as a molecular brake of myoblast fusion. Nat Commun 2021; 12:749. [PMID: 33531476 PMCID: PMC7854724 DOI: 10.1038/s41467-020-20290-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 11/21/2020] [Indexed: 01/30/2023] Open
Abstract
Fusion of nascent myoblasts to pre-existing myofibres is critical for skeletal muscle growth and repair. The vast majority of molecules known to regulate myoblast fusion are necessary in this process. Here, we uncover, through high-throughput in vitro assays and in vivo studies in the chicken embryo, that TGFβ (SMAD2/3-dependent) signalling acts specifically and uniquely as a molecular brake on muscle fusion. While constitutive activation of the pathway arrests fusion, its inhibition leads to a striking over-fusion phenotype. This dynamic control of TGFβ signalling in the embryonic muscle relies on a receptor complementation mechanism, prompted by the merging of myoblasts with myofibres, each carrying one component of the heterodimer receptor complex. The competence of myofibres to fuse is likely restored through endocytic degradation of activated receptors. Altogether, this study shows that muscle fusion relies on TGFβ signalling to regulate its pace.
Collapse
Affiliation(s)
- Julie Melendez
- Institut NeuroMyoGène (INMG), University Claude Bernard Lyon1, CNRS UMR 5310, INSERM U1217, Lyon, France
| | - Daniel Sieiro
- Institut NeuroMyoGène (INMG), University Claude Bernard Lyon1, CNRS UMR 5310, INSERM U1217, Lyon, France
- Australian Regenerative Medicine Institute (ARMI), Monash University, Clayton, VIC, Australia
- Plexus Ventures LLC, Boston, MA, USA
| | - David Salgado
- Australian Regenerative Medicine Institute (ARMI), Monash University, Clayton, VIC, Australia
- Marseille Medical Genetics (MMG), Aix Marseille University, INSERM U1251, Marseille, France
| | - Valérie Morin
- Institut NeuroMyoGène (INMG), University Claude Bernard Lyon1, CNRS UMR 5310, INSERM U1217, Lyon, France
| | - Marie-Julie Dejardin
- Institut NeuroMyoGène (INMG), University Claude Bernard Lyon1, CNRS UMR 5310, INSERM U1217, Lyon, France
| | - Chan Zhou
- Gastrointestinal Unit, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Alan C Mullen
- Harvard Stem Cell Institute, Cambridge, MA, 02138, USA
| | - Christophe Marcelle
- Institut NeuroMyoGène (INMG), University Claude Bernard Lyon1, CNRS UMR 5310, INSERM U1217, Lyon, France.
- Australian Regenerative Medicine Institute (ARMI), Monash University, Clayton, VIC, Australia.
| |
Collapse
|
27
|
Kaliya-Perumal AK, Carney TJ, Ingham PW. Fibrodysplasia ossificans progressiva: current concepts from bench to bedside. Dis Model Mech 2020; 13:13/9/dmm046441. [PMID: 32988985 PMCID: PMC7522019 DOI: 10.1242/dmm.046441] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Heterotopic ossification (HO) is a disorder characterised by the formation of ectopic bone in soft tissue. Acquired HO typically occurs in response to trauma and is relatively common, yet its aetiology remains poorly understood. Genetic forms, by contrast, are very rare, but provide insights into the mechanisms of HO pathobiology. Fibrodysplasia ossificans progressiva (FOP) is the most debilitating form of HO. All patients reported to date carry heterozygous gain-of-function mutations in the gene encoding activin A receptor type I (ACVR1). These mutations cause dysregulated bone morphogenetic protein (BMP) signalling, leading to HO at extraskeletal sites including, but not limited to, muscles, ligaments, tendons and fascia. Ever since the identification of the causative gene, developing a cure for FOP has been a focus of investigation, and studies have decoded the pathophysiology at the molecular and cellular levels, and explored novel management strategies. Based on the established role of BMP signalling throughout HO in FOP, therapeutic modalities that target multiple levels of the signalling cascade have been designed, and some drugs have entered clinical trials, holding out hope of a cure. A potential role of other signalling pathways that could influence the dysregulated BMP signalling and present alternative therapeutic targets remains a matter of debate. Here, we review the recent FOP literature, including pathophysiology, clinical aspects, animal models and current management strategies. We also consider how this research can inform our understanding of other types of HO and highlight some of the remaining knowledge gaps. Summary: Fibrodysplasia ossificans progressiva is a rare disease characterised by progressive heterotopic bone formation. Here, we present a comprehensive summary of the recent literature on this debilitating condition and discuss approaches to solving this clinical puzzle.
Collapse
Affiliation(s)
- Arun-Kumar Kaliya-Perumal
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 59 Nanyang Drive, 636921, Singapore
| | - Tom J Carney
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 59 Nanyang Drive, 636921, Singapore.,Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos 138673, Singapore
| | - Philip W Ingham
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 59 Nanyang Drive, 636921, Singapore .,Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos 138673, Singapore
| |
Collapse
|
28
|
Smil D, Wong JF, Williams EP, Adamson RJ, Howarth A, McLeod DA, Mamai A, Kim S, Wilson BJ, Kiyota T, Aman A, Owen J, Poda G, Horiuchi KY, Kuznetsova E, Ma H, Hamblin JN, Cramp S, Roberts OG, Edwards AM, Uehling D, Al-Awar R, Bullock AN, O'Meara JA, Isaac MB. Leveraging an Open Science Drug Discovery Model to Develop CNS-Penetrant ALK2 Inhibitors for the Treatment of Diffuse Intrinsic Pontine Glioma. J Med Chem 2020; 63:10061-10085. [PMID: 32787083 DOI: 10.1021/acs.jmedchem.0c01199] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
There are currently no effective chemotherapeutic drugs approved for the treatment of diffuse intrinsic pontine glioma (DIPG), an aggressive pediatric cancer resident in the pons region of the brainstem. Radiation therapy is beneficial but not curative, with the condition being uniformly fatal. Analysis of the genomic landscape surrounding DIPG has revealed that activin receptor-like kinase-2 (ALK2) constitutes a potential target for therapeutic intervention given its dysregulation in the disease. We adopted an open science approach to develop a series of potent, selective, orally bioavailable, and brain-penetrant ALK2 inhibitors based on the lead compound LDN-214117. Modest structural changes to the C-3, C-4, and C-5 position substituents of the core pyridine ring afforded compounds M4K2009, M4K2117, and M4K2163, each with a superior potency, selectivity, and/or blood-brain barrier (BBB) penetration profile. Robust in vivo pharmacokinetic (PK) properties and tolerability mark these inhibitors as advanced preclinical compounds suitable for further development and evaluation in orthotopic models of DIPG.
Collapse
Affiliation(s)
- David Smil
- Drug Discovery Program, Ontario Institute for Cancer Research, 661 University Avenue, MaRS Centre, West Tower, Toronto, Ontario M5G 0A3, Canada
| | - Jong Fu Wong
- Structural Genomics Consortium, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
| | - Eleanor P Williams
- Structural Genomics Consortium, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
| | - Roslin J Adamson
- Structural Genomics Consortium, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
| | - Alison Howarth
- Structural Genomics Consortium, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
| | - David A McLeod
- Drug Discovery Program, Ontario Institute for Cancer Research, 661 University Avenue, MaRS Centre, West Tower, Toronto, Ontario M5G 0A3, Canada
| | - Ahmed Mamai
- Drug Discovery Program, Ontario Institute for Cancer Research, 661 University Avenue, MaRS Centre, West Tower, Toronto, Ontario M5G 0A3, Canada
| | - Soyoung Kim
- Drug Discovery Program, Ontario Institute for Cancer Research, 661 University Avenue, MaRS Centre, West Tower, Toronto, Ontario M5G 0A3, Canada
| | - Brian J Wilson
- Drug Discovery Program, Ontario Institute for Cancer Research, 661 University Avenue, MaRS Centre, West Tower, Toronto, Ontario M5G 0A3, Canada
| | - Taira Kiyota
- Drug Discovery Program, Ontario Institute for Cancer Research, 661 University Avenue, MaRS Centre, West Tower, Toronto, Ontario M5G 0A3, Canada
| | - Ahmed Aman
- Drug Discovery Program, Ontario Institute for Cancer Research, 661 University Avenue, MaRS Centre, West Tower, Toronto, Ontario M5G 0A3, Canada.,Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Julie Owen
- Drug Discovery Program, Ontario Institute for Cancer Research, 661 University Avenue, MaRS Centre, West Tower, Toronto, Ontario M5G 0A3, Canada
| | - Gennady Poda
- Drug Discovery Program, Ontario Institute for Cancer Research, 661 University Avenue, MaRS Centre, West Tower, Toronto, Ontario M5G 0A3, Canada.,Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Kurumi Y Horiuchi
- Reaction Biology Corp., Suite 2, 1 Great Valley Parkway, Malvern, Pennsylvania 19355, United States
| | - Ekaterina Kuznetsova
- Reaction Biology Corp., Suite 2, 1 Great Valley Parkway, Malvern, Pennsylvania 19355, United States
| | - Haiching Ma
- Reaction Biology Corp., Suite 2, 1 Great Valley Parkway, Malvern, Pennsylvania 19355, United States
| | - J Nicole Hamblin
- Charles River Discovery, Chesterford Research Park, Saffron Waldon, Essex CB10 1XL, United Kingdom
| | - Sue Cramp
- Charles River Discovery, 8-9 Spire Green Centre, Flex Meadow, Harlow, Essex CM19 5TR, United Kingdom
| | - Owen G Roberts
- M4K Pharma, 101 College Street, MaRS Centre, South Tower, Toronto, Ontario M5G 1L7, Canada
| | - Aled M Edwards
- M4K Pharma, 101 College Street, MaRS Centre, South Tower, Toronto, Ontario M5G 1L7, Canada.,Structural Genomics Consortium, University of Toronto, 101 College Street, MaRS Centre, South Tower, Toronto, Ontario M5G 1L7, Canada
| | - David Uehling
- Drug Discovery Program, Ontario Institute for Cancer Research, 661 University Avenue, MaRS Centre, West Tower, Toronto, Ontario M5G 0A3, Canada
| | - Rima Al-Awar
- Drug Discovery Program, Ontario Institute for Cancer Research, 661 University Avenue, MaRS Centre, West Tower, Toronto, Ontario M5G 0A3, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Medical Sciences Building, Room 4207, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
| | - Alex N Bullock
- Structural Genomics Consortium, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
| | - Jeff A O'Meara
- Drug Discovery Program, Ontario Institute for Cancer Research, 661 University Avenue, MaRS Centre, West Tower, Toronto, Ontario M5G 0A3, Canada.,M4K Pharma, 101 College Street, MaRS Centre, South Tower, Toronto, Ontario M5G 1L7, Canada
| | - Methvin B Isaac
- Drug Discovery Program, Ontario Institute for Cancer Research, 661 University Avenue, MaRS Centre, West Tower, Toronto, Ontario M5G 0A3, Canada
| |
Collapse
|
29
|
Zhao X, Xue Z, Wang K, Wang X, Xu D. Molecular docking and molecular dynamics simulation studies on the adsorption/desorption behavior of bone morphogenetic protein-7 on the β-tricalcium phosphate surface. Phys Chem Chem Phys 2020; 22:16747-16759. [PMID: 32662481 DOI: 10.1039/d0cp01950j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The adsorption/desorption behavior, and conformational and orientational changes of proteins on the surface of biomaterials are significant parameters for understanding how biomaterials perform their biological functions. In this study, for the first time, the interactions between BMP-7 and β-TCP (001) surface models with different ion-rich terminations (Ca-rich and P-rich) were investigated by molecular dynamics simulation (MD) and steered molecular dynamics simulation (SMD). The results indicated that BMP-7 preferentially interacts with both Ca-rich and P-rich β-TCP (001) surfaces at its wrist epitope residues with certain conformational changes, which led to more exposure of BMP-7 knuckle epitope residues to the environment and facilitation for binding to the type II receptor. Compared to the P-rich surface, it is speculated that the Ca-rich surface was more conducive to BMP-7 signal transduction since the upright orientation of the protein adsorption would lead to smaller hindrance for receptor binding. This study provided more atomistic and molecular information for better understanding the process of Ca-P surfaces affecting BMP-7 biological properties and further interpreted the osteoinductive mechanism from the perspective of growth factor adsorption. Moreover, the docking screening method adopted in this study is of guiding significance to the design and development of bioactive materials.
Collapse
Affiliation(s)
- Xiaoyu Zhao
- College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, P. R. China.
| | | | | | | | | |
Collapse
|
30
|
Aykul S, Corpina RA, Goebel EJ, Cunanan CJ, Dimitriou A, Kim HJ, Zhang Q, Rafique A, Leidich R, Wang X, McClain J, Jimenez J, Nannuru KC, Rothman NJ, Lees-Shepard JB, Martinez-Hackert E, Murphy AJ, Thompson TB, Economides AN, Idone V. Activin A forms a non-signaling complex with ACVR1 and type II Activin/BMP receptors via its finger 2 tip loop. eLife 2020; 9:54582. [PMID: 32515349 PMCID: PMC7326492 DOI: 10.7554/elife.54582] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 06/08/2020] [Indexed: 01/18/2023] Open
Abstract
Activin A functions in BMP signaling in two ways: it either engages ACVR1B to activate Smad2/3 signaling or binds ACVR1 to form a non-signaling complex (NSC). Although the former property has been studied extensively, the roles of the NSC remain unexplored. The genetic disorder fibrodysplasia ossificans progressiva (FOP) provides a unique window into ACVR1/Activin A signaling because in that disease Activin can either signal through FOP-mutant ACVR1 or form NSCs with wild-type ACVR1. To explore the role of the NSC, we generated 'agonist-only' Activin A muteins that activate ACVR1B but cannot form the NSC with ACVR1. Using one of these muteins, we demonstrate that failure to form the NSC in FOP results in more severe disease pathology. These results provide the first evidence for a biological role for the NSC in vivo and pave the way for further exploration of the NSC's physiological role in corresponding knock-in mice.
Collapse
Affiliation(s)
- Senem Aykul
- Regeneron Pharmaceuticals, Tarrytown, United States
| | | | | | | | | | | | - Qian Zhang
- Regeneron Pharmaceuticals, Tarrytown, United States
| | | | | | - Xin Wang
- Regeneron Pharmaceuticals, Tarrytown, United States
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Kumar S, Fritz Z, Sulakhiya K, Theis T, Berthiaume F. Transcriptional Factors and Protein Biomarkers as Target Therapeutics in Traumatic Spinal Cord and Brain Injury. Curr Neuropharmacol 2020; 18:1092-1105. [PMID: 32442086 PMCID: PMC7709155 DOI: 10.2174/1570159x18666200522203542] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 03/19/2020] [Accepted: 05/07/2020] [Indexed: 12/04/2022] Open
Abstract
Traumatic injury to the spinal cord (SCI) and brain (TBI) are serious health problems and affect many people every year throughout the world. These devastating injuries are affecting not only patients but also their families socially as well as financially. SCI and TBI lead to neurological dysfunction besides continuous inflammation, ischemia, and necrosis followed by progressive neurodegeneration. There are well-established changes in several other processes such as gene expression as well as protein levels that are the important key factors to control the progression of these diseases. We are not yet able to collect enough knowledge on the underlying mechanisms leading to the altered gene expression profiles and protein levels in SCI and TBI. Cell loss is hastened by the induction or imbalance of pro- or anti-inflammatory expression profiles and transcription factors for cell survival after or during trauma. There is a sequence of events of dysregulation of these factors from early to late stages of trauma that opens a therapeutic window for new interventions to prevent/restrict the progression of these diseases. There has been increasing interest in the modulation of these factors for improving the patient’s quality of life by targeting both SCI and TBI. Here, we review some of the recent transcriptional factors and protein biomarkers that have been developed and discovered in the last decade in the context of targeted therapeutics for SCI and TBI patients.
Collapse
Affiliation(s)
- Suneel Kumar
- Department of Biomedical Engineering, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Zachary Fritz
- Department of Biomedical Engineering, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Kunjbihari Sulakhiya
- Department of Pharmacy, Indira Gandhi National Tribal University (IGNTU), Amarkantak, India
| | - Thomas Theis
- W. M. Keck Center for Collaborative Neuroscience and Department of Cell Biology and Neuroscience, Rutgers, The
State University of New Jersey, Piscataway, New Jersey, USA
| | - Francois Berthiaume
- Department of Biomedical Engineering, The State University of New Jersey, Piscataway, New Jersey, USA
| |
Collapse
|
32
|
Aluganti Narasimhulu C, Singla DK. The Role of Bone Morphogenetic Protein 7 (BMP-7) in Inflammation in Heart Diseases. Cells 2020; 9:cells9020280. [PMID: 31979268 PMCID: PMC7073173 DOI: 10.3390/cells9020280] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 01/17/2020] [Accepted: 01/21/2020] [Indexed: 12/31/2022] Open
Abstract
Bone morphogenetic protein-7 is (BMP-7) is a potent anti-inflammatory growth factor belonging to the Transforming Growth Factor Beta (TGF-β) superfamily. It plays an important role in various biological processes, including embryogenesis, hematopoiesis, neurogenesis and skeletal morphogenesis. BMP-7 stimulates the target cells by binding to specific membrane-bound receptor BMPR 2 and transduces signals through mothers against decapentaplegic (Smads) and mitogen activated protein kinase (MAPK) pathways. To date, rhBMP-7 has been used clinically to induce the differentiation of mesenchymal stem cells bordering the bone fracture site into chondrocytes, osteoclasts, the formation of new bone via calcium deposition and to stimulate the repair of bone fracture. However, its use in cardiovascular diseases, such as atherosclerosis, myocardial infarction, and diabetic cardiomyopathy is currently being explored. More importantly, these cardiovascular diseases are associated with inflammation and infiltrated monocytes where BMP-7 has been demonstrated to be a key player in the differentiation of pro-inflammatory monocytes, or M1 macrophages, into anti-inflammatory M2 macrophages, which reduces developed cardiac dysfunction. Therefore, this review focuses on the molecular mechanisms of BMP-7 treatment in cardiovascular disease and its role as an anti-fibrotic, anti-apoptotic and anti-inflammatory growth factor, which emphasizes its potential therapeutic significance in heart diseases.
Collapse
|
33
|
Abstract
Bone Morphogenetic Proteins (BMPs) together with the Growth and Differentiation Factors (GDFs) form the largest subgroup of the Transforming Growth Factor (TGF)β family and represent secreted growth factors, which play an essential role in many aspects of cell communication in higher organisms. As morphogens they exert crucial functions during embryonal development, but are also involved in tissue homeostasis and regeneration in the adult organism. Their involvement in maintenance and repair processes of various tissues and organs made these growth factors highly interesting targets for novel pharmaceutical applications in regenerative medicine. A hallmark of the TGFβ protein family is that all of the more than 30 growth factors identified to date signal by binding and hetero-oligomerization of a very limited set of transmembrane serine-threonine kinase receptors, which can be classified into two subgroups termed type I and type II. Only seven type I and five type II receptors exist for all 30plus TGFβ members suggesting a pronounced ligand-receptor promiscuity. Indeed, many TGFβ ligands can bind the same type I or type II receptor and a particular receptor of either subtype can usually interact with and bind various TGFβ ligands. The possible consequence of this ligand-receptor promiscuity is further aggravated by the finding that canonical TGFβ signaling of all family members seemingly results in the activation of just two distinct signaling pathways, that is either SMAD2/3 or SMAD1/5/8 activation. While this would implicate that different ligands can assemble seemingly identical receptor complexes that activate just either one of two distinct pathways, in vitro and in vivo analyses show that the different TGFβ members exert quite distinct biological functions with high specificity. This discrepancy indicates that our current view of TGFβ signaling initiation just by hetero-oligomerization of two receptor subtypes and transduction via two main pathways in an on-off switch manner is too simplified. Hence, the signals generated by the various TGFβ members are either quantitatively interpreted using the subtle differences in their receptor-binding properties leading to ligand-specific modulation of the downstream signaling cascade or additional components participating in the signaling activation complex allow diversification of the encoded signal in a ligand-dependent manner at all cellular levels. In this review we focus on signal specification of TGFβ members, particularly of BMPs and GDFs addressing the role of binding affinities, specificities, and kinetics of individual ligand-receptor interactions for the assembly of specific receptor complexes with potentially distinct signaling properties.
Collapse
|
34
|
Fostering open collaboration in drug development for paediatric brain tumours. Biochem Soc Trans 2019; 47:1471-1479. [PMID: 31551357 PMCID: PMC6824674 DOI: 10.1042/bst20190315] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 08/29/2019] [Accepted: 09/03/2019] [Indexed: 01/11/2023]
Abstract
Brain tumours have become the leading cause of child mortality from cancer. Indeed, aggressive brainstem tumours, such as diffuse intrinsic pontine glioma (DIPG), are nearly uniformly fatal. These tumours display a unique set of driver mutations that distinguish them from adult gliomas and define new opportunity for the development of precision medicines. The specific association of ACVR1 mutations with DIPG tumours suggests a direct link to neurodevelopment and highlights the encoded bone morphogenetic protein receptor kinase ALK2 as a promising drug target. Beneficial effects of ALK2 inhibition have now been observed in two different in vivo models of DIPG. Nonetheless, such tumours present a huge challenge for traditional economic models of drug development due to their small market size, high failure rate, tumour location and paediatric population. Moreover, a toolkit of different investigational drugs may be needed to fully address the heterogeneity of these tumours in clinical trials. One new business model is suggested by M4K Pharma, a recent virtual start up that aims to align diffuse academic and industry research into a collaborative open science drug discovery programme. Fostering scientific collaboration may offer hope in rare conditions of dire unmet clinical need and provide an alternative route to affordable medicines.
Collapse
|
35
|
Metalloprotease-Dependent Attenuation of BMP Signaling Restricts Cardiac Neural Crest Cell Fate. Cell Rep 2019; 29:603-616.e5. [DOI: 10.1016/j.celrep.2019.09.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 08/12/2019] [Accepted: 09/05/2019] [Indexed: 02/07/2023] Open
|
36
|
Zhang YJ, Qing Q, Zhang YJ, Ning LJ, Cui J, Yao X, Luo JC, Ding W, Qin TW. Enhancement of tenogenic differentiation of rat tendon-derived stem cells by biglycan. J Cell Physiol 2019; 234:15898-15910. [PMID: 30714152 DOI: 10.1002/jcp.28247] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 01/12/2019] [Accepted: 01/15/2019] [Indexed: 02/05/2023]
Abstract
Biglycan (BGN) has been identified as one of the critical components of the tendon-derived stem cells (TDSCs) niche and may be related to tendon formation. However, so far, no study has demonstrated whether the soluble BGN could induce the tenogenic differentiation of TDSCs in vitro. The aim of this study was to investigate the effect of BGN on the tenogenic differentiation of TDSCs. The proliferation and tenogenic differentiation of TDSCs exposed to different concentrations of BGN (0, 50, 100, and 500 ng/ml) were determined by the live/dead cell staining assay, CCK-8 assay, quantitative real-time polymerase chain reaction (qRT-PCR), and western blot analysis. The BGN signaling pathway of TDSCs (with and without 50 ng/ml of BGN) was determined by western blot analysis and qRT-PCR analysis. At a concentration of 50 ng/ml, BGN increased the expression of the tenogenic markers THBS-4 and TNMD at both the messenger RNA (mRNA) and protein levels. Meanwhile, 50 ng/ml of BGN inhibited the expression of the chondrogenic and osteogenic markers SOX9, ACN, and RUNX2 at both the mRNA and protein levels. Moreover, BGN (50 ng/ml) affected the expression of the components of the extracellular matrix of TDSCs. Additionally, BGN activated the Smad1/5/8 pathway as indicated by an increase in phosphorylation and demonstrated by inhibition experiments. Upregulation in the gene expression of BMP-associated receptors (BMPRII, ActR-IIa, and BMPR-Ib) and Smad pathway components (Smad4 and 8) was observed. Taken together, BGN regulates tenogenic differentiation of TDSCs via BMP7/Smad1/5/8 pathway and this regulation may provide a basic insight into treating tendon injury.
Collapse
Affiliation(s)
- Yan-Jing Zhang
- Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Quan Qing
- Division of Tissue Engineering, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China.,Faculty of Basic Medicine, Sichuan College of Traditional Chinese Medicine, Mianyang, People's Republic of China
| | - Ya-Jing Zhang
- Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Liang-Ju Ning
- Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Jing Cui
- Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Xuan Yao
- Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Jing-Cong Luo
- Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Wei Ding
- Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Ting-Wu Qin
- Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| |
Collapse
|
37
|
The TGFβ type I receptor TGFβRI functions as an inhibitor of BMP signaling in cartilage. Proc Natl Acad Sci U S A 2019; 116:15570-15579. [PMID: 31311865 PMCID: PMC6681752 DOI: 10.1073/pnas.1902927116] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The TGFβ signaling pathway is activated when TGFβ ligands induce formation of TGFβRI and TGFβRII receptor complexes. However, loss of TGFβRI in mouse cartilage led to more severe defects than did loss of TGFβRII. Most of the defects were rescued by deletion of the BMP receptor ACVRL1, suggesting that a major role of TGFβRI in cartilage development is to suppress BMP signaling by ACVRL1. TGFβRI prevents the formation of ACVRL1/ACTRIIB complexes, which have high affinity for BMP9, the most abundant BMP in circulation. These results demonstrate a form of cross talk between BMP and TGFβ signaling pathways in cartilage that may also operate in other tissues where the relative output of these 2 pathways is required. The type I TGFβ receptor TGFβRI (encoded by Tgfbr1) was ablated in cartilage. The resulting Tgfbr1Col2 mice exhibited lethal chondrodysplasia. Similar defects were not seen in mice lacking the type II TGFβ receptor or SMADs 2 and 3, the intracellular mediators of canonical TGFβ signaling. However, we detected elevated BMP activity in Tgfbr1Col2 mice. As previous studies showed that TGFβRI can physically interact with ACVRL1, a type I BMP receptor, we generated cartilage-specific Acvrl1 (Acvrl1Col2) and Acvrl1/Tgfbr1 (Acvrl1/Tgfbr1Col2) knockouts. Loss of ACVRL1 alone had no effect, but Acvrl1/Tgfbr1Col2 mice exhibited a striking reversal of the chondrodysplasia seen in Tgfbr1Col2 mice. Loss of TGFβRI led to a redistribution of the type II receptor ACTRIIB into ACVRL1/ACTRIIB complexes, which have high affinity for BMP9. Although BMP9 is not produced in cartilage, we detected BMP9 in the growth plate, most likely derived from the circulation. These findings demonstrate that the major function of TGFβRI in cartilage is not to transduce TGFβ signaling, but rather to antagonize BMP signaling mediated by ACVRL1.
Collapse
|
38
|
Kamalludin MH, Garcia-Guerra A, Wiltbank MC, Kirkpatrick BW. Trio, a novel high fecundity allele: I. Transcriptome analysis of granulosa cells from carriers and noncarriers of a major gene for bovine ovulation rate. Biol Reprod 2019; 98:323-334. [PMID: 29088317 DOI: 10.1093/biolre/iox133] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 10/26/2017] [Indexed: 12/17/2022] Open
Abstract
A major gene for bovine ovulation rate has been mapped to a 1.2 Mb region of chromosome 10. Screening of coding regions of positional candidate genes within this region failed to reveal a causative polymorphism, leading to the hypothesis that the phenotype results from differences in candidate gene expression rather than alteration of gene structure. This study tested differences in expression of positional candidate genes in granulosa cells between carriers and noncarriers of the high fecundity allele, as well as characterizing differences in the transcriptomic profile between genotypes. Five carriers and five noncarriers, female descendants of "Trio," a carrier of the high fecundity allele were initially used in an RNA-seq analysis of gene expression. Four of ten samples were contaminated with theca cells, so that six samples were used in the final analysis (three of each genotype). Of 14 973 genes expressed, 143 were differentially expressed (false discovery rate P < 0.05) in carriers versus noncarriers. Among the positional candidate genes, SMAD6 was 6.6-fold overexpressed in the carriers compared to noncarriers (P < 5 × 10-5). This result was replicated in an independent group of 12 females (7 carriers and 5 noncarriers) using quantitative real-time PCR; SMAD6 was 9.3-fold overexpressed in carriers versus noncarriers (P = 1.17 × 10-6). Association of overexpression of SMAD6, an inhibitor of the BMP/SMAD signaling pathway, with high ovulation rate corresponds well with disabling mutations in ligands (BMP15 and GDF9) and a receptor (BMPR1B) of this pathway that cause increased ovulation rate in sheep.
Collapse
Affiliation(s)
- Mamat H Kamalludin
- Department of Animal Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Department of Animal Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | - Alvaro Garcia-Guerra
- Department of Dairy Science, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Milo C Wiltbank
- Department of Dairy Science, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Brian W Kirkpatrick
- Department of Animal Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Department of Dairy Science, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
39
|
Cui X, Shang S, Lv X, Zhao J, Qi Y, Liu Z. Perspectives of small molecule inhibitors of activin receptor‑like kinase in anti‑tumor treatment and stem cell differentiation (Review). Mol Med Rep 2019; 19:5053-5062. [PMID: 31059090 PMCID: PMC6522871 DOI: 10.3892/mmr.2019.10209] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 03/21/2019] [Indexed: 01/03/2023] Open
Abstract
Activin receptor‑like kinases (ALKs), members of the type I activin receptor family, belong to the serine/threonine kinase receptors of the transforming growth factor‑β (TGF‑β) superfamily. ALKs mediate the roles of activin/TGF‑β in a wide variety of physiological and pathological processes, ranging from cell differentiation and proliferation to apoptosis. For example, the activities of ALKs are associated with an advanced tumor stage in prostate cancer and the chondrogenic differentiation of mesenchymal stem cells. Therefore, potent and selective small molecule inhibitors of ALKs would not only aid in investigating the function of activin/TGF‑β, but also in developing treatments for these diseases via the disruption of activin/TGF‑β. In recent studies, several ALK inhibitors, including LY‑2157299, SB‑431542 and A‑83‑01, have been identified and have been confirmed to affect stem cell differentiation and tumor progression in animal models. This review discusses the therapeutic perspective of small molecule inhibitors of ALKs as drug targets in tumor and stem cells.
Collapse
Affiliation(s)
- Xueling Cui
- Department of Genetics, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Shumi Shang
- Department of Genetics, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Xinran Lv
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Jing Zhao
- Department of Genetics, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yan Qi
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Zhonghui Liu
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
40
|
Transforming growth factor β (TGFβ) and related molecules in chronic kidney disease (CKD). Clin Sci (Lond) 2019; 133:287-313. [DOI: 10.1042/cs20180438] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 12/04/2018] [Accepted: 01/07/2019] [Indexed: 02/07/2023]
|
41
|
Zhang X, Shi C, Zhao H, Zhou Y, Hu Y, Yan G, Liu C, Li D, Hao X, Mishina Y, Liu Q, Sun H. Distinctive role of ACVR1 in dentin formation: requirement for dentin thickness in molars and prevention of osteodentin formation in incisors of mice. J Mol Histol 2018; 50:43-61. [PMID: 30519900 DOI: 10.1007/s10735-018-9806-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 11/29/2018] [Indexed: 11/24/2022]
Abstract
Dentin is a major component of teeth that protects dental pulp and maintains tooth health. Bone morphogenetic protein (BMP) signaling is required for the formation of dentin. Mice lacking a BMP type I receptor, activin A receptor type 1 (ACVR1), in the neural crest display a deformed mandible. Acvr1 is known to be expressed in the dental mesenchyme. However, little is known about how BMP signaling mediated by ACVR1 regulates dentinogenesis. To explore the role of ACVR1 in dentin formation in molars and incisors in mice, Acvr1 was conditionally disrupted in Osterix-expressing cells (designated as cKO). We found that loss of Acvr1 in the dental mesenchyme led to dentin dysplasia in molars and osteodentin formation in incisors. Specifically, the cKO mice exhibited remarkable tooth phenotypes characterized by thinner dentin and thicker predentin, as well as compromised differentiation of odontoblasts in molars. We also found osteodentin formation in the coronal part of the cKO mandibular incisors, which was associated with a reduction in the expression of odontogenic gene Dsp and an increase in the expression of osteogenic gene Bsp, leading to an alteration of cell fate from odontoblasts to osteoblasts. In addition, the expressions of WNT antagonists, Dkk1 and Sost, were downregulated and B-catenin was up-regulated in the cKO incisors, while the expression levels were not changed in the cKO molars, compared with the corresponding controls. Our results indicate the distinct and critical roles of ACVR1 between incisors and molars, which is associated with alterations in the WNT signaling related molecules. This study demonstrates for the first time the physiological roles of ACVR1 during dentinogenesis.
Collapse
Affiliation(s)
- Xue Zhang
- Department of Oral Pathology, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China.,Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, 130021, China
| | - Ce Shi
- Department of Oral Pathology, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China.,Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, 130021, China
| | - Huan Zhao
- Department of Oral Pathology, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China.,Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, 130021, China
| | - Yijun Zhou
- Department of Oral Pathology, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China.,Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, 130021, China
| | - Yue Hu
- Department of Oral Pathology, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China.,Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, 130021, China
| | - Guangxing Yan
- Department of Oral Pathology, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China.,Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, 130021, China
| | - Cangwei Liu
- Department of Oral Pathology, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China.,Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, 130021, China
| | - Daowei Li
- Department of Oral Pathology, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China.,Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, 130021, China
| | - Xinqing Hao
- Department of Oral Pathology, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China.,Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, 130021, China
| | - Yuji Mishina
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI, 48109-1078, USA
| | - Qilin Liu
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, 130021, China. .,Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China.
| | - Hongchen Sun
- Department of Oral Pathology, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China. .,Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, 130021, China.
| |
Collapse
|
42
|
Almehmadi A, Ohyama Y, Kaku M, Alamoudi A, Husein D, Katafuchi M, Mishina Y, Mochida Y. VWC2 Increases Bone Formation Through Inhibiting Activin Signaling. Calcif Tissue Int 2018; 103:663-674. [PMID: 30074079 PMCID: PMC6549224 DOI: 10.1007/s00223-018-0462-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 07/30/2018] [Indexed: 12/27/2022]
Abstract
By a bioinformatics approach, we have identified a novel cysteine knot protein member, VWC2 (von Willebrand factor C domain containing 2) previously known as Brorin. Since Brorin has been proposed to function as a bone morphogenetic protein (BMP) antagonist, we investigated the binding of Brorin/VWC2 to several BMPs; however, none of the BMPs tested were bound to VWC2. Instead, the βA subunit of activin was found as a binding partner among transforming growth factor (TGF)-β superfamily members. Here, we show that Vwc2 gene expression is temporally upregulated early in osteoblast differentiation, VWC2 protein is present in bone matrix, and localized at osteoblasts/osteocytes. Activin A-induced Smad2 phosphorylation was inhibited in the presence of exogenous VWC2 in MC3T3-E1 osteoblast cell line and primary osteoblasts. The effect of VWC2 on ex vivo cranial bone organ cultures treated with activin A was investigated, and bone morphometric parameters decreased by activin A were restored with VWC2. When we further investigated the biological mechanism how VWC2 inhibited the effects of activin A on bone formation, we found that the effects of activin A on osteoblast cell growth, differentiation, and mineralization were reversed by VWC2. Taken together, a novel secretory protein, VWC2 promotes bone formation by inhibiting Activin-Smad2 signaling pathway.
Collapse
Affiliation(s)
- Ahmad Almehmadi
- Department of Molecular and Cell Biology, Boston University, Henry M. Goldman School of Dental Medicine, Boston, MA, USA
- Department of Periodontology and Oral Biology, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Yoshio Ohyama
- Department of Molecular and Cell Biology, Boston University, Henry M. Goldman School of Dental Medicine, Boston, MA, USA
- Departoment of Maxillofacial Surgery, Tokyo Medical and Dental University Graduate School, Tokyo, Japan
| | - Masaru Kaku
- Division of Bio-Prosthodontics, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Ahmed Alamoudi
- Department of Molecular and Cell Biology, Boston University, Henry M. Goldman School of Dental Medicine, Boston, MA, USA
- Department of Oral Biology, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Dina Husein
- Department of Molecular and Cell Biology, Boston University, Henry M. Goldman School of Dental Medicine, Boston, MA, USA
| | - Michitsuna Katafuchi
- Department of Oral Rehabilitation, Section of Fixed Prosthodontics, Fukuoka Dental College, Fukuoka, Japan
| | - Yuji Mishina
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - Yoshiyuki Mochida
- Department of Molecular and Cell Biology, Boston University, Henry M. Goldman School of Dental Medicine, Boston, MA, USA.
| |
Collapse
|
43
|
Tecalco-Cruz AC, Ríos-López DG, Vázquez-Victorio G, Rosales-Alvarez RE, Macías-Silva M. Transcriptional cofactors Ski and SnoN are major regulators of the TGF-β/Smad signaling pathway in health and disease. Signal Transduct Target Ther 2018; 3:15. [PMID: 29892481 PMCID: PMC5992185 DOI: 10.1038/s41392-018-0015-8] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 02/16/2018] [Accepted: 03/15/2018] [Indexed: 12/19/2022] Open
Abstract
The transforming growth factor-β (TGF-β) family plays major pleiotropic roles by regulating many physiological processes in development and tissue homeostasis. The TGF-β signaling pathway outcome relies on the control of the spatial and temporal expression of >500 genes, which depend on the functions of the Smad protein along with those of diverse modulators of this signaling pathway, such as transcriptional factors and cofactors. Ski (Sloan-Kettering Institute) and SnoN (Ski novel) are Smad-interacting proteins that negatively regulate the TGF-β signaling pathway by disrupting the formation of R-Smad/Smad4 complexes, as well as by inhibiting Smad association with the p300/CBP coactivators. The Ski and SnoN transcriptional cofactors recruit diverse corepressors and histone deacetylases to repress gene transcription. The TGF-β/Smad pathway and coregulators Ski and SnoN clearly regulate each other through several positive and negative feedback mechanisms. Thus, these cross-regulatory processes finely modify the TGF-β signaling outcome as they control the magnitude and duration of the TGF-β signals. As a result, any alteration in these regulatory mechanisms may lead to disease development. Therefore, the design of targeted therapies to exert tight control of the levels of negative modulators of the TGF-β pathway, such as Ski and SnoN, is critical to restore cell homeostasis under the specific pathological conditions in which these cofactors are deregulated, such as fibrosis and cancer. Proteins that repress molecular signaling through the transforming growth factor-beta (TGF-β) pathway offer promising targets for treating cancer and fibrosis. Marina Macías-Silva and colleagues from the National Autonomous University of Mexico in Mexico City review the ways in which a pair of proteins, called Ski and SnoN, interact with downstream mediators of TGF-β to inhibit the effects of this master growth factor. Aberrant levels of Ski and SnoN have been linked to diverse range of diseases involving cell proliferation run amok, and therapies that regulate the expression of these proteins could help normalize TGF-β signaling to healthier physiological levels. For decades, drug companies have tried to target the TGF-β pathway, with limited success. Altering the activity of these repressors instead could provide a roundabout way of remedying pathogenic TGF-β activity in fibrosis and oncology.
Collapse
Affiliation(s)
- Angeles C Tecalco-Cruz
- 1Instituto de Investigaciones Biomédicas at Universidad Nacional Autónoma de México, Mexico city, 04510 Mexico
| | - Diana G Ríos-López
- 2Instituto de Fisiología Celular at Universidad Nacional Autónoma de México, Mexico city, 04510 Mexico
| | | | - Reyna E Rosales-Alvarez
- 2Instituto de Fisiología Celular at Universidad Nacional Autónoma de México, Mexico city, 04510 Mexico
| | - Marina Macías-Silva
- 2Instituto de Fisiología Celular at Universidad Nacional Autónoma de México, Mexico city, 04510 Mexico
| |
Collapse
|
44
|
Arfat Y, Basra MAR, Shahzad M, Majeed K, Mahmood N, Munir H. miR-208a-3p Suppresses Osteoblast Differentiation and Inhibits Bone Formation by Targeting ACVR1. MOLECULAR THERAPY. NUCLEIC ACIDS 2018; 11:323-336. [PMID: 29858067 PMCID: PMC5992884 DOI: 10.1016/j.omtn.2017.11.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 11/20/2017] [Accepted: 11/20/2017] [Indexed: 01/14/2023]
Abstract
Emerging evidence indicates that many microRNAs (miRNAs) are indispensable regulators of osteoblast differentiation and bone formation. However, the role of miRNAs in mechanotransduction of osteoblasts remains to be elucidated. This study aimed to identify a mechanosensitive miRNA that regulates Activin A receptor type I (ACVR1)-induced osteogenic differentiation. After 4 weeks of hindlimb unloading (HLU) suspension of 6-month-old male C57BL/6J mice, femurs and tibias were harvested to extract total bone RNAs. Elevated levels of miR-208a-3p correlated with a lower degree of bone formation in whole-bone samples of HLU mice. However, in vitro overexpression of miR-208a-3p inhibited osteoblast differentiation, whereas silencing of miR-208a-3p by antagomiR-208a-3p promoted expression of osteoblast activity, bone formation marker genes, and matrix mineralization under mechanical unloading condition. Bioinformatics analysis and a luciferase assay revealed that ACVR1 is a target gene of miR-208a-3p that negatively regulates osteoblast differentiation under mechanical unloading environment. Further, this study also demonstrates that in vivo pre-treatment with antagomiR-208a-3p led to an increase in bone formation and trabecular microarchitecture and partly rescued the bone loss caused by mechanical unloading. Collectively, these results suggest that in vivo, inhibition of miRNA-208a-3p by antagomiR-208a-3p may be a potential therapeutic strategy for ameliorating bone loss.
Collapse
Affiliation(s)
- Yasir Arfat
- Key Laboratory of Resource Biology and Biotechnology in Western China (College of Life Sciences, Northwest University), Ministry of Education, Xi'an 710069, China; Department of Pharmacology, University of Health Sciences, Lahore, Pakistan.
| | | | - Muhammad Shahzad
- Department of Pharmacology, University of Health Sciences, Lahore, Pakistan.
| | - Kashif Majeed
- The Department of Applied Chemistry, School of Science, Northwestern Polytechnical University, Xi'an 710072, China
| | - Nasir Mahmood
- School of Management, Northwestern Polytechnical University, Xi'an 710072, China
| | - Hina Munir
- School of Management, Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
45
|
Katoch A, Suklabaidya S, Chakraborty S, Nayak D, Rasool RU, Sharma D, Mukherjee D, Faheem MM, Kumar A, Sharma PR, Senapati S, Kumar LD, Goswami A. Dual role of Par-4 in abrogation of EMT and switching on Mesenchymal to Epithelial Transition (MET) in metastatic pancreatic cancer cells. Mol Carcinog 2018; 57:1102-1115. [PMID: 29672923 DOI: 10.1002/mc.22828] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 04/10/2018] [Accepted: 04/17/2018] [Indexed: 12/16/2022]
Abstract
Epithelial-mesenchymal transition (EMT) is a critical event that occurs during the invasion and metastatic spread of cancer cells. Here, we conceive a dual mechanism of Par-4-mediated inhibition of EMT and induction of MET in metastatic pancreatic cancer cells. First, we demonstrate that 1,1'-β-D-glucopyranosyl-3,3'-bis(5-bromoindolyl)-octyl methane (NGD16), an N-glycosylated derivative of medicinally important phytochemical 3,3'-diindolylmethane (DIM) abrogates EMT by inducing pro-apoptotic protein Par-4. Induction of Par-4 (by NGD16 or ectopic overexpression) strongly impedes invasion with inhibition of major mesenchymal markers viz. Vimentin and Twist-1 epithelial marker- E-cadherin. Further, NGD16 triggers MET phenotypes in pancreatic cancer cells by augmenting ALK2/Smad4 signaling in a Par-4-dependent manner. Conversely, siRNA-mediated silencing of endogenous Par-4 unveil reversal of MET with diminished E-cadherin expression and invasive phenotypes. Additionally, we demonstrate that intact Smad4 is essential for Par-4-mediated maintenance of E-cadherin level in MET induced cells. Notably, we imply that Par-4 induction regulates E-cadherin levels in the pancreatic cancer cells via modulating Twist-1 promoter activity. Finally, in vivo studies with syngenic mouse metastatic pancreatic cancer model reveal that NGD16 strongly suppresses metastatic burden, ascites formation, and prolongs the overall survival of animals effectively.
Collapse
Affiliation(s)
- Archana Katoch
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, India.,Cancer Pharmacology Division, Indian Institute of Integrative Medicine (CSIR), Jammu, Jammu and Kashmir, India
| | - Sujit Suklabaidya
- Tumor Microenvironment and Animal Models Lab, Institute of Life Sciences (ILS), Bhubaneswar, Orissa, India
| | - Souneek Chakraborty
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, India.,Cancer Pharmacology Division, Indian Institute of Integrative Medicine (CSIR), Jammu, Jammu and Kashmir, India
| | - Debasis Nayak
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, India.,Cancer Pharmacology Division, Indian Institute of Integrative Medicine (CSIR), Jammu, Jammu and Kashmir, India
| | - Reyaz U Rasool
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, India.,Cancer Pharmacology Division, Indian Institute of Integrative Medicine (CSIR), Jammu, Jammu and Kashmir, India
| | - Deepak Sharma
- Natural Product Chemistry, Indian Institute of Integrative Medicine (CSIR), Jammu, Jammu and Kashmir, India
| | - Debaraj Mukherjee
- Natural Product Chemistry, Indian Institute of Integrative Medicine (CSIR), Jammu, Jammu and Kashmir, India
| | - Mir M Faheem
- Cancer Pharmacology Division, Indian Institute of Integrative Medicine (CSIR), Jammu, Jammu and Kashmir, India
| | - Anmol Kumar
- Cancer Biology Division, Center for Cellular and Molecular Biology (CCMB), Hyderabad, Telangana, India
| | - Parduman R Sharma
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, India.,Cancer Pharmacology Division, Indian Institute of Integrative Medicine (CSIR), Jammu, Jammu and Kashmir, India
| | - Shantibhusan Senapati
- Tumor Microenvironment and Animal Models Lab, Institute of Life Sciences (ILS), Bhubaneswar, Orissa, India
| | - Lekha D Kumar
- Cancer Biology Division, Center for Cellular and Molecular Biology (CCMB), Hyderabad, Telangana, India
| | - Anindya Goswami
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, India.,Cancer Pharmacology Division, Indian Institute of Integrative Medicine (CSIR), Jammu, Jammu and Kashmir, India
| |
Collapse
|
46
|
Alessi Wolken DM, Idone V, Hatsell SJ, Yu PB, Economides AN. The obligatory role of Activin A in the formation of heterotopic bone in Fibrodysplasia Ossificans Progressiva. Bone 2018; 109:210-217. [PMID: 28629737 PMCID: PMC6706059 DOI: 10.1016/j.bone.2017.06.011] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 06/02/2017] [Accepted: 06/15/2017] [Indexed: 11/25/2022]
Abstract
Fibrodysplasia Ossificans Progressiva (FOP) is a rare genetic disorder that presents at birth with only minor patterning defects, but manifests its debilitating pathology early in life with episodic, yet progressive and cumulative, heterotopic ossification (HO) of ligaments, tendons, and a subset of major skeletal muscles. The resulting HO lesions are endochondral in nature, and appear to be linked to inflammatory stimuli arising in association with known injuries, or from inflammation linked to normal tissue repair. FOP is caused by gain-of-function mutations in ACVR1, which encodes a type I BMP receptor. Initial studies on the pathogenic mechanism of FOP-causing mutations in ACVR1 focused on the enhanced function of this receptor in response to certain BMP ligands, or independently of ligands, but did not directly address the fact that HO in FOP is episodic and inflammation-driven. Recently, we and others demonstrated that Activin A is an obligate factor for the initiation of HO in FOP, signaling aberrantly via mutant ACVR1 to transduce osteogenic signals and trigger heterotopic bone formation (Hatsell et al., 2015; Hino et al., 2015). Subsequently, we identified distinct tissue-resident mesenchymal progenitor cells residing in muscles and tendons that recognize Activin A as a pro-osteogenic signal (solely in the context of FOP-causing mutant ACVR1), and give rise to the cartilaginous anlagen that form heterotopic bone (Dey et al., 2016). During the course of these studies, we also found that the activity of FOP-causing ACVR1 mutations does not by itself explain the triggered or inflammatory nature of HO in FOP, suggesting the importance of other, inflammation-introduced, factors or processes. This review presents a synthesis of these findings with a focus on the role of Activin A and inflammation in HO, and lays out perspectives for future research.
Collapse
Affiliation(s)
- Dana M Alessi Wolken
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Vincent Idone
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Sarah J Hatsell
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Paul B Yu
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| | - Aris N Economides
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA; Regeneron Genetics Center, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA.
| |
Collapse
|
47
|
Le V, Anderson E, Akiyama T, Wharton KA. Drosophila models of FOP provide mechanistic insight. Bone 2018; 109:192-200. [PMID: 29128351 PMCID: PMC11957552 DOI: 10.1016/j.bone.2017.11.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 11/04/2017] [Accepted: 11/06/2017] [Indexed: 01/04/2023]
Abstract
Fibrodysplasia ossificans progressiva (FOP) is a rare bone disease characterized by episodic events of heterotopic ossification (HO). All cases of FOP have been attributed to mutations in the ACVR1 gene that render the encoded BMP type I ALK2 receptor hypersensitive, resulting in the activation of BMP signaling, at inappropriate times in inappropriate locations. The episodic or sporadic nature of HO associated with FOP rests with the occurrence of specific 'triggers' that push the hypersensitive ALK2-FOP receptor into full signaling mode. Identification of these triggers and their mechanism of action is critical for preventing HO and its devastating consequences in FOP patients. Models of FOP, generated in Drosophila, are shown to activate the highly conserved BMP signaling pathway in both Drosophila cell culture and in developing tissues in vivo. The most common FOP mutation, R206H, in ALK2 and its synonymous mutation, K262H, in the orthologous Drosophila receptor Sax, abolish the ability of wild type receptors to inhibit BMP ligand-induced signaling and lead to ubiquitous pathway activation in both cases but with important differences. When expressed in Drosophila, human ALK2R206H exhibits constitutive signaling. SaxK262H on the other hand can elicit excessive signaling similar to that observed for ALK2R206H in mammalian systems in vivo. For example, hyperactive signaling mediated by SaxK262H is triggered by an increase in ligand or in type II receptors. Interestingly, while the constitutive nature of ALK2R2026H in Drosophila requires activation by the type II receptor, it does not require its ligand binding domain. The differences exhibited by the two Drosophila FOP models enable a valuable comparative analysis poised to reveal critical regulatory mechanisms governing signaling output from these mutated receptors. Modifier screens using these Drosophila FOP models will be extremely valuable in identifying genes or compounds that reduce or prevent the hyperactive BMP signaling that initiates HO associated with FOP.
Collapse
Affiliation(s)
- Viet Le
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, USA; Program in Molecular Medicine, Boston Children's Hospital and Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Edward Anderson
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, USA
| | - Takuya Akiyama
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, USA; Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Kristi A Wharton
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, USA.
| |
Collapse
|
48
|
Microarray Analysis of the Molecular Mechanism Involved in Parkinson's Disease. PARKINSONS DISEASE 2018; 2018:1590465. [PMID: 29686831 PMCID: PMC5852864 DOI: 10.1155/2018/1590465] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 08/21/2017] [Accepted: 10/18/2017] [Indexed: 02/03/2023]
Abstract
Purpose This study aimed to investigate the underlying molecular mechanisms of Parkinson's disease (PD) by bioinformatics. Methods Using the microarray dataset GSE72267 from the Gene Expression Omnibus database, which included 40 blood samples from PD patients and 19 matched controls, differentially expressed genes (DEGs) were identified after data preprocessing, followed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. Protein-protein interaction (PPI) network, microRNA- (miRNA-) target regulatory network, and transcription factor- (TF-) target regulatory networks were constructed. Results Of 819 DEGs obtained, 359 were upregulated and 460 were downregulated. Two GO terms, “rRNA processing” and “cytoplasm,” and two KEGG pathways, “metabolic pathways” and “TNF signaling pathway,” played roles in PD development. Intercellular adhesion molecule 1 (ICAM1) was the hub node in the PPI network; hsa-miR-7-5p, hsa-miR-433-3p, and hsa-miR-133b participated in PD pathogenesis. Six TFs, including zinc finger and BTB domain-containing 7A, ovo-like transcriptional repressor 1, GATA-binding protein 3, transcription factor dp-1, SMAD family member 1, and quiescin sulfhydryl oxidase 1, were related to PD. Conclusions “rRNA processing,” “cytoplasm,” “metabolic pathways,” and “TNF signaling pathway” were key pathways involved in PD. ICAM1, hsa-miR-7-5p, hsa-miR-433-3p, hsa-miR-133b, and the abovementioned six TFs might play important roles in PD development.
Collapse
|
49
|
Wang H, Jin W, Li H. Genetic polymorphisms in bone morphogenetic protein receptor type IA gene predisposes individuals to ossification of the posterior longitudinal ligament of the cervical spine via the smad signaling pathway. BMC Musculoskelet Disord 2018; 19:61. [PMID: 29458345 PMCID: PMC5819076 DOI: 10.1186/s12891-018-1966-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 02/06/2018] [Indexed: 11/23/2022] Open
Abstract
Background The present study investigated the molecular mechanisms underlying the 4A > C and -349C > T single nucleotide polymorphisms (SNPs) in bone morphogenetic protein receptor type IA (BMPR-IA) gene, which significantly associated with the occurrence and the extent of ossification of the posterior longitudinal ligament (OPLL) in the cervical spine. Methods The SNPs in BMPR-IA gene were genotyped, and the association with the occurrence and severity of OPLL were evaluated in 356 OPLL patients and 617 non-OPLL controls. In stably transfected mouse embryonic mesenchymal stem cells (C3H10T1/2), the expression levels of the BMPR-IA gene and Smad4 protein as well as phosphorylated Smad1/5/8 were detected by Western blotting. In addition, the alkaline phosphatase (ALP) and osteocalcin (OC) activity of osteogenesis specificity protein was assessed using the ALP quantitation and osteocalcin radioimmunoassay kit, respectively. Results The 4A > C and the -349C > T polymorphisms of BMPR-IA gene were significantly associated with the development of OPLL in the cervical spine. The C allele type in 4A > C polymorphism significantly increases the occurrence and the extent of OPLL. The T allele type in -349C > T polymorphism significantly increases the susceptibility to OPLL, but not the extent of OPLL. The current results further validate our previous observations. The expression levels of BMPR-IA gene were significantly increased in pcDNA3.1/BMPR-IA (mutation type, MT -349C > T; MT 4A > C; MT -349C > T and 4A > C) vector-transfected C3H10T1/2 cells compared to the wild type (WT) vector-transfected cells. The levels of phosphorylated Smad1/5/8 and ALP activity were significantly increased in pcDNA3.1/BMPR-IA (MT -349C > T) vector-transfected C3H10T1/2 cells compared to the WT vector-transfected cells. However, no significant differences were observed in the protein levels of phosphorylated Smad1/5/8 and the ALP activity between MT A/C and WT vector-transfected cells. In addition, no significant differences were observed in the Smad4 protein levels among the experimental groups, as well as in the OC activity between WT vector-transfected and MT C/T, MT A/C, MT C/T and MT A/C vector-transfected cells. Conclusions Our results suggest that Smad signaling pathway may play important roles in the pathological process of OPLL induced by SNPs in BMPR-IA gene. These results will help to clarify the molecular mechanisms underlying the SNP and gene susceptibility to OPLL.
Collapse
Affiliation(s)
- Hao Wang
- Department of Orthopaedics, Beijing Tiantan Hospital, Capital Medical University, 6 TiantanXili, Dongcheng District, Beijing, 100050, China.
| | - Weitao Jin
- Department of Orthopaedics, Beijing Tiantan Hospital, Capital Medical University, 6 TiantanXili, Dongcheng District, Beijing, 100050, China
| | - Haibin Li
- Department of Epidemiology and Biostatistics, School of Public Health, Capital Medical University, Beijing, 100069, China
| |
Collapse
|
50
|
Abstract
Autophosphorylation of kinases influences their conformational state and can also regulate enzymatic activity. Recently, this has become an area of interest for drug discovery. Using Alk2 as an example, we present two protocols - one based on phosphate-binding Alphascreen beads, the other on coupled luminescence measurements of ADP formation - that can be used to screen for inhibitors of autophosphorylation.
Collapse
Affiliation(s)
- Bianca Heedmann
- Center for Proteomic Chemistry, Novartis Institute for Biomedical Research Basel, Novartis Pharma AG, Postfach, CH-4002, Basel, Switzerland
| | - Martin Klumpp
- Center for Proteomic Chemistry, Novartis Institute for Biomedical Research Basel, Novartis Pharma AG, Postfach, CH-4002, Basel, Switzerland.
| |
Collapse
|