1
|
Roth P, Fotiadis D. Cryo-EM structure of a phosphotransferase system glucose transporter stalled in an intermediate conformation. J Struct Biol X 2025; 11:100124. [PMID: 40124667 PMCID: PMC11930441 DOI: 10.1016/j.yjsbx.2025.100124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 02/22/2025] [Accepted: 03/03/2025] [Indexed: 03/25/2025] Open
Abstract
The phosphotransferase system glucose-specific transporter IICBGlc serves as a central nutrient uptake system in bacteria. It transports glucose across the plasma membrane via the IICGlc domain and phosphorylates the substrate within the cell to produce the glycolytic intermediate, glucose-6-phosphate, through the IIBGlc domain. Furthermore, IICGlc consists of a transport (TD) and a scaffold domain, with the latter being involved in dimer formation. Transport is mediated by an elevator-type mechanism within the IICGlc domain, where the substrate binds to the mobile TD. This domain undergoes a large-scale rigid-body movement relative to the static scaffold domain, translocating glucose across the membrane. Structures of elevator-type transporters are typically captured in either inward- or outward-facing conformations. Intermediate states remain elusive, awaiting structural determination and mechanistic interpretation. Here, we present a single-particle cryo-EM structure of purified, n-dodecyl-β-D-maltopyranoside-solubilized IICBGlc from Escherichia coli. While the IIBGlc protein domain is flexible remaining unresolved, the dimeric IICGlc transporter is found trapped in a hitherto unobserved intermediate conformational state. Specifically, the TD is located halfway between inward- and outward-facing states. Structural analysis revealed a specific n-dodecyl-β-D-maltopyranoside molecule bound to the glucose binding site. The sliding of the TD is potentially impeded halfway due to the bulky nature of the ligand and a shift of the thin gate, thereby stalling the transporter. In conclusion, this study presents a novel conformational state of IICGlc, and provides new structural and mechanistic insights into a potential stalling mechanism, paving the way for the rational design of transport inhibitors targeting this critical bacterial metabolic process.
Collapse
Affiliation(s)
- Patrick Roth
- Institute of Biochemistry and Molecular Medicine, Medical Faculty, University of Bern, Bern, Switzerland
| | - Dimitrios Fotiadis
- Institute of Biochemistry and Molecular Medicine, Medical Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
2
|
Jeckelmann JM, Erni B. Carbohydrate Transport by Group Translocation: The Bacterial Phosphoenolpyruvate: Sugar Phosphotransferase System. Subcell Biochem 2019; 92:223-274. [PMID: 31214989 DOI: 10.1007/978-3-030-18768-2_8] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The Bacterial Phosphoenolpyruvate (PEP) : Sugar Phosphotransferase System (PTS) mediates the uptake and phosphorylation of carbohydrates, and controls the carbon- and nitrogen metabolism in response to the availability of sugars. PTS occur in eubacteria and in a few archaebacteria but not in animals and plants. All PTS comprise two cytoplasmic phosphotransferase proteins (EI and HPr) and a species-dependent, variable number of sugar-specific enzyme II complexes (IIA, IIB, IIC, IID). EI and HPr transfer phosphorylgroups from PEP to the IIA units. Cytoplasmic IIA and IIB units sequentially transfer phosphates to the sugar, which is transported by the IIC and IICIID integral membrane protein complexes. Phosphorylation by IIB and translocation by IIC(IID) are tightly coupled. The IIC(IID) sugar transporters of the PTS are in the focus of this review. There are four structurally different PTS transporter superfamilies (glucose, glucitol, ascorbate, mannose) . Crystal structures are available for transporters of two superfamilies: bcIICmal (MalT, 5IWS, 6BVG) and bcIICchb (ChbC, 3QNQ) of B. subtilis from the glucose family, and IICasc (UlaA, 4RP9, 5ZOV) of E. coli from the ascorbate superfamily . They are homodimers and each protomer has an independent transport pathway which functions by an elevator-type alternating-access mechanism. bcIICmal and bcIICchb have the same fold, IICasc has a completely different fold. Biochemical and biophysical data accumulated in the past with the transporters for mannitol (IICBAmtl) and glucose (IICBglc) are reviewed and discussed in the context of the bcIICmal crystal structures. The transporters of the mannose superfamily are dimers of protomers consisting of a IIC and a IID protein chain. The crystal structure is not known and the topology difficult to predict. Biochemical data indicate that the IICIID complex employs a different transport mechanism . Species specific IICIID serve as a gateway for the penetration of bacteriophage lambda DNA across, and insertion of class IIa bacteriocins into the inner membrane. PTS transporters are inserted into the membrane by SecYEG translocon and have specific lipid requirements. Immunoelectron- and fluorescence microscopy indicate a non-random distribution and supramolecular complexes of PTS proteins.
Collapse
Affiliation(s)
- Jean-Marc Jeckelmann
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse 28, 3012, Bern, Switzerland.
| | - Bernhard Erni
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse 28, 3012, Bern, Switzerland
| |
Collapse
|
3
|
Abstract
Rhodopsins are photochemically reactive membrane proteins that covalently bind retinal chromophores. Type I rhodopsins are found in both prokaryotes and eukaryotic microbes, whereas type II rhodopsins function as photoactivated G-protein coupled receptors (GPCRs) in animal vision. Both rhodopsin families share the seven transmembrane α-helix GPCR fold and a Schiff base linkage from a conserved lysine to retinal in helix G. Nevertheless, rhodopsins are widely cited as a striking example of evolutionary convergence, largely because the two families lack detectable sequence similarity and differ in many structural and mechanistic details. Convergence entails that the shared rhodopsin fold is so especially suited to photosensitive function that proteins from separate origins were selected for this architecture twice. Here we show, however, that the rhodopsin fold is not required for photosensitive activity. We engineered functional bacteriorhodopsin variants with novel folds, including radical noncircular permutations of the α-helices, circular permutations of an eight-helix construct, and retinal linkages relocated to other helices. These results contradict a key prediction of convergence and thereby provide an experimental attack on one of the most intractable problems in molecular evolution: how to establish structural homology for proteins devoid of discernible sequence similarity.
Collapse
|
4
|
Jeckelmann JM, Harder D, Mari SA, Meury M, Ucurum Z, Müller DJ, Erni B, Fotiadis D. Structure and function of the glucose PTS transporter from Escherichia coli. J Struct Biol 2011; 176:395-403. [DOI: 10.1016/j.jsb.2011.09.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Revised: 09/26/2011] [Accepted: 09/27/2011] [Indexed: 11/27/2022]
|
5
|
Zurbriggen A, Schneider P, Bähler P, Baumann U, Erni B. Expression, purification, crystallization and preliminary X-ray analysis of the EIICGlc domain of the Escherichia coli glucose transporter. Acta Crystallogr Sect F Struct Biol Cryst Commun 2010; 66:684-8. [PMID: 20516600 DOI: 10.1107/s1744309110013102] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Accepted: 04/08/2010] [Indexed: 11/11/2022]
Abstract
The glucose-import system of Escherichia coli consists of a hydrophilic EIIA(Glc) subunit and a transmembrane EIICB(Glc) subunit. EIICB(Glc) (UniProt P69786) contains two domains: the transmembrane EIIC(Glc) domain (40.6 kDa) and the cytoplasmic EIIB(Glc) domain (8.0 kDa), which are fused by a linker that is strongly conserved among its orthologues. The EIICB(Glc) subunit can be split within this motif by trypsin. Here, the crystallization of the tryptic EIIC(Glc) domain is described. A complete data set was collected to 4.5 A resolution at 100 K.
Collapse
Affiliation(s)
- Andreas Zurbriggen
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland.
| | | | | | | | | |
Collapse
|
6
|
Thompson J, Lichtenthaler FW, Peters S, Pikis A. Beta-glucoside kinase (BglK) from Klebsiella pneumoniae. Purification, properties, and preparative synthesis of 6-phospho-beta-D-glucosides. J Biol Chem 2002; 277:34310-21. [PMID: 12110692 DOI: 10.1074/jbc.m206397200] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ATP-dependent beta-glucoside kinase (BglK) has been purified from cellobiose-grown cells of Klebsiella pneumoniae. In solution, the enzyme (EC ) exists as a homotetramer composed of non-covalently linked subunits of M(r) approximately 33,000. Determination of the first 28 residues from the N terminus of the protein allowed the identification and cloning of bglK from genomic DNA of K. pneumoniae. The open reading frame (ORF) of bglK encodes a 297-residue polypeptide of calculated M(r) 32,697. A motif of 7 amino acids (AFD(7)IG(9)GT) near the N terminus may comprise the ATP-binding site, and residue changes D7G and G9A yielded catalytically inactive proteins. BglK was progressively inactivated (t(12) approximately 19 min) by N-ethylmaleimide, but ATP afforded considerable protection against the inhibitor. By the presence of a centrally located signature sequence, BglK can be assigned to the ROK (Repressor, ORF, Kinase) family of proteins. Preparation of (His6)BglK by nickel-nitrilotriacetic acid-agarose chromatography provided high purity enzyme in quantity sufficient for the preparative synthesis (200-500 mg) of ten 6-phospho-beta-d-glucosides, including cellobiose-6'-P, gentiobiose-6'-P, cellobiitol-6-P, salicin-6-P, and arbutin-6-P. These (and other) derivatives are substrates for phospho-beta-glucosidase(s) belonging to Families 1 and 4 of the glycosylhydrolase superfamily. The structures, physicochemical properties, and phosphorylation site(s) of the 6-phospho-beta-d-glucosides have been determined by fast atom bombardment-negative ion spectrometry, thin-layer chromatography, and (1)H and (13)C NMR spectroscopy. The recently sequenced genomes of two Listeria species, L. monocytogenes EGD-e and L. innocua CLIP 11262, contain homologous genes (lmo2764 and lin2907, respectively) that encode a 294-residue polypeptide (M(r) approximately 32,200) that exhibits approximately 58% amino acid identity with BglK. The protein encoded by the two genes exhibits beta-glucoside kinase activity and cross-reacts with polyclonal antibody to (His6)BglK from K. pneumoniae. The location of lmo2764 and lin2907 within a beta-glucoside (cellobiose):phosphotransferase system operon, may presage both enzymatic (kinase) and regulatory functions for the BglK homolog in Listeria species.
Collapse
Affiliation(s)
- John Thompson
- Microbial Biochemistry and Genetics Unit, Oral Infection and Immunity Branch, NIDCR/National Institutes of Health, 30 Convent Drive, MSC-4350, Bethesda, MD 20892, USA.
| | | | | | | |
Collapse
|
7
|
Siebold C, Erni B. Intein-mediated cyclization of a soluble and a membrane protein in vivo: function and stability. Biophys Chem 2002; 96:163-71. [PMID: 12034438 DOI: 10.1016/s0301-4622(02)00012-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Cyclized subunits of the E. coli glucose transporter were produced in vivo by intein mediated trans-splicing. IIA(Glc) is a beta-sandwich protein, IICB(Glc) spans the membrane eight times. Genes encoding the circularly permuted precursors U(Cdelta)-IIA(Glc)-U(Ndelta) and U(Cdelta)-IICB(Glc)-U(Ndelta) were assembled from DNA fragments encoding the 3' and 5' segments of the recA intein of M. tuberculosis and crr and ptsG of E. coli, respectively. A 20-residues long, Ala-Pro rich linker peptide and/or a histidine tag were used to join the native N- and C-termini in the cyclized proteins. The cyclized proteins complemented growth of glucose auxotrophic strains. Purified, cyclized IIA(Glc) and IICB(Glc) had 100 and 25%, respectively, of wild-type glucose phosphotransferase activity. They had an increased electrophoretic mobility, which decreased upon linearization of the proteins with chymotrypsin. Cyclized IIA(Glc) displayed increased stability against temperature and GuHCl-induced unfolding (75 vs. 70 degrees C; 1.52 vs. 1.05 M).
Collapse
Affiliation(s)
- Christian Siebold
- Departement für Chemie und Biochemie, Universität Bern, Bern, Switzerland
| | | |
Collapse
|
8
|
Cheltsov AV, Barber MJ, Ferreira GC. Circular permutation of 5-aminolevulinate synthase. Mapping the polypeptide chain to its function. J Biol Chem 2001; 276:19141-9. [PMID: 11279050 PMCID: PMC4547487 DOI: 10.1074/jbc.m100329200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
5-Aminolevulinate synthase is the first enzyme of the heme biosynthetic pathway in non-plant eukaryotes and some prokaryotes. The enzyme functions as a homodimer and requires pyridoxal 5'-phosphate as a cofactor. Although the roles of defined amino acids in the active site and catalytic mechanism have been recently explored using site-directed mutagenesis, much less is known about the role of the 5-aminolevulinate synthase polypeptide chain arrangement in folding, structure, and ultimately, function. To assess the importance of the continuity of the polypeptide chain, circularly permuted 5-aminolevulinate synthase variants were constructed through either rational design or screening of an engineered random library. One percent of the random library clones were active, and a total of 21 active variants had sequences different from that of the wild type 5-aminolevulinate synthase. Out of these 21 variants, 9 displayed unique circular permutations of the 5-aminolevulinate synthase polypeptide chain. The new termini of the active variants disrupted secondary structure elements and loop regions and fell in 100 amino acid regions from each terminus. This indicates that the natural continuity of the 5-aminolevulinate synthase polypeptide chain and the sequential arrangement of the secondary structure elements are not requirements for proper folding, binding of the cofactor, or assembly of the two subunits. Furthermore, the order of two identified functional elements (i.e. the catalytic and the glycine-binding domains) is apparently irrelevant for proper functioning of the enzyme. Although the wild type 5-aminolevulinate synthase and the circularly permuted variants appear to have similar, predicted overall tertiary structures, they exhibit differences in the arrangement of the secondary structure elements and in the cofactor-binding site environment. Taken together, the data lead us to propose that the 5-aminolevulinate synthase overall structure can be reached through multiple or alternative folding pathways.
Collapse
Affiliation(s)
- Anton V. Cheltsov
- Department of Biochemistry and Molecular Biology, College of Medicine, University of South Florida, Tampa, Florida 33612
| | - Michael J. Barber
- Department of Biochemistry and Molecular Biology, College of Medicine, University of South Florida, Tampa, Florida 33612
- Institute for Biomolecular Science, University of South Florida, Tampa, Florida 33612
| | - Gloria C. Ferreira
- Department of Biochemistry and Molecular Biology, College of Medicine, University of South Florida, Tampa, Florida 33612
- Institute for Biomolecular Science, University of South Florida, Tampa, Florida 33612
- H. Lee Moffitt Cancer Center and Research Institute, University of South Florida, Tampa, Florida 33612
- To whom correspondence should be addressed: Dept. of Biochemistry and Molecular Biology, College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., Tampa, FL 33612. Tel.: 813-974-5797; Fax: 813-974-0504;
| |
Collapse
|
9
|
Kotrba P, Inui M, Yukawa H. Bacterial phosphotransferase system (PTS) in carbohydrate uptake and control of carbon metabolism. J Biosci Bioeng 2001. [DOI: 10.1016/s1389-1723(01)80308-x] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
10
|
Beutler R, Ruggiero F, Erni B. Folding and activity of circularly permuted forms of a polytopic membrane protein. Proc Natl Acad Sci U S A 2000; 97:1477-82. [PMID: 10677487 PMCID: PMC26459 DOI: 10.1073/pnas.0305463397] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The transmembrane subunit of the Glc transporter (IICB(Glc)), which mediates uptake and concomitant phosphorylation of glucose, spans the membrane eight times. Variants of IICB(Glc) with the native N and C termini joined and new N and C termini in the periplasmic and cytoplasmic surface loops were expressed in Escherichia coli. In vivo transport/in vitro phosphotransferase activities of the circularly permuted variants with the termini in the periplasmic loops 1 to 4 were 35/58, 32/37, 0/3, and 0/0% of wild type, respectively. The activities of the variants with the termini in the cytoplasmic loops 1 to 3 were 0/25, 0/4 and 24/70, respectively. Fusion of alkaline phosphatase to the periplasmic C termini stabilized membrane integration and increased uptake and/or phosphorylation activities. These results suggest that internal signal anchor and stop transfer sequences can function as N-terminal signal sequences in a circularly permuted alpha-helical bundle protein and that the orientation of transmembrane segments is determined by the amino acid sequence and not by the sequential appearance during translation. Of the four IICB(Glc) variants with new termini in periplasmic loops, only the one with the discontinuity in loop 4 is inactive. The sequences of loop 4 and of the adjacent TM7 and TM8 are conserved in all phosphoenolpyruvate-dependent carbohydrate:phosphotransferase system transporters of the glucose family.
Collapse
Affiliation(s)
- R Beutler
- Departement für Chemie und Biochemie, Universität Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
| | | | | |
Collapse
|