1
|
Zhang J, Li Y, Huang W, Sun G, Ren H, Tang M. An ultrasensitive DNA-enhanced amplification method for detecting cfDNA drug-resistant mutations in non-small cell lung cancer with selective FEN-assisted degradation of dominant somatic fragments. Clin Chem Lab Med 2025; 63:97-109. [PMID: 39089988 DOI: 10.1515/cclm-2024-0614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 07/18/2024] [Indexed: 08/04/2024]
Abstract
OBJECTIVES Blood cell-free DNA (cfDNA) can be a new reliable tool for detecting epidermal growth factor receptor (EGFR) mutations in non-small cell lung cancer (NSCLC) patients. However, the currently reported cfDNA assays have a limited role in detecting drug-resistant mutations due to their deficiencies in sensitivity, stability, or mutation detection rate. METHODS We developed an Archaeoglobus fulgidus-derived flap endonuclease (Afu FEN)-based DNA-enhanced amplification system of mutated cfDNA by designing a pair of hairpin probes to anneal with wild-type cfDNA to form two 5'-flaps, allowing for the specific cleavage of wild-type cfDNA by Afu FEN. When the dominant wild-type somatic cfDNA fragments were cleaved by structure-recognition-specific Afu FEN, the proportion of mutated cfDNA in the reaction system was greatly enriched. As the amount of mutated cfDNA in the system was further increased by PCR amplification, the mutation status could be easily detected through first-generation sequencing. RESULTS In a mixture of synthetic wild-type and T790M EGFR DNA fragments, our new assay still could detect T790M mutation at the fg level with remarkably high sensitivity. We also tested its performance in detecting low variant allele frequency (VAF) mutations in clinical samples from NSCLC patients. The plasma cfDNA samples with low VAF (0.1 and 0.5 %) could be easily detected by DNA-enhanced amplification. CONCLUSIONS This system with enhanced amplification of mutated cfDNA is an effective tool used for the early screening and individualized targeted therapy of NSCLC by providing a rapid, sensitive, and economical way for the detection of drug-resistant mutations in tumors.
Collapse
Affiliation(s)
- Junhua Zhang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, 117555 Beijing Hospital/National Center of Gerontology of National Health Commission , Beijing, P.R. China
| | - Yifei Li
- Clinical Biobank, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, P.R. China
| | - Wei Huang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, 117555 Beijing Hospital/National Center of Gerontology of National Health Commission , Beijing, P.R. China
| | - Gaoyuan Sun
- Clinical Biobank, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, P.R. China
| | - Hongjun Ren
- Advanced Research Institute and Department of Chemistry, Taizhou University, Jiaojiang 318000, P.R. China
| | - Min Tang
- Department of Oncology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, P.R. China
| |
Collapse
|
2
|
Hsu CW, Conrad JW, Sowers ML, Baljinnyam T, Herring JL, Hackfeld LC, Hatch SS, Sowers LC. A combinatorial system to examine the enzymatic repair of multiply damaged DNA substrates. Nucleic Acids Res 2022; 50:7406-7419. [PMID: 35776119 PMCID: PMC9303388 DOI: 10.1093/nar/gkac530] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 05/18/2022] [Accepted: 06/07/2022] [Indexed: 12/03/2022] Open
Abstract
DNA damage drives genetic mutations that underlie the development of cancer in humans. Multiple pathways have been described in mammalian cells which can repair this damage. However, most work to date has focused upon single lesions in DNA. We present here a combinatorial system which allows assembly of duplexes containing single or multiple types of damage by ligating together six oligonucleotides containing damaged or modified bases. The combinatorial system has dual fluorescent labels allowing examination of both strands simultaneously, in order to study interactions or competition between different DNA repair pathways. Using this system, we demonstrate how repair of oxidative damage in one DNA strand can convert a mispaired T:G deamination intermediate into a T:A mutation. We also demonstrate that slow repair of a T:G mispair, relative to a U:G mispair, by the human methyl-binding domain 4 DNA glycosylase provides a competitive advantage to competing repair pathways, and could explain why CpG dinucleotides are hotspots for C to T mutations in human tumors. Data is also presented that suggests repair of closely spaced lesions in opposing strands can be repaired by a combination of short and long-patch base excision repair and simultaneous repair of multiply damage sites can potentially lead to lethal double strand breaks.
Collapse
Affiliation(s)
- Chia Wei Hsu
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, USA.,MD-PhD Combined Degree Program, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, USA
| | - James W Conrad
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, USA
| | - Mark L Sowers
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, USA.,MD-PhD Combined Degree Program, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, USA
| | - Tuvshintugs Baljinnyam
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, USA
| | - Jason L Herring
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, USA
| | - Linda C Hackfeld
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, USA
| | - Sandra S Hatch
- Department of Radiation Oncology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, USA.,Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Lawrence C Sowers
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, USA.,Department of Internal Medicine, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, USA
| |
Collapse
|
3
|
Biochemical characterization and mutational analysis of a novel flap endonuclease 1 from Thermococcus barophilus Ch5. Int J Biochem Cell Biol 2022; 143:106154. [PMID: 34990837 DOI: 10.1016/j.biocel.2021.106154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 12/20/2021] [Accepted: 12/30/2021] [Indexed: 11/21/2022]
Abstract
Flap endonuclease 1 (FEN1) plays important roles in DNA replication, repair and recombination. Herein, we report biochemical characteristics and catalytic mechanism of a novel FEN1 from the hyperthermophilic euryarchaeon Thermococcus barophilus Ch5 (Tb-FEN1). As expected, the recombinant Tb-FEN1 can cleave 5'-flap DNA. However, the enzyme has no activity on cleaving pseudo Y DNA, which sharply contrasts with other archaeal and eukaryotic FEN1 homologs. Tb-FEN1 retains 24% relative activity after heating at 100 °C for 20 min, demonstrating that it is the most thermostable among all reported FEN1 proteins. The enzyme displays maximal activity in a wide range of pH from 7.0 to 9.5. The Tb-FEN1 activity is dependent on a divalent metal ion, among which Mg2+ and Mn2+ are optimal. Enzyme activity is inhibited by NaCl. Kinetic analyzes estimated that an activation energy for removal of 5'-flap from DNA by Tb-FEN1 was 35.7 ± 4.3 kcal/mol, which is the first report on energy barrier for excising 5'-flap from DNA by a FEN1 enzyme. Mutational studies demonstrate that the K87A, R94A and E154A amino acid substitutions abolish cleavage activity and reduce 5'-flap DNA binding efficiencies, suggesting that residues K87, R94, and E154 in Tb-FEN1 are essential for catalysis and DNA binding as well. Overall, Tb-FEN1 is an extremely thermostable endonuclease with unusual features.
Collapse
|
4
|
Guo Y, Wang L, Qi Z, Liu Y, Tian K, Qiang H, Wang P, Zhou G, Zhang X, Xu S. A novel strategy for orthogonal genetic regulation on different RNA targeted loci simultaneously. RNA Biol 2022; 19:1172-1178. [PMID: 36350790 PMCID: PMC9648401 DOI: 10.1080/15476286.2022.2141507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
No current RNA-targeted interference tools have been reported to simultaneously up and down-regulate different gene expressions. Here we characterized an RNA-targeted genetic regulatory strategy composed of a flap endonuclease 1 (FEN1) and specific mis-hairpin DNA probes (mis-hpDNA), to realize the orthogonal genetic regulation. By targeting mRNA, the strategy hindered the translation and silenced genes in human cells with efficiencies of ~60%. By targeting miRNA, the strategy prevented the combination of miRNA to its specific mRNA and increased this mRNA expression by about 3-folds. In combination, we simultaneously performed CXCR4 gene knock-down (~50%) and EGFR gene activation (1.5-folds) in human cells. Although the functional property can be further improved, this RNA-targeted orthogonal genetic regulating strategy is complementary to classical tools.
Collapse
Affiliation(s)
- Yongjian Guo
- School of Basic Medical Science and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210000, China,School of Biopharmacy, China Pharmaceutical University, Nanjing, 210000, China
| | - Liang Wang
- School of Basic Medical Science and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210000, China,Institute of Binjiang, Zhejiang University, Hangzhou, 310053, China
| | - Zhen Qi
- School of Basic Medical Science and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210000, China,Women’s Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, 210000, China
| | - Yu Liu
- School of Basic Medical Science and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210000, China
| | - Kun Tian
- School of Basic Medical Science and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210000, China
| | - Huanran Qiang
- School of Basic Medical Science and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210000, China
| | - Pei Wang
- School of Basic Medical Science and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210000, China
| | - Guohua Zhou
- Department of Pharmacology, Jinling Hospital, Medical School, Nanjing University, Nanjing, 210000, China
| | - Xiaobo Zhang
- School of Basic Medical Science and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210000, China,CONTACT Xiaobo Zhang School of Basic Medical Science and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210000, China
| | - Shu Xu
- School of Basic Medical Science and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210000, China,Shu Xu School of Basic Medical Science and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210000, China
| |
Collapse
|
5
|
Tian K, Guo Y, Zou B, Wang L, Zhang Y, Qi Z, Zhou J, Wang X, Zhou G, Wei L, Xu S. DNA and RNA editing without sequence limitation using the flap endonuclease 1 guided by hairpin DNA probes. Nucleic Acids Res 2020; 48:e117. [PMID: 33051689 PMCID: PMC7672438 DOI: 10.1093/nar/gkaa843] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 09/11/2020] [Accepted: 09/19/2020] [Indexed: 12/26/2022] Open
Abstract
Here, we characterized a flap endonuclease 1 (FEN1) plus hairpin DNA probe (hpDNA) system, designated the HpSGN system, for both DNA and RNA editing without sequence limitation. The compact size of the HpSGN system make it an ideal candidate for in vivo delivery applications. In vitro biochemical studies showed that the HpSGN system required less nuclease to cleave ssDNA substrates than the SGN system we reported previously by a factor of ∼40. Also, we proved that the HpSGN system can efficiently cleave different RNA targets in vitro. The HpSGN system cleaved genomic DNA at an efficiency of ∼40% and ∼20% in bacterial and human cells, respectively, and knocked down specific mRNAs in human cells at a level of ∼25%. Furthermore, the HpSGN system was sensitive to the single base mismatch at the position next to the hairpin both in vitro and in vivo. Collectively, this study demonstrated the potential of developing the HpSGN system as a small, effective, and specific editing tool for manipulating both DNA and RNA without sequence limitation.
Collapse
Affiliation(s)
| | | | | | - Liang Wang
- School of Basic Medical Science and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210000, China
| | - Yun Zhang
- School of Basic Medical Science and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210000, China
| | - Zhen Qi
- School of Basic Medical Science and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210000, China
| | - Jieying Zhou
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, USA
| | - Xiaotang Wang
- Correspondence may also be addressed to Xiaotang Wang.
| | - Guohua Zhou
- Correspondence may also be addressed to Guohua Zhou.
| | - Libin Wei
- Correspondence may also be addressed to Libin Wei.
| | - Shu Xu
- To whom correspondence should be addressed.
| |
Collapse
|
6
|
Si Y, Wang X, Yang G, Yang T, Li Y, Ayala GJ, Li X, Wang H, Su J. Crystal Structures of Pyrophosphatase from Acinetobacter baumannii: Snapshots of Pyrophosphate Binding and Identification of a Phosphorylated Enzyme Intermediate. Int J Mol Sci 2019; 20:ijms20184394. [PMID: 31500178 PMCID: PMC6770254 DOI: 10.3390/ijms20184394] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 08/31/2019] [Accepted: 09/03/2019] [Indexed: 11/26/2022] Open
Abstract
All living things have pyrophosphatases that hydrolyze pyrophosphate and release energy. This energetically favorable reaction drives many energetically unfavorable reactions. An accepted catalytic model of pyrophosphatase shows that a water molecule activated by two divalent cations (M1 and M2) within the catalytic center can attack pyrophosphate in an SN2 mechanism and thus hydrolyze the molecule. However, our co-crystal structure of Acinetobacter baumannii pyrophosphatase with pyrophosphate shows that a water molecule from the solvent may, in fact, be the actual catalytic water. In the co-crystal structure of the wild-type pyrophosphatase with pyrophosphate, the electron density of the catalytic centers of each monomer are different from one another. This indicates that pyrophosphates in the catalytic center are dynamic. Our mass spectroscopy results have identified a highly conserved lysine residue (Lys30) in the catalytic center that is phosphorylated, indicating that the enzyme could form a phosphoryl enzyme intermediate during hydrolysis. Mutation of Lys30 to Arg abolished the activity of the enzyme. In the structure of the apo wild type enzyme, we observed that a Na+ ion is coordinated by residues within a loop proximal to the catalytic center. Therefore, we mutated three key residues within the loop (K143R, P147G, and K149R) and determined Na+ and K+-induced inhibition on their activities. Compared to the wild type enzyme, P147G is most sensitive to these cations, whereas K143R was inactive and K149R showed no change in activity. These data indicate that monovalent cations could play a role in down-regulating pyrophosphatase activity in vivo. Overall, our results reveal new aspects of pyrophosphatase catalysis and could assist in the design of specific inhibitors of Acinetobacter baumannii growth.
Collapse
Affiliation(s)
- Yunlong Si
- Jilin Province Key Laboratory on Chemistry and Biology of Natural Drugs in Changbai Mountain, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Xing Wang
- Jilin Province Key Laboratory on Chemistry and Biology of Natural Drugs in Changbai Mountain, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Guosong Yang
- Zhongke Biopharm Co., LTD, East of Beijing, Beijing 101601, China
| | - Tong Yang
- Jilin Province Key Laboratory on Chemistry and Biology of Natural Drugs in Changbai Mountain, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Yuying Li
- Jilin Province Key Laboratory on Chemistry and Biology of Natural Drugs in Changbai Mountain, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Gabriela Jaramillo Ayala
- Jilin Province Key Laboratory on Chemistry and Biology of Natural Drugs in Changbai Mountain, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Xumin Li
- Jilin Province Key Laboratory on Chemistry and Biology of Natural Drugs in Changbai Mountain, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Hao Wang
- Jilin Province Key Laboratory on Chemistry and Biology of Natural Drugs in Changbai Mountain, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Jiyong Su
- Jilin Province Key Laboratory on Chemistry and Biology of Natural Drugs in Changbai Mountain, School of Life Sciences, Northeast Normal University, Changchun 130024, China.
| |
Collapse
|
7
|
Muzzamal H, Ul Ain Q, Saeed MS, Rashid N. Gene cloning and characterization of Tk1281, a flap endonuclease 1 from Thermococcus kodakarensis. Folia Microbiol (Praha) 2019; 65:407-415. [PMID: 31401764 DOI: 10.1007/s12223-019-00745-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 07/29/2019] [Indexed: 11/25/2022]
Abstract
Flap endonuclease is a structure-specific nuclease which cleaves 5'-flap of bifurcated DNA substrates. Genome sequence of Thermococcus kodakarensis harbors an open reading frame, Tk1281, exhibiting high homology with archaeal flap endonucleases 1. The corresponding gene was cloned and expressed in Escherichia coli, and the gene product was purified to apparent homogeneity. Tk1281 was a monomer of 38 kDa and catalyzed the cleavage of 5'-flap from double-stranded DNA substrate containing single-stranded DNA flap. The highest cleavage activity was observed at 80 °C and pH 7.5. Under optimal conditions, Tk1281 exhibited apparent Vmax and Km values of 278 nmol/min/mg and 37 μM, respectively, against a 54-nucleotide double-stranded substrate containing a single-stranded 5'-flap of 27 nucleotides. A unique feature of Tk1281 is its highest activation in the presence of Co2+ and no activation with Mn2+. To the best of our knowledge, this is the first cloning and characterization of a flap endonuclease from the genus Thermococcus.
Collapse
Affiliation(s)
- Hira Muzzamal
- School of Biological Sciences, University of the Punjab, Lahore, 54590, Pakistan
| | - Qurat Ul Ain
- School of Biological Sciences, University of the Punjab, Lahore, 54590, Pakistan
| | | | - Naeem Rashid
- School of Biological Sciences, University of the Punjab, Lahore, 54590, Pakistan.
| |
Collapse
|
8
|
Lyu Z, Whitman WB. Evolution of the archaeal and mammalian information processing systems: towards an archaeal model for human disease. Cell Mol Life Sci 2017; 74:183-212. [PMID: 27261368 PMCID: PMC11107668 DOI: 10.1007/s00018-016-2286-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 05/05/2016] [Accepted: 05/27/2016] [Indexed: 12/22/2022]
Abstract
Current evolutionary models suggest that Eukaryotes originated from within Archaea instead of being a sister lineage. To test this model of ancient evolution, we review recent studies and compare the three major information processing subsystems of replication, transcription and translation in the Archaea and Eukaryotes. Our hypothesis is that if the Eukaryotes arose within the archaeal radiation, their information processing systems will appear to be one of kind and not wholly original. Within the Eukaryotes, the mammalian or human systems are emphasized because of their importance in understanding health. Biochemical as well as genetic studies provide strong evidence for the functional similarity of archaeal homologs to the mammalian information processing system and their dissimilarity to the bacterial systems. In many independent instances, a simple archaeal system is functionally equivalent to more elaborate eukaryotic homologs, suggesting that evolution of complexity is likely an central feature of the eukaryotic information processing system. Because fewer components are often involved, biochemical characterizations of the archaeal systems are often easier to interpret. Similarly, the archaeal cell provides a genetically and metabolically simpler background, enabling convenient studies on the complex information processing system. Therefore, Archaea could serve as a parsimonious and tractable host for studying human diseases that arise in the information processing systems.
Collapse
Affiliation(s)
- Zhe Lyu
- Department of Microbiology, University of Georgia, Athens, GA, 30602, USA
| | - William B Whitman
- Department of Microbiology, University of Georgia, Athens, GA, 30602, USA.
| |
Collapse
|
9
|
Xu S, Cao S, Zou B, Yue Y, Gu C, Chen X, Wang P, Dong X, Xiang Z, Li K, Zhu M, Zhao Q, Zhou G. An alternative novel tool for DNA editing without target sequence limitation: the structure-guided nuclease. Genome Biol 2016; 17:186. [PMID: 27634179 PMCID: PMC5025552 DOI: 10.1186/s13059-016-1038-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 08/05/2016] [Indexed: 01/31/2023] Open
Abstract
Engineered endonucleases are a powerful tool for editing DNA. However, sequence preferences may limit their application. We engineer a structure-guided endonuclease (SGN) composed of flap endonuclease-1 (FEN-1), which recognizes the 3′ flap structure, and the cleavage domain of Fok I (Fn1), which cleaves DNA strands. The SGN recognizes the target DNA on the basis of the 3′ flap structure formed between the target and the guide DNA (gDNA) and cut the target through its Fn1 dimerization. Our results show that the SGN, guided by a pair of gDNAs, cleaves transgenic reporter gene and endogenous genes in zebrafish embryonic genome.
Collapse
Affiliation(s)
- Shu Xu
- Department of Pharmacology, Jinling Hospital, School of Medicine, Nanjing University, No. 305 Zhongshan East Road, Nanjing, 210002, People's Republic of China
| | - Shasha Cao
- MOE Key Laboratory of Model Animal for Disease Study, State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center, Nanjing University, 12 Xuefu Road, Pukou High-tech Development Zone, Nanjing, 210061, People's Republic of China
| | - Bingjie Zou
- Department of Pharmacology, Jinling Hospital, School of Medicine, Nanjing University, No. 305 Zhongshan East Road, Nanjing, 210002, People's Republic of China
| | - Yunyun Yue
- MOE Key Laboratory of Model Animal for Disease Study, State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center, Nanjing University, 12 Xuefu Road, Pukou High-tech Development Zone, Nanjing, 210061, People's Republic of China
| | - Chun Gu
- MOE Key Laboratory of Model Animal for Disease Study, State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center, Nanjing University, 12 Xuefu Road, Pukou High-tech Development Zone, Nanjing, 210061, People's Republic of China
| | - Xin Chen
- MOE Key Laboratory of Model Animal for Disease Study, State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center, Nanjing University, 12 Xuefu Road, Pukou High-tech Development Zone, Nanjing, 210061, People's Republic of China
| | - Pei Wang
- MOE Key Laboratory of Model Animal for Disease Study, State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center, Nanjing University, 12 Xuefu Road, Pukou High-tech Development Zone, Nanjing, 210061, People's Republic of China
| | - Xiaohua Dong
- MOE Key Laboratory of Model Animal for Disease Study, State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center, Nanjing University, 12 Xuefu Road, Pukou High-tech Development Zone, Nanjing, 210061, People's Republic of China
| | - Zheng Xiang
- Department of Pharmacology, Jinling Hospital, School of Medicine, Nanjing University, No. 305 Zhongshan East Road, Nanjing, 210002, People's Republic of China
| | - Kai Li
- College of Pharmaceutical Science, Soochow University, No. 199, Renai Road, Suzhou, 215123, People's Republic of China
| | - Minsheng Zhu
- MOE Key Laboratory of Model Animal for Disease Study, State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center, Nanjing University, 12 Xuefu Road, Pukou High-tech Development Zone, Nanjing, 210061, People's Republic of China.
| | - Qingshun Zhao
- MOE Key Laboratory of Model Animal for Disease Study, State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center, Nanjing University, 12 Xuefu Road, Pukou High-tech Development Zone, Nanjing, 210061, People's Republic of China.
| | - Guohua Zhou
- Department of Pharmacology, Jinling Hospital, School of Medicine, Nanjing University, No. 305 Zhongshan East Road, Nanjing, 210002, People's Republic of China.
| |
Collapse
|
10
|
The FEN1 L209P mutation interferes with long-patch base excision repair and induces cellular transformation. Oncogene 2016; 36:194-207. [PMID: 27270424 PMCID: PMC5140775 DOI: 10.1038/onc.2016.188] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Revised: 04/12/2016] [Accepted: 04/12/2016] [Indexed: 12/20/2022]
Abstract
Flap endonuclease-1 (FEN1) is a multifunctional, structure-specific nuclease that has a critical role in maintaining human genome stability. FEN1 mutations have been detected in human cancer specimens and have been suggested to cause genomic instability and cancer predisposition. However, the exact relationship between FEN1 deficiency and cancer susceptibility remains unclear. In the current work, we report a novel colorectal cancer-associated FEN1 mutation, L209P. This mutant protein lacks the FEN, exonuclease (EXO) and gap endonuclease (GEN) activities of FEN1 but retains DNA-binding affinity. The L209P FEN1 variant interferes with the function of the wild-type FEN1 enzyme in a dominant-negative manner and impairs long-patch base excision repair in vitro and in vivo. Expression of L209P FEN1 sensitizes cells to DNA damage, resulting in endogenous genomic instability and cellular transformation, as well as tumor growth in a mouse xenograft model. These data indicate that human cancer-associated genetic alterations in the FEN1 gene can contribute substantially to cancer development.
Collapse
|
11
|
Levikova M, Cejka P. The Saccharomyces cerevisiae Dna2 can function as a sole nuclease in the processing of Okazaki fragments in DNA replication. Nucleic Acids Res 2015; 43:7888-97. [PMID: 26175049 PMCID: PMC4652754 DOI: 10.1093/nar/gkv710] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Accepted: 07/01/2015] [Indexed: 01/30/2023] Open
Abstract
During DNA replication, synthesis of the lagging strand occurs in stretches termed Okazaki fragments. Before adjacent fragments are ligated, any flaps resulting from the displacement of the 5' DNA end of the Okazaki fragment must be cleaved. Previously, Dna2 was implicated to function upstream of flap endonuclease 1 (Fen1 or Rad27) in the processing of long flaps bound by the replication protein A (RPA). Here we show that Dna2 efficiently cleaves long DNA flaps exactly at or directly adjacent to the base. A fraction of the flaps cleaved by Dna2 can be immediately ligated. When coupled with DNA replication, the flap processing activity of Dna2 leads to a nearly complete Okazaki fragment maturation at sub-nanomolar Dna2 concentrations. Our results indicate that a subsequent nucleolytic activity of Fen1 is not required in most cases. In contrast Dna2 is completely incapable to cleave short flaps. We show that also Dna2, like Fen1, interacts with proliferating cell nuclear antigen (PCNA). We propose a model where Dna2 alone is responsible for cleaving of RPA-bound long flaps, while Fen1 or exonuclease 1 (Exo1) cleave short flaps. Our results argue that Dna2 can function in a separate, rather than in a Fen1-dependent pathway.
Collapse
Affiliation(s)
- Maryna Levikova
- Institute of Molecular Cancer Research, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Petr Cejka
- Institute of Molecular Cancer Research, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| |
Collapse
|
12
|
Shah S, Dunten P, Stiteler A, Park CK, Horton NC. Structure and specificity of FEN-1 from Methanopyrus kandleri. Proteins 2014; 83:188-94. [PMID: 25354467 DOI: 10.1002/prot.24704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 10/06/2014] [Accepted: 10/18/2014] [Indexed: 11/06/2022]
Abstract
DNA repair is fundamental to genome stability and is found in all three domains of life. However many archaeal species, such as Methanopyrus kandleri, contain only a subset of the eukaryotic nucleotide excision repair (NER) homologs, and those present often contain significant differences compared to their eukaryotic homologs. To clarify the role of the NER XPG-like protein Mk0566 from M. kandleri, its biochemical activity and three-dimensional structure were investigated. Both were found to be more similar to human FEN-1 than human XPG, suggesting a biological role in replication and long-patch base excision repair rather than in NER.
Collapse
Affiliation(s)
- Santosh Shah
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona, 85721
| | | | | | | | | |
Collapse
|
13
|
Archaeal genome guardians give insights into eukaryotic DNA replication and damage response proteins. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2014; 2014:206735. [PMID: 24701133 PMCID: PMC3950489 DOI: 10.1155/2014/206735] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 09/27/2013] [Accepted: 11/29/2013] [Indexed: 12/28/2022]
Abstract
As the third domain of life, archaea, like the eukarya and bacteria, must have robust DNA replication and repair complexes to ensure genome fidelity. Archaea moreover display a breadth of unique habitats and characteristics, and structural biologists increasingly appreciate these features. As archaea include extremophiles that can withstand diverse environmental stresses, they provide fundamental systems for understanding enzymes and pathways critical to genome integrity and stress responses. Such archaeal extremophiles provide critical data on the periodic table for life as well as on the biochemical, geochemical, and physical limitations to adaptive strategies allowing organisms to thrive under environmental stress relevant to determining the boundaries for life as we know it. Specifically, archaeal enzyme structures have informed the architecture and mechanisms of key DNA repair proteins and complexes. With added abilities to temperature-trap flexible complexes and reveal core domains of transient and dynamic complexes, these structures provide insights into mechanisms of maintaining genome integrity despite extreme environmental stress. The DNA damage response protein structures noted in this review therefore inform the basis for genome integrity in the face of environmental stress, with implications for all domains of life as well as for biomanufacturing, astrobiology, and medicine.
Collapse
|
14
|
Kiyonari S, Egashira Y, Ishino S, Ishino Y. Biochemical characterization of endonuclease V from the hyperthermophilic archaeon, Pyrococcus furiosus. J Biochem 2014; 155:325-33. [PMID: 24535600 DOI: 10.1093/jb/mvu010] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Endonuclease V (Endo V) is a DNA repair enzyme that recognizes deoxyinosine and cleaves the second phosphodiester bond on the 3' side of the deaminated base lesion. A database search revealed the presence of homologous genes for Endo V in most archaeal species, but the absence in some methanogenic species. We cloned a gene encoding the sequence homologous to Escherichia coli Endo V from the genome of the hyperthermophilic euryarchaeon, Pyrococcus furiosus and purified gene product (PfuEndoV) to homogeneity. In vitro characterization showed that PfuEndoV possesses specific endonuclease activity for the deoxyinosine-containing DNA strand. The activity of the enzyme was maximal at 90°C. Stable complex formation between PfuEndoV and nicked DNA produced by the cleavage reaction was detected by gel mobility shift assays. The molecular mechanisms of the inosine repair pathway including Endo V in the archaeal cells are discussed. Interestingly, PfuEndoV cleaved inosine-containing RNA strands as well as DNA substrates. PfuEndoV may also be involved in RNA metabolism.
Collapse
Affiliation(s)
- Shinichi Kiyonari
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka, Fukuoka 812-8581, Japan
| | | | | | | |
Collapse
|
15
|
Matsui E, Urushibata Y, Abe J, Matsui I. Serial intermediates with a 1 nt 3'-flap and 5' variable-length flaps are formed by cooperative functioning of Pyrococcus horikoshii FEN-1 with either B or D DNA polymerases. Extremophiles 2014; 18:415-27. [PMID: 24509689 DOI: 10.1007/s00792-014-0627-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Accepted: 01/02/2014] [Indexed: 11/28/2022]
Abstract
Flap endonuclease-1 (FEN-1) plays important roles with DNA polymerases in DNA replication, repair and recombination. FEN-1 activity is elevated by the presence of a 1 nucleotide expansion at the 3' end in the upstream primer of substrates called "structures with a 1 nt 3'-flap", which appear to be the most preferable substrates for FEN-1; however, it is unclear how such substrates are generated in vivo. Here, we show that substrate production occurred by the cooperative function of FEN-1(phFEN-1) and Pyrococcus horikoshii DNA polymerase B (phPol B) or D (phPol D). Using various substrates, the activities of several phFEN-1 F79 mutants were compared with those of the wild type. Analysis of the activity profiles of these mutants led us to discriminate "structures with a 1 nt 3'-flap" from substrates with a 3' -projection longer than 2 nt or from those without a 3'-projection. When phFEN-1 processed a gap substrate with phPol B or phPol D, "structures with a 1 nt 3'-flap" were assumed the reaction intermediates. Furthermore, the phFEN-1 cleavage products with phPol B or D were from 1mer to 7mer, corresponding to the sizes of the strand-displacement products of these polymerases. This suggests that a series of 1 nt 3'-flap with 5'-variable length-flap configurations were generated as transient intermediates, in which the length of the 5'-flaps depended on the displacement distance of the downstream strand by phPol B or D. Therefore, phFEN-1 might act successively on displaced 5'-variable flaps.
Collapse
Affiliation(s)
- Eriko Matsui
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Higashi 1-1 Central 6-9, Tsukuba, Ibaraki, 305-8566, Japan,
| | | | | | | |
Collapse
|
16
|
Sun F, Huang L. Sulfolobus chromatin proteins modulate strand displacement by DNA polymerase B1. Nucleic Acids Res 2013; 41:8182-95. [PMID: 23821667 PMCID: PMC3783171 DOI: 10.1093/nar/gkt588] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Strand displacement by a DNA polymerase serves a key role in Okazaki fragment maturation, which involves displacement of the RNA primer of the preexisting Okazaki fragment into a flap structure, and subsequent flap removal and fragment ligation. We investigated the role of Sulfolobus chromatin proteins Sso7d and Cren7 in strand displacement by DNA polymerase B1 (PolB1) from the hyperthermophilic archaeon Sulfolobus solfataricus. PolB1 showed a robust strand displacement activity and was capable of synthesizing thousands of nucleotides on a DNA-primed 72-nt single-stranded circular DNA template. This activity was inhibited by both Sso7d and Cren7, which limited the flap length to 3–4 nt at saturating concentrations. However, neither protein inhibited RNA displacement on an RNA-primed single-stranded DNA minicircle by PolB1. Strand displacement remained sensitive to modulation by the chromatin proteins when PolB1 was in association with proliferating cell nuclear antigen. Inhibition of DNA instead of RNA strand displacement by the chromatin proteins is consistent with the finding that double-stranded DNA was more efficiently bound and stabilized than an RNA:DNA duplex by these proteins. Our results suggest that Sulfolobus chromatin proteins modulate strand displacement by PolB1, permitting efficient removal of the RNA primer while inhibiting excessive displacement of the newly synthesized DNA strand during Okazaki fragment maturation.
Collapse
Affiliation(s)
- Fei Sun
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | | |
Collapse
|
17
|
Mason PA, Cox LS. The role of DNA exonucleases in protecting genome stability and their impact on ageing. AGE (DORDRECHT, NETHERLANDS) 2012; 34:1317-1340. [PMID: 21948156 PMCID: PMC3528374 DOI: 10.1007/s11357-011-9306-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Accepted: 08/19/2011] [Indexed: 05/30/2023]
Abstract
Exonucleases are key enzymes involved in many aspects of cellular metabolism and maintenance and are essential to genome stability, acting to cleave DNA from free ends. Exonucleases can act as proof-readers during DNA polymerisation in DNA replication, to remove unusual DNA structures that arise from problems with DNA replication fork progression, and they can be directly involved in repairing damaged DNA. Several exonucleases have been recently discovered, with potentially critical roles in genome stability and ageing. Here we discuss how both intrinsic and extrinsic exonuclease activities contribute to the fidelity of DNA polymerases in DNA replication. The action of exonucleases in processing DNA intermediates during normal and aberrant DNA replication is then assessed, as is the importance of exonucleases in repair of double-strand breaks and interstrand crosslinks. Finally we examine how exonucleases are involved in maintenance of mitochondrial genome stability. Throughout the review, we assess how nuclease mutation or loss predisposes to a range of clinical diseases and particularly ageing.
Collapse
Affiliation(s)
- Penelope A. Mason
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU UK
| | - Lynne S. Cox
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU UK
| |
Collapse
|
18
|
Kleppa L, Mari PO, Larsen E, Lien GF, Godon C, Theil AF, Nesse GJ, Wiksen H, Vermeulen W, Giglia-Mari G, Klungland A. Kinetics of endogenous mouse FEN1 in base excision repair. Nucleic Acids Res 2012; 40:9044-59. [PMID: 22810208 PMCID: PMC3467068 DOI: 10.1093/nar/gks673] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The structure specific flap endonuclease 1 (FEN1) plays an essential role in long-patch base excision repair (BER) and in DNA replication. We have generated a fluorescently tagged FEN1 expressing mouse which allows monitoring the localization and kinetics of FEN1 in response to DNA damage in living cells and tissues. The expression of FEN1, which is tagged at its C-terminal end with enhanced yellow fluorescent protein (FEN1-YFP), is under control of the endogenous Fen1 transcriptional regulatory elements. In line with its role in processing of Okazaki fragments during DNA replication, we found that FEN1-YFP expression is mainly observed in highly proliferating tissue. Moreover, the FEN1-YFP fusion protein allowed us to investigate repair kinetics in cells challenged with local and global DNA damage. In vivo multi-photon fluorescence microscopy demonstrates rapid localization of FEN1 to local laser-induced DNA damage sites in nuclei, providing evidence of a highly mobile protein that accumulates fast at DNA lesion sites with high turnover rate. Inhibition of poly (ADP-ribose) polymerase 1 (PARP1) disrupts FEN1 accumulation at sites of DNA damage, indicating that PARP1 is required for FEN1 recruitment to DNA repair intermediates in BER.
Collapse
Affiliation(s)
- Liv Kleppa
- Centre for Molecular Biology and Neuroscience and Institute of Clinical Medicine, Oslo University Hospital, Rikshospitalet, Norway
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
de Barros AC, Takeda AAS, Chang CW, Kobe B, Fontes MRM. Structural basis of nuclear import of flap endonuclease 1 (FEN1). ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2012; 68:743-50. [PMID: 22751659 DOI: 10.1107/s0907444912010281] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Accepted: 03/08/2012] [Indexed: 11/10/2022]
Abstract
Flap endonuclease 1 (FEN1) is a member of the nuclease family and is structurally conserved from bacteriophages to humans. This protein is involved in multiple DNA-processing pathways, including Okazaki fragment maturation, stalled replication-fork rescue, telomere maintenance, long-patch base-excision repair and apoptotic DNA fragmentation. FEN1 has three functional motifs that are responsible for its nuclease, PCNA-interaction and nuclear localization activities, respectively. It has been shown that the C-terminal nuclear localization sequence (NLS) facilitates nuclear localization of the enzyme during the S phase of the cell cycle and in response to DNA damage. To determine the structural basis of the recognition of FEN1 by the nuclear import receptor importin α, the crystal structure of the complex of importin α with a peptide corresponding to the FEN1 NLS was solved. Structural studies confirmed the binding of the FEN1 NLS as a classical bipartite NLS; however, in contrast to the previously proposed (354)KRKX(8)KKK(367) sequence, it is the (354)KRX(10)KKAK(369) sequence that binds to importin α. This result explains the incomplete inhibition of localization that was observed on mutating residues (365)KKK(367). Acidic and polar residues in the X(10) linker region close to the basic clusters play an important role in binding to importin α. These results suggest that the basic residues in the N-terminal basic cluster of bipartite NLSs may play roles that are more critical than those of the many basic residues in the C-terminal basic cluster.
Collapse
Affiliation(s)
- Andrea C de Barros
- Departamento de Física e Biofísica, Instituto de Biociências, Universidade Estadual Paulista, Botucatu, SP 18618-970, Brazil
| | | | | | | | | |
Collapse
|
20
|
Finger LD, Atack JM, Tsutakawa S, Classen S, Tainer J, Grasby J, Shen B. The wonders of flap endonucleases: structure, function, mechanism and regulation. Subcell Biochem 2012; 62:301-26. [PMID: 22918592 PMCID: PMC3728657 DOI: 10.1007/978-94-007-4572-8_16] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Processing of Okazaki fragments to complete lagging strand DNA synthesis requires coordination among several proteins. RNA primers and DNA synthesised by DNA polymerase α are displaced by DNA polymerase δ to create bifurcated nucleic acid structures known as 5'-flaps. These 5'-flaps are removed by Flap Endonuclease 1 (FEN), a structure-specific nuclease whose divalent metal ion-dependent phosphodiesterase activity cleaves 5'-flaps with exquisite specificity. FENs are paradigms for the 5' nuclease superfamily, whose members perform a wide variety of roles in nucleic acid metabolism using a similar nuclease core domain that displays common biochemical properties and structural features. A detailed review of FEN structure is undertaken to show how DNA substrate recognition occurs and how FEN achieves cleavage at a single phosphate diester. A proposed double nucleotide unpairing trap (DoNUT) is discussed with regards to FEN and has relevance to the wider 5' nuclease superfamily. The homotrimeric proliferating cell nuclear antigen protein (PCNA) coordinates the actions of DNA polymerase, FEN and DNA ligase by facilitating the hand-off intermediates between each protein during Okazaki fragment maturation to maximise through-put and minimise consequences of intermediates being released into the wider cellular environment. FEN has numerous partner proteins that modulate and control its action during DNA replication and is also controlled by several post-translational modification events, all acting in concert to maintain precise and appropriate cleavage of Okazaki fragment intermediates during DNA replication.
Collapse
Affiliation(s)
- L. David Finger
- Department of Chemistry, Centre for Chemical Biology, Krebs Institute, University of Sheffield, Sheffield S3 7HF, UK
| | - John M. Atack
- Department of Chemistry, Centre for Chemical Biology, Krebs Institute, University of Sheffield, Sheffield S3 7HF, UK
| | - Susan Tsutakawa
- Life Sciences Division, Lawrence Berkeley National, Laboratory, Berkeley, CA 94720, USA
| | - Scott Classen
- Physical Biosciences Division, The Scripps Research, Institute, La Jolla, CA 92037, USA
| | - John Tainer
- Life Sciences Division, Lawrence Berkeley, National Laboratory, Berkeley, CA 94720, USA, Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA, Skaggs Institute for Chemical Biology, La Jolla, CA 92037, USA
| | - Jane Grasby
- Department of Chemistry, Centre for Chemical Biology, Krebs Institute, University of Sheffield, Sheffield S3 7HF, UK
| | - Binghui Shen
- Division of Radiation Biology, City of Hope National Medical Center and Beckman Research Institute, Duarte, CA 91010, USA, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
21
|
David Finger L, Blanchard MS, Theimer CA, Sengerová B, Singh P, Chavez V, Liu F, Grasby JA, Shen B. The 3'-flap pocket of human flap endonuclease 1 is critical for substrate binding and catalysis. J Biol Chem 2009; 284:22184-22194. [PMID: 19525235 PMCID: PMC2755943 DOI: 10.1074/jbc.m109.015065] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2009] [Revised: 06/10/2009] [Indexed: 11/06/2022] Open
Abstract
Flap endonuclease 1 (FEN1) proteins, which are present in all kingdoms of life, catalyze the sequence-independent hydrolysis of the bifurcated nucleic acid intermediates formed during DNA replication and repair. How FEN1s have evolved to preferentially cleave flap structures is of great interest especially in light of studies wherein mice carrying a catalytically deficient FEN1 were predisposed to cancer. Structural studies of FEN1s from phage to human have shown that, although they share similar folds, the FEN1s of higher organisms contain a 3'-extrahelical nucleotide (3'-flap) binding pocket. When presented with 5'-flap substrates having a 3'-flap, archaeal and eukaryotic FEN1s display enhanced reaction rates and cleavage site specificity. To investigate the role of this interaction, a kinetic study of human FEN1 (hFEN1) employing well defined DNA substrates was conducted. The presence of a 3'-flap on substrates reduced Km and increased multiple- and single turnover rates of endonucleolytic hydrolysis at near physiological salt concentrations. Exonucleolytic and fork-gap-endonucleolytic reactions were also stimulated by the presence of a 3'-flap, and the absence of a 3'-flap from a 5'-flap substrate was more detrimental to hFEN1 activity than removal of the 5'-flap or introduction of a hairpin into the 5'-flap structure. hFEN1 reactions were predominantly rate-limited by product release regardless of the presence or absence of a 3'-flap. Furthermore, the identity of the stable enzyme product species was deduced from inhibition studies to be the 5'-phosphorylated product. Together the results indicate that the presence of a 3'-flap is the critical feature for efficient hFEN1 substrate recognition and catalysis.
Collapse
Affiliation(s)
| | | | - Carla A. Theimer
- the Department of Chemistry, University at Albany, State University of New York, Albany, New York 12222, and
| | - Blanka Sengerová
- the Centre for Chemical Biology, Department of Chemistry Krebs Institute, University of Sheffield, Sheffield, S3 7HF, United Kingdom
| | | | - Valerie Chavez
- From the Division of Radiation Biology
- the Graduate School of Biological Sciences, City of Hope National Medical Center and Beckman Research Institute, Duarte, California 91010
| | - Fei Liu
- the Department of Chemistry, University at Albany, State University of New York, Albany, New York 12222, and
| | - Jane A. Grasby
- the Centre for Chemical Biology, Department of Chemistry Krebs Institute, University of Sheffield, Sheffield, S3 7HF, United Kingdom
| | | |
Collapse
|
22
|
Ruymgaart AP, Heater SJ, Oehlers LP, Rains JD, Walter RB. Characterization and purification of flap endonuclease-1 (xiFEN-1) from Xiphophorus maculatus. Zebrafish 2008; 1:273-85. [PMID: 18248237 DOI: 10.1089/zeb.2004.1.273] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The cloning, gene structure, and expression of flap endonuclease-1 (xiFEN1) from Xiphophorus maculates are presented. The xiFEN1 gene structure was found to include 8 exons and 7 introns. The Xiphophorus FEN1 cDNA sequence contained an open reading frame that encoded a 380 amino acid protein with a predicted mass of 43 kDa. The intact FEN1 cDNA was subcloned into a bacterial expression vector (pET101-xiFEN1ct) and recombinant xiFEN1 enzyme purified from E. colicell extracts. The pET101-xiFEN1ct translation product was a 3' fusion protein with a ~3 kDa vector-encoded carboxy terminal extension designed to facilitate protein recognition and purification. The xiFEN1 fusion protein was purified and its amino acid sequence verified by Western blot analysis and tryptic peptide mass fingerprinting. The purified recombinant protein was assessed for enzyme specificity using several different oligonucleotide substrates having select flap overhangs. Also reported are Michaelis steady state kinetic values of enzymatic activity for the xiFEN1 directly compared with human FEN1 activity. xiFEN1 displayed a five-fold greater Km and six-fold lower catalytic efficiency (kcat/Km) than observed for the hFEN1.
Collapse
Affiliation(s)
- Arnold P Ruymgaart
- Molecular Biosciences Research Group, Department of Chemistry and Biochemistry, Texas State University, San Marcos, Texas 78666, USA
| | | | | | | | | |
Collapse
|
23
|
Williams R, Sengerová B, Osborne S, Syson K, Ault S, Kilgour A, Chapados BR, Tainer JA, Sayers JR, Grasby JA. Comparison of the catalytic parameters and reaction specificities of a phage and an archaeal flap endonuclease. J Mol Biol 2007; 371:34-48. [PMID: 17559871 PMCID: PMC1993357 DOI: 10.1016/j.jmb.2007.04.063] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2007] [Revised: 04/17/2007] [Accepted: 04/19/2007] [Indexed: 11/23/2022]
Abstract
Flap endonucleases (FENs) catalyse the exonucleolytic hydrolysis of blunt-ended duplex DNA substrates and the endonucleolytic cleavage of 5'-bifurcated nucleic acids at the junction formed between single and double-stranded DNA. The specificity and catalytic parameters of FENs derived from T5 bacteriophage and Archaeoglobus fulgidus were studied with a range of single oligonucleotide DNA substrates. These substrates contained one or more hairpin turns and mimic duplex, 5'-overhanging duplex, pseudo-Y, nicked DNA, and flap structures. The FEN-catalysed reaction properties of nicked DNA and flap structures possessing an extrahelical 3'-nucleotide (nt) were also characterised. The phage enzyme produced multiple reaction products of differing length with all the substrates tested, except when the length of duplex DNA downstream of the reaction site was truncated. Only larger DNAs containing two duplex regions are effective substrates for the archaeal enzyme and undergo reaction at multiple sites when they lack a 3'-extrahelical nucleotide. However, a single product corresponding to reaction 1 nt into the double-stranded region occurred with A. fulgidus FEN when substrates possessed a 3'-extrahelical nt. Steady-state and pre-steady-state catalytic parameters reveal that the phage enzyme is rate-limited by product release with all the substrates tested. Single-turnover maximal rates of reaction are similar with most substrates. In contrast, turnover numbers for T5FEN decrease as the size of the DNA substrate is increased. Comparison of the catalytic parameters of the A. fulgidus FEN employing flap and double-flap substrates indicates that binding interactions with the 3'-extrahelical nucleotide stabilise the ground state FEN-DNA interaction, leading to stimulation of comparative reactions at DNA concentrations below saturation with the single flap substrate. Maximal multiple turnover rates of the archaeal enzyme with flap and double flap substrates are similar. A model is proposed to account for the varying specificities of the two enzymes with regard to cleavage patterns and substrate preferences.
Collapse
Affiliation(s)
- Ryan Williams
- Centre for Chemical Biology, Department of Chemistry, Krebs Institute, University of Sheffield, Sheffield, S3 7HF, UK
| | - Blanka Sengerová
- Centre for Chemical Biology, Department of Chemistry, Krebs Institute, University of Sheffield, Sheffield, S3 7HF, UK
| | - Sadie Osborne
- Centre for Chemical Biology, Department of Chemistry, Krebs Institute, University of Sheffield, Sheffield, S3 7HF, UK
| | - Karl Syson
- Centre for Chemical Biology, Department of Chemistry, Krebs Institute, University of Sheffield, Sheffield, S3 7HF, UK
| | - Sophie Ault
- Centre for Chemical Biology, Department of Chemistry, Krebs Institute, University of Sheffield, Sheffield, S3 7HF, UK
| | - Anna Kilgour
- University of Sheffield School of Medicine and Biomedical Science, Henry Wellcome Laboratories for Medical Research, Beech Hill Rd., Sheffield, S10 2RX, UK
| | - Brian R Chapados
- Skaggs Institute for Chemical Biology, The Scripps Research Institute, Department of Molecular Biology - MB4, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - John A Tainer
- Skaggs Institute for Chemical Biology, The Scripps Research Institute, Department of Molecular Biology - MB4, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Jon R Sayers
- University of Sheffield School of Medicine and Biomedical Science, Henry Wellcome Laboratories for Medical Research, Beech Hill Rd., Sheffield, S10 2RX, UK
| | - Jane A Grasby
- Centre for Chemical Biology, Department of Chemistry, Krebs Institute, University of Sheffield, Sheffield, S3 7HF, UK
| |
Collapse
|
24
|
Horie M, Fukui K, Xie M, Kageyama Y, Hamada K, Sakihama Y, Sugimori K, Matsumoto K. The N-terminal region is important for the nuclease activity and thermostability of the flap endonuclease-1 from Sulfolobus tokodaii. Biosci Biotechnol Biochem 2007; 71:855-65. [PMID: 17420588 DOI: 10.1271/bbb.60326] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
This paper reports the biochemical properties of two types of recombinant flap endonuclease-1 (FEN-1) proteins obtained from the thermophilic crenarchaeon, Sulfolobus tokodaii strain 7. One of the two FEN-1 proteins is a product of the gene with AUG as the translational start codon (StoS-FEN-1), which is originally assigned in the database. The other is a product of the gene with a new AUG start codon (StoL-FEN-1), which is inserted at 153 bases upstream of the original AUG codon. Although StoL-FEN-1 showed activity and thermostability, StoS-FEN-1 showed neither activity nor thermostability. The N-terminal region in StoL-FEN-1 was also conserved in all of the FEN-1 homologs deduced from genes from newly isolated Sulfolobus spp. These results strongly suggest that the actual start codon of the fen-1 gene from S. tokodaii is not the originally assigned AUG, but rather is located at about 100 bases upstream of this codon.
Collapse
Affiliation(s)
- Masanori Horie
- Preventure Program, Office of Technology Transfer, Japan Science and Technology Agency, Tokyo, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Lin Y, Guzman CE, McKinney MC, Nair SK, Ha T, Cann IKO. Methanosarcina acetivorans flap endonuclease 1 activity is inhibited by a cognate single-stranded-DNA-binding protein. J Bacteriol 2006; 188:6153-67. [PMID: 16923882 PMCID: PMC1595394 DOI: 10.1128/jb.00045-06] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The oligonucleotide/oligosaccharide-binding (OB) fold is central to the architecture of single-stranded- DNA-binding proteins, which are polypeptides essential for diverse cellular processes, including DNA replication, repair, and recombination. In archaea, single-stranded DNA-binding proteins composed of multiple OB folds and a zinc finger domain, in a single polypeptide, have been described. The OB folds of these proteins were more similar to their eukaryotic counterparts than to their bacterial ones. Thus, the archaeal protein is called replication protein A (RPA), as in eukaryotes. Unlike most organisms, Methanosarcina acetivorans harbors multiple functional RPA proteins, and it was our interest to determine whether the different proteins play different roles in DNA transactions. Of particular interest was lagging-strand DNA synthesis, where recently RPA has been shown to regulate the size of the 5' region cleaved during Okazaki fragment processing. We report here that M. acetivorans RPA1 (MacRPA1), a protein composed of four OB folds in a single polypeptide, inhibits cleavage of a long flap (20 nucleotides) by M. acetivorans flap endonuclease 1 (MacFEN1). To gain a further insight into the requirement of the different regions of MacRPA1 on its inhibition of MacFEN1 endonuclease activity, N-terminal and C-terminal truncated derivatives of the protein were made and were biochemically and biophysically analyzed. Our results suggested that MacRPA1 derivatives with at least three OB folds maintained the properties required for inhibition of MacFEN1 endonuclease activity. Despite these interesting observations, further biochemical and genetic analyses are required to gain a deeper understanding of the physiological implications of our findings.
Collapse
Affiliation(s)
- Yuyen Lin
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, 1207 West Gregory Drive, IL 61801, USA
| | | | | | | | | | | |
Collapse
|
26
|
Abstract
DNA and a large proportion of RNA are antiparallel duplexes composed of an unvarying phosphosugar backbone surrounding uniformly stacked and highly similar base pairs. How do the myriad of enzymes (including ribozymes) that perform catalysis on nucleic acids achieve exquisite structure or sequence specificity? In all DNA and RNA polymerases and many nucleases and transposases, two Mg2+ ions are jointly coordinated by the nucleic acid substrate and catalytic residues of the enzyme. Based on the exquisite sensitivity of Mg2+ ions to the ligand geometry and electrostatic environment, we propose that two-metal-ion catalysis greatly enhances substrate recognition and catalytic specificity.
Collapse
Affiliation(s)
- Wei Yang
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | |
Collapse
|
27
|
Friedrich-Heineken E, Toueille M, Tännler B, Bürki C, Ferrari E, Hottiger MO, Hübscher U. The two DNA clamps Rad9/Rad1/Hus1 complex and proliferating cell nuclear antigen differentially regulate flap endonuclease 1 activity. J Mol Biol 2005; 353:980-9. [PMID: 16216273 DOI: 10.1016/j.jmb.2005.09.018] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2005] [Revised: 08/05/2005] [Accepted: 09/07/2005] [Indexed: 11/22/2022]
Abstract
DNA damage leads to activation of several mechanisms such as DNA repair and cell-cycle checkpoints. It is evident that these different cellular mechanisms have to be finely co-ordinated. Growing evidence suggests that the Rad9/Rad1/Hus1 cell-cycle checkpoint complex (9-1-1 complex), which is recruited to DNA lesion upon DNA damage, plays a major role in DNA repair. This complex has been shown to interact with and stimulate several proteins involved in long-patch base excision repair. On the other hand, the well-characterised DNA clamp-proliferating cell nuclear antigen (PCNA) also interacts with and stimulates several of these factors. In this work, we compared the effects of the 9-1-1 complex and PCNA on flap endonuclease 1 (Fen1). Our data suggest that PCNA and the 9-1-1 complex can independently bind to and activate Fen1. Finally, acetylation of Fen1 by p300-HAT abolished the stimulatory effect of the 9-1-1 complex but not that of PCNA, suggesting a possible mechanism of regulation of this important repair pathway.
Collapse
Affiliation(s)
- Erica Friedrich-Heineken
- Institute of Veterinary Biochemistry and Molecular Biology, University of Zürich-Irchel, Winterthurerstrasse 190, CH-8057, Zürich, Switzerland
| | | | | | | | | | | | | |
Collapse
|
28
|
Shen B, Singh P, Liu R, Qiu J, Zheng L, Finger LD, Alas S. Multiple but dissectible functions of FEN-1 nucleases in nucleic acid processing, genome stability and diseases. Bioessays 2005; 27:717-29. [PMID: 15954100 DOI: 10.1002/bies.20255] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Flap EndoNuclease-1 (FEN-1) is a multifunctional and structure-specific nuclease involved in nucleic acid processing pathways. It plays a critical role in maintaining human genome stability through RNA primer removal, long-patch base excision repair and resolution of dinucleotide and trinucleotide repeat secondary structures. In addition to its flap endonuclease (FEN) and nick exonuclease (EXO) activities, a new gap endonuclease (GEN) activity has been characterized. This activity may be important in apoptotic DNA fragmentation and in resolving stalled DNA replication forks. The multiple functions of FEN-1 are regulated via several means, including formation of complexes with different protein partners, nuclear localization in response to cell cycle or DNA damage and post-translational modifications. Its functional deficiency is predicted to cause genetic diseases, including Huntington's disease, myotonic dystrophy and cancers. This review summarizes the knowledge gained through efforts in the past decade to define its structural elements for specific activities and possible pathological consequences of altered functions of this multirole player.
Collapse
Affiliation(s)
- Binghui Shen
- Department of Radiation Biology, City of Hope National Medical Center and Beckman Research Institute, Duarte, CA 91010, USA.
| | | | | | | | | | | | | |
Collapse
|
29
|
Przykorska A, Solecka K, Olszak K, Keith G, Nawrot B, Kuligowska E. Wheat (Triticum vulgare) chloroplast nuclease ChSI exhibits 5' flap structure-specific endonuclease activity. Biochemistry 2004; 43:11283-94. [PMID: 15366938 DOI: 10.1021/bi049947u] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The structure-specific ChSI nuclease from wheat (Triticum vulgare) chloroplast stroma has been previously purified and characterized in our laboratory. It is a single-strand-specific DNA and RNA endonuclease. Although the enzyme has been initially characterized and used as a structural probe, its biological function is still unknown. Localization of the ChSI enzyme inside chloroplasts, possessing their own DNA that is generally highly exposed to UV light and often affected by numerous redox reactions and electron transfer processes, might suggest, however, that this enzyme could be involved in DNA repair. The repair of some types of DNA damage has been shown to proceed through branched DNA intermediates which are substrates for the structure-specific DNA endonucleases. Thus we tested the substrate specificity of ChSI endonuclease toward various branched DNAs containing 5' flap, 5' pseudoflap, 3' pseudoflap, or single-stranded bulged structural motifs. It appears that ChSI has a high 5' flap structure-specific endonucleolytic activity. The catalytic efficiency (k(cat)/K(M)) of the enzyme is significantly higher for the 5' flap substrate than for single-stranded DNA. The ChSI 5' flap activity was inhibited by high concentrations of Mg(2+), Mn(2+), Zn(2+), or Ca(2+). However, low concentrations of divalent cations could restore the loss of ChSI activity as a consequence of EDTA pretreatment. In contrast to other known 5' flap nucleases, the chloroplast enzyme ChSI does not possess any 5'-->3' exonuclease activity on double-stranded DNA. Therefore, we conclude that ChSI is a 5' flap structure-specific endonuclease with nucleolytic activity toward single-stranded substrates.
Collapse
Affiliation(s)
- Anna Przykorska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland.
| | | | | | | | | | | |
Collapse
|
30
|
Kao HI, Bambara RA. The protein components and mechanism of eukaryotic Okazaki fragment maturation. Crit Rev Biochem Mol Biol 2004; 38:433-52. [PMID: 14693726 DOI: 10.1080/10409230390259382] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
An initiator RNA (iRNA) is required to prime cellular DNA synthesis. The structure of double-stranded DNA allows the synthesis of one strand to be continuous but the other must be generated discontinuously. Frequent priming of the discontinuous strand results in the formation of many small segments, designated Okazaki fragments. These short pieces need to be processed and joined to form an intact DNA strand. Our knowledge of the mechanism of iRNA removal is still evolving. Early reconstituted systems suggesting that the removal of iRNA requires sequential action of RNase H and flap endonuclease 1 (FEN1) led to the RNase H/FEN1 model. However, genetic analyses implied that Dna2p, an essential helicase/nuclease, is required. Subsequent biochemical studies suggested sequential action of RPA, Dna2p, and FEN1 for iRNA removal, leading to the second model, the Dna2p/RPA/FEN1 model. Studies of strand-displacement synthesis by polymerase delta indicated that in a reconstituted system, FEN1 could act as soon as short flaps are created, giving rise to a third model, the FEN1-only model. Each of the three pathways is supported by different genetic and biochemical results. Properties of the major protein components in this process will be discussed, and the validity of each model as a true representation of Okazaki fragment processing will be critically evaluated in this review.
Collapse
Affiliation(s)
- Hui-I Kao
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA
| | | |
Collapse
|
31
|
Feng M, Patel D, Dervan JJ, Ceska T, Suck D, Haq I, Sayers JR. Roles of divalent metal ions in flap endonuclease-substrate interactions. Nat Struct Mol Biol 2004; 11:450-6. [PMID: 15077103 DOI: 10.1038/nsmb754] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2003] [Accepted: 02/25/2004] [Indexed: 12/21/2022]
Abstract
Flap endonucleases (FENs) have essential roles in DNA processing. They catalyze exonucleolytic and structure-specific endonucleolytic DNA cleavage reactions. Divalent metal ions are essential cofactors in both reactions. The crystal structure of FEN shows that the protein has two conserved metal-binding sites. Mutations in site I caused complete loss of catalytic activity. Mutation of crucial aspartates in site II abolished exonuclease action, but caused enzymes to retain structure-specific (flap endonuclease) activity. Isothermal titration calorimetry revealed that site I has a 30-fold higher affinity for cofactor than site II. Structure-specific endonuclease activity requires binding of a single metal ion in the high-affinity site, whereas exonuclease activity requires that both the high- and low-affinity sites be occupied by divalent cofactor. The data suggest that a novel two-metal mechanism operates in the FEN-catalyzed exonucleolytic reaction. These results raise the possibility that local concentrations of free cofactor could influence the endo- or exonucleolytic pathway in vivo.
Collapse
Affiliation(s)
- Min Feng
- University of Sheffield School of Medicine and Biomedical Science, Division of Genomic Medicine, Beech Hill Road, Sheffield, S10 2RX, UK
| | | | | | | | | | | | | |
Collapse
|
32
|
Qiu J, Liu R, Chapados BR, Sherman M, Tainer JA, Shen B. Interaction interface of human flap endonuclease-1 with its DNA substrates. J Biol Chem 2004; 279:24394-402. [PMID: 15037610 DOI: 10.1074/jbc.m401464200] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Flap endonuclease-1 or FEN-1 is a structure-specific and multifunctional nuclease critical for DNA replication, repair, and recombination; however, its interaction with DNA substrates has not been fully understood. In the current study, we have defined the borders of the interaction between the FEN-1 protein and its DNA substrates and identified six clusters of conserved positively charged amino acid residues, which are in direct contact with DNA substrate. To map further the corresponding interactions between FEN-1 residues and DNA substrates, we performed biochemical assays employing a series of flap DNA substrates lacking some structural components and a series of binding-deficient point mutants of FEN-1. It was revealed that Arg(47), Arg(70), and Lys(326)-Arg(327) of FEN-1 interact with the upstream duplex of DNA substrates, whereas Lys(244)-Arg(245) interact with the downstream duplex. This result indicates the orientation of the FEN-1-DNA interaction. Moreover, Arg(70) and Arg(47) were determined to interact with the sites around the 2nd nucleotide (Arg(70)) or the 5th/6th nucleotide (Arg(47)) of the template strand in the upstream duplex portion counting from the nick point of the flap substrate. Together with previously published data and the crystallographic ainformation from the FEN-1.DNA complex that we published recently (Chapados, B. R., Hosfield, D. J., Han, S., Qiu, J., Yelent, B., Shen, B., Tainer, J. A. (2004) Cell 116, 39-50) we are able to propose a reasonable model for how the human FEN-1 protein interacts with its DNA substrates.
Collapse
Affiliation(s)
- Junzhuan Qiu
- Department of Radiation Research, City of Hope National Medical Center and Beckman Research Institute, Duarte, California 91010, USA
| | | | | | | | | | | |
Collapse
|
33
|
Chapados BR, Hosfield DJ, Han S, Qiu J, Yelent B, Shen B, Tainer JA. Structural basis for FEN-1 substrate specificity and PCNA-mediated activation in DNA replication and repair. Cell 2004; 116:39-50. [PMID: 14718165 DOI: 10.1016/s0092-8674(03)01036-5] [Citation(s) in RCA: 233] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Flap EndoNuclease-1 (FEN-1) and the processivity factor proliferating cell nuclear antigen (PCNA) are central to DNA replication and repair. To clarify the molecular basis of FEN-1 specificity and PCNA activation, we report here structures of FEN-1:DNA and PCNA:FEN-1-peptide complexes, along with fluorescence resonance energy transfer (FRET) and mutational results. FEN-1 binds the unpaired 3' DNA end (3' flap), opens and kinks the DNA, and promotes conformational closing of a flexible helical clamp to facilitate 5' cleavage specificity. Ordering of unstructured C-terminal regions in FEN-1 and PCNA creates an intermolecular beta sheet interface that directly links adjacent PCNA and DNA binding regions of FEN-1 and suggests how PCNA stimulates FEN-1 activity. The DNA and protein conformational changes, composite complex structures, FRET, and mutational results support enzyme-PCNA alignments and a kinked DNA pivot point that appear suitable to coordinate rotary handoffs of kinked DNA intermediates among enzymes localized by the three PCNA binding sites.
Collapse
Affiliation(s)
- Brian R Chapados
- Department of Molecular Biology and Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92122, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
Genome sequences of a number of archaea have revealed an apparent paradox in the phylogenies of the bacteria, archaea, and eukarya, as well as an intriguing set of problems to be resolved in the study of DNA replication. The archaea, long thought to be bacteria, are not only different enough to merit their own domain but also appear to be an interesting mosaic of bacterial, eukaryal, and unique features. Most archaeal proteins participating in DNA replication are more similar in sequence to those found in eukarya than to analogous replication proteins in bacteria. However, archaea have only a subset of the eukaryal replication machinery, apparently needing fewer polypeptides and structurally simpler complexes. The archaeal replication apparatus also contains features not found in other organisms owing, in part, to the broad range of environmental conditions, some extreme, in which members of this domain thrive. In this review the current knowledge of the mechanisms governing DNA replication in archaea is summarized and the similarities and differences of those of bacteria and eukarya are highlighted.
Collapse
Affiliation(s)
- Beatrice Grabowski
- University of Maryland Biotechnology Institute, Center for Advanced Research in Biotechnology, 9600 Gudelsky Drive, Rockville, Maryland 20850, USA.
| | | |
Collapse
|
35
|
Matsui E, Abe J, Yokoyama H, Matsui I. Aromatic residues located close to the active center are essential for the catalytic reaction of flap endonuclease-1 from hyperthermophilic archaeon Pyrococcus horikoshii. J Biol Chem 2004; 279:16687-96. [PMID: 14742430 DOI: 10.1074/jbc.m313695200] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Flap endonuclease-1 (FEN-1) possessing 5'-flap endonuclease and 5'-->3' exonuclease activity plays important roles in DNA replication and repair. In this study, the kinetic parameters of mutants at highly conserved aromatic residues, Tyr33, Phe35, Phe79, and Phe278-Phe279, in the vicinity of the catalytic centers of FEN-1 were examined. The substitution of these aromatic residues with alanine led to a large reduction in kcat values, although these mutants retained Km values similar to that of the wild-type enzyme. Notably, the kcat of Y33A and F79A decreased 333-fold and 71-fold, respectively, compared with that of the wild-type enzyme. The aromatic residues Tyr33 and Phe79, and the aromatic cluster Phe278-Phe279 mainly contributed to the recognition of the substrates without the 3' projection of the upstream strand (the nick, 5'-recess-end, single-flap, and pseudo-Y substrates) for the both exo- and endo-activities, but played minor roles in recognizing the substrates with the 3' projection (the double flap substrate and the nick substrate with the 3' projection). The replacement of Tyr33, Phe79, and Phe278-Phe279, with non-charged aromatic residues, but not with aliphatic hydrophobic residues, recovered the kcat values almost fully for the substrates without the 3' projection of the upstream strand, suggesting that the aromatic groups of Tyr33, Phe79, and Phe278-Phe279 might be involved in the catalytic reaction, probably via multiple stacking interactions with nucleotide bases. The stacking interactions of Tyr33 and Phe79 might play important roles in fixing the template strand and the downstream strand, respectively, in close proximity to the active center to achieve the productive transient state leading to the hydrolysis.
Collapse
Affiliation(s)
- Eriko Matsui
- Biological Information Research Center, National Institute of Advanced Industrial Science and Technology, Higashi 1-1-1, Tsukuba, Ibaraki 305-8566, Japan
| | | | | | | |
Collapse
|
36
|
Salerno V, Napoli A, White MF, Rossi M, Ciaramella M. Transcriptional response to DNA damage in the archaeon Sulfolobus solfataricus. Nucleic Acids Res 2003; 31:6127-38. [PMID: 14576299 PMCID: PMC275473 DOI: 10.1093/nar/gkg831] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Exposure of cells to DNA-damaging agents triggers a complex biological response involving cell cycle arrest and modulation of gene expression. Genomic sequencing has revealed the presence of archaeal genes homologous to components of the eucaryal nucleotide excision repair (NER) pathway, which is involved in the repair of ultraviolet (UV) light-induced DNA damage. However, the events involved in the cell response to UV irradiation and their regulation have not been studied in Archaea. We show here that UV radiation induces the formation of cyclobutane pyrimidine dimers (CPDs) in the hyperthermophilic archaeon Sulfolobus solfataricus, and that these lesions are efficiently repaired in vivo in the dark, suggesting that a NER pathway is active. DNA damage is a signal for concomitant growth arrest and transcriptional induction of the NER genes XPF, XPG and XPB. The cell response to UV irradiation includes transcriptional regulation of genes encoding two DNA binding proteins involved in chromosome dynamics. Moreover, several of these genes are also strongly induced by the intercalating agent actinomycin D. Thus, response to DNA damage in S.solfataricus has features essentially conserved in all three domains of life.
Collapse
Affiliation(s)
- Vincenzo Salerno
- Institute of Protein Biochemistry, Consiglio Nazionale delle Ricerche, Via P. Castellino, 80131 Naples, Italy
| | | | | | | | | |
Collapse
|
37
|
Datta K, LiCata VJ. Thermodynamics of the binding of Thermus aquaticus DNA polymerase to primed-template DNA. Nucleic Acids Res 2003; 31:5590-7. [PMID: 14500822 PMCID: PMC206472 DOI: 10.1093/nar/gkg774] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
DNA binding of the Type 1 DNA polymerase from Thermus aquaticus (Taq polymerase) and its Klentaq large fragment domain have been studied as a function of temperature. Equilibrium binding assays were performed from 5 to 70 degrees C using a fluorescence anisotropy assay and from 10 to 60 degrees C using isothermal titration calorimetry. In contrast to the usual behavior of thermophilic proteins at low temperatures, Taq and Klentaq bind DNA with high affinity at temperatures down to 5 degrees C. The affinity is maximal at 40-50 degrees C. The DeltaH and DeltaS of binding are highly temperature dependent, and the DeltaCp of binding is -0.7 to -0.8 kcal/mol K, for both Taq and Klentaq, with good agreement between van't Hoff and calorimetric values. Such a thermodynamic profile, however, is generally associated with sequence-specific DNA binding and not non- specific binding. Circular dichroism spectra show conformational rearrangements of both the DNA and the protein upon binding. The high DeltaCp of Taq/Klentaq DNA binding may be correlated with structure-specific binding in analogy to sequence- specific binding, or may be a general characteristic of proteins that primarily bind non-specifically to DNA. The low temperature DNA binding of Taq/Klentaq is suggested to be a general characteristic of thermophilic DNA binding proteins.
Collapse
Affiliation(s)
- Kausiki Datta
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | | |
Collapse
|
38
|
Sato A, Kanai A, Itaya M, Tomita M. Cooperative regulation for Okazaki fragment processing by RNase HII and FEN-1 purified from a hyperthermophilic archaeon, Pyrococcus furiosus. Biochem Biophys Res Commun 2003; 309:247-52. [PMID: 12943689 DOI: 10.1016/j.bbrc.2003.08.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
A reconstitution system that recapitulates the processing of Okazaki-primer RNA was established by the heat-stable recombinant enzymes RNase HII and FEN-1 (termed Pf-RNase HII and Pf-FEN-1, respectively) prepared from a hyperthermophilic archaeon, Pyrococcus furiosus. A 35-mer RNA-DNA/DNA hybrid substrate mimicking an Okazaki fragment was used to investigate the properties of the processing reaction in vitro at 50 degrees C. Pf-RNase HII endonucleolytically cleaves the RNA primer region, but does not cut the junction between RNA and DNA. Removal of the RNA of the RNA-DNA junction was brought about by Pf-FEN-1 after Pf-RNase HII digestion. In the presence of 0.25-5mM MnCl(2), Pf-FEN-1 alone weakly cleaved the junction. The addition of Pf-RNase HII to the reaction mixture increased removal efficiency and optimal Pf-FEN-1 activity was achieved at an equal amount of the two enzymes. These results indicate that there are at least two steps in the degradation of primer RNA requiring a step-specific enzyme. It is likely that Pf-RNase HII and Pf-FEN-1 cooperatively process Okazaki fragment during lagging-strand DNA replication.
Collapse
Affiliation(s)
- Asako Sato
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan
| | | | | | | |
Collapse
|
39
|
Larsen E, Gran C, Saether BE, Seeberg E, Klungland A. Proliferation failure and gamma radiation sensitivity of Fen1 null mutant mice at the blastocyst stage. Mol Cell Biol 2003; 23:5346-53. [PMID: 12861020 PMCID: PMC165721 DOI: 10.1128/mcb.23.15.5346-5353.2003] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Flap endonuclease 1 (FEN1) has been shown to remove 5' overhanging flap intermediates during base excision repair and to process the 5' ends of Okazaki fragments during lagging-strand DNA replication in vitro. To assess the in vivo role of the mammalian enzyme in repair and replication, we used a gene-targeting approach to generate mice lacking a functional Fen1 gene. Heterozygote animals appear normal, whereas complete depletion of FEN1 causes early embryonic lethality. Fen1(-/-) blastocysts fail to form inner cell mass during cellular outgrowth, and a complete inactivation of DNA synthesis in giant cells of blastocyst outgrowth was observed. Exposure of Fen1(-/-) blastocysts to gamma radiation caused extensive apoptosis, implying an essential role for FEN1 in the repair of radiation-induced DNA damage in vivo. Our data thus provide in vivo evidence for an essential function of FEN1 in DNA repair, as well as in DNA replication.
Collapse
Affiliation(s)
- Elisabeth Larsen
- Centre for Molecular Biology and Neuroscience, Institute of Medical Microbiology, The National Hospital, University of Oslo, 0027 Oslo, Norway
| | | | | | | | | |
Collapse
|
40
|
Allawi HT, Kaiser MW, Onufriev AV, Ma WP, Brogaard AE, Case DA, Neri BP, Lyamichev VI. Modeling of flap endonuclease interactions with DNA substrate. J Mol Biol 2003; 328:537-54. [PMID: 12706715 DOI: 10.1016/s0022-2836(03)00351-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Structure-specific 5' nucleases play an important role in DNA replication and repair uniquely recognizing an overlap flap DNA substrate and processing it into a DNA nick. However, in the absence of a high-resolution structure of the enzyme/DNA complex, the mechanism underlying this recognition and substrate specificity, which is key to the enzyme's function, remains unclear. Here, we propose a three-dimensional model of the structure-specific 5' flap endonuclease from Pyrococcus furiosus in its complex with DNA. The model is based on the known X-ray structure of the enzyme and a variety of biochemical and molecular dynamics (MD) data utilized in the form of distance restraints between the enzyme and the DNA. Contacts between the 5' flap endonuclease and the sugar-phosphate backbone of the overlap flap substrate were identified using enzyme activity assays on substrates with methylphosphonate or 2'-O-methyl substitutions. The enzyme footprint extends two to four base-pairs upstream and eight to nine base-pairs downstream of the cleavage site, thus covering 10-13 base-pairs of duplex DNA. The footprint data are consistent with a model in which the substrate is bound in the DNA-binding groove such that the downstream duplex interacts with the helix-hairpin-helix motif of the enzyme. MD simulations to identify the substrate orientation in this model are consistent with the results of the enzyme activity assays on the methylphosphonate and 2'-O-methyl-modified substrates. To further refine the model, 5' flap endonuclease variants with alanine point substitutions at amino acid residues expected to contact phosphates in the substrate and one deletion mutant were tested in enzyme activity assays on the methylphosphonate-modified substrates. Changes in the enzyme footprint observed for two point mutants, R64A and R94A, and for the deletion mutant in the enzyme's beta(A)/beta(B) region, were interpreted as being the result of specific interactions in the enzyme/DNA complex and were used as distance restraints in MD simulations. The final structure suggests that the substrate's 5' flap interacts with the enzyme's helical arch and that the helix-hairpin-helix motif interacts with the template strand in the downstream duplex eight base-pairs from the cleavage site. This model suggests specific interactions between the 3' end of the upstream oligonucleotide and the enzyme. The proposed structure presents the first detailed description of substrate recognition by structure-specific 5' nucleases.
Collapse
Affiliation(s)
- Hatim T Allawi
- Third Wave Technologies, Inc., 502 S Rosa Road, Madison, WI 53719, USA.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Sauer S, Gut IG. Genotyping single-nucleotide polymorphisms by matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2002; 782:73-87. [PMID: 12457997 DOI: 10.1016/s1570-0232(02)00692-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In recent years matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI) has emerged as a very powerful method for genotyping single nucleotide polymorphisms. The accuracy, speed of data accumulation, and data structure are the major features of MALDI. Several SNP genotyping methods have been implemented with a high degree of automation and are being applied for large-scale association studies. Most methods for SNP genotyping using MALDI mass spectrometric detection and their potential application for high-throughput are reviewed here.
Collapse
Affiliation(s)
- Sascha Sauer
- Max-Planck-Institut für Molekulare Genetik, Abteilung Lehrach, Ihnestrasse 73, 14195 Berlin-Dahlem, Germany
| | | |
Collapse
|
42
|
Storici F, Henneke G, Ferrari E, Gordenin DA, Hübscher U, Resnick MA. The flexible loop of human FEN1 endonuclease is required for flap cleavage during DNA replication and repair. EMBO J 2002; 21:5930-42. [PMID: 12411510 PMCID: PMC131084 DOI: 10.1093/emboj/cdf587] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2002] [Revised: 09/09/2002] [Accepted: 09/16/2002] [Indexed: 11/12/2022] Open
Abstract
The conserved, structure-specific flap endonuclease FEN1 cleaves 5' DNA flaps that arise during replication or repair. To address in vivo mechanisms of flap cleavage, we developed a screen for human FEN1 mutants that are toxic when expressed in yeast. Two targets were revealed: the flexible loop domain and the catalytic site. Toxic mutants caused G(2) arrest and cell death and were unable to repair methyl methanesulfonate lesions. All the mutant proteins retained flap binding. Unlike the catalytic site mutants, which lacked cleavage of any 5' flaps, the loop mutants exhibited partial ability to cut 5' flaps when an adjacent single nucleotide 3' flap was present. We suggest that the flexible loop is important for efficient cleavage through positioning the 5' flap and the catalytic site.
Collapse
Affiliation(s)
- Francesca Storici
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | | | | | | | | | | |
Collapse
|
43
|
Tost J, Gut IG. Genotyping single nucleotide polymorphisms by mass spectrometry. MASS SPECTROMETRY REVIEWS 2002; 21:388-418. [PMID: 12666148 DOI: 10.1002/mas.1009] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
In the last decade, the demand for high-throughput DNA analysis methods has dramatically increased, mainly due to the advent of the human genome sequencing project that is now nearing completion. Even though mass spectrometry did not contribute to that project, it is clear that it will have an important role in the post-genome sequencing era, in genomics and proteomics. In genomics, mainly matrix-assisted laser desorption/ionization (MALDI) mass spectrometry will contribute to large-scale single nucleotide polymorphism (SNP) genotyping projects. Here, the development and history of DNA analysis by mass spectrometry is reviewed and put into the context with the requirements of genomics. All major contributions to the field and their status and limitations are described in detail.
Collapse
Affiliation(s)
- Jörg Tost
- Centre National de Génotypage, Bâtiment G2, 2 Rue Gaston Crémieux, 91057 Evry Cedex, France
| | | |
Collapse
|
44
|
Matsui E, Musti KV, Abe J, Yamasaki K, Matsui I, Harata K. Molecular structure and novel DNA binding sites located in loops of flap endonuclease-1 from Pyrococcus horikoshii. J Biol Chem 2002; 277:37840-7. [PMID: 12147694 DOI: 10.1074/jbc.m205235200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The crystal structure of flap endonuclease-1 from Pyrococcus horikoshii (phFEN-1) was determined to a resolution of 3.1 A. The active cleft of the phFEN-1 molecule is formed with one large loop and four small loops. We examined the function of the conserved residues and positively charged clusters on these loops by kinetic analysis with 45 different mutants. Arg(40) and Arg(42) on small loop 1, a cluster Lys(193)-Lys(195) on small loop 2, and two sites, Arg(94) and Arg(118)-Lys(119), on the large loop were identified as binding sites. Lys(87) on the large loop may play significant roles in catalytic reaction. Furthermore, we successfully elucidated the function of the four DNA binding sites that form productive ES complexes specific for each endo- or exo-type hydrolysis, probably by bending the substrates. For the endo-activity, Arg(94) and Lys(193)-Lys(195) located at the top and bottom of the molecule were key determinants. For the exo-activity, all four sites were needed, but Arg(118)-Lys(119) was dominant. The major binding sites for both the nick substrate and double-stranded DNA might be the same.
Collapse
Affiliation(s)
- Eriko Matsui
- Biological Information Research Center and the Gene Discovery Research Center, National Institute of Advanced Industrial Science and Technology, Higashi 1-1-1, Tsukuba, Ibaraki 305-566, Japan
| | | | | | | | | | | |
Collapse
|
45
|
Qiu J, Bimston DN, Partikian A, Shen B. Arginine residues 47 and 70 of human flap endonuclease-1 are involved in DNA substrate interactions and cleavage site determination. J Biol Chem 2002; 277:24659-66. [PMID: 11986308 DOI: 10.1074/jbc.m111941200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Flap endonuclease-1 (FEN-1) is a critical enzyme for DNA replication and repair. Intensive studies have been carried out on its structure-specific nuclease activities and biological functions in yeast cells. However, its specific interactions with DNA substrates as an initial step of catalysis are not defined. An understanding of the ability of FEN-1 to recognize and bind a flap DNA substrate is critical for the elucidation of its molecular mechanism and for the explanation of possible pathological consequences resulting from its failure to bind DNA. Using human FEN-1 in this study, we identified two positively charged amino acid residues, Arg-47 and Arg-70 in human FEN-1, as candidates responsible for substrate binding. Mutation of the Arg-70 significantly reduced flap endonuclease activity and eliminated exonuclease activity. Mutation or protonation of Arg-47 shifted cleavage sites with flap substrate and significantly reduced the exonuclease activity. We revealed that these alterations are due to the defects in DNA-protein interactions. Although the effect of the single Arg-47 mutation on binding activities is not as severe as R70A, its double mutation with Asp-181 had a synergistic effect. Furthermore the possible interaction sites of these positively charged residues with DNA substrates were discussed based on FEN-1 cleavage patterns using different substrates. Finally data were provided to indicate that the observed negative effects of a high concentration of Mg(2+) on enzymatic activity are probably due to the competition between the arginine residues and metal ions with DNA substrate since mutants were found to be less tolerant.
Collapse
Affiliation(s)
- Junzhuan Qiu
- Division of Molecular Medicine, City of Hope National Medical Center and Beckman Research Institute, Duarte, California 91010, USA
| | | | | | | |
Collapse
|
46
|
Yang H, Chiang JH, Fitz-Gibbon S, Lebel M, Sartori AA, Jiricny J, Slupska MM, Miller JH. Direct interaction between uracil-DNA glycosylase and a proliferating cell nuclear antigen homolog in the crenarchaeon Pyrobaculum aerophilum. J Biol Chem 2002; 277:22271-8. [PMID: 11927597 DOI: 10.1074/jbc.m201820200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Proliferating cell nuclear antigen (PCNA) acts as a sliding clamp on duplex DNA. Its homologs, present in Eukarya and Archaea, are part of protein complexes that are indispensable for DNA replication and DNA repair. In Eukarya, PCNA is known to interact with more than a dozen different proteins, including a human major nuclear uracil-DNA glycosylase (hUNG2) involved in immediate postreplicative repair. In Archaea, only three classes of PCNA-binding proteins have been reported previously: replication factor C (the PCNA clamp loader), family B DNA polymerase, and flap endonuclease. In this study, we report a direct interaction between a uracil-DNA glycosylase (Pa-UDGa) and a PCNA homolog (Pa-PCNA1), both from the hyperthermophilic crenarchaeon Pyrobaculum aerophilum (T(opt) = 100 degrees C). We demonstrate that the Pa-UDGa-Pa-PCNA1 complex is thermostable, and two hydrophobic amino acid residues on Pa-UDGa (Phe(191) and Leu(192)) are shown to be crucial for this interaction. It is interesting to note that although Pa-UDGa has homologs throughout the Archaea and bacteria, it does not share significant sequence similarity with hUNG2. Nevertheless, our results raise the possibility that Pa-UDGa may be a functional analog of hUNG2 for PCNA-dependent postreplicative removal of misincorporated uracil.
Collapse
Affiliation(s)
- Hanjing Yang
- Department of Microbiology and Molecular Genetics and the Molecular Biology Institute, University of California, Los Angeles, California 90095, USA
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Faust EA, Triller H. Stimulation of human flap endonuclease 1 by human immunodeficiency virus type 1 integrase: possible role for flap endonuclease 1 in 5'-end processing of human immunodeficiency virus type 1 integration intermediates. J Biomed Sci 2002; 9:273-87. [PMID: 12065902 DOI: 10.1007/bf02256074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) DNA integration intermediates consist of viral and host DNA segments separated by a 5-nucleotide gap adjacent to a 5'-AC unpaired dinucleotide. These short-flap (pre-repair) integration intermediates are structurally similar to DNA loci undergoing long-patch base excision repair in mammalian cells. The cellular proteins flap endonuclease 1 (FEN-1), proliferating cell nuclear antigen, replication factor C, DNA ligase I and DNA polymerase delta are required for the repair of this type of DNA lesion. The role of FEN-1 in the base excision repair pathway is to cleave 5'-unpaired flaps in forked structures so that DNA ligase can seal the single-stranded breaks that remain following gap repair. The rate of excision by FEN-1 of 5'-flaps from short- and long-flap oligonucleotide substrates that mimic pre- and post-repair HIV-1 integration intermediates, respectively, and the effect of HIV-1 integrase on these reactions were examined in the present study. Cleavage of 5'-flaps by FEN-1 in pre-repair HIV-1 integration intermediates was relatively inefficient and was further decreased 3-fold by HIV-1 integrase. The rate of removal of 5'-flaps by FEN-1 from post-repair HIV-1 integration intermediates containing relatively long (7-nucleotide) unpaired 5'-tails and short (1-nucleotide) gaps was increased 3-fold relative to that seen with pre-repair substrates and was further stimulated 5- to 10-fold by HIV-1 integrase. Overall, post-repair structures were cleaved 18 times more effectively in the presence of HIV-1 integrase than pre-repair structures. The site of cleavage was 1 or 2 nucleotides 3' of the branch point and was unaffected by HIV-1 integrase. Integrase alone had no detectable activity in removing 5'-flaps from either pre- or post-repair substrates.
Collapse
Affiliation(s)
- Emmanuel A Faust
- Lady Davis Institute for Medical Research, SMBD-Jewish General Hospital, McGill AIDS Center, Montreal, Canada.
| | | |
Collapse
|
48
|
Kao HI, Henricksen LA, Liu Y, Bambara RA. Cleavage specificity of Saccharomyces cerevisiae flap endonuclease 1 suggests a double-flap structure as the cellular substrate. J Biol Chem 2002; 277:14379-89. [PMID: 11825897 DOI: 10.1074/jbc.m110662200] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Flap endonuclease 1 (FEN1) is a structure-specific nuclease that cleaves substrates containing unannealed 5'-flaps during Okazaki fragment processing. Cleavage removes the flap at or near the point of annealing. The preferred substrate for archaeal FEN1 or the 5'-nuclease domains of bacterial DNA polymerases is a double-flap structure containing a 3'-tail on the upstream primer adjacent to the 5'-flap. We report that FEN1 in Saccharomyces cerevisiae (Rad27p) exhibits a similar specificity. Cleavage was most efficient when the upstream primer contained a 1-nucleotide 3'-tail as compared with the fully annealed upstream primer traditionally tested. The site of cleavage was exclusively at a position one nucleotide into the annealed region, allowing human DNA ligase I to seal all resulting nicks. In contrast, a portion of the products from traditional flap substrates is not ligated. The 3'-OH of the upstream primer is not critical for double-flap recognition, because Rad27p is tolerant of modifications. However, the positioning of the 3'-nucleotide defines the site of cleavage. We have tested substrates having complementary tails that equilibrate to many structures by branch migration. FEN1 only cleaved those containing a 1-nucleotide 3'-tail. Equilibrating substrates containing 12-ribonucleotides at the end of the 5'-flap simulates the situation in vivo. Rad27p cleaves this substrate in the expected 1-nucleotide 3'-tail configuration. Overall, these results suggest that the double-flap substrate is formed and cleaved during eukaryotic DNA replication in vivo.
Collapse
Affiliation(s)
- Hui-I Kao
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA
| | | | | | | |
Collapse
|
49
|
Seitz EM, Haseltine CA, Kowalczykowski SC. DNA recombination and repair in the archaea. ADVANCES IN APPLIED MICROBIOLOGY 2002; 50:101-69. [PMID: 11677683 DOI: 10.1016/s0065-2164(01)50005-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- E M Seitz
- Sections of Microbiology and of Molecular and Cellular Biology, Center for Genetics and Development, University of California, Davis, Davis, California 95616-8665, USA
| | | | | |
Collapse
|
50
|
Hosfield DJ, Daniels DS, Mol CD, Putnam CD, Parikh SS, Tainer JA. DNA damage recognition and repair pathway coordination revealed by the structural biochemistry of DNA repair enzymes. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2002; 68:315-47. [PMID: 11554309 DOI: 10.1016/s0079-6603(01)68110-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Cells have evolved distinct mechanisms for both preventing and removing mutagenic and lethal DNA damage. Structural and biochemical characterization of key enzymes that function in DNA repair pathways are illuminating the biological and chemical mechanisms that govern initial lesion detection, recognition, and excision repair of damaged DNA. These results are beginning to reveal a higher level of DNA repair coordination that ensures the faithful repair of damaged DNA. Enzyme-induced DNA distortions allow for the specific recognition of distinct extrahelical lesions, as well as tight binding to cleaved products, which has implications for the ordered transfer of unstable DNA repair intermediates between enzymes during base excision repair.
Collapse
Affiliation(s)
- D J Hosfield
- Department of Molecular Biology, Skaggs Institute for Chemical Biology, Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | | | |
Collapse
|