1
|
Xiao Y, Li J, Xu J, Sheng M, Qiu Z, Xu W. Mechanistic decoding of octyl methoxycinnamate-induced breast toxicity via network toxicology, mendelian randomization, and molecular simulations. Reprod Toxicol 2025; 135:108943. [PMID: 40345629 DOI: 10.1016/j.reprotox.2025.108943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2025] [Revised: 05/06/2025] [Accepted: 05/06/2025] [Indexed: 05/11/2025]
Abstract
Octyl methoxycinnamate (OMC), a widely used UV filter, has raised concerns due to its potential reproductive toxicity and association with endocrine disruption. This study systematically identified OMC-induced breast toxicity targets and elucidated underlying molecular mechanisms by integrating network toxicology, differential gene expression analysis, Mendelian randomization (MR), molecular docking, and molecular dynamics (MD) simulations. Using SwissTargetPrediction, OMIM, GeneCards and DisGeNET databases, 185 potential targets linked to OMC exposure and breast injury were identified. STRING and Cytoscape analyses highlighted 31 hub targets. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment revealed significant associations with immune responses, cell proliferation, and signaling pathways. Analysis of GEO datasets identified overlapping differentially expressed genes (DEGs) between core targets and breast cancer (BC). MR analysis demonstrated a causal relationship between PTGS2 and BC risk. Molecular docking indicated strong binding affinities between OMC and core targets, particularly MMP9. MD simulations further confirmed stable OMC-PTGS2 interactions, supporting PTGS2 as a key mediator of OMC-induced breast toxicity. This work provides a theoretical foundation for understanding OMC's breast toxicity mechanisms and lays groundwork for preventing or managing breast disorders in populations exposed to OMC-containing environments.
Collapse
Affiliation(s)
- Yinghao Xiao
- College of Pharmacy, Changchun University of Chinese Medicine, China
| | - Jixin Li
- College of Pharmacy, Changchun University of Chinese Medicine, China
| | - Jiahui Xu
- College of Pharmacy, Changchun University of Chinese Medicine, China
| | - Mingyang Sheng
- College of Pharmacy, Changchun University of Chinese Medicine, China
| | - Zhidong Qiu
- College of Pharmacy, Changchun University of Chinese Medicine, China.
| | - Wei Xu
- College of Pharmacy, Changchun University of Chinese Medicine, China.
| |
Collapse
|
2
|
Hoeger B, Nadolni W, Hampe S, Hoelting K, Fraticelli M, Zaborsky N, Madlmayr A, Sperrer V, Fraticelli L, Addington L, Steinritz D, Chubanov V, Geisberger R, Greil R, Breit A, Boekhoff I, Gudermann T, Zierler S. Inactivation of TRPM7 Kinase Targets AKT Signaling and Cyclooxygenase-2 Expression in Human CML Cells. FUNCTION 2023; 4:zqad053. [PMID: 37786778 PMCID: PMC10541797 DOI: 10.1093/function/zqad053] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/01/2023] [Accepted: 09/11/2023] [Indexed: 10/04/2023] Open
Abstract
Cyclooxygenase-2 (COX-2) is a key regulator of inflammation. High constitutive COX-2 expression enhances survival and proliferation of cancer cells, and adversely impacts antitumor immunity. The expression of COX-2 is modulated by various signaling pathways. Recently, we identified the melastatin-like transient-receptor-potential-7 (TRPM7) channel-kinase as modulator of immune homeostasis. TRPM7 protein is essential for leukocyte proliferation and differentiation, and upregulated in several cancers. It comprises of a cation channel and an atypical α-kinase, linked to inflammatory cell signals and associated with hallmarks of tumor progression. A role in leukemia has not been established, and signaling pathways are yet to be deciphered. We show that inhibiting TRPM7 channel-kinase in chronic myeloid leukemia (CML) cells results in reduced constitutive COX-2 expression. By utilizing a CML-derived cell line, HAP1, harboring CRISPR/Cas9-mediated TRPM7 knockout, or a point mutation inactivating TRPM7 kinase, we could link this to reduced activation of AKT serine/threonine kinase and mothers against decapentaplegic homolog 2 (SMAD2). We identified AKT as a direct in vitro substrate of TRPM7 kinase. Pharmacologic blockade of TRPM7 in wildtype HAP1 cells confirmed the effect on COX-2 via altered AKT signaling. Addition of an AKT activator on TRPM7 kinase-dead cells reconstituted the wildtype phenotype. Inhibition of TRPM7 resulted in reduced phosphorylation of AKT and diminished COX-2 expression in peripheral blood mononuclear cells derived from CML patients, and reduced proliferation in patient-derived CD34+ cells. These results highlight a role of TRPM7 kinase in AKT-driven COX-2 expression and suggest a beneficial potential of TRPM7 blockade in COX-2-related inflammation and malignancy.
Collapse
Affiliation(s)
- Birgit Hoeger
- Institute of Pharmacology, Johannes Kepler University Linz, Altenbergerstr. 69, 4040 Linz and Krankenhausstr. 5, 4020 Linz, Austria
| | - Wiebke Nadolni
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, Ludwig-Maximilians-Universität München, Goethestr. 33, 80336 Munich, Germany
| | - Sarah Hampe
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, Ludwig-Maximilians-Universität München, Goethestr. 33, 80336 Munich, Germany
| | - Kilian Hoelting
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, Ludwig-Maximilians-Universität München, Goethestr. 33, 80336 Munich, Germany
| | - Marco Fraticelli
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, Ludwig-Maximilians-Universität München, Goethestr. 33, 80336 Munich, Germany
| | - Nadja Zaborsky
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Paracelsus Medical University, 5020 Salzburg, Austria
- Salzburg Cancer Research Institute–Laboratory for Immunological and Molecular Cancer Research (SCRI–LIMCR), Müllner Hauptstr. 48, 5020 Salzburg, Austria
- Cancer Cluster Salzburg, 5020 Salzburg, Austria
| | - Anna Madlmayr
- Institute of Pharmacology, Johannes Kepler University Linz, Altenbergerstr. 69, 4040 Linz and Krankenhausstr. 5, 4020 Linz, Austria
| | - Viktoria Sperrer
- Institute of Pharmacology, Johannes Kepler University Linz, Altenbergerstr. 69, 4040 Linz and Krankenhausstr. 5, 4020 Linz, Austria
| | - Laura Fraticelli
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, Ludwig-Maximilians-Universität München, Goethestr. 33, 80336 Munich, Germany
| | - Lynda Addington
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, Ludwig-Maximilians-Universität München, Goethestr. 33, 80336 Munich, Germany
| | - Dirk Steinritz
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, Ludwig-Maximilians-Universität München, Goethestr. 33, 80336 Munich, Germany
| | - Vladimir Chubanov
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, Ludwig-Maximilians-Universität München, Goethestr. 33, 80336 Munich, Germany
| | - Roland Geisberger
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Paracelsus Medical University, 5020 Salzburg, Austria
- Salzburg Cancer Research Institute–Laboratory for Immunological and Molecular Cancer Research (SCRI–LIMCR), Müllner Hauptstr. 48, 5020 Salzburg, Austria
- Cancer Cluster Salzburg, 5020 Salzburg, Austria
| | - Richard Greil
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Paracelsus Medical University, 5020 Salzburg, Austria
- Salzburg Cancer Research Institute–Laboratory for Immunological and Molecular Cancer Research (SCRI–LIMCR), Müllner Hauptstr. 48, 5020 Salzburg, Austria
- Cancer Cluster Salzburg, 5020 Salzburg, Austria
| | - Andreas Breit
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, Ludwig-Maximilians-Universität München, Goethestr. 33, 80336 Munich, Germany
| | - Ingrid Boekhoff
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, Ludwig-Maximilians-Universität München, Goethestr. 33, 80336 Munich, Germany
| | - Thomas Gudermann
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, Ludwig-Maximilians-Universität München, Goethestr. 33, 80336 Munich, Germany
| | - Susanna Zierler
- Institute of Pharmacology, Johannes Kepler University Linz, Altenbergerstr. 69, 4040 Linz and Krankenhausstr. 5, 4020 Linz, Austria
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, Ludwig-Maximilians-Universität München, Goethestr. 33, 80336 Munich, Germany
| |
Collapse
|
3
|
Kolousek A, Pak-Harvey E, Liu-Lam O, White M, Smith P, Henning F, Koval M, Levy JM. The Effects of Endogenous Cannabinoids on the Mammalian Respiratory System: A Scoping Review of Cyclooxygenase-Dependent Pathways. Cannabis Cannabinoid Res 2023; 8:434-444. [PMID: 37074668 PMCID: PMC10249741 DOI: 10.1089/can.2022.0277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023] Open
Abstract
Introduction: The endogenous cannabinoid (endocannabinoid) system is an emerging target for the treatment of chronic inflammatory disease with the potential to advance treatment for many respiratory illnesses. The varied effects of endocannabinoids across tissue types makes it imperative that we explore their physiologic impact within unique tissue targets. The aim of this scoping review is to explore the impact of endocannabinoid activity on eicosanoid production as a measure of human airway inflammation. Methods: A scoping literature review was conducted according to PRISMA-ScR (Preferred Reporting Items for Systematic reviews and Meta-Analyses extension for Scoping Reviews) guidelines. Search strategies using MeSH terms related to cannabinoids, eicosanoids, cyclooxygenase (COX), and the respiratory system were used to query Medline, Embase, Cochrane, CINAHL, Web of Science, and Biosis Previews in December 2021. Only studies that investigated the relationship between endocannabinoids and the eicosanoid system in mammalian respiratory tissue after 1992 were included. Results: Sixteen studies were incorporated in the final qualitative review. Endocannabinoid activation increases COX-2 expression, potentially through ceramide-dependent or p38 and p42/44 Mitogen-Activated Protein Kinase pathways and is associated with a concentration-dependent increase in prostaglandin (PG)E2. Inhibitors of endocannabinoid hydrolysis found either an increase or no change in levels of PGE2 and PGD2 and decreased levels of leukotriene (LT)B4, PGI2, and thromboxane A2 (TXA2). Endocannabinoids increase bronchial epithelial cell permeability and have vasorelaxant effects in human pulmonary arteries and cause contraction of bronchi and decreased gas trapping in guinea pigs. Inhibitors of endocannabinoid hydrolysis were found to have anti-inflammatory effects on pulmonary tissue and are primarily mediated by COX-2 and activation of eicosanoid receptors. Direct agonism of endocannabinoid receptors appears to play a minor role. Conclusion: The endocannabinoid system has diverse effects on the mammalian airway. While endocannabinoid-derived PGs can have anti-inflammatory effects, endocannabinoids also produce proinflammatory conditions, such as increased epithelial permeability and bronchial contraction. These conflicting findings suggest that endocannabinoids produce a variety of effects depending on their local metabolism and receptor agonism. Elucidation of the complex interplay between the endocannabinoid and eicosanoid pathways is key to leveraging the endocannabinoid system as a potential therapeutic target for human airway disease.
Collapse
Affiliation(s)
| | | | - Oliver Liu-Lam
- Emory University School of Medicine, Atlanta, Georgia, USA
| | - Mia White
- Emory Libraries, Emory University, Atlanta, Georgia, USA
| | - Prestina Smith
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | | | - Michael Koval
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Joshua M. Levy
- Department of Otolaryngology—Head & Neck Surgery, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
4
|
Çeker T, Yılmaz Ç, Kırımlıoglu E, Aslan M. Endoplasmic-reticulum-stress-induced lipotoxicity in human kidney epithelial cells. Toxicol Res (Camb) 2022; 11:683-695. [PMID: 36051659 PMCID: PMC9424710 DOI: 10.1093/toxres/tfac041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 06/08/2022] [Accepted: 06/21/2022] [Indexed: 07/24/2023] Open
Abstract
Accumulation of lipids and their intermediary metabolites under endoplasmic reticulum (ER) stress instigates metabolic failure, described as lipotoxicity, in the kidney. This study aimed to determine ER-stress-related sphingolipid and polyunsaturated fatty acid (PUFA) changes in human kidney cells. Tunicamycin (TM) was employed to induce ER stress and an ER stress inhibitor, tauroursodeoxycholic acid (TUDCA), was given to minimize cytotoxicity. Cell viability was determined by MTT assay. Sphingomyelin (SM), ceramide (CER), and PUFA levels were measured by LC-MS/MS. Glucose-regulated protein 78-kd (GRP78), cleaved caspase-3 and cyclooxygenase-1 (COX-1) levels were assessed by immunofluorescence. Cytosolic phospholipase A2 (cPLA2), total COX, and prostaglandin E2 (PGE2) were measured to evaluate changes in enzyme activity. Decreased cell viability was observed in TM treated cells. Administration of TUDCA following TM treatment significantly increased cell viability compared to TM treatment alone. Tunicamycin-induced ER stress was confirmed by significantly increased protein levels of GRP78. A significant increase was observed in C18-C24 CERs and caspase-3 activity, while a significant decrease occurred in sphingosine-1-phosphate (S1P) and cPLA2 activity in cells treated with TM versus controls. The decrease in cPLA2 activity was accompanied by significantly increased PUFA levels in TM treated cells. TUDCA treatment in conjunction with TM significantly decreased ER stress, C18-C24 CERs, caspase 3 activity, and increased S1P levels. Results show the buildup of long chain CERs and PUFAs in kidney cells undergoing ER stress alongside increased apoptotic activity. TUDCA administration, along with TM treatment alleviated the buildup of CERs and TM-induced apoptotic activity in kidney epithelial cells.
Collapse
Affiliation(s)
- Tuğçe Çeker
- Department of Medical Biochemistry, Akdeniz University, Faculty of Medicine, Antalya 07070, Turkey
| | - Çağatay Yılmaz
- Department of Medical Biochemistry, Akdeniz University, Faculty of Medicine, Antalya 07070, Turkey
| | - Esma Kırımlıoglu
- Department of Histology and Embryology, Akdeniz University, Faculty of Medicine, Antalya 07070, Turkey
| | - Mutay Aslan
- Corresponding author: Akdeniz University Medical School, Department of Biochemistry, Antalya 07070, Turkey.
| |
Collapse
|
5
|
Peng Y, Lin H, Tian S, Liu S, Li J, Lv X, Chen S, Zhao L, Pu F, Chen X, Shu H, Qing X, Shao Z. Glucagon-like peptide-1 receptor activation maintains extracellular matrix integrity by inhibiting the activity of mitogen-activated protein kinases and activator protein-1. Free Radic Biol Med 2021; 177:247-259. [PMID: 34737144 DOI: 10.1016/j.freeradbiomed.2021.10.034] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/04/2021] [Accepted: 10/27/2021] [Indexed: 12/25/2022]
Abstract
Disruption of the intervertebral disc extracellular matrix (ECM) is a hallmark of intervertebral disc degeneration (IDD), which is largely attributed to excessive oxidative stress. However, there is a lack of clinically feasible approaches to promote the reconstruction of the disc ECM. Glucagon-like peptide-1 (GLP-1), a safe polypeptide hormone adopted to treat type 2 diabetes mellitus, has shown great potential for relieving oxidative stress-related damage. To our knowledge, this is the first study to reveal that exenatide, a GLP-1 receptor (GLP-1R) agonist, can upregulate disc ECM synthesis and attenuate oxidative stress-induced ECM degradation and IDD. Mechanistically, we found that exenatide inhibited the activation of mitogen-activated protein kinases (MAPK) signaling pathway and the formation of BATF/JUNs heterodimers (an index of activator protein-1 (AP-1) activity). The restoration of MAPK signaling activation reversed the protective effects of exenatide and enhanced downstream BATF/JUNs binding. BATF overexpression was also found to aggravate disc ECM damage, even in the presence of exenatide. In summary, exenatide is an effective agent that regulates ECM anabolic balance and restores disc degeneration by inhibiting MAPK activation and its downstream AP-1 activity. The present study provides a therapeutic rationale for activating the GLP-1 receptor against IDD and establishes the important role of AP-1 activity in the pathogenesis of IDD.
Collapse
Affiliation(s)
- Yizhong Peng
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hui Lin
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Shuo Tian
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Sheng Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jinye Li
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiao Lv
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Songfeng Chen
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou City, 450052, China
| | - Lei Zhao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Feifei Pu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xi Chen
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hongyang Shu
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China; Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Xiangcheng Qing
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Zengwu Shao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
6
|
Blaess M, Kaiser L, Sommerfeld O, Csuk R, Deigner HP. Drug triggered pruritus, rash, papules, and blisters - is AGEP a clash of an altered sphingolipid-metabolism and lysosomotropism of drugs accumulating in the skin? Lipids Health Dis 2021; 20:156. [PMID: 34743684 PMCID: PMC8573906 DOI: 10.1186/s12944-021-01552-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 09/09/2021] [Indexed: 11/26/2022] Open
Abstract
Rash, photosensitivity, erythema multiforme, and the acute generalized exanthematous pustulosis (AGEP) are relatively uncommon adverse reactions of drugs. To date, the etiology is not well understood and individual susceptibility still remains unknown. Amiodarone, chlorpromazine, amitriptyline, and trimipramine are classified lysosomotropic as well as photosensitizing, however, they fail to trigger rash and pruritic papules in all individuals. Lysosomotropism is a common charcteristic of various drugs, but independent of individuals. There is evidence that the individual ability to respond to external oxidative stress is crosslinked with the elongation of long-chain fatty acids to very long-chain fatty acids by ELOVLs. ELOVL6 and ELOVL7 are sensitive to ROS induced depletion of cellular NADPH and insufficient regeneration via the pentose phosphate pathway and mitochondrial fatty acid oxidation. Deficiency of NADPH in presence of lysosomotropic drugs promotes the synthesis of C16-ceramide in lysosomes and may contribute to emerging pruritic papules of AGEP. However, independently from a lysosomomotropic drug, severe depletion of ATP and NAD(P)H, e.g., by UV radiation or a potent photosensitizer can trigger likewise the collapse of the lysosomal transmembrane proton gradient resulting in lysosomal C16-ceramide synthesis and pruritic papules. This kind of papules are equally present in polymorphous light eruption (PMLE/PLE) and acne aestivalis (Mallorca acne). The suggested model of a compartmentalized ceramide metabolism provides a more sophisticated explanation of cutaneous drug adverse effects and the individual sensitivity to UV radiation. Parameters such as pKa and ClogP of the triggering drug, cutaneous fatty acid profile, and ceramide profile enables new concepts in risk assessment and scoring of AGEP as well as prophylaxis outcome.
Collapse
Affiliation(s)
- Markus Blaess
- Institute of Precision Medicine, Medical and Life Sciences Faculty, Furtwangen University, Jakob-Kienzle-Str. 17, D-78054, Villingen-Schwenningen, Germany
| | - Lars Kaiser
- Institute of Precision Medicine, Medical and Life Sciences Faculty, Furtwangen University, Jakob-Kienzle-Str. 17, D-78054, Villingen-Schwenningen, Germany
- Institute of Pharmaceutical Sciences, University of Freiburg, Albertstraße 25, D-79104, Freiburg, Germany
| | - Oliver Sommerfeld
- Department of Anaesthesiology and Intensive Care Medicine, Jena University Hospital, Am Klinikum 1, D-07747, Jena, Germany
| | - René Csuk
- Organic Chemistry, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Straße 2, D-06120, Halle (Saale), Germany
| | - Hans-Peter Deigner
- Institute of Precision Medicine, Medical and Life Sciences Faculty, Furtwangen University, Jakob-Kienzle-Str. 17, D-78054, Villingen-Schwenningen, Germany.
- EXIM Department, Fraunhofer Institute IZI, Schillingallee 68, D-18057, Leipzig, Rostock, Germany.
- Faculty of Science, Associated member of Tuebingen University, Auf der Morgenstelle 8, D- 72076, Tübingen, Germany.
| |
Collapse
|
7
|
Aslan M, Elpek Ö, Akkaya B, Balaban HT, Afşar E. Organ function, sphingolipid levels and inflammation in tunicamycin induced endoplasmic reticulum stress in male rats. Hum Exp Toxicol 2021; 40:259-273. [PMID: 33527851 DOI: 10.1177/0960327120949619] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Disorders of the endoplasmic reticulum (ER) lead to cellular damage but can cause cell death if ER dysfunction is prolonged. We aimed to examine liver/kidney functions, neutral sphingomyelinase (N-SMase) activity, sphingolipid levels, cytosolic phospholipase A2 (cPLA2) and cyclooxygenase-2 (COX-2) protein expression in rats under ER stress. ER stress was induced by tunicamycin (TM) and the ER stress inhibitor taurodeoxycholic acid (TUDCA) was injected before induction of ER stress. ER stress was confirmed by increased tissue levels of GRP78. Hematological and biochemical profiles were measured by autoanalyzers while hepatic and renal injury was evaluated via microscopy and histopathological scoring. Tissue levels of C16-C24 sphingomyelins (SM), C16-C24 ceramides (CERs) and sphingosine-1-phosphate (S1P) were determined by LC-MS/MS. Tissue cPLA2 and COX-2 were measured by western blot and activity assays. Tunicamycin treatment caused kidney and liver function test abnormalities, increased hematocrit and hemoglobin levels but decreased white blood cell counts. Histopathological findings showed hepatic necroinflammation and renal tubular damage in rats treated with TM. TUDCA administration attenuated WBC abnormalities and TM- induced hepatic/renal functional impairment in ER stress, as evident by significantly restored serum ALT, AST, creatinine, and total bilirubin levels. A significant increase was observed in N-SMase activity, tissue levels of C16-C24 CERs, cPLA2 and COX-2 expression in liver and kidney tissue under ER stress. TUDCA administration decreased tissue CER levels, cPLA2 and COX-2 expression as well as prostaglandin E2 (PGE2) formation. These results signify that ER stress causes hepatic and renal toxicity as well as CER-induced PGE2 formation in liver and kidney.
Collapse
Affiliation(s)
- Mutay Aslan
- Department of Medical Biochemistry, 64032Akdeniz University Faculty of Medicine, Antalya, Turkey
| | - Özlem Elpek
- Department of Pathology, 64032Akdeniz University Faculty of Medicine, Antalya, Turkey
| | - Bahar Akkaya
- Department of Pathology, 64032Akdeniz University Faculty of Medicine, Antalya, Turkey
| | - Hazal Tuzcu Balaban
- Department of Pathology, 64032Akdeniz University Faculty of Medicine, Antalya, Turkey
| | - Ebru Afşar
- Department of Medical Biochemistry, 64032Akdeniz University Faculty of Medicine, Antalya, Turkey
| |
Collapse
|
8
|
Kahn D, Perreault L, Macias E, Zarini S, Newsom SA, Strauss A, Kerege A, Harrison K, Snell-Bergeon J, Bergman BC. Subcellular localisation and composition of intramuscular triacylglycerol influence insulin sensitivity in humans. Diabetologia 2021; 64:168-180. [PMID: 33128577 PMCID: PMC7718332 DOI: 10.1007/s00125-020-05315-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 08/25/2020] [Indexed: 12/25/2022]
Abstract
AIMS/HYPOTHESIS Subcellular localisation is an important factor in the known impact of bioactive lipids, such as diacylglycerol and sphingolipids, on insulin sensitivity in skeletal muscle; yet, the role of localised intramuscular triacylglycerol (IMTG) is yet to be described. Excess accumulation of IMTG in skeletal muscle is associated with insulin resistance, and we hypothesised that differences in subcellular localisation and composition of IMTG would relate to metabolic health status in humans. METHODS We evaluated subcellular localisation of IMTG in lean participants, endurance-trained athletes, individuals with obesity and individuals with type 2 diabetes using LC-MS/MS of fractionated muscle biopsies and insulin clamps. RESULTS Insulin sensitivity was significantly different between each group (athletes>lean>obese>type 2 diabetes; p < 0.001). Sarcolemmal IMTG was significantly greater in individuals with obesity and type 2 diabetes compared with lean control participants and athletes, but individuals with type 2 diabetes were the only group with significantly increased saturated IMTG. Sarcolemmal IMTG was inversely related to insulin sensitivity. Nuclear IMTG was significantly greater in individuals with type 2 diabetes compared with lean control participants and athletes, and total and saturated IMTG localised in the nucleus had a significant inverse relationship with insulin sensitivity. Total cytosolic IMTG was not different between groups, but saturated cytosolic IMTG species were significantly increased in individuals with type 2 diabetes compared with all other groups. There were no significant differences between groups for IMTG concentration in the mitochondria/endoplasmic reticulum. CONCLUSIONS/INTERPRETATION These data reveal previously unknown differences in subcellular IMTG localisation based on metabolic health status and indicate the influence of sarcolemmal and nuclear IMTG on insulin sensitivity. Additionally, these studies suggest saturated IMTG may be uniquely deleterious for muscle insulin sensitivity. Graphical abstract.
Collapse
Affiliation(s)
- Darcy Kahn
- Division of Endocrinology, Metabolism, and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Leigh Perreault
- Division of Endocrinology, Metabolism, and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Emily Macias
- Division of Endocrinology, Metabolism, and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Simona Zarini
- Division of Endocrinology, Metabolism, and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | | | - Allison Strauss
- Division of Endocrinology, Metabolism, and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Anna Kerege
- Division of Endocrinology, Metabolism, and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Kathleen Harrison
- Division of Endocrinology, Metabolism, and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Janet Snell-Bergeon
- Division of Endocrinology, Metabolism, and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Bryan C Bergman
- Division of Endocrinology, Metabolism, and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
9
|
Targeting ERK/COX-2 signaling pathway in permethrin-induced testicular toxicity: a possible modulating effect of matrine. Mol Biol Rep 2019; 47:247-259. [DOI: 10.1007/s11033-019-05125-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 10/09/2019] [Indexed: 12/12/2022]
|
10
|
Das UN. Beneficial role of bioactive lipids in the pathobiology, prevention, and management of HBV, HCV and alcoholic hepatitis, NAFLD, and liver cirrhosis: A review. J Adv Res 2019; 17:17-29. [PMID: 31193303 PMCID: PMC6526165 DOI: 10.1016/j.jare.2018.12.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 12/18/2018] [Accepted: 12/18/2018] [Indexed: 02/06/2023] Open
Abstract
It has been suggested that hepatitis B virus (HBV)- and hepatitis C virus (HCV)-induced hepatic damage and cirrhosis and associated hypoalbuminemia, non-alcoholic fatty liver disease (NAFLD), and alcoholic fatty liver disease (AFLD) are due to an imbalance between pro-inflammatory and anti-inflammatory bioactive lipids. Increased tumour necrosis factor (TNF)-α production induced by HBV and HCV leads to a polyunsaturated fatty acid (PUFA) deficiency and hypoalbuminemia. Albumin mobilizes PUFAs from the liver and other tissues and thus may aid in enhancing the formation of anti-inflammatory lipoxins, resolvins, protectins, maresins and prostaglandin E1 (PGE1) and suppressing the production of pro-inflammatory PGE2. As PUFAs exert anti-viral and anti-bacterial effects, the presence of adequate levels of PUFAs could inactivate HCV and HBV and prevent spontaneous bacterial peritonitis observed in cirrhosis. PUFAs, PGE1, lipoxins, resolvins, protectins, and maresins suppress TNF-α and other pro-inflammatory cytokines, exert cytoprotective effects, and modulate stem cell proliferation and differentiation to promote recovery following hepatitis, NAFLD and AFLD. Based on this evidence, it is proposed that the administration of albumin in conjunction with PUFAs and their anti-inflammatory products could be beneficial for the prevention of and recovery from NAFLD, hepatitis and cirrhosis of the liver. NAFLD is common in obesity, type 2 diabetes mellitus, and metabolic syndrome, suggesting that even these diseases could be due to alterations in the metabolism of PUFAs and other bioactive lipids. Hence, PUFAs and co-factors needed for their metabolism and albumin may be of benefit in the prevention and management of HBV, HCV, alcoholic hepatitis and NAFLD, and liver cirrhosis.
Collapse
|
11
|
Zhang L, Luo Y, Lu Z, He J, Wang L, Zhang L, Zhang Y, Liu Y. Astragalus Polysaccharide Inhibits Ionizing Radiation-Induced Bystander Effects by Regulating MAPK/NF-kB Signaling Pathway in Bone Mesenchymal Stem Cells (BMSCs). Med Sci Monit 2018; 24:4649-4658. [PMID: 29976920 PMCID: PMC6069470 DOI: 10.12659/msm.909153] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Background This study investigated the effect of Astragalus polysaccharides (APS) on radiation-induced bystander effects (RIBE) in human bone mesenchymal stem cells (BMSCs) induced by irradiated A549 cells. Material/Methods A549 cells were irradiated with 2 Gy X-rays to obtain conditioned medium. BMSCs were incubated with the conditioned medium or APS. The levels of reactive oxygen species (ROS) and TGF-β were detected by ELISA. Cell survival, genomic instability, and DNA damages were detected by CCK-8 assay, colony formation assay, the micronucleus test and immunofluorescence assay, respectively. The protein and phosphorylation protein expression of p38, c-Jun N-terminal kinase (JNK), extracellular regulated protein kinase (ERK1/2), P65, and cyclooxygenase-2 (COX-2) in bystander effect cells were detected by Western blot. Results The expression of COX-2 and ROS increased following stimulation with conditioned medium; this effect was inhibited by pre-exposing the cells to APS. BMSCs growth and colony formation rate decreased following stimulation with conditioned medium; this effect was suppressed by pre-exposing the cells to APS. In addition, the micronucleus rate and 53BP1 foci number increased after treatment with conditioned medium; this increase in BMSCs was inhibited by APS. The levels of phosphorylated p38, JNK, ERK1/2, NF-κB P65, and COX-2 proteins were increased by conditioned medium but were decreased by pre-treatment with APS. Conclusions RIBE in BMSCs induced by the irradiated A549 was mediated by the ROS in the conditioned medium and might be related to MAPK/NF-κB signal pathways in BMSCs. APS may block RIBE through regulating the MAPK/NF-κB pathway.
Collapse
Affiliation(s)
- Liying Zhang
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Traditional Chinese Medicine, Lanzhou, Gansu, China (mainland)
| | - Yali Luo
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Traditional Chinese Medicine, Lanzhou, Gansu, China (mainland)
| | - Zhiwei Lu
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Traditional Chinese Medicine, Lanzhou, Gansu, China (mainland)
| | - Jinpeng He
- Key Laboratory of Space Radiobiology of Gansu Province and Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, Gansu, China (mainland)
| | - Lei Wang
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Traditional Chinese Medicine, Lanzhou, Gansu, China (mainland)
| | - Lixin Zhang
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Traditional Chinese Medicine, Lanzhou, Gansu, China (mainland)
| | - Yiming Zhang
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Traditional Chinese Medicine, Lanzhou, Gansu, China (mainland)
| | - Yongqi Liu
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Traditional Chinese Medicine, Lanzhou, Gansu, China (mainland).,Key Laboratory for Transfer of Dunhuang Medicine at the Provincial and Ministerial Level, Gansu University of Traditional Chinese Medicine, Lanzhou, Gansu, China (mainland)
| |
Collapse
|
12
|
Abstract
For many years, neutral sphingomyelinases (N-SMases) were long thought to be anticancer enzymes owing to their roles as key producers of ceramide linked to apoptosis, growth arrest, and the chemotherapeutic response. However, in recent years, with the cloning of multiple isoforms and with new information on their cellular roles, particularly for nSMase2, a more complex picture is emerging suggesting that N-SMases have both pro- and anticancer roles. In this chapter, we will summarize current knowledge on N-SMase expression in cancer and the roles of N-SMase activity and specific isoforms in cancer-relevant biologies. We will also discuss what we see as the major challenges ahead for research into N-SMases in cancer.
Collapse
Affiliation(s)
- Christopher J Clarke
- Department of Medicine and Cancer Center, Stony Brook University, Stony Brook, NY, United States
| |
Collapse
|
13
|
Scholl A, Ivanov I, Hinz B. Inhibition of interleukin-1β-induced endothelial tissue factor expression by the synthetic cannabinoid WIN 55,212-2. Oncotarget 2018; 7:61438-61457. [PMID: 27556861 PMCID: PMC5308663 DOI: 10.18632/oncotarget.11367] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 07/26/2016] [Indexed: 01/08/2023] Open
Abstract
The role of cannabinoids in thrombosis remains controversial. In view of the primary importance of tissue factor (TF) in blood coagulation and its involvement in the pathology of several cardiovascular, inflammatory and neoplastic diseases, a regulation of this initial procoagulant signal seems to be of particular interest. Using human umbilical vein endothelial cells (HUVEC) the present study investigated the impact of the synthetic cannabinoid WIN 55,212-2 on interleukin (IL)-1β-induced TF expression and activity. WIN 55,212-2 caused a time- and concentration-dependent suppression of IL-1β-induced TF protein accompanied by decreases in TF mRNA and activity. Inhibition of TF protein expression by WIN 55,212-2 was mimicked by its cannabinoid receptor-inactive enantiomer WIN 55,212-3 but not by structurally unrelated phyto-, endo- and synthetic cannabinoids. In addition, the inhibitory effect of WIN 55,212-2 was not reversed by antagonists to cannabinoid receptors (CB1, CB2) or transient receptor potential vanilloid 1. Mechanistic approaches revealed WIN 55,212-2 to suppress IL-1β-induced TF expression via inhibition of ceramide formation and via decreased phosphorylation of p38 mitogen-activated protein kinase (MAPK) and c-Jun N-terminal kinases. Further inhibitor experiments demonstrated neutral sphingomyelinase (nSMase) to confer ceramide generation upon IL-1β treatment with the parallel IL-1β-mediated activation of MAPKs occurring via an nSMase-independent pathway. Finally, a receptor-independent inhibition of IL-1β-induced TF protein by WIN 55,212-2 was confirmed in human blood monocytes. Collectively, this data provide a hitherto unknown receptor-independent anticoagulatory action of the cannabinoid WIN 55,212-2.
Collapse
Affiliation(s)
- Antje Scholl
- Institute of Toxicology and Pharmacology, Rostock University Medical Center, D-18057 Rostock, Germany
| | - Igor Ivanov
- Institute of Toxicology and Pharmacology, Rostock University Medical Center, D-18057 Rostock, Germany
| | - Burkhard Hinz
- Institute of Toxicology and Pharmacology, Rostock University Medical Center, D-18057 Rostock, Germany
| |
Collapse
|
14
|
Das UN. Arachidonic acid and other unsaturated fatty acids and some of their metabolites function as endogenous antimicrobial molecules: A review. J Adv Res 2018; 11:57-66. [PMID: 30034876 PMCID: PMC6052656 DOI: 10.1016/j.jare.2018.01.001] [Citation(s) in RCA: 142] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 01/01/2018] [Accepted: 01/01/2018] [Indexed: 12/13/2022] Open
Abstract
Our body is endowed with several endogenous anti-microbial compounds such as interferon, cytokines, free radicals, etc. However, little attention has been paid to the possibility that lipids could function as antimicrobial compounds. In this short review, the antimicrobial actions of various polyunsaturated fatty acids (PUFAs, mainly free acids) and their putative mechanisms of action are described. In general, PUFAs kill microbes by their direct action on microbial cell membranes, enhancing generation of free radicals, augmenting the formation of lipid peroxides that are cytotoxic, and by increasing the formation of their bioactive metabolites, such as prostaglandins, lipoxins, resolvins, protectins and maresins that enhance the phagocytic action of leukocytes and macrophages. Higher intakes of α-linolenic and cis-linoleic acids (ALA and LA respectively) and fish (a rich source of eicosapentaenoic acid and docosahexaenoic acid) might reduce the risk pneumonia. Previously, it was suggested that polyunsaturated fatty acids (PUFAs): linoleic, α-linolenic, γ-linolenic (GLA), dihomo-GLA (DGLA), arachidonic (AA), eicosapentaenoic (EPA), and docosahexaenoic acids (DHA) function as endogenous anti-bacterial, anti-fungal, anti-viral, anti-parasitic, and immunomodulating agents. A variety of bacteria are sensitive to the growth inhibitory actions of LA and ALA in vitro. Hydrolyzed linseed oil can kill methicillin-resistant Staphylococcus aureus. Both LA and AA have the ability to inactivate herpes, influenza, Sendai, and Sindbis virus within minutes of contact. AA, EPA, and DHA induce death of Plasmodium falciparum both in vitro and in vivo. Prostaglandin E1 (PGE1) and prostaglandin A (PGA), derived from DGLA, AA, and EPA inhibit viral replication and show anti-viral activity. Oral mucosa, epidermal cells, lymphocytes and macrophages contain and release significant amounts of PUFAs on stimulation. PUFAs stimulate NADPH-dependent superoxide production by macrophages, neutrophils and lymphocytes to kill the invading microorganisms. Cytokines induce the release of PUFAs from cell membrane lipid pool, a potential mechanism for their antimicrobial action. AA, EPA, and DHA give rise to lipoxins (LXs), resolvins, protectins, and maresins that limit and resolve inflammation and have antimicrobial actions. Thus, PUFAs and their metabolites have broad antimicrobial actions.
Collapse
|
15
|
Zhang H, Li J, Li L, Liu P, Wei Y, Qian Z. Ceramide enhances COX-2 expression and VSMC contractile hyperreactivity via ER stress signal activation. Vascul Pharmacol 2017; 96-98:26-32. [PMID: 28797762 DOI: 10.1016/j.vph.2017.08.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 06/22/2017] [Accepted: 08/01/2017] [Indexed: 01/15/2023]
Abstract
Ceramide accumulation in blood vessels has been attributed to vascular dysfunction in progressive vascular complications in metabolic diseases. The present study showed that ceramide pretreatment promoted PE-induced vasoconstriction in rat endothelium-denuded vascular rings in a time- and dose-dependent manner. Endoplasmic reticulum (ER) stress inhibitors, 4-PBA and TUDCA, COX-2 inhibitors, Celecoxib and NS398, as well as PGE2 receptor antagonist AH-6809 attenuated ceramide-promoted vascular hyperreactivity. Ceramide promoted the transcriptional and translational expression of COX-2 and BiP in VSMCs, which were blocked by the ER stress inhibitors, 4-PBA and TUDCA. These findings show that ceramide enhances PE-induced vascular smooth muscle constriction by mediation of the ER stress/COX-2/PGE2 pathway. Therapeutic strategies targeted to reducing ER stress and COX-2 activation might be beneficial in attenuating vascular complications. CHEMICAL COMPOUNDS C2-Ceramide (N-acetyl-d-erythro-sphingosine) CID:2662 Tauroursodeoxycholic Acid Sodium (TUDCA) CID:9848818 phenylephrine (PE) CID:6041.
Collapse
Affiliation(s)
- Huina Zhang
- Beijing An Zhen Hospital, Capital Medical University, Key Laboratory of Upper Airway Dysfunction-related Cardiovascular Diseases, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing, China.
| | - Juanfen Li
- Department of Cardiovascular Medicine, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Linghai Li
- Department of Anesthesiology, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Pingsheng Liu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yongxiang Wei
- Beijing An Zhen Hospital, Capital Medical University, Key Laboratory of Upper Airway Dysfunction-related Cardiovascular Diseases, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing, China
| | - Zongjie Qian
- Department of Cardiovascular Medicine, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China.
| |
Collapse
|
16
|
Huangqin-Tang and Ingredients in Modulating the Pathogenesis of Ulcerative Colitis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:7016468. [PMID: 28690663 PMCID: PMC5485339 DOI: 10.1155/2017/7016468] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 05/22/2017] [Indexed: 12/17/2022]
Abstract
Ulcerative colitis (UC) is the most common inflammatory bowel disease worldwide. Current therapies in UC cause limitations, and herb medicine provides an important choice for UC treatment. Huangqin-Tang (HQT) is a well-known classical traditional Chinese herbal formula and has been used in China for thousands of years. A large number of pharmacological studies demonstrated HQT and its ingredients to be effective in treating UC. Though the therapeutic effect has been evaluated, comprehensive up-to-date reviews in this field are not yet available. Here we aim to review our current understanding of HQT and its ingredients in treating UC and how the agents modulate the main pathogenesis of the disease, including the intestinal environment, immune imbalance, inflammatory pathways, and oxidative stress. The summary on this issue may provide better understanding of HQT and its ingredients in treating UC and possibly help in promoting its clinical application.
Collapse
|
17
|
Zhen Y, Zhang W, Liu C, He J, Lu Y, Guo R, Feng J, Zhang Y, Chen J. Exogenous hydrogen sulfide promotes C6 glioma cell growth through activation of the p38 MAPK/ERK1/2-COX-2 pathways. Oncol Rep 2015; 34:2413-22. [PMID: 26351820 DOI: 10.3892/or.2015.4248] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 07/07/2015] [Indexed: 11/06/2022] Open
Abstract
Hydrogen sulfide (H2S) participates in multifarious physiological and pathophysiologic progresses of cancer both in vitro and in vivo. We have previously demonstrated that exogenous H2S promoted liver cancer cells proliferation/anti‑apoptosis/angiogenesis/migration effects via amplifying the activation of NF-κB pathway. However, the effects of H2S on cancer cell proliferation and apoptosis are controversial and remain unclear in C6 glioma cells. The present study investigated the effects of exogenous H2S on cancer cells growth via activating p38 MAPK/ERK1/2-COX-2 pathways in C6 glioma cells. C6 glioma cells were treated with 400 µmol/l NaHS (a donor of H2S) for 24 h. The expression levels of phosphorylated (p)-p38 MAPK, total (t)-p38 MAPK, p-ERK1/2, t-ERK1/2, cyclooxygenase-2 (COX-2) and caspase-3 were measured by western blotting assay. Cell viability was detected by Cell Counting Kit-8 (CCK-8). Apoptotic cells were observed by Hoechst 33258 staining assay. Cell proliferation was directly detected under fully automatic inverted microscope. Exposure of C6 glioma cells to NaHS resulted in cell proliferation, as evidenced by an increase in cell viability. In addition, NaHS treatment reduced apoptosis, as indicated by the decreased apoptotic percentage and the cleaved caspase-3 expression. Importantly, exposure of the cells to NaHS increased the expression levels of p-p38 MAPK, p-ERK1/2 and COX-2. Notably, co-treatment of C6 glioma cells with 400 µmol/l NaHS and AOAA (an inhibitor of CBS) largely suppressed the above NaHS-induced effects. Combined treatment with NaHS and SB203580 (an inhibitor of p38 MAPK) or PD-98059 (an inhibitor of ERK1/2) resulted in the synergistic reduction of COX-2 expression and increase of caspase-3 expression, a decreased number of apoptotic cells, along with decreased cell viability. Combined treatment with NS-398 (an inhibitor of COX-2) and NaHS also resulted in the synergistic increase of caspase-3, a decreased in the number of apoptotic cells and the decrease in cell viability. The findings of the present study provide novel evidence that p38 MAPK/ERK1/2-COX-2 pathways are involved in NaHS-induced cancer cell proliferation and anti-apoptosis in C6 glioma cells.
Collapse
Affiliation(s)
- Yulan Zhen
- Oncology Center, The Affiliated Hospital, Guangdong Medical College, Zhanjiang, Guangdong 524001, P.R. China
| | - Wei Zhang
- Department of Cardiovasology and Cardiac Care Unit (CCU), Huangpu Division of The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Chujie Liu
- Department of Neurology, Dalang Hospital, Dongguan, Guangdong 523700, P.R. China
| | - Jing He
- The First People's Hospital of Yueyang, Yueyang, Hunan 414000, P.R. China
| | - Yun Lu
- Department of Infectious Disease I, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510000, P.R. China
| | - Ruixian Guo
- Department of Physiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510000, P.R. China
| | - Jianqiang Feng
- Department of Physiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510000, P.R. China
| | - Ying Zhang
- Oncology Center, The Affiliated Hospital, Guangdong Medical College, Zhanjiang, Guangdong 524001, P.R. China
| | - Jingfu Chen
- Department of Cardiovasology and Cardiac Care Unit (CCU), Huangpu Division of The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| |
Collapse
|
18
|
Effects of dihydrotestosterone on rat dermal papilla cells in vitro. Eur J Pharmacol 2015; 757:74-83. [DOI: 10.1016/j.ejphar.2015.03.055] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 03/11/2015] [Accepted: 03/17/2015] [Indexed: 11/23/2022]
|
19
|
Liu Y, Flores D, Carrisoza-Gaytán R, Rohatgi R. Cholesterol affects flow-stimulated cyclooxygenase-2 expression and prostanoid secretion in the cortical collecting duct. Am J Physiol Renal Physiol 2015; 308:F1229-37. [PMID: 25761882 DOI: 10.1152/ajprenal.00635.2014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 03/09/2015] [Indexed: 12/31/2022] Open
Abstract
Essential hypertension (eHTN) is associated with hypercholesterolemia, but how cholesterol contributes to eHTN is unknown. Recent evidence demonstrates that short-term dietary cholesterol ingestion induces epithelial Na channel (ENaC)-dependent Na absorption with a subsequent rise in blood pressure (BP), implicating cholesterol in salt-sensitive HTN. Prostaglandin E2 (PGE2), an autocrine/paracrine molecule, is induced by flow in endothelia to vasodilate the vasculature and inhibit ENaC-dependent Na absorption in the renal collecting duct (CD), which reduce BP. We hypothesize that cholesterol suppresses flow-mediated cyclooxygenase-2 (COX-2) expression and PGE2 release in the CD, which, in turn, affects Na absorption. Cortical CDs (CCDs) were microperfused at 0, 1, and 5 nl·min(-1)·mm(-1), and PGE2 release was measured. Secreted PGE2 was similar between no- and low-flow (151 ± 28 vs. 121 ± 48 pg·ml(-1)·mm(-1)) CCDs, but PGE2 was greatest from high-flow (578 ± 146 pg·ml(-1)·mm(-1); P < 0.05) CCDs. Next, mice were fed either a 0 or 1% cholesterol diet, injected with saline to generate high urine flow rates, and CCDs were microdissected for PGE2 secretion. CCDs isolated from cholesterol-fed mice secreted less PGE2 and had a lower PGE2-generating capacity than CCDs isolated from control mice, implying cholesterol repressed flow-induced PGE2 synthesis. Next, cholesterol extraction in a CD cell line induced COX-2 expression and PGE2 release while cholesterol incorporation, conversely, suppressed their expression. Moreover, fluid shear stress (FSS) and cholesterol extraction induced COX-2 protein abundance via p38-dependent activation. Thus cellular cholesterol composition affects biomechanical signaling, which, in turn, affects FSS-mediated COX-2 expression and PGE2 release via a p38-dependent mechanism.
Collapse
Affiliation(s)
- Yu Liu
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Medicine, The James J. Peters Veterans Affairs Medical Center, New York, New York; and
| | - Daniel Flores
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Medicine, The James J. Peters Veterans Affairs Medical Center, New York, New York; and
| | | | - Rajeev Rohatgi
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Medicine, The James J. Peters Veterans Affairs Medical Center, New York, New York; and Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
20
|
Aslan M, Özcan F, Tuzcu H, Kıraç E, Elpek GO. Inhibition of neutral sphingomyelinase decreases arachidonic acid mediated inflammation in liver ischemia-reperfusion injury. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2014; 7:7814-7823. [PMID: 25550821 PMCID: PMC4270595 DOI: pmid/25550821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 10/16/2014] [Indexed: 02/08/2023]
Abstract
This study aimed to determine the role of selective neutral sphingomyelinase (N-SMase) inhibition on arachidonic acid (AA) mediated inflammation following liver ischemia-reperfusion (IR) injury. Selective N-SMase inhibitor was administered via intraperitoneal injections. Liver IR injury was created by clamping blood vessels supplying the median and left lateral hepatic lobes for 60 min, followed by 60 min reperfusion. Levels of AA in liver tissue were determined by multiple reaction monitoring (MRM) using ultra fast-liquid chromatography (UFLC) coupled with tandem mass spectrometry (MS/MS). Phospholipase A₂ (PLA₂), cyclooxygenase (COX) and prostaglandin E₂ (PGE₂) were measured in liver tissue. Arachidonic acid levels, activity of PLA₂, COX and PGE₂ levels were significantly increased in postischemic liver tissue compared to nonischemic controls. N-SMase inhibition significantly decreased COX activity and PGE₂ levels in postischemic liver. Future studies evaluating agents blocking N-SMase activity can facilitate the development of treatment strategies to alleviate inflammation in liver I/R injury.
Collapse
Affiliation(s)
- Mutay Aslan
- Department of Medical Biochemistry, Akdeniz University Faculty of MedicineAntalya 07070, Turkey
| | - Filiz Özcan
- Department of Medical Biochemistry, Akdeniz University Faculty of MedicineAntalya 07070, Turkey
| | - Hazal Tuzcu
- Department of Medical Biochemistry, Akdeniz University Faculty of MedicineAntalya 07070, Turkey
| | - Ebru Kıraç
- Department of Medical Biochemistry, Akdeniz University Faculty of MedicineAntalya 07070, Turkey
| | - Gulsum O Elpek
- Department of Pathology, Akdeniz University Faculty of MedicineAntalya 07070, Turkey
| |
Collapse
|
21
|
Harris RE, Casto BC, Harris ZM. Cyclooxygenase-2 and the inflammogenesis of breast cancer. World J Clin Oncol 2014; 5:677-692. [PMID: 25302170 PMCID: PMC4129532 DOI: 10.5306/wjco.v5.i4.677] [Citation(s) in RCA: 121] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Revised: 02/28/2014] [Accepted: 03/14/2014] [Indexed: 02/06/2023] Open
Abstract
Cohesive scientific evidence from molecular, animal, and human investigations supports the hypothesis that constitutive overexpression of cyclooxygenase-2 (COX-2) is a ubiquitous driver of mammary carcinogenesis, and reciprocally, that COX-2 blockade has strong potential for breast cancer prevention and therapy. Key findings include the following: (1) COX-2 is constitutively expressed throughout breast cancer development and expression intensifies with stage at detection, cancer progression and metastasis; (2) essential features of mammary carcinogenesis (mutagenesis, mitogenesis, angiogenesis, reduced apoptosis, metastasis and immunosuppression) are linked to COX-2-driven prostaglandin E2 (PGE-2) biosynthesis; (3) upregulation of COX-2 and PGE-2 expression induces transcription of CYP-19 and aromatase-catalyzed estrogen biosynthesis which stimulates unbridled mitogenesis; (4) extrahepatic CYP-1B1 in mammary adipose tissue converts paracrine estrogen to carcinogenic quinones with mutagenic impact; and (5) agents that inhibit COX-2 reduce the risk of breast cancer in women without disease and reduce recurrence risk and mortality in women with breast cancer. Recent sharp increases in global breast cancer incidence and mortality are likely driven by chronic inflammation of mammary adipose and upregulation of COX-2 associated with the obesity pandemic. The totality of evidence clearly supports the supposition that mammary carcinogenesis often evolves as a progressive series of highly specific cellular and molecular changes in response to induction of constitutive over-expression of COX-2 and the prostaglandin cascade in the “inflammogenesis of breast cancer”.
Collapse
|
22
|
Jacobo-Herrera NJ, Pérez-Plasencia C, Camacho-Zavala E, González GF, Urrutia EL, García-Castillo V, Zentella-Dehesa A. Clinical evidence of the relationship between aspirin and breast cancer risk (review). Oncol Rep 2014; 32:451. [PMID: 24927467 DOI: 10.3892/or.2014.3270] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 05/15/2014] [Indexed: 11/06/2022] Open
Abstract
In the search for new therapeutic alternatives against cancer, either as a preventive treatment or for advanced stages, it is common to appeal to well-known drugs used for the treatment of other diseases that may interfere with the metabolic pathways involved in carcinogenesis. Non-steroidal anti-inflammatory drugs (NSAIDs) display anticancer activity through the inhibition of the COX-2 enzyme, triggering processes such as apoptosis, a reduction in proliferation and inhibition of carcinogenesis. Breast cancer is a neoplasm with the highest incidence and mortality rate among young women worldwide. Epidemiologic data have shown that drugs such as NSAIDs, particularly aspirin, reduce the relative risk of breast cancer. However, in the subgroup of responsive patients, dose, time and frequency of use have not yet been established. Here, we review the reports published during the last 10 years regarding the relationship between breast cancer and aspirin.
Collapse
Affiliation(s)
- Nadia J Jacobo-Herrera
- Unidad de Bioquímica, Instituto Nacional de Ciencias Médicas y Nutrición 'Salvador Zubirán', Tlalpan 14000, Mexico, D.F., Mexico
| | - Carlos Pérez-Plasencia
- Unidad de Biomedicina FES-Iztacala, Universidad Nacional Autónoma de México UNAM, Tlalnepantla 54090, Mexico
| | - Elizabeth Camacho-Zavala
- Unidad de Bioquímica, Instituto Nacional de Ciencias Médicas y Nutrición 'Salvador Zubirán', Tlalpan 14000, Mexico, D.F., Mexico
| | - Gabriela Figueroa González
- Unidad de Biomedicina FES-Iztacala, Universidad Nacional Autónoma de México UNAM, Tlalnepantla 54090, Mexico
| | - Eduardo López Urrutia
- Laboratorio de Oncogenómica, Instituto Nacional de Cancerología, Tlalpan 14080, Mexico, D.F., Mexico
| | - Verónica García-Castillo
- Unidad de Biomedicina FES-Iztacala, Universidad Nacional Autónoma de México UNAM, Tlalnepantla 54090, Mexico
| | - Alejandro Zentella-Dehesa
- Unidad de Bioquímica, Instituto Nacional de Ciencias Médicas y Nutrición 'Salvador Zubirán', Tlalpan 14000, Mexico, D.F., Mexico
| |
Collapse
|
23
|
Zhao Y, de Toledo SM, Hu G, Hei TK, Azzam EI. Connexins and cyclooxygenase-2 crosstalk in the expression of radiation-induced bystander effects. Br J Cancer 2014; 111:125-31. [PMID: 24867691 PMCID: PMC4090739 DOI: 10.1038/bjc.2014.276] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Revised: 03/24/2014] [Accepted: 04/25/2014] [Indexed: 11/15/2022] Open
Abstract
Background: Signalling events mediated by connexins and cyclooxygenase-2 (COX-2) have important roles in bystander effects induced by ionising radiation. However, whether these proteins mediate bystander effects independently or cooperatively has not been investigated. Methods: Bystander normal human fibroblasts were cocultured with irradiated adenocarcinoma HeLa cells in which specific connexins (Cx) are expressed in the absence of endogenous Cx, before and after COX-2 knockdown, to investigate DNA damage in bystander cells and their progeny. Results: Inducible expression of gap junctions composed of connexin26 (Cx26) in irradiated HeLa cells enhanced the induction of micronuclei in bystander cells (P<0.01) and reduced the coculture time necessary for manifestation of the effect. In contrast, expression of connexin32 (Cx32) conferred protective effects. COX-2 knockdown in irradiated HeLa Cx26 cells attenuated the bystander response due to connexin expression. However, COX-2 knockdown resulted in enhanced micronucleus formation in the progeny of the bystander cells (P<0.001). COX-2 knockdown delayed junctional communication in HeLa Cx26 cells, and reduced, in the plasma membrane, the physical interaction of Cx26 with MAPKKK, a controller of the MAPK pathway that regulates COX-2 and connexin. Conclusions: Junctional communication and COX-2 cooperatively mediate the propagation of radiation-induced non-targeted effects. Characterising the mediating events affected by both mechanisms may lead to new approaches that mitigate secondary debilitating effects of cancer radiotherapy.
Collapse
Affiliation(s)
- Y Zhao
- Department of Radiology, Rutgers University, New Jersey Medical School, Cancer Center, Newark, NJ 07103, USA
| | - S M de Toledo
- Department of Radiology, Rutgers University, New Jersey Medical School, Cancer Center, Newark, NJ 07103, USA
| | - G Hu
- Department of Radiology, Rutgers University, New Jersey Medical School, Cancer Center, Newark, NJ 07103, USA
| | - T K Hei
- Center for Radiological Research, Department of Radiation Oncology, Columbia University Medical Center, New York, NY 10032, USA
| | - E I Azzam
- Department of Radiology, Rutgers University, New Jersey Medical School, Cancer Center, Newark, NJ 07103, USA
| |
Collapse
|
24
|
Role of Cyclooxygenase 2 (COX-2) in Prognosis of Breast Cancer. Indian J Surg Oncol 2014; 5:59-65. [PMID: 24669166 DOI: 10.1007/s13193-014-0290-y] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 01/20/2014] [Indexed: 10/25/2022] Open
Abstract
COX-2 regulates tumour growth, invasion and metastasis in breast cancer. This study investigated the association between COX-2 expression in human breast cancer versus the expression of ER, PR, HER-2/neu, as well as its association with other established prognostic indicators like age, menopausal status, tumour size, lymph nodal status, stage, grade, NPI and histological subtype, and aims to validate the role of overexpression of COX-2 as a prognostic marker in patients with breast cancer in Indian subcontinent. In this hospital based study of 123 breast cancer patients (Group-A) and 76 female patients with benign breast disease (Group-B) attending a Comprehensive Breast Clinic at a reputed institute in Eastern India, COX-2 protein expression was measured from breast tissue using the Western Blot Technique. COX-2 mRNA expression was measured by RT-PCR Technique. ER, PR and HER-2/neu status was measured by immunohistochemistry methods. COX-2 was not expressed in the control group. The proportion of COX-2 positive tumours was significantly higher in patients of age >50 years [52(91.2 %), p < 0.01], postmenopausal status [64(90.1 %), p < 0.01], advanced stage of disease (p < 0.01), higher grade (p < 0.01), larger tumors (p < 0.01), metastatic lymph nodes (p < 0.01) and NPI ≥ 5.4 (p < 0.01). COX-2 expression was seen in ER-negative [66(95.7 %), p < 0.01], PR-negative [76(92.7 %), p < 0.01], and HER-2/neu positive tumours [29(100.0 %), p < 0.01]. Risk of COX-2 positivity was found to be 2.74 times more for postmenopausal status, 6.90 times more for large size tumours (≥ 2.5), 34.37 times more for node positive tumours, 9.26 times more with ER negative patients and 5.88 times more for PR negative patients. COX-2 expression is associated with established indicators of poor prognosis such as postmenopausal status, age >50 year, advanced stage of disease, large tumour size, higher grade, lymph node metastasis, NPI ≥ 5.4, ER negativity, PR negativity and HER-2/neu positivity. Thus, COX-2 expression implies aggressive tumour biology, and may play an important role as a prognostic marker.
Collapse
|
25
|
Truman JP, García-Barros M, Obeid LM, Hannun YA. Evolving concepts in cancer therapy through targeting sphingolipid metabolism. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1841:1174-88. [PMID: 24384461 DOI: 10.1016/j.bbalip.2013.12.013] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2013] [Revised: 12/18/2013] [Accepted: 12/21/2013] [Indexed: 12/29/2022]
Abstract
Traditional methods of cancer treatment are limited in their efficacy due to both inherent and acquired factors. Many different studies have shown that the generation of ceramide in response to cytotoxic therapy is generally an important step leading to cell death. Cancer cells employ different methods to both limit ceramide generation and to remove ceramide in order to become resistant to treatment. Furthermore, sphingosine kinase activity, which phosphorylates sphingosine the product of ceramide hydrolysis, has been linked to multidrug resistance, and can act as a strong survival factor. This review will examine several of the most frequently used cancer therapies and their effect on both ceramide generation and the mechanisms employed to remove it. The development and use of inhibitors of sphingosine kinase will be focused upon as an example of how targeting sphingolipid metabolism may provide an effective means to improve treatment response rates and reduce associated treatment toxicity. This article is part of a Special Issue entitled Tools to study lipid functions.
Collapse
Affiliation(s)
- Jean-Philip Truman
- Health Science Center, Stony Brook University, 100 Nicolls Road, T15, 023, 11794 Stony Brook, NY, USA.
| | - Mónica García-Barros
- Health Science Center, Stony Brook University, 100 Nicolls Road, T15, 023, 11794 Stony Brook, NY, USA.
| | - Lina M Obeid
- Northport Veterans Affairs Medical Center, Northport, NY 11768, USA; Health Science Center, Stony Brook University, 100 Nicolls Road, L4, 178, 11794 Stony Brook, NY, USA.
| | - Yusuf A Hannun
- Department of Medicine and the Stony Brook Cancer Center, Health Science Center, Stony Brook University, 100 Nicolls Road, L4, 178, 11794 Stony Brook, NY, USA.
| |
Collapse
|
26
|
Heger M, van Golen RF, Broekgaarden M, Michel MC. The molecular basis for the pharmacokinetics and pharmacodynamics of curcumin and its metabolites in relation to cancer. Pharmacol Rev 2013; 66:222-307. [PMID: 24368738 DOI: 10.1124/pr.110.004044] [Citation(s) in RCA: 376] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
This review addresses the oncopharmacological properties of curcumin at the molecular level. First, the interactions between curcumin and its molecular targets are addressed on the basis of curcumin's distinct chemical properties, which include H-bond donating and accepting capacity of the β-dicarbonyl moiety and the phenylic hydroxyl groups, H-bond accepting capacity of the methoxy ethers, multivalent metal and nonmetal cation binding properties, high partition coefficient, rotamerization around multiple C-C bonds, and the ability to act as a Michael acceptor. Next, the in vitro chemical stability of curcumin is elaborated in the context of its susceptibility to photochemical and chemical modification and degradation (e.g., alkaline hydrolysis). Specific modification and degradatory pathways are provided, which mainly entail radical-based intermediates, and the in vitro catabolites are identified. The implications of curcumin's (photo)chemical instability are addressed in light of pharmaceutical curcumin preparations, the use of curcumin analogues, and implementation of nanoparticulate drug delivery systems. Furthermore, the pharmacokinetics of curcumin and its most important degradation products are detailed in light of curcumin's poor bioavailability. Particular emphasis is placed on xenobiotic phase I and II metabolism as well as excretion of curcumin in the intestines (first pass), the liver (second pass), and other organs in addition to the pharmacokinetics of curcumin metabolites and their systemic clearance. Lastly, a summary is provided of the clinical pharmacodynamics of curcumin followed by a detailed account of curcumin's direct molecular targets, whereby the phenotypical/biological changes induced in cancer cells upon completion of the curcumin-triggered signaling cascade(s) are addressed in the framework of the hallmarks of cancer. The direct molecular targets include the ErbB family of receptors, protein kinase C, enzymes involved in prostaglandin synthesis, vitamin D receptor, and DNA.
Collapse
Affiliation(s)
- Michal Heger
- Department of Experimental Surgery, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105AZ Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|
27
|
Oh E, Yun M, Kim SK, Seo G, Bae JS, Joo K, Chae GT, Lee SB. Palmitate induces COX-2 expression via the sphingolipid pathway-mediated activation of NF-κB, p38, and ERK in human dermal fibroblasts. Arch Dermatol Res 2013; 306:339-45. [DOI: 10.1007/s00403-013-1434-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 11/22/2013] [Accepted: 12/06/2013] [Indexed: 12/12/2022]
|
28
|
Liu Y, Flores D, Carrisoza-Gaytán R, Rohatgi R. Biomechanical regulation of cyclooxygenase-2 in the renal collecting duct. Am J Physiol Renal Physiol 2013; 306:F214-23. [PMID: 24226521 DOI: 10.1152/ajprenal.00327.2013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
High-dietary sodium (Na), a feature of the Western diet, requires the kidney to excrete ample Na to maintain homeostasis and prevent hypertension. High urinary flow rate, presumably, leads to an increase in fluid shear stress (FSS) and FSS-mediated release of prostaglandin E2 (PGE2) by the cortical collecting duct (CCD) that enhances renal Na excretion. The pathways by which tubular flow biomechanically regulates PGE2 release and cyclooxygenase-2 (COX-2) expression are limited. We hypothesized that FSS, through stimulation of neutral-sphingomyelinase (N-SM) activity, enhances COX-2 expression to boost Na excretion. To test this, inner medullary CD3 cells were exposed to FSS in vitro and mice were injected with isotonic saline in vivo to induce high tubular flow. In vitro, FSS induced N-SM activity and COX-2 protein expression in cells while inhibition of N-SM activity repressed FSS-induced COX-2 protein abundance. Moreover, the murine CCD expresses N-SM protein and, when mice are injected with isotonic saline to induce high tubular flow, renal immunodetectable COX-2 is induced. Urinary PGE2 (445 ± 91 vs. 205 ± 14 pg/ml; P < 0.05) and microdissected CCDs (135.8 ± 21.7 vs. 65.8 ± 11.0 pg·ml(-1)·mm(-1) CCD; P < 0.05) from saline-injected mice generate more PGE2 than sham-injected controls, respectively. Incubation of CCDs with arachidonic acid and subsequent measurement of secreted PGE2 are a reflection of the PGE2 generating potential of the epithelia. CCDs isolated from polyuric mice doubled their PGE2 generating potential and this was due to induction of COX-2 activity/protein. Thus, high tubular flow and FSS induce COX-2 protein/activity to enhance PGE2 release and, presumably, effectuate Na excretion.
Collapse
Affiliation(s)
- Yu Liu
- One Gustave L. Levy Place, Box 1664, The Mount Sinai School of Medicine, New York, NY 10029.
| | | | | | | |
Collapse
|
29
|
Lin HY, Delmas D, Vang O, Hsieh TC, Lin S, Cheng GY, Chiang HL, Chen CE, Tang HY, Crawford DR, Whang-Peng J, Hwang J, Liu LF, Wu JM. Mechanisms of ceramide-induced COX-2-dependent apoptosis in human ovarian cancer OVCAR-3 cells partially overlapped with resveratrol. J Cell Biochem 2013; 114:1940-54. [PMID: 23495037 DOI: 10.1002/jcb.24539] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 02/28/2013] [Indexed: 01/15/2023]
Abstract
Ceramide is a member of the sphingolipid family of bioactive molecules demonstrated to have profound, diverse biological activities. Ceramide is a potential chemotherapeutic agent via the induction of apoptosis. Exposure to ceramide activates extracellular-signal-regulated kinases (ERK)1/2- and p38 kinase-dependent apoptosis in human ovarian cancer OVCAR-3 cells, concomitant with an increase in the expression of COX-2 and p53 phosphorylation. Blockade of cyclooxygenase-2 (COX-2) activity by siRNA or NS398 correspondingly inhibited ceramide-induced p53 Ser-15 phosphorylation and apoptosis; thus COX-2 appears at the apex of the p38 kinase-mediated signaling cascade induced by ceramide. Induction of apoptosis by ceramide or resveratrol was inhibited by the endocytosis inhibitor, cytochalasin D (CytD); however, cells exposed to resveratrol showed greater sensitivity than ceramide-treated cells. Ceramide-treated cells underwent a dose-dependent reduction in trans-membrane potential. Although both ceramide and resveratrol induced the expressions of caspase-3 and -7, the effect of inducible COX-2 was different in caspase-7 expression induced by ceramide compared to resveratrol. In summary, resveratrol and ceramide converge on an endocytosis-requiring, ERK1/2-dependent signal transduction pathway and induction of COX-expression as an essential molecular antecedent for subsequent p53-dependent apoptosis. In addition, expressions of caspase-3 and -7 are observed. However, a p38 kinase-dependent signal transduction pathway and change in mitochondrial potential are also involved in ceramide-induced apoptosis.
Collapse
Affiliation(s)
- Hung-Yun Lin
- Institute of Cancer Biology and Drug Discovery, Taipei Medical University, Taipei, Taiwan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Telomerase reverse transcriptase inhibition stimulates cyclooxygenase 2 expression in cancer cells and synergizes with celecoxib to exert anti-cancer effects. Br J Cancer 2013; 108:2272-80. [PMID: 23681187 PMCID: PMC3681031 DOI: 10.1038/bjc.2013.208] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Background: Telomerase and telomerase reverse transcriptase (hTERT) confer cancer cells sustained proliferation and survival potentials. Targeting telomerase or hTERT is a novel anti-cancer strategy. However, telomerase/hTERT inhibition alone has minimal clinical efficacy. We explored the relationship between hTERT and cyclooxygenase 2 (COX2) and evaluated synergistic anti-cancer effects of targeting both hTERT and COX2. Methods: hTERT was depleted in gastric and cervical cancer cells using small interfering RNA (siRNA) and analysed for COX2 expression using quantitative PCR and immunoblotting. Viable cells and apoptotic cells in gastric cancer cells treated with hTERT siRNA or/and the COX2 inhibitor celecoxib were measured using Trypen blue exclusion and flow cytometry. The in vivo anti-cancer effect of hTERT depletion or/and celecoxib was evaluated using mouse xenograft models. Results: Knocking down hTERT expression in cancer cells led to robust increases in mRNA and protein levels of COX2. The COX2 promoter activity increased substantially in hTERT-depleted cells. hTERT depletion led to the activation of p38 mitogen-activated protein kinase responsible for the stimulation of COX2 gene transcription. hTERT depletion or celecoxib alone did not affect cancer cell survival, whereas their combination synergistically killed them both in vitro and in vivo. Conclusion: hTERT induces COX2 expression and simultaneously targeting hTERT and COX2 synergistically kills cancer cells.
Collapse
|
31
|
Therapeutic targeting of the ceramide-to-sphingosine 1-phosphate pathway in pain. Trends Pharmacol Sci 2013; 34:110-8. [DOI: 10.1016/j.tips.2012.12.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 12/01/2012] [Accepted: 12/04/2012] [Indexed: 11/20/2022]
|
32
|
Chen L, Sooranna SR, Lei K, Kandola M, Bennett PR, Liang Z, Grammatopoulos D, Johnson MR. Cyclic AMP increases COX-2 expression via mitogen-activated kinase in human myometrial cells. J Cell Mol Med 2012; 16:1447-60. [PMID: 21854542 PMCID: PMC3823214 DOI: 10.1111/j.1582-4934.2011.01413.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Cyclic AMP (cAMP) is the archetypal smooth muscle relaxant, mediating the effects of many hormones and drugs. However, recently PGI2, acting via cAMP/PKA, was found to increase contraction-associated protein expression in myometrial cells and to promote oxytocin-driven myometrial contractility. Cyclo-oxygenase-2 (COX-2) is the rate-limiting enzyme in prostaglandin synthesis, which is critical to the onset and progression of human labour. We have investigated the impact of cAMP on myometrial COX-2 expression, synthesis and activity. Three cAMP agonists (8-bromo-cAMP, forskolin and rolipram) increased COX-2 mRNA expression and further studies confirmed that this was associated with COX-2 protein synthesis and activity (increased PGE2 and PGI2 in culture supernatant) in primary cultures of human myometrial cells. These effects were neither reproduced by specific agonists nor inhibited by specific inhibitors of known cAMP-effectors (PKA, EPAC and AMPK). We then used shRNA to knockdown the same effectors and another recently described cAMP-effector PDZ-GEF1-2, without changing the response to cAMP. We found that MAPK activation mediated the cAMP effects on COX-2 expression and that PGE2 acts through EP-2 to activate MAPK and increase COX-2. These data provide further evidence in support of a dual role for cAMP in the regulation of myometrial function.
Collapse
Affiliation(s)
- Li Chen
- Academic Department of Obstetrics & Gynaecology, Imperial College School of Medicine, Chelsea and Westminster Hospital, London, UK
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Prostaglandin E2 and the suppression of phagocyte innate immune responses in different organs. Mediators Inflamm 2012; 2012:327568. [PMID: 23024463 PMCID: PMC3449139 DOI: 10.1155/2012/327568] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Revised: 04/19/2012] [Accepted: 05/03/2012] [Indexed: 12/15/2022] Open
Abstract
The local and systemic production of prostaglandin E2 (PGE2) and its actions in phagocytes lead to immunosuppressive conditions. PGE2 is produced at high levels during inflammation, and its suppressive effects are caused by the ligation of the E prostanoid receptors EP2 and EP4, which results in the production of cyclic AMP. However, PGE2 also exhibits immunostimulatory properties due to binding to EP3, which results in decreased cAMP levels. The various guanine nucleotide-binding proteins (G proteins) that are coupled to the different EP receptors account for the pleiotropic roles of PGE2 in different disease states. Here, we discuss the production of PGE2 and the actions of this prostanoid in phagocytes from different tissues, the relative contribution of PGE2 to the modulation of innate immune responses, and the novel therapeutic opportunities that can be used to control inflammatory responses.
Collapse
|
34
|
Minimizing the cancer-promotional activity of cox-2 as a central strategy in cancer prevention. Med Hypotheses 2012; 78:45-57. [DOI: 10.1016/j.mehy.2011.09.039] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Accepted: 09/19/2011] [Indexed: 02/06/2023]
|
35
|
Zhang P, Takeuchi K, Csaki LS, Reue K. Lipin-1 phosphatidic phosphatase activity modulates phosphatidate levels to promote peroxisome proliferator-activated receptor γ (PPARγ) gene expression during adipogenesis. J Biol Chem 2011; 287:3485-94. [PMID: 22157014 DOI: 10.1074/jbc.m111.296681] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Adipose tissue plays a key role in metabolic homeostasis. Disruption of the Lpin1 gene encoding lipin-1 causes impaired adipose tissue development and function in rodents. Lipin-1 functions as a phosphatidate phosphatase (PAP) enzyme in the glycerol 3-phosphate pathway for triglyceride storage and as a transcriptional coactivator/corepressor for metabolic nuclear receptors. Previous studies established that lipin-1 is required at an early step in adipocyte differentiation for induction of the adipogenic gene transcription program, including the key regulator peroxisome proliferator-activated receptor γ (PPARγ). Here, we investigate the requirement of lipin-1 PAP versus coactivator function in the establishment of Pparg expression during adipocyte differentiation. We demonstrate that PAP activity supplied by lipin-1, lipin-2, or lipin-3, but not lipin-1 coactivator activity, can rescue Pparg gene expression and lipogenesis during adipogenesis in lipin-1-deficient preadipocytes. In adipose tissue from lipin-1-deficient mice, there is an accumulation of phosphatidate species containing a range of medium chain fatty acids and an activation of the MAPK/extracellular signal-related kinase (ERK) signaling pathway. Phosphatidate inhibits differentiation of cultured adipocytes, and this can be rescued by the expression of lipin-1 PAP activity or by inhibition of ERK signaling. These results emphasize the importance of lipid intermediates as choreographers of gene regulation during adipogenesis, and the results highlight a specific role for lipins as determinants of levels of a phosphatidic acid pool that influences Pparg expression.
Collapse
Affiliation(s)
- Peixiang Zhang
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, California 90095, USA
| | | | | | | |
Collapse
|
36
|
Kue CS, Jung MY, Cho D, Kim TS. C6-ceramide enhances Interleukin-12-mediated T helper type 1 cell responses through a cyclooxygenase-2-dependent pathway. Immunobiology 2011; 217:601-9. [PMID: 22112438 DOI: 10.1016/j.imbio.2011.10.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2011] [Accepted: 10/25/2011] [Indexed: 12/24/2022]
Abstract
Ceramides, lipid molecules located predominantly within the plasma membrane of a cell, can function as second messengers, and have been known to carry out a number of cellular functions. T helper type 1 (Th1) immune responses are known to be involved in the cellular immunity, which is crucial in the cancer and allergy immunotherapy. This study was designed to evaluate the effects of ceramides on T helper cell responses and their underlying mechanisms. We demonstrated that a cell-permeable C6-ceramide (C6) together with IL-12 enhanced Th1 cell differentiation, whereas C6 alone had no effects, as demonstrated by the increased populations of IFN-γ expressing CD4(+) T cells and the up-regulation of IFN-γ production from CD4(+) T cells. In contrast, C2-ceramide and long chain ceramides (C16 and C24) did not affect the Th1 responses. C6 treatment was shown to increase the expression of T-bet, a master transcription factor of Th1 responses, in a dose-dependent fashion. Furthermore, C6 increased the expression of cyclooxygenase-2 (COX-2) in CD4(+) T cells. The C6-mediated increase of IFN-γ production and IFN-γ expressing CD4(+) T cell populations were significantly suppressed by a COX-2 specific inhibitor (NS-398) in a dose-dependent manner. T-bet expression was also decreased by NS-398 treatment, thereby indicating that C6 ceramide enhances Th1 responses via a COX-2 dependent pathway. This result demonstrates that C6 may be utilized in therapies for the treatment of immune diseases such cancer and allergy by enhancing the Th1 activity.
Collapse
Affiliation(s)
- Chin Siang Kue
- Division of Life Sciences, School of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Republic of Korea
| | | | | | | |
Collapse
|
37
|
Lipid metabolism modulation by the P2X7 receptor in the immune system and during the course of infection: new insights into the old view. Purinergic Signal 2011; 7:381-92. [PMID: 21845440 DOI: 10.1007/s11302-011-9255-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Accepted: 07/30/2011] [Indexed: 12/20/2022] Open
Abstract
For decades, scientists have described numerous protein pathways and functions. Much of a protein's function depends on its interactions with different partners, and those partners can change depending on the cell type or system. The P2X7 receptor (P2X7R) is one such multifunctional protein that is related to multiple partners and signaling pathways. The relationship between P2X7R and different enzymes involved in lipid metabolism represents a relatively new field in P2X7R research. This field of research began in epithelial cells and currently includes immune and nervous cells. The P2X7R-lipid metabolism pathway is related to many biological functions of P2X7R, such as cell death and pathogen clearance, and this signaling pathway may be involved in many functions that are dependent on bioactive lipids. In the present review, we will attempt to summarize data related to the P2X7R-lipid metabolism pathway, focusing on signaling pathways and their biological relevance to the immune system and infection.
Collapse
|
38
|
Doyle T, Chen Z, Muscoli C, Obeid LM, Salvemini D. Intraplantar-injected ceramide in rats induces hyperalgesia through an NF-κB- and p38 kinase-dependent cyclooxygenase 2/prostaglandin E2 pathway. FASEB J 2011; 25:2782-91. [PMID: 21551240 DOI: 10.1096/fj.10-178095] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Inflammatory pain represents an important unmet clinical need with important socioeconomic implications. Ceramide, a potent proinflammatory sphingolipid, has been shown to elicit mechanical hyperalgesia, but the mechanisms remain largely unknown. We now demonstrate that, in addition to mechanical hyperalgesia, intraplantar injection of ceramide (10 μg) led to the development of thermal hyperalgesia that was dependent on induction of the inducible cyclooxygenase (COX-2) and subsequent increase of prostaglandin E(2) (PGE(2)). The development of mechanical and thermal hyperalgesia and increased production of PGE(2) was blocked by NS-398 (15-150 ng), a selective COX-2 inhibitor. The importance of the COX-2 to PGE(2) pathway in ceramide signaling was underscored by the findings that intraplantar injection of a monoclonal PGE(2) antibody (4 μg) blocked the development of hyperalgesia. Our results further revealed that COX-2 induction is regulated by NF-κB and p38 kinase activation, since intraplantar injection of SC-514 (0.1-1 μg) or SB 203580 (1-10 μg), well-characterized inhibitors of NF-κB and p38 kinase activation, respectively, blocked COX-2 induction and increased formation of PGE(2) and thermal hyperalgesia in a dose-dependent manner. Moreover, activation of NF-κB was dependent on upstream activation of p38 MAPK, since SB 203580 (10 μg) blocked p65 phosphorylation, whereas p38 kinase phosphorylation was unaffected by NF-κB inhibition by SC-514 (1 μg). Our findings not only provide mechanistic insight into the signaling pathways engaged by ceramide in the development of hyperalgesia, but also provide a potential pharmacological basis for developing inhibitors targeting the ceramide metabolic-to-COX-2 pathway as novel analgesics.
Collapse
Affiliation(s)
- Tim Doyle
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, 1402 South Grand Blvd., St. Louis, MO 63104, USA
| | | | | | | | | |
Collapse
|
39
|
Hou Z, Falcone DJ, Subbaramaiah K, Dannenberg AJ. Macrophages induce COX-2 expression in breast cancer cells: role of IL-1β autoamplification. Carcinogenesis 2011; 32:695-702. [PMID: 21310944 DOI: 10.1093/carcin/bgr027] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Tumor-associated macrophages and high levels of cyclooxygenase-2 (COX-2) are associated with poor prognosis in breast cancer patients, but their potential interdependence has not been evaluated. The objective of this study was to determine whether macrophages regulate COX-2 expression in breast cancer cells. For this purpose, THP-1 cells were cocultured with HCC1954 breast cancer cells. Coculture led to increased COX-2 expression in the HCC1954 cells and elevated prostaglandin E(2) levels in conditioned media. Similar results were observed when THP-1 cells were incubated with HCC1937 breast cancer cells or when human monocyte-derived macrophages were cocultured with HCC1954 cells. Coculture triggered production of reactive oxygen species (ROS) in HCC1954 cells. COX-2 induction was blocked in cells preincubated with an reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase inhibitor or by silencing p67PHOX, a subunit of NADPH oxidase. ROS production triggered activation of Src and mitogen-activated protein kinases (MAPKs). Blocking Src or MAPK activities or antagonizing the activator protein-1 (AP-1) transcription factor attenuated COX-2 induction in HCC1954 cells. Coculture caused rapid induction of interleukin-1β (IL-1β) in both breast cancer cells and macrophages. Increased IL-1β expression was blocked by an interleukin-1 receptor antagonist (IL-1Ra), suggesting autocrine and paracrine effects. Importantly, macrophage-induced COX-2 expression was blocked in HCC1954 cells preincubated with IL-1Ra or anti-IL-1β IgG. Together, these results indicate that macrophage-mediated induction of COX-2 in breast cancer cells is a consequence of IL-1β-mediated stimulation of ROS→Src→MAPK→AP-1 signaling. IL-1β-dependent induction of COX-2 in breast cancer cells provides a mechanism whereby macrophages contribute to tumor progression and potential therapeutic targets in breast cancer.
Collapse
Affiliation(s)
- Zhe Hou
- Department of Medicine and Weill Cornell Cancer Center,Weill Cornell Medical College, New York, NY 10021, USA
| | | | | | | |
Collapse
|
40
|
Patwardhan GA, Liu YY. Sphingolipids and expression regulation of genes in cancer. Prog Lipid Res 2011; 50:104-14. [PMID: 20970453 PMCID: PMC3012148 DOI: 10.1016/j.plipres.2010.10.003] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 10/05/2010] [Accepted: 10/11/2010] [Indexed: 12/29/2022]
Abstract
Sphingolipids including glycosphingolipids have myriad effects on cell functions and affect cancer in aspects of tumorigenesis, metastasis and tumor response to treatments. Bioactive ones like ceramide, sphingosine 1-phosphate and globotriaosylceramide initiate and process cellular signaling to alter cell behaviors immediately responding to oncogenic stress or treatment challenges. Recent studies pinpoint that sphingolipid-mediated gene expression has long and profound impacts on cancer cells, and these play crucial roles in tumor progression and in treatment outcome. More than 10 sphingolipids and glycosphingolipids selectively mediate expressions of approximately 50 genes including c-myc, p21, c-fos, telomerase reverse transcriptase, caspase-9, Bcl-x, cyclooxygenase-2, matrix metalloproteinases, integrins, Oct-4, glucosylceramide synthase and multidrug-resistant gene 1. By diverse functions of these genes, sphingolipids enduringly affect cellular processes of mitosis, apoptosis, migration, stemness of cancer stem cells and cellular resistance to therapies. Mechanistic studies indicate that sphingolipids regulate particular gene expression by modulating phosphorylation and acetylation of proteins that serve as transcription factors (β-catenin, Sp1), repressor of transcription (histone H3), and regulators (SRp30a) in RNA splicing. Disclosing molecular mechanisms by which sphingolipids selectively regulate particular gene expression, instead of other relevant ones, requires understanding of the exact roles of individual lipid instead of a group, the signaling pathways that are implicated in and interaction with proteins or other lipids in details. These studies not only expand our knowledge of sphingolipids, but can also suggest novel targets for cancer treatments.
Collapse
Affiliation(s)
| | - Yong-Yu Liu
- Department of Basic Pharmaceutical Sciences, University of Louisiana at Monroe, 700 University Avenue, Monroe, LA 71209, USA
| |
Collapse
|
41
|
赵 晓, 陈 照, 赵 守, 赫 捷. [Expression and significance of COX-2 and its transcription factors NFAT3 and c-Jun in non-small cell lung cancer]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2010; 13:1035-40. [PMID: 21081043 PMCID: PMC6000498 DOI: 10.3779/j.issn.1009-3419.2010.11.07] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Revised: 08/23/2010] [Indexed: 01/08/2023]
Abstract
BACKGROUND AND OBJECTIVE Cyclooxygenases (COX), the key enzymes in the conversion of arachidonic acid (AA) to prostaglandins (PGs), are involved in initiation and progression of cancer. The aim of this study is to explore the relationship between the expressions of COX-2 and several transcription factors in non-small cell lung cancer. METHODS Immunohistochemistry was performed to assay the expression levels of COX-2, c-Fos, c-Jun and nuclear factor of activated T cells 3 (NFAT3) in tissue microarray containing 159 tumor tissues of non-small cell lung cancer. RESULTS The positive rate of COX-2 expression was 42.8%, and the expression of COX-2 was significantly higher in squamous cell carcinoma than that in adenocarcinoma (52.9% vs 31.3%, χ²=7.723, P=0.005). The expression of COX-2 was significantly associated with differentiation grade, with the lower level in the poorer differentiation grade group (χ²=7.600, P=0.022). In this panel of samples, the expression of COX-2 was significantly correlated with c-Fos expression (r=0.456, P<0.001) and NFAT3 level (r=0.294, P<0.001). The correlation between the expressions of NFAT3 and c-Fos were also observed (r=0.231, P=0.003). CONCLUSION The expression of COX-2 was significantly associated with the expressions of transcription factors NFAT3 and c-Fos in nonsmall cell lung cancer.
Collapse
Affiliation(s)
- 晓鸿 赵
- 100021 北京,北京协和医学院,中国医学科学院,肿瘤医院肿瘤研究所胸外科Department of Thoracic Surgery, Cancer Institute and Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100021, China
| | - 照丽 陈
- 100021 北京,北京协和医学院,中国医学科学院,肿瘤医院肿瘤研究所胸外科Department of Thoracic Surgery, Cancer Institute and Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100021, China
| | - 守华 赵
- 277500 滕州,山东省滕州市中心人民医院胸外科Department of Thoracic Surgery, Tengzhou Center People Hospital, Tengzhou 277500, China
| | - 捷 赫
- 100021 北京,北京协和医学院,中国医学科学院,肿瘤医院肿瘤研究所胸外科Department of Thoracic Surgery, Cancer Institute and Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100021, China
| |
Collapse
|
42
|
Inhibitory effect of 3-caffeoyl-4-dicaffeoylquinic acid from Salicornia herbacea against phorbol ester-induced cyclooxygenase-2 expression in macrophages. Chem Biol Interact 2010; 183:397-404. [DOI: 10.1016/j.cbi.2009.11.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2009] [Revised: 11/11/2009] [Accepted: 11/16/2009] [Indexed: 01/05/2023]
|
43
|
Han EH, Kim JY, Kim HG, Choi JH, Im JH, Woo ER, Jeong HG. Dihydro-N-caffeoyltyramine down-regulates cyclooxygenase-2 expression by inhibiting the activities of C/EBP and AP-1 transcription factors. Food Chem Toxicol 2010; 48:579-86. [DOI: 10.1016/j.fct.2009.11.035] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Revised: 10/27/2009] [Accepted: 11/11/2009] [Indexed: 01/17/2023]
|
44
|
Husvik C, Bryne M, Halstensen TS. c-Jun N-terminal kinase negatively regulates epidermal growth factor-induced cyclooxygenase-2 expression in oral squamous cell carcinoma cell lines. Eur J Oral Sci 2009; 117:663-8. [DOI: 10.1111/j.1600-0722.2009.00682.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
45
|
Nixon GF. Sphingolipids in inflammation: pathological implications and potential therapeutic targets. Br J Pharmacol 2009; 158:982-93. [PMID: 19563535 DOI: 10.1111/j.1476-5381.2009.00281.x] [Citation(s) in RCA: 223] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Sphingolipids are formed via the metabolism of sphingomyelin, a constituent of the plasma membrane, or by de novo synthesis. Enzymatic pathways result in the formation of several different lipid mediators, which are known to have important roles in many cellular processes, including proliferation, apoptosis and migration. Several studies now suggest that these sphingolipid mediators, including ceramide, ceramide 1-phosphate and sphingosine 1-phosphate (S1P), are likely to have an integral role in inflammation. This can involve, for example, activation of pro-inflammatory transcription factors in different cell types and induction of cyclooxygenase-2, leading to production of pro-inflammatory prostaglandins. The mode of action of each sphingolipid is different. Increased ceramide production leads to the formation of ceramide-rich areas of the membrane, which may assemble signalling complexes, whereas S1P acts via high-affinity G-protein-coupled S1P receptors on the plasma membrane. Recent studies have demonstrated that in vitro effects of sphingolipids on inflammation can translate into in vivo models. This review will highlight the areas of research where sphingolipids are involved in inflammation and the mechanisms of action of each mediator. In addition, the therapeutic potential of drugs that alter sphingolipid actions will be examined with reference to disease states, such as asthma and inflammatory bowel disease, which involve important inflammatory components. A significant body of research now indicates that sphingolipids are intimately involved in the inflammatory process and recent studies have demonstrated that these lipids, together with associated enzymes and receptors, can provide effective drug targets for the treatment of pathological inflammation.
Collapse
Affiliation(s)
- Graeme F Nixon
- School of Medical Sciences, University of Aberdeen, Foresterhill, UK.
| |
Collapse
|
46
|
Chen BC, Chang HM, Hsu MJ, Shih CM, Chiu YH, Chiu WT, Lin CH. Peptidoglycan induces cyclooxygenase-2 expression in macrophages by activating the neutral sphingomyelinase-ceramide pathway. J Biol Chem 2009; 284:20562-73. [PMID: 19531467 DOI: 10.1074/jbc.m109.028084] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The sphingomyelin signal transduction pathway is known to play a role in mediating the action of various cytokines. Herein, we examined the role of neutral sphingomyelinase (nSMase)/ceramide in peptidoglycan (PGN)-induced NF-kappaB activation and cyclooxygenase-2 (COX-2) expression in macrophages. PGN-induced COX-2 expression was attenuated by an nSMase inhibitor (3-O-methyl-sphingomyeline, 3-OMS) and ceramidase, but not by an acidic SMase inhibitor (imipramine). C2-ceramide, bacterial SMase (which mimics cellular SMase activity), and a ceramidase inhibitor (N-oleoyl-ethanolamine) individually had no effect on COX-2 expression; however, they markedly enhanced PGN-induced COX-2 expression. PGN activated nSMase, but not acidic SMase, resulting in increased ceramide generation. PGN-induced nSMase activation and ceramide formation were inhibited by 3-OMS, but not by imipramine. PGN-induced COX-2 expression was inhibited by a p38 MAPK inhibitor (SB 203580) and dominant negative mutants of MAPK kinase (MKK) 3, MKK6, and p38 MAPKalpha. 3-OMS selectively inhibited PGN-induced p38 MAPK and MKK3/6 activation, but not JNK or ERK1/2. C2-ceramide, bacterial SMase, and N-oleoyl-ethanolamine all induced p38 MAPK or MKK3/6 activation. The PGN-mediated increases in kappaB-luciferase activity were also inhibited by 3-OMS and the p38 MAPKalphaDN, but not by imipramine. Furthermore, C2-ceramide caused an increase in kappaB-luciferase activity. Our data demonstrate for the first time that PGN activates the nSMase/ceramide pathway to induce MKK3/6/p38 MAPK activation, which in turn initiates NF-kappaB activation and ultimately induces COX-2 expression in macrophages. The nSMase/ceramide pathway is required but might not be sufficient for COX-2 expression induced by PGN.
Collapse
Affiliation(s)
- Bing-Chang Chen
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | | | | | | | | | | | | |
Collapse
|
47
|
Jiang YJ, Uchida Y, Lu B, Kim P, Mao C, Akiyama M, Elias PM, Holleran WM, Grunfeld C, Feingold KR. Ceramide stimulates ABCA12 expression via peroxisome proliferator-activated receptor {delta} in human keratinocytes. J Biol Chem 2009; 284:18942-52. [PMID: 19429679 DOI: 10.1074/jbc.m109.006973] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
ABCA12 (ATP binding cassette transporter, family 12) is a cellular membrane transporter that facilitates the delivery of glucosylceramides to epidermal lamellar bodies in keratinocytes, a process that is critical for permeability barrier formation. Following secretion of lamellar bodies into the stratum corneum, glucosylceramides are metabolized to ceramides, which comprise approximately 50% of the lipid in stratum corneum. Gene mutations of ABCA12 underlie harlequin ichthyosis, a devastating skin disorder characterized by abnormal lamellar bodies and a severe barrier abnormality. Recently we reported that peroxisome proliferator-activated receptor (PPAR) and liver X receptor activators increase ABCA12 expression in human keratinocytes. Here we demonstrate that ceramide (C(2)-Cer and C(6)-Cer), but not C(8)-glucosylceramides, sphingosine, or ceramide 1-phosphate, increases ABCA12 mRNA expression in a dose- and time-dependent manner. Inhibitors of glucosylceramide synthase, sphingomyelin synthase, and ceramidase and small interfering RNA knockdown of human alkaline ceramidase, which all increase endogenous ceramide levels, also increased ABCA12 mRNA levels. Moreover, simultaneous treatment with C(6)-Cer and each of these same inhibitors additively increased ABCA12 expression, indicating that ceramide is an important inducer of ABCA12 expression and that the conversion of ceramide to other sphingolipids or metabolites is not required. Finally, both exogenous and endogenous ceramides preferentially stimulate PPARdelta expression (but not other PPARs or liver X receptors), whereas PPARdelta knockdown by siRNA transfection specifically diminished the ceramide-induced increase in ABCA12 mRNA levels, indicating that PPARdelta is a mediator of the ceramide effect. Together, these results show that ceramide, an important lipid component of epidermis, up-regulates ABCA12 expression via the PPARdelta-mediated signaling pathway, providing a substrate-driven, feed-forward mechanism for regulating this key lipid transporter.
Collapse
Affiliation(s)
- Yan J Jiang
- Metabolism Section, Veterans Affairs Medical Center, Northern California Institute for Research and Education, University of California, San Francisco, California 94121, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Matrix metalloproteinase-1 expression induced by IL-1β requires acid sphingomyelinase. FEBS Lett 2009; 583:915-20. [DOI: 10.1016/j.febslet.2009.02.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2008] [Revised: 02/03/2009] [Accepted: 02/04/2009] [Indexed: 11/18/2022]
|
49
|
Wang J, Lv XW, Du YG. Potential mechanisms involved in ceramide-induced apoptosis in human colon cancer HT29 cells. BIOMEDICAL AND ENVIRONMENTAL SCIENCES : BES 2009; 22:76-85. [PMID: 19462692 DOI: 10.1016/s0895-3988(09)60026-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
OBJECTIVE To investigate the potential mechanisms of cell death after the treatment with ceramide. METHODS MTT assay, DNA ladder, reporter assay, FACS and Western blot assay were employed to investigate the potential mechanisms of cell death after the treatment with C2-ceramide. RESULTS A short-time treatment with C2-ceramide induced cell death, which was associated with p38 MAP kinase activation, but had no links with typical caspase activation or PARP degradation. Rather than caspase inhibitor, Inhibitor of p38 MAP kinase blocked cell death induced by a short-time treatment with ceramide (<12 h). However, inhibition of p38 MAP kinase could not block cell death induced by a prolonged treatment with ceramide (>12 h). Moreover, incubation of cells with ceramide for a long time (>12 h) increased subG1, but reduced S phase accompanied by caspase-dependent and caspase-independent changes including NFkappaB activation. CONCLUSION Ceramide-induced cell apoptosis involves both caspase-dependent and -independent signaling pathway. Caspase-independent cell death occurring in a relatively early stage, which is mediated via p38 MAP kinase, can progress into a stage involving both caspase-dependent and -independent mechanisms accompanied by cell signaling of MAPKs and NFkappaB.
Collapse
Affiliation(s)
- Jing Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | | | | |
Collapse
|
50
|
Epidermal growth factor-dependent cyclooxygenase-2 induction in gliomas requires protein kinase C-δ. Oncogene 2009; 28:1410-20. [DOI: 10.1038/onc.2008.500] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|