1
|
Sirp A, Roots K, Nurm K, Tuvikene J, Sepp M, Timmusk T. Functional consequences of TCF4 missense substitutions associated with Pitt-Hopkins syndrome, mild intellectual disability, and schizophrenia. J Biol Chem 2021; 297:101381. [PMID: 34748727 PMCID: PMC8648840 DOI: 10.1016/j.jbc.2021.101381] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/28/2021] [Accepted: 10/30/2021] [Indexed: 11/24/2022] Open
Abstract
Transcription factor 4 (TCF4) is a basic helix-loop-helix transcription factor essential for neurocognitive development. The aberrations in TCF4 are associated with neurodevelopmental disorders including schizophrenia, intellectual disability, and Pitt-Hopkins syndrome, an autism-spectrum disorder characterized by developmental delay. Several disease-associated missense mutations in TCF4 have been shown to interfere with TCF4 function, but for many mutations, the impact remains undefined. Here, we tested the effects of 12 functionally uncharacterized disease-associated missense mutations and variations in TCF4 using transient expression in mammalian cells, confocal imaging, in vitro DNA-binding assays, and reporter assays. We show that Pitt-Hopkins syndrome-associated missense mutations within the basic helix-loop-helix domain of TCF4 and a Rett-like syndrome-associated mutation in a transcription activation domain result in altered DNA-binding and transcriptional activity of the protein. Some of the missense variations found in schizophrenia patients slightly increase TCF4 transcriptional activity, whereas no effects were detected for missense mutations linked to mild intellectual disability. We in addition find that the outcomes of several disease-related mutations are affected by cell type, TCF4 isoform, and dimerization partner, suggesting that the effects of TCF4 mutations are context-dependent. Together with previous work, this study provides a basis for the interpretation of the functional consequences of TCF4 missense variants.
Collapse
Affiliation(s)
- Alex Sirp
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Kaisa Roots
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Kaja Nurm
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Jürgen Tuvikene
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia; Protobios LLC, Tallinn, Estonia
| | - Mari Sepp
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia.
| | - Tõnis Timmusk
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia; Protobios LLC, Tallinn, Estonia.
| |
Collapse
|
2
|
Fautsch MP, Wieben ED, Baratz KH, Bhattacharyya N, Sadan AN, Hafford-Tear NJ, Tuft SJ, Davidson AE. TCF4-mediated Fuchs endothelial corneal dystrophy: Insights into a common trinucleotide repeat-associated disease. Prog Retin Eye Res 2020; 81:100883. [PMID: 32735996 PMCID: PMC7988464 DOI: 10.1016/j.preteyeres.2020.100883] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/24/2020] [Accepted: 07/04/2020] [Indexed: 12/13/2022]
Abstract
Fuchs endothelial corneal dystrophy (FECD) is a common cause for heritable visual loss in the elderly. Since the first description of an association between FECD and common polymorphisms situated within the transcription factor 4 (TCF4) gene, genetic and molecular studies have implicated an intronic CTG trinucleotide repeat (CTG18.1) expansion as a causal variant in the majority of FECD patients. To date, several non-mutually exclusive mechanisms have been proposed that drive and/or exacerbate the onset of disease. These mechanisms include (i) TCF4 dysregulation; (ii) toxic gain-of-function from TCF4 repeat-containing RNA; (iii) toxic gain-of-function from repeat-associated non-AUG dependent (RAN) translation; and (iv) somatic instability of CTG18.1. However, the relative contribution of these proposed mechanisms in disease pathogenesis is currently unknown. In this review, we summarise research implicating the repeat expansion in disease pathogenesis, define the phenotype-genotype correlations between FECD and CTG18.1 expansion, and provide an update on research tools that are available to study FECD as a trinucleotide repeat expansion disease. Furthermore, ongoing international research efforts to develop novel CTG18.1 expansion-mediated FECD therapeutics are highlighted and we provide a forward-thinking perspective on key unanswered questions that remain in the field. FECD is a common, age-related corneal dystrophy. The majority of cases are associated with expansion of a CTG repeat (CTG18.1). FECD is the most common trinucleotide repeat expansion disease in humans. Evidence supports multiple molecular mechanisms underlying the pathophysiology. Novel CTG18.1-targeted therapeutics are in development.
Collapse
Affiliation(s)
- Michael P Fautsch
- Department of Ophthalmology, 200 1st St SW, Mayo Clinic, Rochester, MN, 55905, USA.
| | - Eric D Wieben
- Department of Biochemistry and Molecular Biology, 200 1st St SW, Mayo Clinic, Rochester, MN, USA.
| | - Keith H Baratz
- Department of Ophthalmology, 200 1st St SW, Mayo Clinic, Rochester, MN, 55905, USA.
| | | | - Amanda N Sadan
- University College London Institute of Ophthalmology, London, ECIV 9EL, UK.
| | | | - Stephen J Tuft
- University College London Institute of Ophthalmology, London, ECIV 9EL, UK; Moorfields Eye Hospital, London, EC1V 2PD, UK.
| | - Alice E Davidson
- University College London Institute of Ophthalmology, London, ECIV 9EL, UK.
| |
Collapse
|
3
|
Attner MA, Keil W, Benavidez JM, Greenwald I. HLH-2/E2A Expression Links Stochastic and Deterministic Elements of a Cell Fate Decision during C. elegans Gonadogenesis. Curr Biol 2019; 29:3094-3100.e4. [PMID: 31402303 DOI: 10.1016/j.cub.2019.07.062] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 07/08/2019] [Accepted: 07/19/2019] [Indexed: 11/20/2022]
Abstract
Stochastic mechanisms diversify cell fate in organisms ranging from bacteria to humans [1-4]. In the anchor cell/ventral uterine precursor cell (AC/VU) fate decision during C. elegans gonadogenesis, two "α cells," each with equal potential to be an AC or a VU, interact via LIN-12/Notch and its ligand LAG-2/DSL [5, 6]. This LIN-12/Notch-mediated interaction engages feedback mechanisms that amplify a stochastic initial difference between the two α cells, ensuring that the cell with higher lin-12 activity becomes the VU while the other becomes the AC [7-9]. The initial difference between the α cells was originally envisaged as a random imbalance from "noise" in lin-12 expression/activity [6]. However, subsequent evidence that the relative birth order of the α cells biases their fates suggested other factors may be operating [7]. Here, we investigate the nature of the initial difference using high-throughput lineage analysis [10]; GFP-tagged endogenous LIN-12, LAG-2, and HLH-2, a conserved transcription factor that orchestrates AC/VU development [7, 11]; and tissue-specific hlh-2 null alleles. We identify two stochastic elements: relative birth order, which largely originates at the beginning of the somatic gonad lineage three generations earlier, and onset of HLH-2 expression, such that the α cell whose parent expressed HLH-2 first is biased toward the VU fate. We find that these elements are interrelated, because initiation of HLH-2 expression is linked to the birth of the parent cell. Finally, we provide a potential deterministic mechanism for the HLH-2 expression bias by showing that hlh-2 is required for LIN-12 expression in the α cells.
Collapse
Affiliation(s)
- Michelle A Attner
- Department of Biological Sciences, Columbia University, 1212 Amsterdam Avenue, New York, NY 10027, USA
| | - Wolfgang Keil
- Center for Studies in Physics and Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA; Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, CNRS UMR168, 26 rue d'Ulm, 75248 Paris Cedex 05, France
| | - Justin M Benavidez
- Department of Biological Sciences, Columbia University, 1212 Amsterdam Avenue, New York, NY 10027, USA
| | - Iva Greenwald
- Department of Biological Sciences, Columbia University, 1212 Amsterdam Avenue, New York, NY 10027, USA.
| |
Collapse
|
4
|
Abstract
Purpose of Review Pitt Hopkins syndrome (PTHS) is a rare neurodevelopmental disorder that results from mutations of the clinically pleiotropic Transcription Factor 4 (TCF4) gene. Mutations in the genomic locus of TCF4 on chromosome 18 have been linked to multiple disorders including 18q syndrome, schizophrenia, Fuch's corneal dystrophy, and sclerosing cholangitis. For PTHS, TCF4 mutation or deletion leads to the production of a dominant negative TCF4 protein and/or haploinsufficiency that results in abnormal brain development. The biology of TCF4 has been studied for several years in regards to its role in immune cell differentiation, although its role in neurodevelopment and the mechanisms resulting in the severe symptoms of PTHS are not well studied. Recent Findings Here, we summarize the current understanding of PTHS and recent findings that have begun to describe the biological implications of TCF4 deficiency during brain development and into adulthood. In particular, we focus on recent work that has looked at the role of TCF4 biology within the context of PTHS and highlight the potential for identification of therapeutic targets for PTHS. Summary PTHS research continues to uncover mutations in TCF4 that underlie the genetic cause of this rare disease, and emerging evidence for molecular mechanisms that TCF4 regulates in brain development and neuronal function is contributing to a more complete picture of how pathology arises from this genetic basis, with important implications for the potential of future clinical care.
Collapse
|
5
|
Abstract
In this study, Sallee et al. demonstrate that E-protein dimer formation can promote C. elegans and human bHLH protein instability. By investigating HLH-2, the sole C. elegans E protein, the authors show that HLH-2 functions as a homodimer for sequential roles in AC specification and differentiation and that the functional dimer is targeted for degradation in VUs, the “opposite” fate. The findings indicate that dimerization-driven regulation of bHLH protein stability may be a conserved mechanism for differential regulation in specific cell contexts. E proteins are conserved regulators of growth and development. We show that the Caenorhabditis elegans E-protein helix–loop–helix-2 (HLH-2) functions as a homodimer in directing development and function of the anchor cell (AC) of the gonad, the critical organizer of uterine and vulval development. Our structure–function analysis of HLH-2 indicates that dimerization drives its degradation in other uterine cells (ventral uterine precursor cells [VUs]) that initially have potential to be the AC. We also provide evidence that this mode of dimerization-driven down-regulation can target other basic HLH (bHLH) dimers as well. Remarkably, human E proteins can functionally substitute for C. elegans HLH-2 in regulating AC development and also display dimerization-dependent degradation in VUs. Our results suggest that dimerization-driven regulation of bHLH protein stability may be a conserved mechanism for differential regulation in specific cell contexts.
Collapse
|
6
|
The emerging roles of TCF4 in disease and development. Trends Mol Med 2014; 20:322-31. [PMID: 24594265 DOI: 10.1016/j.molmed.2014.01.010] [Citation(s) in RCA: 121] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 01/28/2014] [Accepted: 01/30/2014] [Indexed: 10/25/2022]
Abstract
Genome-wide association studies have identified common variants in transcription factor 4 (TCF4) as susceptibility loci for schizophrenia, Fuchs' endothelial corneal dystrophy, and primary sclerosing cholangitis. By contrast, rare TCF4 mutations cause Pitt-Hopkins syndrome, a disorder characterized by intellectual disability and developmental delay, and have also been described in patients with other neurodevelopmental disorders. TCF4 therefore sits at the nexus between common and rare disorders. TCF4 interacts with other basic helix-loop-helix proteins, forming transcriptional networks that regulate the differentiation of several distinct cell types. Here, we review the role of TCF4 in these seemingly diverse disorders and discuss recent data implicating TCF4 as an important regulator of neurodevelopment and epithelial-mesenchymal transition.
Collapse
|
7
|
Sepp M, Pruunsild P, Timmusk T. Pitt-Hopkins syndrome-associated mutations in TCF4 lead to variable impairment of the transcription factor function ranging from hypomorphic to dominant-negative effects. Hum Mol Genet 2012; 21:2873-88. [PMID: 22460224 DOI: 10.1093/hmg/dds112] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Transcription factor TCF4 (alias ITF2, SEF2 or E2-2) is a broadly expressed basic helix-loop-helix (bHLH) protein that functions as a homo- or heterodimer. Missense, nonsense, frame-shift and splice-site mutations as well as translocations and large deletions encompassing TCF4 gene cause Pitt-Hopkins syndrome (PTHS), a rare developmental disorder characterized by severe motor and mental retardation, typical facial features and breathing anomalies. Irrespective of the mutation, TCF4 haploinsufficiency has been proposed as an underlying mechanism for PTHS. We have recently demonstrated that human TCF4 gene is transcribed using numerous 5' exons. Here, we re-evaluated the impact of all the published PTHS-associated mutations, taking into account the diversity of TCF4 isoforms, and assessed how the reading frame elongating and missense mutations affect TCF4 functions. Our analysis revealed that not all deletions and truncating mutations in TCF4 result in complete loss-of-function and the impact of reading frame elongating and missense mutations ranges from subtle deficiencies to dominant-negative effects. We show that (i) missense mutations in TCF4 bHLH domain and the reading frame elongating mutation damage DNA-binding and transactivation ability in a manner dependent on dimer context (homodimer versus heterodimer with ASCL1 or NEUROD2); (ii) the elongating mutation and the missense mutation at the dimer interface of the HLH domain destabilize the protein; and (iii) missense mutations outside of the bHLH domain cause no major functional deficiencies. We conclude that different PTHS-associated mutations impair the functions of TCF4 by diverse mechanisms and to a varying extent, possibly contributing to the phenotypic variability of PTHS patients.
Collapse
Affiliation(s)
- Mari Sepp
- Department of Gene Technology, Tallinn University of Technology, Akadeemia tee 15, Tallinn, Estonia
| | | | | |
Collapse
|
8
|
Parker MH, Perry RLS, Fauteux MC, Berkes CA, Rudnicki MA. MyoD synergizes with the E-protein HEB beta to induce myogenic differentiation. Mol Cell Biol 2006; 26:5771-83. [PMID: 16847330 PMCID: PMC1592768 DOI: 10.1128/mcb.02404-05] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2005] [Revised: 02/08/2006] [Accepted: 05/08/2006] [Indexed: 01/12/2023] Open
Abstract
The MyoD family of basic helix-loop-helix transcription factors function as heterodimers with members of the E-protein family to induce myogenic gene activation. The E-protein HEB is alternatively spliced to generate alpha and beta isoforms. While the function of these molecules has been studied in other cell types, questions persist regarding the molecular functions of HEB proteins in skeletal muscle. Our data demonstrate that HEB alpha expression remains unchanged in both myoblasts and myotubes, whereas HEB beta is upregulated during the early phases of terminal differentiation. Upon induction of differentiation, a MyoD-HEB beta complex bound the E1 E-box of the myogenin promoter leading to transcriptional activation. Importantly, forced expression of HEB beta with MyoD synergistically lead to precocious myogenin expression in proliferating myoblasts. However, after differentiation, HEB alpha and HEB beta synergized with myogenin, but not MyoD, to activate the myogenin promoter. Specific knockdown of HEB beta by small interfering RNA in myoblasts blocked differentiation and inhibited induction of myogenin transcription. Therefore, HEB alpha and HEB beta play novel and central roles in orchestrating the regulation of myogenic factor activity through myogenic differentiation.
Collapse
Affiliation(s)
- Maura H Parker
- Ottawa Health Research Institute, Molecular Medicine Program, 501 Smyth Road, Ottawa, Ontario K1H 8L6, Canada
| | | | | | | | | |
Collapse
|
9
|
Ik Tsen Heng J, Tan SS. The role of class I HLH genes in neural development--have they been overlooked? Bioessays 2003; 25:709-16. [PMID: 12815726 DOI: 10.1002/bies.10299] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Helix-loop-helix (HLH) genes encode for transcription factors affecting a whole variety of developmental programs, including neurogenesis. At least seven functional classes (denoted I to VII) of HLH genes exist, (1) with subclass members exhibiting homo- and heterodimerisation for proper DNA binding and transcriptional regulation of downstream target genes. In the developing nervous system, members of class II, V and VI have been most extensively studied concerning their roles in neural programming. In contrast, the function of class I proteins (such as E12 and E47) is poorly defined and the orthodox view relegates them to general dimerisation duties that are necessary for the activity of the other classes. However, closer scrutiny of the spatiotemporal expression patterns of class I factors, combined with recent biochemical evidence, would suggest that class I proteins possess specific functions during early neural differentiation. This essay supports this possibility, in addition to putting forward the hypothesis that, outside their general dimerisation activity, class I genes have independent roles in regulating neurogenesis.
Collapse
Affiliation(s)
- Julian Ik Tsen Heng
- Brain Development Group, The Howard Florey Institute, University of Melbourne, Parkville VIC 3010, Melbourne Australia
| | | |
Collapse
|
10
|
Desprez PY, Sumida T, Coppé JP. Helix-loop-helix proteins in mammary gland development and breast cancer. J Mammary Gland Biol Neoplasia 2003; 8:225-39. [PMID: 14635797 DOI: 10.1023/a:1025957025773] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The basic helix-loop-helix (bHLH) family of transcription factors functions in the coordinated regulation of gene expression, cell lineage commitment, and cell differentiation in most mammalian tissues. Helix-loop-helix Id (Inhibitor of DNA binding) proteins are distinct from bHLH transcription factors in that they lack the basic domain necessary for DNA binding. Id proteins thus function as dominant negative regulators of bHLH transcription factors. The inhibition of bHLH factor activity by forced constitutive expression of Id proteins is closely associated with the inhibition of differentiation in a number of different cell types, including mammary epithelial cells. Moreover, recent literature suggests important roles of HLH proteins in many normal and transformed tissues, including mammary gland. Therefore, future directions for prognosis or therapeutic treatments of breast cancer may be able to exploit bHLH and Id genes as useful molecular targets. The purpose of this review is to summarize the evidence implicating HLH proteins in the regulation of normal and transformed mammary epithelial cell phenotypes.
Collapse
Affiliation(s)
- Pierre-Yves Desprez
- California Pacific Medical Center, Cancer Research Institute, San Francisco, California 94115, USA.
| | | | | |
Collapse
|
11
|
Heng JIT, Tan SS. Cloning and characterization of GRIPE, a novel interacting partner of the transcription factor E12 in developing mouse forebrain. J Biol Chem 2002; 277:43152-9. [PMID: 12200424 DOI: 10.1074/jbc.m204858200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The helix-loop-helix (HLH) family of transcription factors are key contributors to a wide array of developmental processes, including neurogenesis and hematopoiesis. These factors are thought to exert their regulatory influences by binding to cognate promoter-DNA sequences as dimers. Although studies in mice have convincingly demonstrated that neurogenic HLH proteins such as NeuroD are intimately involved in neuronal fate determination, the role of the ubiquitously expressed HLH protein, E12, in mammalian neurogenesis remains ambiguous. To address this, a yeast two-hybrid interaction screen was employed to identify dimerization partners to E12. Screening of an embryonic day 11.5 forebrain library resulted in the cloning of GRIPE, a novel GAP-related interacting protein to E12. GRIPE binds to the HLH region of E12 and may require E12 for nuclear import. Furthermore, GRIPE may negatively regulate E12-dependent target gene transcription. High levels of GRIPE and E12 mRNA were coincidentally detected during embryogenesis, but only GRIPE mRNA levels remained high in adult brain, particularly in neurons of the cortex and hippocampus. These observations were recapitulated through an in vitro model of neurogenesis. Taken together, these results indicate that GRIPE is a novel protein dimerization of which with E12 has important consequences for cells undergoing neuronal differentiation.
Collapse
Affiliation(s)
- Julian Ik Tsen Heng
- Brain Development Group, Howard Florey Institute, University of Melbourne, Parkville, Melbourne, Victoria 3010, Australia
| | | |
Collapse
|
12
|
Zhao F, Vilardi A, Neely RJ, Choi JK. Promotion of cell cycle progression by basic helix-loop-helix E2A. Mol Cell Biol 2001; 21:6346-57. [PMID: 11509675 PMCID: PMC87370 DOI: 10.1128/mcb.21.18.6346-6357.2001] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Normal B-cell development requires the E2A gene and its encoded transcription factors E12 and E47. Current models predict that E2A promotes cell differentiation and inhibits G(1) cell cycle progression. The latter raises the conundrum of how B cells proliferate while expressing high levels of E2A protein. To study the relationship between E2A and cell proliferation, we established a tissue culture-based model in which the activity of E2A can be modulated in an inducible manner using E47R, an E47-estrogen fusion construct, and E47ERT, a dominant negative E47-estrogen fusion construct. The two constructs were subcloned into retroviral vectors and expressed in the human pre-B-cell line 697, the human myeloid progenitor cell line K562, and the murine fibroblastic cell line NIH 3T3. In both B cells and non-B cells, suppression of E2A activity by E47ERT inhibited G(1) progression and was associated with decreased expression of multiple cyclins including the G(1)-phase cyclin D2 and cyclin D3. Consistent with these findings, E2A null mice expressed decreased levels of cyclin D2 and cyclin D3 transcripts. In complementary experiments, ectopic expression of E47R promoted G(1) progression and was associated with increased levels of multiple cyclins, including cyclin D2 and cyclin D3. The induction of some cyclin transcripts occurred even in the absence of protein synthesis. We conclude that, in some cells, E2A can promote cell cycle progression, contrary to the present view that E2A inhibits G(1) progression.
Collapse
Affiliation(s)
- F Zhao
- Department of Genetics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | |
Collapse
|
13
|
Becker JR, Dorman CM, McClafferty TM, Johnson SE. Characterization of a dominant inhibitory E47 protein that suppresses C2C12 myogenesis. Exp Cell Res 2001; 267:135-43. [PMID: 11412046 DOI: 10.1006/excr.2001.5249] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Skeletal muscle formation is controlled through the coordinated actions of the muscle regulatory factors (MRFs). The activities of these basic helix-loop-helix proteins is mediated in part through heterodimer formation with a family of ubiquitous bHLH proteins, referred to as E-proteins. The primary E-protein in skeletal muscle is the E2A splice variant, E47. To further address the role of E47 during skeletal myogenesis, we created a chimeric E47 repressor protein by replacing the transcriptional activation domain with the Drosophila Engrailed transcriptional repressor domain. The dominant inhibitory E-protein (EnDeltaE47) formed homodimers capable of binding DNA and abolished E47-directed gene transcription. Stable expression of EnDeltaE47 in mouse C2C12 myoblasts effectively blocked the cells' ability to differentiate into mature myofibers. Closer examination of the molecular basis for the inhibition of myogenesis revealed that EnDeltaE47 preferentially forms heterodimers with myogenin. Interestingly, the chimeric repressor did not form DNA-binding heterodimers with MyoD in C2C12 myocytes. The failure to detect MyoD:EnDeltaE47 heterodimers in myoblasts was not due to protein conformational defects as both wild-type E47 and EnDeltaE47 readily formed DNA binding complexes with MyoD in vitro. These results indicate that E47 plays a crucial role in C2C12 myogenesis by serving as the preferred heterodimer partner of the myogenin protein.
Collapse
Affiliation(s)
- J R Becker
- Department of Poultry Science, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | | | |
Collapse
|
14
|
Terai S, Aoki H, Ashida K, Thorgeirsson SS. Human homologue of maid: A dominant inhibitory helix-loop-helix protein associated with liver-specific gene expression. Hepatology 2000; 32:357-66. [PMID: 10915743 DOI: 10.1053/jhep.2000.9092] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The helix-loop-helix (HLH) family of transcriptional regulatory proteins are key regulators in numerous developmental processes. The class I HLH proteins, such as E12 are ubiquitously expressed. Class II HLH proteins, such as MyoD, are expressed in a tissue-specific manner. Class I and II heterodimers can bind to E-boxes (CANNTG) and regulate lineage commitments of embryonic cells. In an attempt to identify partners for the E12 protein that may exert control during liver development, we performed the yeast 2-hybrid screen using an expression complementary DNA library from human fetal liver. A novel dominant inhibitory HLH factor, designated HHM (human homologue of maid), was isolated and characterized. HHM is structurally related to the Id family and was highly expressed in brain, pituitary gland, lung, heart, placenta, fetal liver, and bone marrow. HHM physically interacted with E12 in vitro and in mammalian cells. Comparison of the dominant inhibitory effects of HHM and Id2 on the binding of E12/MyoD dimer to an E-box element revealed a weaker inhibition by HHM. However, HHM but not Id2 specifically inhibited the luciferase gene activation induced by hepatic nuclear factor 4 (HNF4) promoter. The HHM was transiently expressed during stem-cell-driven regeneration of the liver at the stage in which the early basophilic foci of hepatocytes started to appear. These results suggest that HHM is a novel type of dominant inhibitory HLH protein that might modulate liver-specific gene expression.
Collapse
Affiliation(s)
- S Terai
- Laboratory of Experimental Carcinogenesis, Division of Basic Sciences, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | | | | | | |
Collapse
|
15
|
Liu J, Shi W, Warburton D. A cysteine residue in the helix-loop-helix domain of Id2 is critical for homodimerization and function. Biochem Biophys Res Commun 2000; 273:1042-7. [PMID: 10891368 DOI: 10.1006/bbrc.2000.3055] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Id proteins are negative regulators of basic helix-loop-helix (bHLH) transcription factors. In this study, we compared the expression of Id2 mRNA in proliferating (fetal) and nonproliferating (adult) alveolar epithelial cells (AECs). The expression of Id2 was higher in adult AECs than in the corresponding fetal cells, suggesting that Id2 might play a functional role in developmental regulation of lung epithelial cell proliferation. By screening a mouse embryo cDNA library in the yeast two-hybrid system, Id2 was identified as a self-associating protein. Structural analysis by deletion and site-directed mutagenesis demonstrated that the HLH domain and a cysteine residue within the HLH domain are essential for Id2 homodimerization. Furthermore, in vitro synthesized Id2 homodimers became monomers under reducing conditions, indicating that the formation of an intermolecular disulfide bond is critical for Id2 homodimerization. Transient transfection assays in A549 cells showed that wild-type Id2 down-regulated the activity of the cyclin A promoter by 70%, while mutating the cysteine critical for Id2 homodimerization abolished the inhibitory effect of wild-type Id2.
Collapse
Affiliation(s)
- J Liu
- Developmental Biology Program, Division of Pediatric Surgery, Childrens Hospital Los Angeles, University of Southern California, Keek School of Medicine, 4650 Sunset Boulevard, Los Angeles, California 90027, USA
| | | | | |
Collapse
|
16
|
Abstract
The utilization of optical biosensors to study molecular interactions continues to expand. In 1998, 384 articles relating to the use of commercial biosensors were published in 130 different journals. While significant strides in new applications and methodology were made, a majority of the biosensor literature is of rather poor quality. Basic information about experimental conditions is often not presented and many publications fail to display the experimental data, bringing into question the credibility of the results. This review provides suggestions on how to collect, analyze and report biosensor data.
Collapse
Affiliation(s)
- D G Myszka
- University of Utah, Salt Lake City, UT 84132, USA.
| |
Collapse
|
17
|
Yates PR, Atherton GT, Deed RW, Norton JD, Sharrocks AD. Id helix-loop-helix proteins inhibit nucleoprotein complex formation by the TCF ETS-domain transcription factors. EMBO J 1999; 18:968-76. [PMID: 10022839 PMCID: PMC1171189 DOI: 10.1093/emboj/18.4.968] [Citation(s) in RCA: 116] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The Id subfamily of helix-loop-helix (HLH) proteins plays a fundamental role in the regulation of cellular proliferation and differentiation. Id proteins are thought to inhibit differentiation mainly through interaction with other HLH proteins and by blocking their DNA-binding activity. Members of the ternary complex factor (TCF) subfamily of ETS-domain proteins have key functions in regulating immediate-early gene expression in response to mitogenic stimulation. TCFs form DNA-bound complexes with the serum response factor (SRF) and are direct targets of MAP kinase (MAPK) signal transduction cascades. In this study we demonstrate functional interactions between Id proteins and TCFs. Ids bind to the ETS DNA-binding domain and disrupt the formation of DNA-bound complexes between TCFs and SRF on the c-fos serum response element (SRE). Inhibition occurs by disrupting protein-DNA interactions with the TCF component of this complex. In vivo, the Id proteins cause down-regulation of the transcriptional activity mediated by the TCFs and thereby block MAPK signalling to SREs. Therefore, our results demonstrate a novel facet of Id function in the coordination of mitogenic signalling and cell cycle entry.
Collapse
Affiliation(s)
- P R Yates
- Department of Biochemistry and Genetics, The Medical School, University of Newcastle upon Tyne, Newcastle upon Tyne, NE2 4HH
| | | | | | | | | |
Collapse
|