1
|
Abulizi A, Vatner DF, Ye Z, Wang Y, Camporez JP, Zhang D, Kahn M, Lyu K, Sirwi A, Cline GW, Hussain MM, Aspichueta P, Samuel VT, Shulman GI. Membrane-bound sn-1,2-diacylglycerols explain the dissociation of hepatic insulin resistance from hepatic steatosis in MTTP knockout mice. J Lipid Res 2020; 61:1565-1576. [PMID: 32907986 PMCID: PMC7707176 DOI: 10.1194/jlr.ra119000586] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Microsomal triglyceride transfer protein (MTTP) deficiency results in a syndrome of hypolipidemia and accelerated NAFLD. Animal models of decreased hepatic MTTP activity have revealed an unexplained dissociation between hepatic steatosis and hepatic insulin resistance. Here, we performed comprehensive metabolic phenotyping of liver-specific MTTP knockout (L-Mttp-/-) mice and age-weight matched wild-type control mice. Young (10-12-week-old) L-Mttp-/- mice exhibited hepatic steatosis and increased DAG content; however, the increase in hepatic DAG content was partitioned to the lipid droplet and was not increased in the plasma membrane. Young L-Mttp-/- mice also manifested normal hepatic insulin sensitivity, as assessed by hyperinsulinemic-euglycemic clamps, no PKCε activation, and normal hepatic insulin signaling from the insulin receptor through AKT Ser/Thr kinase. In contrast, aged (10-month-old) L-Mttp-/- mice exhibited glucose intolerance and hepatic insulin resistance along with an increase in hepatic plasma membrane sn-1,2-DAG content and PKCε activation. Treatment with a functionally liver-targeted mitochondrial uncoupler protected the aged L-Mttp-/- mice against the development of hepatic steatosis, increased plasma membrane sn-1,2-DAG content, PKCε activation, and hepatic insulin resistance. Furthermore, increased hepatic insulin sensitivity in the aged controlled-release mitochondrial protonophore-treated L-Mttp-/- mice was not associated with any reductions in hepatic ceramide content. Taken together, these data demonstrate that differences in the intracellular compartmentation of sn-1,2-DAGs in the lipid droplet versus plasma membrane explains the dissociation of NAFLD/lipid-induced hepatic insulin resistance in young L-Mttp-/- mice as well as the development of lipid-induced hepatic insulin resistance in aged L-Mttp-/- mice.
Collapse
Affiliation(s)
- Abudukadier Abulizi
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Daniel F Vatner
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Zhang Ye
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Yongliang Wang
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Joao-Paulo Camporez
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Dongyan Zhang
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Mario Kahn
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Kun Lyu
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Alaa Sirwi
- Departments of Cell Biology and Pediatrics, SUNY Downstate Medical Center, Mineola, NY, USA
| | - Gary W Cline
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - M Mahmood Hussain
- Departments of Cell Biology and Pediatrics, SUNY Downstate Medical Center, Mineola, NY, USA; Department of Foundations of Medicine, NYU Long Island School of Medicine, Mineola, NY, USA
| | - Patricia Aspichueta
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain; Biocruces Research Institute, Barakaldo, Spain
| | - Varman T Samuel
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA; Veterans Affairs Medical Center, West Haven, CT, USA
| | - Gerald I Shulman
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA; Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
2
|
Matsuda D, Sato H, Maquat LE. Chapter 9. Studying nonsense-mediated mRNA decay in mammalian cells. Methods Enzymol 2008; 449:177-201. [PMID: 19215759 DOI: 10.1016/s0076-6879(08)02409-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Nonsense-mediated decay (NMD) in eukaryotic cells largely functions as a quality control mechanism by degrading faulty mRNAs that terminate translation prematurely. In recent years it has become evident that NMD also eliminates a subset of naturally occurring mRNA during proper gene expression. The mechanism of NMD in mammalian cells can be distinguished from the mechanism in, for example, Saccharomyces cerevisiae or Caenorhabditis elegans, by its apparent restriction to newly synthesized mRNA during a pioneer round of translation. This dependence can be explained by the need for at least one exon-exon junction complex (EJC) that is deposited on newly synthesized mRNA during the process of pre-mRNA splicing. Additionally, mammalian-cell NMD is promoted by the cap-binding protein heterodimer CBP80/20 that also typifies newly synthesized mRNA. When translation terminates sufficiently upstream of an EJC, the NMD factor Up-frameshift (Upf)1 is thought to join the stable EJC constituent NMD factors Upf2 and Upf3 or Upf3X (also called Upf3a or Upf3b, respectively), and undergo phosphorylation. Phosphorylation appears to trigger translational repression and mRNA decay. Although there are established rules for what generally defines an NMD target in mammalian cells, as with any rule there are exceptions and, thus, the need to experimentally verify individual mRNAs as bona fide targets of NMD. This chapter provides guidelines and protocols for how to define NMD targets using cultured mammalian cells.
Collapse
Affiliation(s)
- Daiki Matsuda
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, New York, USA
| | | | | |
Collapse
|
3
|
Isken O, Maquat LE. Quality control of eukaryotic mRNA: safeguarding cells from abnormal mRNA function. Genes Dev 2007; 21:1833-56. [PMID: 17671086 DOI: 10.1101/gad.1566807] [Citation(s) in RCA: 433] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Cells routinely make mistakes. Some mistakes are encoded by the genome and may manifest as inherited or acquired diseases. Other mistakes occur because metabolic processes can be intrinsically inefficient or inaccurate. Consequently, cells have developed mechanisms to minimize the damage that would result if mistakes went unchecked. Here, we provide an overview of three quality control mechanisms--nonsense-mediated mRNA decay, nonstop mRNA decay, and no-go mRNA decay. Each surveys mRNAs during translation and degrades those mRNAs that direct aberrant protein synthesis. Along with other types of quality control that occur during the complex processes of mRNA biogenesis, these mRNA surveillance mechanisms help to ensure the integrity of protein-encoding gene expression.
Collapse
Affiliation(s)
- Olaf Isken
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, New York 14642, USA
| | | |
Collapse
|
4
|
Bock HH, Herz J, May P. Conditional animal models for the study of lipid metabolism and lipid disorders. Handb Exp Pharmacol 2007:407-39. [PMID: 17203665 DOI: 10.1007/978-3-540-35109-2_17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The advent of technologies that allow conditional mutagenesis has revolutionized our ability to explore gene functions and to establish animal models of human diseases. Both aspects have proven to be of particular importance in the study of lipid-related disorders. Classical approaches to gene inactivation by conventional gene targeting strategies have been successfully applied to generate animal models like the LDL receptor- and the apolipoprotein E-knockout mice, which are still widely used to study diverse aspects of atherosclerosis, lipid transport, and neurodegenerative disease. In many cases, however, simply inactivating the gene of interest has resulted in early lethal or complex phenotypes which are difficult to interpret. In recent years, additional tools have therefore been developed that allow the spatiotemporally controlled manipulation of the genome, as described in detail in Part I of this volume. Our aim is to provide an exemplary survey of the application of different conditional mutagenesis techniques in lipid research in order to illustrate their potential to unravel physiological functions of a broad range of genes involved in lipid homeostasis.
Collapse
Affiliation(s)
- H H Bock
- Zentrum für Neurowissenschaften, Universität Freiburg, Albertstrasse 23, 79104 Freiburg, Germany.
| | | | | |
Collapse
|
5
|
Hinsdale ME, Maeda N. Complex control of mouse apolipoprotein B gene expression revealed by targeted duplication. Biochim Biophys Acta Mol Cell Biol Lipids 2005; 1734:178-89. [PMID: 15904874 DOI: 10.1016/j.bbalip.2005.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2005] [Revised: 02/28/2005] [Accepted: 03/01/2005] [Indexed: 10/25/2022]
Abstract
An elevated plasma level of apolipoprotein B-containing lipoproteins is a risk factor for atherosclerotic cardiovascular disease. Subtle genetic abnormalities in gene expression including an increased expression of the APOB gene may play an important role in determining overall risk. In an attempt to increase mouse Apob expression, we used gene targeting and duplicated approximately 65 kb of genomic DNA containing the Apob locus in its natural genomic position in mice. While we successfully generated mice carrying the Apob gene duplication, the amount of the total Apob mRNA was not increased in their liver. In the intestine, total Apob mRNA was reduced to half of the wild-type mice. Plasma lipids in the Apob duplication mice were not altered. Expression analyses showed that the proximal Apob gene in the duplicated locus was preferentially expressed in both tissues suggesting a limitation of tissue-specific enhancer function. The previously characterized distant intestinal control element was not duplicated, explaining the unequal ratio of intestinal Apob expression. While the existence of an additional liver-specific enhancer element is unknown, our findings suggest the presence of an additional enhancer outside the duplicated region, and that Apob gene expression is more complicated than previously thought.
Collapse
Affiliation(s)
- Myron E Hinsdale
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7525, USA.
| | | |
Collapse
|
6
|
Garbow JR, Lin X, Sakata N, Chen Z, Koh D, Schonfeld G. In vivo MRS measurement of liver lipid levels in mice. J Lipid Res 2004; 45:1364-71. [PMID: 15102892 DOI: 10.1194/jlr.d400001-jlr200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A magnetic resonance spectroscopy (MRS) procedure for in vivo measurement of lipid levels in mouse liver is described and validated. The method uses respiratory-gated, localized spectroscopy to collect proton spectra from voxels within the mouse liver. Bayesian probability theory analysis of these spectra allows the relative intensities of the lipid and water resonances within the liver to be accurately measured. All spectral data were corrected for measured spin-spin relaxation. A total of 48 mice were used in this study, including wild-type mice and two different transgenic mouse strains. Different groups of these mice were fed high-fat or low-fat diets or liquid diets with and without the addition of alcohol. Proton spectra were collected at baseline and, subsequently, every 4 weeks for up to 16 weeks. Immediately after the last MRS measurement, mice were killed and their livers analyzed for triglyceride level by conventional wet-chemistry methods. The excellent correlation between in vivo MRS and ex vivo wet-chemistry determinations of liver lipids validates the MRS method. These results clearly demonstrate that in vivo MRS will be an extremely valuable technique for longitudinal studies aimed at providing important insights into the genetic, environmental, and dietary factors affecting fat deposition and accumulation within the mouse liver.
Collapse
Affiliation(s)
- J R Garbow
- Department of Chemistry and Alvin J Siteman Cancer Center, Washington University, St. Louis, MO 63130, USA.
| | | | | | | | | | | |
Collapse
|
7
|
Abstract
Studies of nonsense-mediated mRNA decay in mammalian cells have proffered unforeseen insights into changes in mRNA-protein interactions throughout the lifetime of an mRNA. Remarkably, mRNA acquires a complex of proteins at each exon-exon junction during pre-mRNA splicing that influences the subsequent steps of mRNA translation and nonsense-mediated mRNA decay. Complex-loaded mRNA is thought to undergo a pioneer round of translation when still bound by cap-binding proteins CBP80 and CBP20 and poly(A)-binding protein 2. The acquisition and loss of mRNA-associated proteins accompanies the transition from the pioneer round to subsequent rounds of translation, and from translational competence to substrate for nonsense-mediated mRNA decay.
Collapse
Affiliation(s)
- Lynne E Maquat
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, 601 Elmwood Avenue, Box 712, University of Rochester, Rochester, New York 14642, USA.
| |
Collapse
|
8
|
Chen Z, Fitzgerald RL, Li G, Davidson NO, Schonfeld G. Hepatic secretion of apoB-100 is impaired in hypobetalipoproteinemic mice with an apoB-38.9-specifying allele. J Lipid Res 2004; 45:155-63. [PMID: 13130124 DOI: 10.1194/jlr.m300275-jlr200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Apolipoprotein B (apoB) truncation-specifying mutations cause familial hypobetalipoproteinemia (FHBL). Lipoprotein kinetics studies have shown that production rates of apoB-100 are reduced by 70-80% in heterozygous FHBL humans, instead of the expected 50%. To develop suitable mouse models to study the underlying mechanism, apoB-38.9-only (Apob(38.9/38.9)) mice were crossbred with Apobec-1 knockout (Apobec-1(-/-)) mice or apoB-100-only (Apob(100/100)) mice to produce two lines of apoB-38.9 heterozygous mice that produce only apoB-38.9 and apoB-100, namely Apobec-1(-/-)/Apob(38.9/+) and Apob(38.9/100) mice. In vivo rates of apoB-100 secretion were measured using [35S]Met/Cys to label proteins and Triton WR-1339 to block apoB-100 VLDL lipolysis/uptake. Rates of secretion were reduced by 80%, rather than the expected 50%, in both Apobec-1(-/-)/Apob(38.9/+) and Apob(38.9/100) mice compared with those of the respective Apobec-1(-/-)/Apob(+/+) and Apob(100/100) control mice. Continuous labeling and pulse-chase experiments in primary hepatocyte cultures revealed that rates of apoB-100 synthesis by Apobec-1(-/-)/Apob(38.9/+) and Apob(38.9/100) hepatocytes were reduced to the expected 50% of those of the respective controls, but the efficiency of secretion of apoB-100 was significantly lower in apoB-38.9 heterozygous hepatocytes. The greater-than-expected decreases in apoB-100 production rates of FHBL heterozygous humans appear to be attributable to a defect in secretion rather than in the synthesis of apoB-100 from the unaffected apoB allele.
Collapse
Affiliation(s)
- Zhouji Chen
- Division of Atherosclerosis, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | | | | | | | | |
Collapse
|
9
|
Abstract
We review the genetics and pathophysiology of familial hypobetalipoproteinemia (FHBL), a mildly symptomatic genetically heterogeneous autosomal trait. The minority of human FHBL is caused by truncation-specifying mutations of the APOB gene on chromosome 2. In seven families, linkage to chromosome 2 is absent, linkage is instead to chromosome 3 (3p21). In others, linkage is absent to both APOB and to 3p21. Apolipoprotein B-100 (apoB-100) levels are approximately 25% of normal, instead of the 50% expected based on the presence of one normal allele due to reduced rates of production. The presence of the truncating mutation seems to have a "dominant recessive" effect on apoB-100 secretion. Concentrations of apoB truncations in plasma differ by truncation but average at approximately 10% of normal levels. Lipoproteins bearing truncated forms of apoB are cleared more rapidly than apoB-100 particles. In contrast with apoB-100 particles cleared primarily in liver via the LDL receptor, most apoB truncation particles are cleared in renal proximal tubular cells via megalin. Since apoB defects cause a dysfunctional VLDL-triglyceride transport system, livers accumulate fat. Hepatic synthesis of fatty acids is reduced in compensation. Informational lacunae remain about genes affecting fat accumulation in liver, and the modulation of liver fat in the presence apoB truncation defects.
Collapse
Affiliation(s)
- Gustav Schonfeld
- Washington University School of Medicine St. Louis, MO 63110, USA.
| |
Collapse
|
10
|
Chen Z, Fitzgerald RL, Schonfeld G. Hypobetalipoproteinemic mice with a targeted apolipoprotein (Apo) B-27.6-specifying mutation: in vivo evidence for an important role of amino acids 1254-1744 of ApoB in lipid transport and metabolism of the apoB-containing lipoprotein. J Biol Chem 2002; 277:14135-45. [PMID: 11839763 DOI: 10.1074/jbc.m200617200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Carboxyl-terminal deletion of apoB-100 may impair its triglyceride (TG)-transporting capability and alter its catabolism. Here, we compare our newly generated apoB gene (Apob)-targeted apoB-27.6-bearing mice to our previously reported apoB-38.9 mice to understand further the relationship between the size of a truncated apoB variant and its function/metabolism in vivo. The apoB-27.6-specifying mutation produces a premature stop codon six amino acids (aa) downstream of the last codon of mouse Apob exon 24 (corresponding to aa 1254 of human apoB-100). ApoB-27.6 transcripts were 3- and 5-fold more abundant than apoB wild type and apoB-38.9 transcripts in the liver. Likewise, hepatic secretion rates of apoB-27.6 were 7-fold higher than those of apoB-48 and apoB-38.9. In contrast, apoB-27.6 heterozygotes (Apob(27.6/+)) had lower hepatic TG secretion rates and higher liver TG contents than both apoB-38.9 heterozygotes (Apob(38.9/+)) and apoB wild type mice (Apob(+/+)). ApoB-27.6 was secreted by Apob(27.6/+) hepatocytes as dense high density lipoprotein particles. Moreover, despite its high secretion rates, apoB-27.6 was barely detectable in plasma. Disruption of apoE gene in Apob(38.9/+) and Apob(27.6/+) dramatically increased plasma levels of apoB-38.9 as well as apoB-48 but caused no change in plasma apoB-27.6 concentrations. Finally, the birth rate of apoB-27.6 homozygotes (Apob(27.6/27.6)) from intercrosses of Apob(27.6/+) was 7-fold lower than that of Apob(38.9/38.9) from Apob(38.9/+) intercrosses (1.8% versus 12%). Crossbreeding of Apob(27.6/27.6) and Apob(38.9/38.9) produced viable Apob(27.6/38.9) offspring, but Apob(27.6/27.6) intercrosses produced no offspring. Together, these results demonstrate in vivo that the apoB-27.6-apoB-38.9 peptide segment (aa 1254-1744) plays a critical role, not only in supporting hepatic TG-secretion and in modulating catabolism of apoB-containing lipoproteins, but also in normal mouse embryonic development.
Collapse
Affiliation(s)
- Zhouji Chen
- Division of Atherosclerosis, Nutrition and Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
| | | | | |
Collapse
|
11
|
Enjoji M, Wang F, Nakamuta M, Chan L, Teng BB. Hammerhead ribozyme as a therapeutic agent for hyperlipidemia: production of truncated apolipoprotein B and hypolipidemic effects in a dyslipidemia murine model. Hum Gene Ther 2000; 11:2415-30. [PMID: 11096445 DOI: 10.1089/104303400750038516] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In humans, overproduction of apolipoprotein B (apoB) is positively associated with premature coronary artery diseases. To reduce the levels of apoB mRNA, we used adenovirus-mediated vector to target hammerhead ribozyme at GUA(6679) downward arrow of apoB mRNA (designated AvRB15) in the liver of a dyslipidemic mouse model that is deficient in apoB mRNA editing enzyme and overexpresses human apoB100. In this study, we delivered approximately 4 x 10(11) virus particles of AvRB15 (active ribozyme) or AvRB15-mutant (inactive ribozyme) to the animals. Using Southern blot analysis, we readily detected RB15 DNA in the mouse liver as long as day 35 after injection. This result was correlated with the RNA expression of RB15 by RNase protection assay. Using reverse ligation-mediated polymerase chain reaction, the 3' cleavage product of apoB mRNA was detected, and the exact cleavage site was confirmed by sequencing. Importantly, the levels of human and mouse apoB mRNA decreased approximately 80% after AvRB15 transduction. There was a marked decrease in plasma cholesterol, triglyceride, and human apoB of 42, 51, and 62%, respectively, when compared with the inactive ribozyme-treated group. Moreover, ribozyme cleavage of apoB mRNA generated a truncated protein of the expected size (apoB48.1), which was associated with lipoprotein particles in the very low density, low density, and high density lipoprotein fractions. Taken together, these results indicate that apoB mRNA-specific hammerhead ribozyme can be used as a potential therapeutic agent to modulate apoB gene expression and to treat hyperlipidemia.
Collapse
Affiliation(s)
- M Enjoji
- Departments of Medicine and Cell Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
12
|
Chen Z, Fitzgerald RL, Averna MR, Schonfeld G. A targeted apolipoprotein B-38.9-producing mutation causes fatty livers in mice due to the reduced ability of apolipoprotein B-38.9 to transport triglycerides. J Biol Chem 2000; 275:32807-15. [PMID: 10893242 DOI: 10.1074/jbc.m004913200] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nonphysiological truncations of apolipoprotein (apo) B-100 cause familial hypobetalipoproteinemia (FHBL) in humans and mice. An elucidation of the mechanisms underlying the FHBL phenotypes may provide valuable information on the metabolism of apo B-containing lipoproteins and the structure-function relationship of apo B. To generate a faithful mouse model of human FHBL, a subtle mutation was introduced into the mouse apo B gene by targeting embryonic stem cells using homologous recombination followed by removal of the selection marker gene by Cre-loxP-mediated site-specific recombination. The engineered mice bear a premature stop codon at residue 1767 and a 42-base pair loxP inserted into intron 24 of the apo B gene, thus closely resembling the apo B-38.9-producing mutation in humans. Apo B-38.9 was the sole apo B protein in homozygote (apob(38.9/38.9)) plasma. In heterozygotes (apob(+/)(38. 9)), apo B-100 and apo B-48 were reduced by 75 and 40%, respectively, and apo B-38.9 represented 20% of total circulating apo B. Hepatic apo B-38.9 mRNA levels were reduced by 40%. In cultured apob(+/)(38. 9) hepatocytes, apo B-100 was produced in trace quantities, and the synthesis rate of apo B-38.9 relative to apo B-48 was reduced by 40%. However, almost equimolar amounts of apo B-38.9 and apo B-48 were secreted into the media. Pulse-chase studies revealed that apo B-38. 9 was secreted at a faster rate and more efficiently than apoB-48. Nevertheless, both apob(+/)(38.9) and apob(38.9/38.9) mice had reduced hepatic triglyceride secretion rates and fatty livers. Thus, low mRNA levels or defective secretion of apo B-38.9 may not be responsible for the FHBL phenotypes caused by the apo B-38.9 mutation. Rather, a reduced capacity of apo B-38.9 for triglyceride transport may account for the fatty livers in these mice.
Collapse
Affiliation(s)
- Z Chen
- Division of Atherosclerosis, Nutrition and Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
| | | | | | | |
Collapse
|