1
|
Xu Q, Ren X, Hu L, Xu Q, Zhang X, Deng M, Ye Y, Zhang Y, Lu Y, Qiao Y. Uncovering a novel biosynthetic gene cluster for sordarin through genome mining in the fungus Talaromyces adpressus. BIORESOUR BIOPROCESS 2025; 12:35. [PMID: 40246774 PMCID: PMC12006653 DOI: 10.1186/s40643-025-00864-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 03/14/2025] [Indexed: 04/19/2025] Open
Abstract
To explore the chemical and biological diversities of diterpenoids from the fungus Talaromyces adpressus, a previously unknown biosynthetic gene cluster (BGC, tdn) for sordarin (a well-known fungal antibiotics) was discovered by leveraging the genome mining method. Heterologous expressions of key genes of tdn in Aspergillus oryzae, led to the determination of one new diterpenoid, cycloaraneosene-9-ol-8-one (4), and three known diterpenoids, cycloaraneosene (1), cycloaraneosene-9-ol (2), cycloaraneosene-8,9-diol (3). The structures of 1-4 was elucidated well via detailed analysis of 1D and 2D NMR, GCMS, HRESIMS, IR data, and comparison with reported data. Structurally, compounds 1-4 were belonging to fusicoccane diterpenoids with a classical tricyclic 5/8/5 ring system, which are participated in the biosynthesis of sordarin. Compound 4 maybe a key precursor for a Baeyer-Villiger like reaction with C8-C9 bond cleavage in the biosynthetic pathway of sordarin. Moreover, all isolates were evaluated for their bioactivities, compounds 3, and 4 exhibited inhibitory activities against the human cancer cell lines with IC50 values ranging from 7.8 to 32.4 µM. 3 and 4 promote cell apoptosis of HCT-116 and HepG2 cells, and suppress cell migration of HepG2 cells. As well, 3 and 4 also decrease gene expression of cell proliferation related molecules BCL-2 and cyclin D1, while increase expression of cell apoptosis related gene BAX. Targets predication and molecular docking indicate that compound 4 exhibits stronger affinity for DBL, suggesting its excellent binding potential. This finding will be enriched the structures and bioactivities of diterpenoids with a tricyclic 5/8/5 ring system, most importantly, will provide new strategies for the synthetic biological research of sordarins.
Collapse
Affiliation(s)
- Qianqian Xu
- Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430033, People's Republic of China
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Xiaomeng Ren
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, 361005, People's Republic of China
| | - Linzhen Hu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, People's Republic of China
| | - Qiaoxin Xu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Xiaodong Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, People's Republic of China
| | - Mengyi Deng
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, People's Republic of China
| | - Ying Ye
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.
| | - Yonghui Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.
| | - Yuanyuan Lu
- Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430033, People's Republic of China.
| | - Yuben Qiao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, People's Republic of China.
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.
| |
Collapse
|
2
|
Zhang H, Janina N, Ütkür K, Manivannan T, Zhang L, Wang L, Grefen C, Schaffrath R, Krämer U. Diphthamide formation in Arabidopsis requires DPH1-interacting DPH2 for light and oxidative stress resistance. PLANT PHYSIOLOGY 2025; 197:kiaf128. [PMID: 40200557 DOI: 10.1093/plphys/kiaf128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Accepted: 02/23/2025] [Indexed: 04/10/2025]
Abstract
Diphthamide is a posttranslationally modified histidine residue of eukaryotic TRANSLATION ELONGATION FACTOR 2 (eEF2) and the target of diphtheria toxin in human cells. In yeast and mammals, the 4Fe-4S cluster-containing proteins Dph1 and Dph2 catalyze the first biosynthetic step of diphthamide formation. Here, we identify Arabidopsis (Arabidopsis thaliana) DPH2 and show that it is required for diphthamide biosynthesis, localizes to the cytosol, and interacts physically with AtDPH1. Arabidopsis dph2 mutants form shorter primary roots and smaller rosettes than the wild type, similar to dph1 mutants which we characterized previously. Additionally, increased ribosomal -1 frameshifting error rates and attenuated TARGET OF RAPAMYCIN (TOR) kinase activity in dph2 mutants also phenocopy the dph1 mutant. Beyond the known heavy metal hypersensitivity and heat shock tolerance of dph1, we show here that both dph1 and dph2 mutants are hypersensitive to elevated light intensities and oxidative stress and that wild-type Arabidopsis seedlings accumulate diphthamide-unmodified eEF2 under oxidative stress. Both mutants share the deregulation of 1,186 transcripts associated with several environmental and hormone responses. AtDPH1 and AtDPH2 do not complement the corresponding mutants of Saccharomyces cerevisiae. In summary, DPH2 and DPH1 interact to function inter-dependently in diphthamide formation, the maintenance of translational fidelity, wild-type growth rates, and TOR kinase activation, and they contribute to mitigating damage from elevated light intensities and oxidative stress. Under oxidative stress, a dose-dependent loss of diphthamide could potentiate downstream effects in a feed-forward loop. This work advances our understanding of translation and its interactions with growth regulation and stress responses in plants.
Collapse
Affiliation(s)
- Hongliang Zhang
- Molecular Genetics and Physiology of Plants, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum 44801, Germany
| | - Nadežda Janina
- Molecular Genetics and Physiology of Plants, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum 44801, Germany
| | - Koray Ütkür
- Microbiology, Institute for Biology, University of Kassel, Kassel 34132, Germany
| | | | - Lei Zhang
- Molecular and Cellular Botany, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum 44801, Germany
| | - Lizhen Wang
- Molecular Genetics and Physiology of Plants, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum 44801, Germany
| | - Christopher Grefen
- Molecular and Cellular Botany, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum 44801, Germany
| | - Raffael Schaffrath
- Microbiology, Institute for Biology, University of Kassel, Kassel 34132, Germany
| | - Ute Krämer
- Molecular Genetics and Physiology of Plants, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum 44801, Germany
| |
Collapse
|
3
|
Yélamos AM, Marcos JF, Manzanares P, Garrigues S. Harnessing Filamentous Fungi for Enzyme Cocktail Production Through Rice Bran Bioprocessing. J Fungi (Basel) 2025; 11:106. [PMID: 39997400 PMCID: PMC11856480 DOI: 10.3390/jof11020106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/25/2025] [Accepted: 01/27/2025] [Indexed: 02/26/2025] Open
Abstract
Valorization of agri-food residues has garnered significant interest for obtaining value-added compounds such as enzymes or bioactive molecules. Rice milling by-products, such as rice bran, have limited commercial value and may pose environmental challenges. Filamentous fungi are recognized for their ability to grow on residues and for their capacity to produce large amounts of metabolites and enzymes of industrial interest. Here, we used filamentous fungi to produce enzyme cocktails from rice bran, which, due to its polysaccharide composition, serves as an ideal substrate for the growth of fungi producing cellulases and xylanases. To this end, sixteen fungal strains were isolated from rice bran and identified at the species level. The species belonged to the genera Aspergillus, Penicillium, and Mucor. The Aspergillus species displayed the highest efficiency in cellulase and xylanase activities, especially A. niger var. phoenicis and A. amstelodami. A. terreus, A. tritici, and A. montevidensis stood out as xylanolytic isolates, while P. parvofructum exhibited good cellulase activity. A. niger var. phoenicis followed by A. terreus showed the highest specific enzymatic activities of α- and β-D-galactosidase, α-L-arabinofuranosidase, α- and β-D-glucosidase, and β-D-xylosidase. Additionally, proteomic analysis of A. terreus, A. niger var. phoenicis, and P. parvofructum exoproteomes revealed differences in enzyme production for rice bran degradation. A. niger var. phoenicis had the highest levels of xylanases and cellulases, while P. parvofructum excelled in proteases, starch-degrading enzymes, and antifungal proteins. Finally, two Penicillium isolates were notable as producers of up to three different antifungal proteins. Our results demonstrate that filamentous fungi can effectively valorize rice bran by producing enzyme cocktails of industrial interest, along with bioactive peptides, in a cost-efficient manner, aligning with the circular bio-economy framework.
Collapse
Affiliation(s)
| | | | | | - Sandra Garrigues
- Food Biotechnology Department, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Catedrático Agustín Escardino Benlloch 7, 46980, Valencia, Spain; (A.M.Y.); (J.F.M.); (P.M.)
| |
Collapse
|
4
|
Jia X, Huang C, Liu F, Dong Z, Liu K. Elongation factor 2 in cancer: a promising therapeutic target in protein translation. Cell Mol Biol Lett 2024; 29:156. [PMID: 39707196 DOI: 10.1186/s11658-024-00674-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 12/02/2024] [Indexed: 12/23/2024] Open
Abstract
Aberrant elongation of proteins can lead to the activation of oncogenic signaling pathways, resulting in the dysregulation of oncogenic signaling pathways. Eukaryotic elongation factor 2 (eEF2) is an essential regulator of protein synthesis that precisely elongates nascent peptides in the protein elongation process. Although studies have linked aberrant eEF2 expression to various cancers, research has primarily focused on its structure, highlighting a need for deeper exploration into its molecular functions. In this review, recent advancements in the structure, guanosine triphosphatase (GTPase) activity, posttranslational modifications, regulatory factors, and inhibitors of eEF2 are summarized. These findings provide a comprehensive cognition on the critical role of eEF2 and its potential as a therapeutic target in cancer. Furthermore, this review highlights important unanswered questions that warrant investigation in future research.
Collapse
Affiliation(s)
- Xuechao Jia
- Henan International Joint Laboratory of TCM Syndrome and Prescription in Signaling, Traditional Chinese Medicine (Zhong Jing) School, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan, China
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Chuntian Huang
- Henan International Joint Laboratory of TCM Syndrome and Prescription in Signaling, Traditional Chinese Medicine (Zhong Jing) School, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan, China
- Department of Pathology and Pathophysiology, School of Medicine, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan, China
| | - Fangfang Liu
- Department of Medical Genetics and Cell Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China.
| | - Zigang Dong
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, Henan, China.
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450000, Henan, China.
- Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou, 450001, Henan, China.
- The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, 450000, Henan, China.
| | - Kangdong Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, Henan, China.
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450000, Henan, China.
- Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou, 450001, Henan, China.
- The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, 450000, Henan, China.
| |
Collapse
|
5
|
Milicevic N, Jenner L, Myasnikov A, Yusupov M, Yusupova G. mRNA reading frame maintenance during eukaryotic ribosome translocation. Nature 2024; 625:393-400. [PMID: 38030725 DOI: 10.1038/s41586-023-06780-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023]
Abstract
One of the most critical steps of protein synthesis is coupled translocation of messenger RNA (mRNA) and transfer RNAs (tRNAs) required to advance the mRNA reading frame by one codon. In eukaryotes, translocation is accelerated and its fidelity is maintained by elongation factor 2 (eEF2)1,2. At present, only a few snapshots of eukaryotic ribosome translocation have been reported3-5. Here we report ten high-resolution cryogenic-electron microscopy (cryo-EM) structures of the elongating eukaryotic ribosome bound to the full translocation module consisting of mRNA, peptidyl-tRNA and deacylated tRNA, seven of which also contained ribosome-bound, naturally modified eEF2. This study recapitulates mRNA-tRNA2-growing peptide module progression through the ribosome, from the earliest states of eEF2 translocase accommodation until the very late stages of the process, and shows an intricate network of interactions preventing the slippage of the translational reading frame. We demonstrate how the accuracy of eukaryotic translocation relies on eukaryote-specific elements of the 80S ribosome, eEF2 and tRNAs. Our findings shed light on the mechanism of translation arrest by the anti-fungal eEF2-binding inhibitor, sordarin. We also propose that the sterically constrained environment imposed by diphthamide, a conserved eukaryotic posttranslational modification in eEF2, not only stabilizes correct Watson-Crick codon-anticodon interactions but may also uncover erroneous peptidyl-tRNA, and therefore contribute to higher accuracy of protein synthesis in eukaryotes.
Collapse
Affiliation(s)
- Nemanja Milicevic
- Institute of Genetics and Molecular and Cellular Biology (IGBMC), CNRS UMR7104, INSERM U1258, University of Strasbourg, Strasbourg, France
| | - Lasse Jenner
- Institute of Genetics and Molecular and Cellular Biology (IGBMC), CNRS UMR7104, INSERM U1258, University of Strasbourg, Strasbourg, France
| | | | - Marat Yusupov
- Institute of Genetics and Molecular and Cellular Biology (IGBMC), CNRS UMR7104, INSERM U1258, University of Strasbourg, Strasbourg, France
| | - Gulnara Yusupova
- Institute of Genetics and Molecular and Cellular Biology (IGBMC), CNRS UMR7104, INSERM U1258, University of Strasbourg, Strasbourg, France.
| |
Collapse
|
6
|
Sharma C, Kadosh D. Post-transcriptional control of antifungal resistance in human fungal pathogens. Crit Rev Microbiol 2023; 49:469-484. [PMID: 35634915 PMCID: PMC9766424 DOI: 10.1080/1040841x.2022.2080527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 05/10/2022] [Accepted: 05/17/2022] [Indexed: 11/03/2022]
Abstract
Global estimates suggest that over 300 million individuals of all ages are affected by serious fungal infections every year, culminating in about 1.7 million deaths. The societal and economic burden on the public health sector due to opportunistic fungal pathogens is quite significant, especially among immunocompromised patients. Despite the high clinical significance of these infectious agents, treatment options are limited with only three major classes of antifungal drugs approved for use. Clinical management of fungal diseases is further compromised by the emergence of antifungal resistant strains. Transcriptional and genetic mechanisms that control drug resistance in human fungal pathogens are well-studied and include drug target alteration, upregulation of drug efflux pumps as well as changes in drug affinity and abundance of target proteins. In this review, we highlight several recently discovered novel post-transcriptional mechanisms that control antifungal resistance, which involve regulation at the translational, post-translational, epigenetic, and mRNA stability levels. The discovery of many of these novel mechanisms has opened new avenues for the development of more effective antifungal treatment strategies and new insights, perspectives, and future directions that will facilitate this process are discussed.
Collapse
Affiliation(s)
- Cheshta Sharma
- Department of Microbiology, Immunology and Molecular Genetics University of Texas Health Science Center at San Antonio, San Antonio, TX
| | - David Kadosh
- Department of Microbiology, Immunology and Molecular Genetics University of Texas Health Science Center at San Antonio, San Antonio, TX
| |
Collapse
|
7
|
Munir R, Zahoor AF, Javed S, Parveen B, Mansha A, Irfan A, Khan SG, Irfan A, Kotwica-Mojzych K, Mojzych M. Simmons-Smith Cyclopropanation: A Multifaceted Synthetic Protocol toward the Synthesis of Natural Products and Drugs: A Review. Molecules 2023; 28:5651. [PMID: 37570621 PMCID: PMC10420228 DOI: 10.3390/molecules28155651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/16/2023] [Accepted: 07/20/2023] [Indexed: 08/13/2023] Open
Abstract
Simmons-Smith cyclopropanation is a widely used reaction in organic synthesis for stereospecific conversion of alkenes into cyclopropane. The utility of this reaction can be realized by the fact that the cyclopropane motif is a privileged synthetic intermediate and a core structural unit of many biologically active natural compounds such as terpenoids, alkaloids, nucleosides, amino acids, fatty acids, polyketides and drugs. The modified form of Simmons-Smith cyclopropanation involves the employment of Et2Zn and CH2I2 (Furukawa reagent) toward the total synthesis of a variety of structurally complex natural products that possess broad range of biological activities including anticancer, antimicrobial and antiviral activities. This review aims to provide an intriguing glimpse of the Furukawa-modified Simmons-Smith cyclopropanation, within the year range of 2005 to 2022.
Collapse
Affiliation(s)
- Ramsha Munir
- Medicinal Chemistry Research Lab, Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan; (R.M.); (B.P.); (A.M.); (S.G.K.); (A.I.)
| | - Ameer Fawad Zahoor
- Medicinal Chemistry Research Lab, Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan; (R.M.); (B.P.); (A.M.); (S.G.K.); (A.I.)
| | - Sadia Javed
- Department of Biochemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan;
| | - Bushra Parveen
- Medicinal Chemistry Research Lab, Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan; (R.M.); (B.P.); (A.M.); (S.G.K.); (A.I.)
| | - Asim Mansha
- Medicinal Chemistry Research Lab, Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan; (R.M.); (B.P.); (A.M.); (S.G.K.); (A.I.)
| | - Ahmad Irfan
- Department of Chemistry, College of Science, King Khalid University, Abha 61413, Saudi Arabia;
| | - Samreen Gul Khan
- Medicinal Chemistry Research Lab, Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan; (R.M.); (B.P.); (A.M.); (S.G.K.); (A.I.)
| | - Ali Irfan
- Medicinal Chemistry Research Lab, Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan; (R.M.); (B.P.); (A.M.); (S.G.K.); (A.I.)
| | - Katarzyna Kotwica-Mojzych
- Laboratory of Experimental Cytology, Medical University of Lublin, Radziwiłłowska 11, 20-080 Lublin, Poland;
| | - Mariusz Mojzych
- Department of Chemistry, Siedlce University of Natural Sciences and Humanities, 3-go Maja 54, 08-110 Siedlce, Poland
| |
Collapse
|
8
|
Han W, Wu Z, Zhong Z, Williams J, Jacobsen SE, Sun Z, Tang Y. Assessing the Biosynthetic Inventory of the Biocontrol Fungus Trichoderma afroharzianum T22. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37471583 DOI: 10.1021/acs.jafc.3c03240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
Natural products biosynthesized from biocontrol fungi in the rhizosphere can have both beneficial and deleterious effects on plants. Herein, we performed a comprehensive analysis of natural product biosynthetic gene clusters (BGCs) from the widely used biocontrol fungus Trichoderma afroharzianum T22 (ThT22). This fungus encodes at least 64 BGCs, yet only seven compounds and four BGCs were previously characterized or mined. We correlated 21 BGCs of ThT22 with known primary and secondary metabolites through homologous BGC comparison and characterized one unknown BGC involved in the biosynthesis of eujavanicol A using heterologous expression. In addition, we performed untargeted transcriptomics and metabolic analysis to demonstrate the activation of silent ThT22 BGCs via the "one strain many compound" (OSMAC) approach. Collectively, our analysis showcases the biosynthetic capacity of ThT22 and paves the way for fully exploring the roles of natural products of ThT22.
Collapse
Affiliation(s)
- Wenyu Han
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Zhongshou Wu
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, California 90095, United States
- Howard Hughes Medical Institute, University of California, Los Angeles, California 90095, United States
| | - Zhenhui Zhong
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, California 90095, United States
- Howard Hughes Medical Institute, University of California, Los Angeles, California 90095, United States
| | - Jason Williams
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Steven E Jacobsen
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, California 90095, United States
- Howard Hughes Medical Institute, University of California, Los Angeles, California 90095, United States
- Eli & Edythe Broad Center of Regenerative Medicine & Stem Cell Research, University of California, Los Angeles, California 90095, United States
- Department of Biological Chemistry, University of California, Los Angeles, California 90095, United States
| | - Zuodong Sun
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California 90095, United States
| | - Yi Tang
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
9
|
Salas-Navarrete PC, Rosas-Santiago P, Suárez-Rodríguez R, Martínez A, Caspeta L. Adaptive responses of yeast strains tolerant to acidic pH, acetate, and supraoptimal temperature. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12556-7. [PMID: 37178307 DOI: 10.1007/s00253-023-12556-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/20/2023] [Accepted: 04/23/2023] [Indexed: 05/15/2023]
Abstract
Ethanol fermentations can be prematurely halted as Saccharomyces cerevisiae faces adverse conditions, such as acidic pH, presence of acetic acid, and supraoptimal temperatures. The knowledge on yeast responses to these conditions is essential to endowing a tolerant phenotype to another strain by targeted genetic manipulation. In this study, physiological and whole-genome analyses were conducted to obtain insights on molecular responses which potentially render yeast tolerant towards thermoacidic conditions. To this end, we used thermotolerant TTY23, acid tolerant AT22, and thermo-acid tolerant TAT12 strains previously generated by adaptive laboratory evolution (ALE) experiments. The results showed an increase in thermoacidic profiles in the tolerant strains. The whole-genome sequence revealed the importance of genes related to: H+, iron, and glycerol transport (i.e., PMA1, FRE1/2, JEN1, VMA2, VCX1, KHA1, AQY3, and ATO2); transcriptional regulation of stress responses to drugs, reactive oxygen species and heat-shock (i.e., HSF1, SKN7, BAS1, HFI1, and WAR1); and adjustments of fermentative growth and stress responses by glucose signaling pathways (i.e., ACS1, GPA1/2, RAS2, IRA2, and REG1). At 30 °C and pH 5.5, more than a thousand differentially expressed genes (DEGs) were identified in each strain. The integration of results revealed that evolved strains adjust their intracellular pH by H+ and acetic acid transport, modify their metabolism and stress responses via glucose signaling pathways, control of cellular ATP pools by regulating translation and de novo synthesis of nucleotides, and direct the synthesis, folding and rescue of proteins throughout the heat-shock stress response. Moreover, the motifs analysis in mutated transcription factors suggested a significant association of SFP1, YRR1, BAS1, HFI1, HSF1, and SKN7 TFs with DEGs found in thermoacidic tolerant yeast strains. KEY POINTS: • All the evolved strains overexpressed the plasma membrane H+ -ATPase PMA1 at optimal conditions • Tolerant strain TAT12 mutated genes encoding weak acid and heat response TFs HSF1, SKN7, and WAR1 • TFs HSF1 and SKN7 likely controlled the transcription of metabolic genes associated to heat and acid tolerance.
Collapse
Affiliation(s)
- Prisciluis Caheri Salas-Navarrete
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, Cuernavaca, 62209, Morelos, México
| | - Paul Rosas-Santiago
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, Cuernavaca, 62210, Morelos, México
| | - Ramón Suárez-Rodríguez
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, Cuernavaca, 62209, Morelos, México
| | - Alfredo Martínez
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, Cuernavaca, 62210, Morelos, México
| | - Luis Caspeta
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, Cuernavaca, 62210, Morelos, México.
| |
Collapse
|
10
|
Kwolek-Mirek M, Dubicka-Lisowska A, Bednarska S, Zadrag-Tecza R, Kaszycki P. Changes in a Protein Profile Can Account for the Altered Phenotype of the Yeast Saccharomyces cerevisiae Mutant Lacking the Copper-Zinc Superoxide Dismutase. Metabolites 2023; 13:metabo13030459. [PMID: 36984899 PMCID: PMC10056615 DOI: 10.3390/metabo13030459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/14/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Copper-zinc superoxide dismutase (SOD1) is an antioxidant enzyme that catalyzes the disproportionation of superoxide anion to hydrogen peroxide and molecular oxygen (dioxygen). The yeast Saccharomyces cerevisiae lacking SOD1 (Δsod1) is hypersensitive to the superoxide anion and displays a number of oxidative stress-related alterations in its phenotype. We compared proteomes of the wild-type strain and the Δsod1 mutant employing two-dimensional gel electrophoresis and detected eighteen spots representing differentially expressed proteins, of which fourteen were downregulated and four upregulated. Mass spectrometry-based identification enabled the division of these proteins into functional classes related to carbon metabolism, amino acid and protein biosynthesis, nucleotide biosynthesis, and metabolism, as well as antioxidant processes. Detailed analysis of the proteomic data made it possible to account for several important morphological, biochemical, and physiological changes earlier observed for the SOD1 mutation. An example may be the proposed additional explanation for methionine auxotrophy. It is concluded that protein comparative profiling of the Δsod1 yeast may serve as an efficient tool in the elucidation of the mutation-based systemic alterations in the resultant S. cerevisiae phenotype.
Collapse
Affiliation(s)
- Magdalena Kwolek-Mirek
- Department of Biology, Institute of Biology and Biotechnology, College of Natural Sciences, University of Rzeszow, 35-601 Rzeszow, Poland
| | - Aleksandra Dubicka-Lisowska
- Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, 31-425 Krakow, Poland
| | - Sabina Bednarska
- Department of Biology, Institute of Biology and Biotechnology, College of Natural Sciences, University of Rzeszow, 35-601 Rzeszow, Poland
| | - Renata Zadrag-Tecza
- Department of Biology, Institute of Biology and Biotechnology, College of Natural Sciences, University of Rzeszow, 35-601 Rzeszow, Poland
| | - Pawel Kaszycki
- Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, 31-425 Krakow, Poland
| |
Collapse
|
11
|
Fridman M, Sakurai K. Deciphering the Biological Activities of Antifungal Agents with Chemical Probes. Angew Chem Int Ed Engl 2023; 62:e202211927. [PMID: 36628503 DOI: 10.1002/anie.202211927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 11/09/2022] [Accepted: 01/10/2023] [Indexed: 01/12/2023]
Abstract
The growing number of fungal infections caused by pathogens resistant to one or more classes of antifungal drugs emphasizes the threat that these microorganisms pose to animal and human health and global food security. Open questions remain regarding the mechanisms of action of the limited repertoire of antifungal agents, making it challenging to rationally develop more efficacious therapeutics. In recent years, the use of chemical biology approaches has resolved some of these questions and has provided new promising concepts to guide the design of antifungal agents. By focusing on examples from studies carried out in recent years, this minireview describes the key roles that probes based on antifungal agents and their derivatives have played in uncovering details about their activities, in detecting resistance, and in characterizing the interactions between these agents and their targets.
Collapse
Affiliation(s)
- Micha Fridman
- School of Chemistry, Raymond & Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Kaori Sakurai
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 4-24-16, Naka-cho, Koganei-shi, Tokyo, 184-8588, Japan
| |
Collapse
|
12
|
Biosynthesis of fusicoccane-type diterpenoids featuring a 5–8–5 tricyclic carbon skeleton. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
13
|
Liu SH, Sun JL, Hu YL, Zhang L, Zhang X, Yan ZY, Guo X, Guo ZK, Jiao RH, Zhang B, Tan RX, Ge HM. Biosynthesis of Sordarin Revealing a Diels–Alderase for the Formation of the Norbornene Skeleton. Angew Chem Int Ed Engl 2022; 61:e202205577. [DOI: 10.1002/anie.202205577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Shuang He Liu
- State Key Laboratory of Pharmaceutical Biotechnology Institute of Functional Biomolecules Chemistry and Biomedicine Innovation Center (ChemBIC) School of Life Sciences Nanjing University Nanjing 210023 China
| | - Jia Li Sun
- State Key Laboratory of Pharmaceutical Biotechnology Institute of Functional Biomolecules Chemistry and Biomedicine Innovation Center (ChemBIC) School of Life Sciences Nanjing University Nanjing 210023 China
| | - Yi Ling Hu
- State Key Laboratory of Pharmaceutical Biotechnology Institute of Functional Biomolecules Chemistry and Biomedicine Innovation Center (ChemBIC) School of Life Sciences Nanjing University Nanjing 210023 China
| | - Li Zhang
- State Key Laboratory of Pharmaceutical Biotechnology Institute of Functional Biomolecules Chemistry and Biomedicine Innovation Center (ChemBIC) School of Life Sciences Nanjing University Nanjing 210023 China
| | - Xuan Zhang
- State Key Laboratory of Pharmaceutical Biotechnology Institute of Functional Biomolecules Chemistry and Biomedicine Innovation Center (ChemBIC) School of Life Sciences Nanjing University Nanjing 210023 China
| | - Zhang Yuan Yan
- State Key Laboratory of Pharmaceutical Biotechnology Institute of Functional Biomolecules Chemistry and Biomedicine Innovation Center (ChemBIC) School of Life Sciences Nanjing University Nanjing 210023 China
| | - Xing Guo
- State Key Laboratory of Pharmaceutical Biotechnology Institute of Functional Biomolecules Chemistry and Biomedicine Innovation Center (ChemBIC) School of Life Sciences Nanjing University Nanjing 210023 China
| | - Zhi Kai Guo
- Key Laboratory of Biology and Genetic Resources of Tropical Crops Ministry of Agriculture Institute of Tropical Bioscience and Bio-technology Chinese Academy of Tropical Agricultural Sciences Haikou 571101 China
| | - Rui Hua Jiao
- State Key Laboratory of Pharmaceutical Biotechnology Institute of Functional Biomolecules Chemistry and Biomedicine Innovation Center (ChemBIC) School of Life Sciences Nanjing University Nanjing 210023 China
| | - Bo Zhang
- State Key Laboratory of Pharmaceutical Biotechnology Institute of Functional Biomolecules Chemistry and Biomedicine Innovation Center (ChemBIC) School of Life Sciences Nanjing University Nanjing 210023 China
| | - Ren Xiang Tan
- State Key Laboratory of Pharmaceutical Biotechnology Institute of Functional Biomolecules Chemistry and Biomedicine Innovation Center (ChemBIC) School of Life Sciences Nanjing University Nanjing 210023 China
| | - Hui Ming Ge
- State Key Laboratory of Pharmaceutical Biotechnology Institute of Functional Biomolecules Chemistry and Biomedicine Innovation Center (ChemBIC) School of Life Sciences Nanjing University Nanjing 210023 China
| |
Collapse
|
14
|
Miyoshi T, Nomura T, Takeya K, Uchiumi T. The natural bicyclic hexapeptide RA-VII is a novel inhibitor of the eukaryotic translocase eEF2. Biochem Biophys Res Commun 2022; 615:88-93. [DOI: 10.1016/j.bbrc.2022.05.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 05/11/2022] [Indexed: 11/17/2022]
|
15
|
Ge HM, Liu SH, Sun JL, Hu YL, Zhang L, Zhang X, Yan ZY, Guo X, Guo ZK, Jiao RH, Zhang B, Tan RX. Biosynthesis of Sordarin Revealing a Diels‐Alderase for the Formation of the Norbornene Skeleton. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Hui Ming Ge
- Nanjing University School of Lifescience 22 Hankou Road 210093 Nanjing CHINA
| | | | - Jia Li Sun
- Nanjing University School of Life Science CHINA
| | - Yi Ling Hu
- Nanjing University School of Life Science CHINA
| | - Li Zhang
- Nanjing University School of Life Science CHINA
| | - Xuan Zhang
- Nanjing University School of Life Science CHINA
| | | | - Xing Guo
- Nanjing University School of Life Science CHINA
| | - Zhi Kai Guo
- Chinese Academy of Tropical Agricultural Sciences Key Laboratory of Biology and Genetic Resources of Tropical Crops CHINA
| | | | - Bo Zhang
- Nanjing University School of Life Science xianlin No163, Jiangsu, ChinaJiangsu, China 210023 nanjing CHINA
| | | |
Collapse
|
16
|
Sun Z, Jamieson CS, Ohashi M, Houk KN, Tang Y. Discovery and characterization of a terpene biosynthetic pathway featuring a norbornene-forming Diels-Alderase. Nat Commun 2022; 13:2568. [PMID: 35546152 PMCID: PMC9095873 DOI: 10.1038/s41467-022-30288-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 04/25/2022] [Indexed: 11/17/2022] Open
Abstract
Pericyclases, enzymes that catalyze pericyclic reactions, form an expanding family of enzymes that have biocatalytic utility. Despite the increasing number of pericyclases discovered, the Diels-Alder cyclization between a cyclopentadiene and an olefinic dienophile to form norbornene, which is among the best-studied cycloadditions in synthetic chemistry, has surprisingly no enzymatic counterpart to date. Here we report the discovery of a pathway featuring a norbornene synthase SdnG for the biosynthesis of sordaricin-the terpene precursor of antifungal natural product sordarin. Full reconstitution of sordaricin biosynthesis reveals a concise oxidative strategy used by Nature to transform an entirely hydrocarbon precursor into the highly functionalized substrate of SdnG for intramolecular Diels-Alder cycloaddition. SdnG generates the norbornene core of sordaricin and accelerates this reaction to suppress host-mediated redox modifications of the activated dienophile. Findings from this work expand the scopes of pericyclase-catalyzed reactions and P450-mediated terpene maturation.
Collapse
Affiliation(s)
- Zuodong Sun
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Cooper S Jamieson
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Masao Ohashi
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - K N Houk
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| | - Yi Tang
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| |
Collapse
|
17
|
Abstract
SignificanceThe presence of RNA chemical modifications has long been known, but their precise molecular consequences remain unknown. 2'-O-methylation is an abundant modification that exists in RNA in all domains of life. Ribosomal RNA (rRNA) represents a functionally important RNA that is heavily modified by 2'-O-methylations. Although abundant at functionally important regions of the rRNA, the contribution of 2'-O-methylations to ribosome activities is unknown. By establishing a method to disturb rRNA 2'-O-methylation patterns, we show that rRNA 2'-O-methylations affect the function and fidelity of the ribosome and change the balance between different ribosome conformational states. Our work links 2'-O-methylation to ribosome dynamics and defines a set of critical rRNA 2'-O-methylations required for ribosome biogenesis and others that are dispensable.
Collapse
|
18
|
Zhang FL, Feng T. Diterpenes Specially Produced by Fungi: Structures, Biological Activities, and Biosynthesis (2010–2020). J Fungi (Basel) 2022; 8:jof8030244. [PMID: 35330246 PMCID: PMC8951520 DOI: 10.3390/jof8030244] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/25/2022] [Accepted: 02/27/2022] [Indexed: 12/11/2022] Open
Abstract
Fungi have traditionally been a very rewarding source of biologically active natural products, while diterpenoids from fungi, such as the cyathane-type diterpenoids from Cyathus and Hericium sp., the fusicoccane-type diterpenoids from Fusicoccum and Alternaria sp., the guanacastane-type diterpenoids from Coprinus and Cercospora sp., and the harziene-type diterpenoids from Trichoderma sp., often represent unique carbon skeletons as well as diverse biological functions. The abundances of novel skeletons, biological activities, and biosynthetic pathways present new opportunities for drug discovery, genome mining, and enzymology. In addition, diterpenoids peculiar to fungi also reveal the possibility of differing biological evolution, although they have similar biosynthetic pathways. In this review, we provide an overview about the structures, biological activities, evolution, organic synthesis, and biosynthesis of diterpenoids that have been specially produced by fungi from 2010 to 2020. We hope this review provides timely illumination and beneficial guidance for future research works of scholars who are interested in this area.
Collapse
|
19
|
A multi-modal algorithm based on an NSGA-II scheme for phylogenetic tree inference. Biosystems 2022; 213:104606. [DOI: 10.1016/j.biosystems.2022.104606] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 11/30/2021] [Accepted: 01/05/2022] [Indexed: 12/14/2022]
|
20
|
Shao Y, Molestak E, Su W, Stankevič M, Tchórzewski M. Sordarin - the antifungal antibiotic with a unique modus operandi. Br J Pharmacol 2021; 179:1125-1145. [PMID: 34767248 DOI: 10.1111/bph.15724] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/13/2021] [Accepted: 10/18/2021] [Indexed: 12/01/2022] Open
Abstract
Fungal infections cause serious problems in many aspects of human life, in particular infections in immunocompromised patients represent serious problems. Current antifungal antibiotics target various metabolic pathways, predominantly the cell wall or cellular membrane. Numerous compounds are available to combat fungal infections, but their efficacy is far from being satisfactory and some of them display high toxicity. The emerging resistance represents a serious issue as well; hence, there is a considerable need for new anti-fungal compounds with lower toxicity and higher effectiveness. One of the unique antifungal antibiotics is sordarin, the only known compound that acts on the fungal translational machinery per se. Sordarin inhibits protein synthesis at the elongation step of the translational cycle, acting on eukaryotic translation elongation factor 2. In this review, we intend to deliver a robust scientific platform promoting the development of antifungal compounds, in particular focusing on the molecular action of sordarin.
Collapse
Affiliation(s)
- Yutian Shao
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, PR China.,Department of Molecular Biology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
| | - Eliza Molestak
- Department of Molecular Biology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
| | - Weike Su
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, PR China.,National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, PR China.,Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, PR China
| | - Marek Stankevič
- Department of Organic Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie Sklodowska University, Lublin, Poland
| | - Marek Tchórzewski
- Department of Molecular Biology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
| |
Collapse
|
21
|
Dmitriev SE, Vladimirov DO, Lashkevich KA. A Quick Guide to Small-Molecule Inhibitors of Eukaryotic Protein Synthesis. BIOCHEMISTRY (MOSCOW) 2021; 85:1389-1421. [PMID: 33280581 PMCID: PMC7689648 DOI: 10.1134/s0006297920110097] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Eukaryotic ribosome and cap-dependent translation are attractive targets in the antitumor, antiviral, anti-inflammatory, and antiparasitic therapies. Currently, a broad array of small-molecule drugs is known that specifically inhibit protein synthesis in eukaryotic cells. Many of them are well-studied ribosome-targeting antibiotics that block translocation, the peptidyl transferase center or the polypeptide exit tunnel, modulate the binding of translation machinery components to the ribosome, and induce miscoding, premature termination or stop codon readthrough. Such inhibitors are widely used as anticancer, anthelmintic and antifungal agents in medicine, as well as fungicides in agriculture. Chemicals that affect the accuracy of stop codon recognition are promising drugs for the nonsense suppression therapy of hereditary diseases and restoration of tumor suppressor function in cancer cells. Other compounds inhibit aminoacyl-tRNA synthetases, translation factors, and components of translation-associated signaling pathways, including mTOR kinase. Some of them have antidepressant, immunosuppressive and geroprotective properties. Translation inhibitors are also used in research for gene expression analysis by ribosome profiling, as well as in cell culture techniques. In this article, we review well-studied and less known inhibitors of eukaryotic protein synthesis (with the exception of mitochondrial and plastid translation) classified by their targets and briefly describe the action mechanisms of these compounds. We also present a continuously updated database (http://eupsic.belozersky.msu.ru/) that currently contains information on 370 inhibitors of eukaryotic protein synthesis.
Collapse
Affiliation(s)
- S E Dmitriev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia. .,Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119234, Russia.,Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - D O Vladimirov
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - K A Lashkevich
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| |
Collapse
|
22
|
Harms K, Milic A, Stchigel AM, Stadler M, Surup F, Marin-Felix Y. Three New Derivatives of Zopfinol from Pseudorhypophila Mangenotii gen. et comb. nov. J Fungi (Basel) 2021; 7:181. [PMID: 33802411 PMCID: PMC8000789 DOI: 10.3390/jof7030181] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 12/14/2022] Open
Abstract
Triangularia mangenotti was analyzed for the production of secondary metabolites, resulting in the isolation of known zopfinol (1) and its new derivatives zopfinol B-C (2-4), the 10-membered lactones 7-O-acetylmultiplolide A (5) and 8-O-acetylmultiplolide A (6), together with sordarin (7), sordarin B (8), and hypoxysordarin (9). The absolute configuration of 1 was elucidated by the synthesis of MPTA-esters. Compound 1 showed antimicrobial activity against the Gram-positive bacteria Bacillus subtilis and Staphylococcus aureus and the fungus Mucor hiemalis. While 4 was weakly antibacterial, 3 showed stronger antibiotic activity against the Gram-positive bacteria and weak antifungal activity against M. hiemalis and Rhodotorula glutinis. We furthermore observed the cytotoxicity of 1, 3 and 4 against the mammalian cell lines KB3.1 and L929. Moreover, the new genus Pseudorhypophila is introduced herein to accommodate Triangularia mangenotii together with several species of Zopfiella-Z. marina, Z. pilifera, and Z. submersa. These taxa formed a well-supported monophyletic clade in the recently introduced family Navicularisporaceae, located far from the type species of the respective original genera, in a phylogram based on the combined dataset sequences of the internal transcribed spacer region (ITS), the nuclear rDNA large subunit (LSU), and fragments of the ribosomal polymerase II subunit 2 (rpb2) and β-tubulin (tub2) genes. Zopfiella submersa is synonymized with P. marina due to the phylogenetic and morphological similarity. The isolation of zopfinols 1-4 and sordarins 7-9 confirms the potential of this fungal order as producers of bioactive compounds and suggests these compounds as potential chemotaxonomic markers.
Collapse
Affiliation(s)
- Karen Harms
- Helmholtz Centre for Infection Research GmbH and German Centre for Infection Research (DZIF), Department Microbial Drugs, Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany; (K.H.); (A.M.); (M.S.)
- Institute of Microbiology, Technische Universität Braunschweig, Inhoffenstraße 7, 38124 Braunschweig, Germany
| | - Andrea Milic
- Helmholtz Centre for Infection Research GmbH and German Centre for Infection Research (DZIF), Department Microbial Drugs, Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany; (K.H.); (A.M.); (M.S.)
| | - Alberto M. Stchigel
- Mycology Unit, Medical School and Pere Virgili Health Research Institute IISPV, Universitat Rovira i Virgili, C/ Sant Llorenç 21, 43201 Reus, Tarragona, Spain;
| | - Marc Stadler
- Helmholtz Centre for Infection Research GmbH and German Centre for Infection Research (DZIF), Department Microbial Drugs, Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany; (K.H.); (A.M.); (M.S.)
- Institute of Microbiology, Technische Universität Braunschweig, Inhoffenstraße 7, 38124 Braunschweig, Germany
| | - Frank Surup
- Helmholtz Centre for Infection Research GmbH and German Centre for Infection Research (DZIF), Department Microbial Drugs, Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany; (K.H.); (A.M.); (M.S.)
- Institute of Microbiology, Technische Universität Braunschweig, Inhoffenstraße 7, 38124 Braunschweig, Germany
| | - Yasmina Marin-Felix
- Helmholtz Centre for Infection Research GmbH and German Centre for Infection Research (DZIF), Department Microbial Drugs, Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany; (K.H.); (A.M.); (M.S.)
| |
Collapse
|
23
|
Park MY, Park SJ, Kim JJ, Lee DH, Kim BS. Inhibitory Effect of Moriniafungin Produced by Setosphaeria rostrata F3736 on the Development of Rhizopus Rot. THE PLANT PATHOLOGY JOURNAL 2020; 36:570-578. [PMID: 33312092 PMCID: PMC7721543 DOI: 10.5423/ppj.oa.09.2020.0176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/26/2020] [Accepted: 09/09/2020] [Indexed: 06/12/2023]
Abstract
Rhizopus rot is a serious postharvest disease of various crops caused by Rhizopus spp. and controlled mainly by synthetic fungicides. We detected the antifungal activity of a culture extract of Setosphaeria rostrata F3736 against Rhizopus oryzae. The active ingredient was identified as moriniafungin, a known sordarin derivative, which showed minimum inhibitory concentrations of 1-8 μg/ml against Colletotrichum spp. and 0.03-0.13 μg/ml against Rhizopus spp. in vitro. Moriniafungin showed protective control efficacies against Rhizopus rot on apple and peach fruits. Treatment with 25 μg/ml moriniafungin delimited the lesion diameter significantly by 100% on R. oryzae-inoculated apple fruits compared with the non-treated control. Treatment with 0.04 μg/ml of moriniafungin reduced the lesion diameter significantly by 56.45%, and treatment with higher concentrations of 0.2-25 μg/ml reduced the lesion diameter by 70-90% on Rhizopus stolonifer var. stolonifer-inoculated peach fruit. These results suggest moriniafungin has potential as a control agent of postharvest diseases caused by Rhizopus spp.
Collapse
Affiliation(s)
- Min Young Park
- Department of Biosystems and Biotechnology, Korea University Graduate School, Seoul 0284, Korea
| | - So Jung Park
- Food-Biotech Research, LOTTE R&D Center, Seoul 07594, Korea
| | - Jae-Jin Kim
- Division of Environmental Science and Ecological Engineering, College of Life Science and Biotechnology, Korea University, Seoul 02841, Korea
| | - Dong Ho Lee
- Department of Biosystems and Biotechnology, Korea University Graduate School, Seoul 0284, Korea
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 0281, Korea
| | - Beom Seok Kim
- Department of Biosystems and Biotechnology, Korea University Graduate School, Seoul 0284, Korea
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 0281, Korea
| |
Collapse
|
24
|
Synthesis, antifungal activity and potential mechanism of fusidic acid derivatives possessing amino-terminal groups. Future Med Chem 2020; 12:763-774. [PMID: 32208979 DOI: 10.4155/fmc-2019-0289] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Aim: Fusidic acid (FA) is a narrow-spectrum bacteriostatic antibiotic. We inadvertently discovered that a FA derivative modified by an amino-terminal group at the 3-OH position, namely 2, inhibited the growth of Cryptococcus neoformans. Methods & results: Multiscale molecular modeling approaches were used to analyze the binding modes of 2 with eEF2. FA derivatives modified at the 3-OH position were designed based on in silico models; seven derivatives possessing different amino-terminal groups were synthesized and tested in vitro for antifungal activity against C. neoformans. Conclusion: Compound 7 had the strongest minimum inhibitory concentration. Two protonated nitrogen atoms of 7 interacted with a negative electrostatic pocket of eEF2 likely explain the superiority of 7-2.
Collapse
|
25
|
Nerva L, Sandrini M, Gambino G, Chitarra W. Double-Stranded RNAs (dsRNAs) as a Sustainable Tool against Gray Mold ( Botrytis cinerea) in Grapevine: Effectiveness of Different Application Methods in an Open-Air Environment. Biomolecules 2020; 10:biom10020200. [PMID: 32013165 PMCID: PMC7072719 DOI: 10.3390/biom10020200] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 01/12/2020] [Accepted: 01/27/2020] [Indexed: 01/13/2023] Open
Abstract
Grapevine is one of the most important and globally widespread fruit species, with a high impact on the economy of many countries but with an intense environmental effect. Therefore, new environmentally friendly defense strategies against fungal pathogens are needed for more sustainable agriculture. A novel emerging approach is spray-induced gene silencing (SIGS), which concerns the exogenous application of double-stranded RNA (dsRNA) inducing enhanced plant resistance against fungal pathogens. Here, we tested the ability of SIGS to prevent and counteract infection of Botrytis cinerea, one of the most economically impacting pathogens of grapevine. In particular, we tested three independent approaches for dsRNA delivery into plants: (i) high pressure spraying of leaves; (ii) petiole adsorption of dsRNAs; (iii) postharvest spraying of bunches. We demonstrated that independently from the method of application, SIGS can reduce virulence of the fungus. Moreover, we also observed three different levels of efficacy depending on the method of application. Thus, the present data provide crucial information on the possibility to exploit SIGS as an alternative sustainable and ecofriendly strategy for grapevine pre- and postharvest protection.
Collapse
Affiliation(s)
- Luca Nerva
- Research Centre for Viticulture and Enology, Council for Agricultural Research and Economics (CREA-VE), Via XXVIII Aprile 26, 31015 Conegliano, Italy
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Strada delle Cacce 73, 10135 Torino, Italy
- Correspondence: (L.N.); (W.C.); Tel.: +39-043-8456712 (L.N. & W.C.); Fax: +39-043-8450773 (L.N. & W.C.)
| | - Marco Sandrini
- Research Centre for Viticulture and Enology, Council for Agricultural Research and Economics (CREA-VE), Via XXVIII Aprile 26, 31015 Conegliano, Italy
- Dipartimento di Scienze Agroalimentari, Ambientali e Animali, Università degli Studi di Udine, Via delle Scienze 206, 33100 Udine, Italy
| | - Giorgio Gambino
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Strada delle Cacce 73, 10135 Torino, Italy
| | - Walter Chitarra
- Research Centre for Viticulture and Enology, Council for Agricultural Research and Economics (CREA-VE), Via XXVIII Aprile 26, 31015 Conegliano, Italy
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Strada delle Cacce 73, 10135 Torino, Italy
- Correspondence: (L.N.); (W.C.); Tel.: +39-043-8456712 (L.N. & W.C.); Fax: +39-043-8450773 (L.N. & W.C.)
| |
Collapse
|
26
|
Cheng Z, Brar GA. Global translation inhibition yields condition-dependent de-repression of ribosome biogenesis mRNAs. Nucleic Acids Res 2019; 47:5061-5073. [PMID: 30937450 PMCID: PMC6547411 DOI: 10.1093/nar/gkz231] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 03/17/2019] [Accepted: 03/21/2019] [Indexed: 11/15/2022] Open
Abstract
Ribosome biogenesis (RiBi) is an extremely energy intensive process that is critical for gene expression. It is thus highly regulated, including through the tightly coordinated expression of over 200 RiBi genes by positive and negative transcriptional regulators. We investigated RiBi regulation as cells initiated meiosis in budding yeast and noted early transcriptional activation of RiBi genes, followed by their apparent translational repression 1 hour (h) after stimulation to enter meiosis. Surprisingly, in the representative genes examined, measured translational repression depended on their promoters rather than mRNA regions. Further investigation revealed that the signature of this regulation in our data depended on pre-treating cells with the translation inhibitor, cycloheximide (CHX). This treatment, at 1 h in meiosis, but not earlier, rapidly resulted in accumulation of RiBi mRNAs that were not translated. This effect was also seen in with CHX pre-treatment of cells grown in media lacking amino acids. For NSR1, this effect depended on the -150 to -101 region of the promoter, as well as the RiBi transcriptional repressors Dot6 and Tod6. Condition-specific RiBi mRNA accumulation was also seen with translation inhibitors that are dissimilar from CHX, suggesting that this phenomenon might represent a feedback response to global translation inhibition.
Collapse
Affiliation(s)
- Ze Cheng
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Gloria Ann Brar
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
27
|
Shi-Kunne X, Jové RDP, Depotter JRL, Ebert MK, Seidl MF, Thomma BPHJ. In silico prediction and characterisation of secondary metabolite clusters in the plant pathogenic fungus Verticillium dahliae. FEMS Microbiol Lett 2019; 366:5475643. [PMID: 31004487 PMCID: PMC6502550 DOI: 10.1093/femsle/fnz081] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 04/23/2019] [Indexed: 01/07/2023] Open
Abstract
Fungi are renowned producers of natural compounds, also known as secondary metabolites (SMs) that display a wide array of biological activities. Typically, the genes that are involved in the biosynthesis of SMs are located in close proximity to each other in so-called secondary metabolite clusters. Many plant-pathogenic fungi secrete SMs during infection in order to promote disease establishment, for instance as cytocoxic compounds. Verticillium dahliae is a notorious plant pathogen that can infect over 200 host plants worldwide. However, the SM repertoire of this vascular pathogen remains mostly uncharted. To unravel the potential of V. dahliae to produce SMs, we performed in silico predictions and in-depth analyses of its secondary metabolite clusters. Using distinctive traits of gene clusters and the conserved signatures of core genes 25 potential SM gene clusters were identified. Subsequently, phylogenetic and comparative genomics analyses were performed, revealing that two putative siderophores, ferricrocin and TAFC, DHN-melanin and fujikurin may belong to the SM repertoire of V. dahliae.
Collapse
Affiliation(s)
- Xiaoqian Shi-Kunne
- Laboratory of Phytopathology, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Roger de Pedro Jové
- Laboratory of Phytopathology, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Jasper R L Depotter
- Laboratory of Phytopathology, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands,Department of Crops and Agronomy, National Institute of Agricultural Botany, Huntingdon Road, CB3 0LE Cambridge, United Kingdom
| | - Malaika K Ebert
- Laboratory of Phytopathology, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Michael F Seidl
- Laboratory of Phytopathology, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Bart P H J Thomma
- Laboratory of Phytopathology, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands,Corresponding author: Laboratory of Phytopathology, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands. Tel: 0031-317-484536; Fax: 0031-317-483412; E-mail:
| |
Collapse
|
28
|
Wu Y, Dockendorff C. Synthesis of Simplified Azasordarin Analogs as Potential Antifungal Agents. J Org Chem 2019; 84:5292-5304. [PMID: 30919633 DOI: 10.1021/acs.joc.9b00296] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A new series of simplified azasordarin analogs was synthesized using as key steps a Diels-Alder reaction to generate a highly substituted bicyclo[2.2.1]heptane core, followed by a subsequent nitrile alkylation. Several additional strategies were investigated for the generation of the key tertiary nitrile or aldehyde thought to be required for inhibition at the fungal protein eukaryotic elongation factor 2. This new series also features a morpholino glycone previously reported in semisynthetic sordarin derivatives with broad spectrum antifungal activity. Despite a lack of activity against Candida albicans for these early de novo analogs, the synthetic route reported here permits more comprehensive modifications of the bicyclic core and structure-activity relationship studies that were not heretofore possible.
Collapse
Affiliation(s)
- Yibiao Wu
- Department of Chemistry , Marquette University , P.O. Box 1881, Milwaukee , Wisconsin 53201-1881 , United States
| | - Chris Dockendorff
- Department of Chemistry , Marquette University , P.O. Box 1881, Milwaukee , Wisconsin 53201-1881 , United States
| |
Collapse
|
29
|
Liang XR, Ma XY, Ji NY. Trichosordarin A, a norditerpene glycoside from the marine-derived fungus Trichoderma harzianum R5. Nat Prod Res 2019; 34:2037-2042. [PMID: 30777455 DOI: 10.1080/14786419.2019.1574782] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A new sordarin derivative, trichosordarin A (1), with a unique norditerpene aglycone was isolated from the culture of a marine-sediment-derived fungal strain, Trichoderma harzianum R5. Its structure and relative configuration were unequivocally identified by a combination of 1D/2D NMR, IR, and mass spectrometric methods. Compound 1 was assayed to be toxic to the marine zooplankton Artemia salina.
Collapse
Affiliation(s)
- Xiao-Rui Liang
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China.,Naval Aviation University, Yantai, China
| | - Xin-Yue Ma
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
| | - Nai-Yun Ji
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
| |
Collapse
|
30
|
Synthesis of a novel bicyclic scaffold inspired by the antifungal natural product sordarin. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.07.064] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
31
|
Luth MR, Gupta P, Ottilie S, Winzeler EA. Using in Vitro Evolution and Whole Genome Analysis To Discover Next Generation Targets for Antimalarial Drug Discovery. ACS Infect Dis 2018; 4:301-314. [PMID: 29451780 PMCID: PMC5848146 DOI: 10.1021/acsinfecdis.7b00276] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
![]()
Although
many new anti-infectives have been discovered and developed solely
using phenotypic cellular screening and assay optimization, most researchers
recognize that structure-guided drug design is more practical and
less costly. In addition, a greater chemical space can be interrogated
with structure-guided drug design. The practicality of structure-guided
drug design has launched a search for the targets of compounds discovered
in phenotypic screens. One method that has been used extensively in
malaria parasites for target discovery and chemical validation is in vitro evolution and whole genome analysis (IVIEWGA).
Here, small molecules from phenotypic screens with demonstrated antiparasitic
activity are used in genome-based target discovery methods. In this
Review, we discuss the newest, most promising druggable targets discovered
or further validated by evolution-based methods, as well as some exceptions.
Collapse
Affiliation(s)
- Madeline R. Luth
- Division of Host Pathogen Systems and Therapeutics, Department of Pediatrics, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Purva Gupta
- Division of Host Pathogen Systems and Therapeutics, Department of Pediatrics, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Sabine Ottilie
- Division of Host Pathogen Systems and Therapeutics, Department of Pediatrics, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Elizabeth A. Winzeler
- Division of Host Pathogen Systems and Therapeutics, Department of Pediatrics, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
- Skaggs School of Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| |
Collapse
|
32
|
Susorov D, Zakharov N, Shuvalova E, Ivanov A, Egorova T, Shuvalov A, Shatsky IN, Alkalaeva E. Eukaryotic translation elongation factor 2 (eEF2) catalyzes reverse translocation of the eukaryotic ribosome. J Biol Chem 2018; 293:5220-5229. [PMID: 29453282 DOI: 10.1074/jbc.ra117.000761] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 01/22/2018] [Indexed: 01/10/2023] Open
Abstract
During protein synthesis, a ribosome moves along the mRNA template and, using aminoacyl-tRNAs, decodes the template nucleotide triplets to assemble a protein amino acid sequence. This movement is accompanied by shifting of mRNA-tRNA complexes within the ribosome in a process called translocation. In living cells, this process proceeds in a unidirectional manner, bringing the ribosome to the 3' end of mRNA, and is catalyzed by the GTPase translation elongation factor 2 (EF-G in prokaryotes and eEF2 in eukaryotes). Interestingly, the possibility of spontaneous backward translocation has been shown in vitro for bacterial ribosomes, suggesting a potential reversibility of this reaction. However, this possibility has not yet been tested for eukaryotic ribosomes. Here, using a reconstituted mammalian translation system, we show that the eukaryotic elongation factor eEF2 catalyzes ribosomal reverse translocation at one mRNA triplet. We found that this process requires a cognate tRNA in the ribosomal E-site and cannot occur spontaneously without eEF2. The efficiency of this reaction depended on the concentrations of eEF2 and cognate tRNAs and increased in the presence of nonhydrolyzable GTP analogues. Of note, ADP-ribosylation of eEF2 domain IV blocked reverse translocation, suggesting a crucial role of interactions of this domain with the ribosome for the catalysis of the reaction. In summary, our findings indicate that eEF2 is able to induce ribosomal translocation in forward and backward directions, highlighting the universal mechanism of tRNA-mRNA movements within the ribosome.
Collapse
Affiliation(s)
- Denis Susorov
- From the Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia.,the Faculty of Bioengineering and Bioinformatics, M. V. Lomonosov Moscow State University, Moscow 119234, Russia
| | - Nikita Zakharov
- the Department of Biological and Medical Physics, Moscow Institute of Physics and Technology, Dolgoprudny, Russia 141700
| | - Ekaterina Shuvalova
- From the Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Alexander Ivanov
- From the Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia.,the Faculty of Bioengineering and Bioinformatics, M. V. Lomonosov Moscow State University, Moscow 119234, Russia
| | - Tatiana Egorova
- From the Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia.,the Pirogov Russian National Research Medical University, Moscow 117997, Russia, and
| | - Alexey Shuvalov
- From the Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Ivan N Shatsky
- the Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow 119992, Russia
| | - Elena Alkalaeva
- From the Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia,
| |
Collapse
|
33
|
Osuna BA, Howard CJ, KC S, Frost A, Weinberg DE. In vitro analysis of RQC activities provides insights into the mechanism and function of CAT tailing. eLife 2017; 6:e27949. [PMID: 28718767 PMCID: PMC5562442 DOI: 10.7554/elife.27949] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 07/11/2017] [Indexed: 12/25/2022] Open
Abstract
Ribosomes can stall during translation due to defects in the mRNA template or translation machinery, leading to the production of incomplete proteins. The Ribosome-associated Quality control Complex (RQC) engages stalled ribosomes and targets nascent polypeptides for proteasomal degradation. However, how each RQC component contributes to this process remains unclear. Here we demonstrate that key RQC activities-Ltn1p-dependent ubiquitination and Rqc2p-mediated Carboxy-terminal Alanine and Threonine (CAT) tail elongation-can be recapitulated in vitro with a yeast cell-free system. Using this approach, we determined that CAT tailing is mechanistically distinct from canonical translation, that Ltn1p-mediated ubiquitination depends on the poorly characterized RQC component Rqc1p, and that the process of CAT tailing enables robust ubiquitination of the nascent polypeptide. These findings establish a novel system to study the RQC and provide a framework for understanding how RQC factors coordinate their activities to facilitate clearance of incompletely synthesized proteins.
Collapse
Affiliation(s)
- Beatriz A Osuna
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, United States
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
| | - Conor J Howard
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
- California Institute for Quantitative Biomedical Research, San Francisco, United States
- Chan Zuckerberg Biohub, San Francisco, United States
| | - Subheksha KC
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, United States
| | - Adam Frost
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
- California Institute for Quantitative Biomedical Research, San Francisco, United States
- Chan Zuckerberg Biohub, San Francisco, United States
- Department of Biochemistry, University of Utah, Salt Lake City, United States
| | - David E Weinberg
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, United States
- Sandler Faculty Fellows Program, University of California, San Francisco, San Francisco, United States
| |
Collapse
|
34
|
A mutated dph3 gene causes sensitivity of Schizosaccharomyces pombe cells to cytotoxic agents. Curr Genet 2017; 63:1081-1091. [PMID: 28555368 PMCID: PMC5668335 DOI: 10.1007/s00294-017-0711-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 05/11/2017] [Accepted: 05/23/2017] [Indexed: 12/11/2022]
Abstract
Dph3 is involved in diphthamide modification of the eukaryotic translation elongation factor eEF2 and in Elongator-mediated modifications of tRNAs, where a 5-methoxycarbonyl-methyl moiety is added to wobble uridines. Lack of such modifications affects protein synthesis due to inaccurate translation of mRNAs at ribosomes. We have discovered that integration of markers at the msh3 locus of Schizosaccharomyces pombe impaired the function of the nearby located dph3 gene. Such integrations rendered cells sensitive to the cytotoxic drugs hydroxyurea and methyl methanesulfonate. We constructed dph3 and msh3 strains with mutated ATG start codons (ATGmut), which allowed investigating drug sensitivity without potential interference by marker insertions. The dph3-ATGmut and a dph3::loxP-ura4-loxM gene disruption strain, but not msh3-ATGmut, turned out to be sensitive to hydroxyurea and methyl methanesulfonate, likewise the strains with cassettes integrated at the msh3 locus. The fungicide sordarin, which inhibits diphthamide modified eEF2 of Saccharomyces cerevisiae, barely affected survival of wild type and msh3Δ S. pombe cells, while the dph3Δ mutant was sensitive. The msh3-ATG mutation, but not dph3Δ or the dph3-ATG mutation caused a defect in mating-type switching, indicating that the ura4 marker at the dph3 locus did not interfere with Msh3 function. We conclude that Dph3 is required for cellular resistance to the fungicide sordarin and to the cytotoxic drugs hydroxyurea and methyl methanesulfonate. This is likely mediated by efficient translation of proteins in response to DNA damage and replication stress.
Collapse
|
35
|
Mechanism and Regulation of Protein Synthesis in Saccharomyces cerevisiae. Genetics 2017; 203:65-107. [PMID: 27183566 DOI: 10.1534/genetics.115.186221] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 02/24/2016] [Indexed: 12/18/2022] Open
Abstract
In this review, we provide an overview of protein synthesis in the yeast Saccharomyces cerevisiae The mechanism of protein synthesis is well conserved between yeast and other eukaryotes, and molecular genetic studies in budding yeast have provided critical insights into the fundamental process of translation as well as its regulation. The review focuses on the initiation and elongation phases of protein synthesis with descriptions of the roles of translation initiation and elongation factors that assist the ribosome in binding the messenger RNA (mRNA), selecting the start codon, and synthesizing the polypeptide. We also examine mechanisms of translational control highlighting the mRNA cap-binding proteins and the regulation of GCN4 and CPA1 mRNAs.
Collapse
|
36
|
Nandan D, Thomas SA, Nguyen A, Moon KM, Foster LJ, Reiner NE. Comprehensive Identification of mRNA-Binding Proteins of Leishmania donovani by Interactome Capture. PLoS One 2017; 12:e0170068. [PMID: 28135300 PMCID: PMC5279761 DOI: 10.1371/journal.pone.0170068] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 12/28/2016] [Indexed: 12/23/2022] Open
Abstract
Leishmania are unicellular eukaryotes responsible for leishmaniasis in humans. Like other trypanosomatids, leishmania regulate protein coding gene expression almost exclusively at the post-transcriptional level with the help of RNA binding proteins (RBPs). Due to the presence of polycystronic transcription units, leishmania do not regulate RNA polymerase II-dependent transcription initiation. Recent evidence suggests that the main control points in gene expression are mRNA degradation and translation. Protein-RNA interactions are involved in every aspect of RNA biology, such as mRNA splicing, polyadenylation, localization, degradation, and translation. A detailed picture of these interactions would likely prove to be highly informative in understanding leishmania biology and virulence. We developed a strategy involving covalent UV cross-linking of RBPs to mRNA in vivo, followed by interactome capture using oligo(dT) magnetic beads to define comprehensively the mRNA interactome of growing L. donovani amastigotes. The protein mass spectrometry analysis of captured proteins identified 79 mRNA interacting proteins which withstood very stringent washing conditions. Strikingly, we found that 49 of these mRNA interacting proteins had no orthologs or homologs in the human genome. Consequently, these may represent high quality candidates for selective drug targeting leading to novel therapeutics. These results show that this unbiased, systematic strategy has the promise to be applicable to study the mRNA interactome during various biological settings such as metabolic changes, stress (low pH environment, oxidative stress and nutrient deprivation) or drug treatment.
Collapse
Affiliation(s)
- Devki Nandan
- Departments of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Sneha A. Thomas
- Departments of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Anne Nguyen
- Departments of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Kyung-Mee Moon
- University of British Columbia, Centre for High-Throughput Biology and Department of Biochemistry & Molecular Biology, Vancouver, BC, Canada
| | - Leonard J. Foster
- University of British Columbia, Centre for High-Throughput Biology and Department of Biochemistry & Molecular Biology, Vancouver, BC, Canada
| | - Neil E. Reiner
- Departments of Medicine, University of British Columbia, Vancouver, BC, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
- * E-mail:
| |
Collapse
|
37
|
Scorzoni L, de Paula E Silva ACA, Marcos CM, Assato PA, de Melo WCMA, de Oliveira HC, Costa-Orlandi CB, Mendes-Giannini MJS, Fusco-Almeida AM. Antifungal Therapy: New Advances in the Understanding and Treatment of Mycosis. Front Microbiol 2017; 8:36. [PMID: 28167935 PMCID: PMC5253656 DOI: 10.3389/fmicb.2017.00036] [Citation(s) in RCA: 265] [Impact Index Per Article: 33.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 01/06/2017] [Indexed: 01/08/2023] Open
Abstract
The high rates of morbidity and mortality caused by fungal infections are associated with the current limited antifungal arsenal and the high toxicity of the compounds. Additionally, identifying novel drug targets is challenging because there are many similarities between fungal and human cells. The most common antifungal targets include fungal RNA synthesis and cell wall and membrane components, though new antifungal targets are being investigated. Nonetheless, fungi have developed resistance mechanisms, such as overexpression of efflux pump proteins and biofilm formation, emphasizing the importance of understanding these mechanisms. To address these problems, different approaches to preventing and treating fungal diseases are described in this review, with a focus on the resistance mechanisms of fungi, with the goal of developing efficient strategies to overcoming and preventing resistance as well as new advances in antifungal therapy. Due to the limited antifungal arsenal, researchers have sought to improve treatment via different approaches, and the synergistic effect obtained by the combination of antifungals contributes to reducing toxicity and could be an alternative for treatment. Another important issue is the development of new formulations for antifungal agents, and interest in nanoparticles as new types of carriers of antifungal drugs has increased. In addition, modifications to the chemical structures of traditional antifungals have improved their activity and pharmacokinetic parameters. Moreover, a different approach to preventing and treating fungal diseases is immunotherapy, which involves different mechanisms, such as vaccines, activation of the immune response and inducing the production of host antimicrobial molecules. Finally, the use of a mini-host has been encouraging for in vivo testing because these animal models demonstrate a good correlation with the mammalian model; they also increase the speediness of as well as facilitate the preliminary testing of new antifungal agents. In general, many years are required from discovery of a new antifungal to clinical use. However, the development of new antifungal strategies will reduce the therapeutic time and/or increase the quality of life of patients.
Collapse
Affiliation(s)
- Liliana Scorzoni
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas Araraquara, Brasil
| | - Ana C A de Paula E Silva
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas Araraquara, Brasil
| | - Caroline M Marcos
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas Araraquara, Brasil
| | - Patrícia A Assato
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas Araraquara, Brasil
| | - Wanessa C M A de Melo
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas Araraquara, Brasil
| | - Haroldo C de Oliveira
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas Araraquara, Brasil
| | - Caroline B Costa-Orlandi
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas Araraquara, Brasil
| | - Maria J S Mendes-Giannini
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas Araraquara, Brasil
| | - Ana M Fusco-Almeida
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas Araraquara, Brasil
| |
Collapse
|
38
|
Abeyrathne PD, Koh CS, Grant T, Grigorieff N, Korostelev AA. Ensemble cryo-EM uncovers inchworm-like translocation of a viral IRES through the ribosome. eLife 2016; 5. [PMID: 27159452 PMCID: PMC4896748 DOI: 10.7554/elife.14874] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 05/08/2016] [Indexed: 12/17/2022] Open
Abstract
Internal ribosome entry sites (IRESs) mediate cap-independent translation of viral mRNAs. Using electron cryo-microscopy of a single specimen, we present five ribosome structures formed with the Taura syndrome virus IRES and translocase eEF2•GTP bound with sordarin. The structures suggest a trajectory of IRES translocation, required for translation initiation, and provide an unprecedented view of eEF2 dynamics. The IRES rearranges from extended to bent to extended conformations. This inchworm-like movement is coupled with ribosomal inter-subunit rotation and 40S head swivel. eEF2, attached to the 60S subunit, slides along the rotating 40S subunit to enter the A site. Its diphthamide-bearing tip at domain IV separates the tRNA-mRNA-like pseudoknot I (PKI) of the IRES from the decoding center. This unlocks 40S domains, facilitating head swivel and biasing IRES translocation via hitherto-elusive intermediates with PKI captured between the A and P sites. The structures suggest missing links in our understanding of tRNA translocation.
Collapse
Affiliation(s)
| | - Cha San Koh
- RNA Therapeutics Institute, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, United States
| | - Timothy Grant
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Nikolaus Grigorieff
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Andrei A Korostelev
- RNA Therapeutics Institute, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, United States
| |
Collapse
|
39
|
Ling C, Ermolenko DN. Structural insights into ribosome translocation. WILEY INTERDISCIPLINARY REVIEWS-RNA 2016; 7:620-36. [PMID: 27117863 PMCID: PMC4990484 DOI: 10.1002/wrna.1354] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 03/15/2016] [Accepted: 03/18/2016] [Indexed: 11/23/2022]
Abstract
During protein synthesis, tRNA and mRNA are translocated from the A to P to E sites of the ribosome thus enabling the ribosome to translate one codon of mRNA after the other. Ribosome translocation along mRNA is induced by the universally conserved ribosome GTPase, elongation factor G (EF‐G) in bacteria and elongation factor 2 (EF‐2) in eukaryotes. Recent structural and single‐molecule studies revealed that tRNA and mRNA translocation within the ribosome is accompanied by cyclic forward and reverse rotations between the large and small ribosomal subunits parallel to the plane of the intersubunit interface. In addition, during ribosome translocation, the ‘head’ domain of small ribosomal subunit undergoes forward‐ and back‐swiveling motions relative to the rest of the small ribosomal subunit around the axis that is orthogonal to the axis of intersubunit rotation. tRNA/mRNA translocation is also coupled to the docking of domain IV of EF‐G into the A site of the small ribosomal subunit that converts the thermally driven motions of the ribosome and tRNA into the forward translocation of tRNA/mRNA inside the ribosome. Despite recent and enormous progress made in the understanding of the molecular mechanism of ribosome translocation, the sequence of structural rearrangements of the ribosome, EF‐G and tRNA during translocation is still not fully established and awaits further investigation. WIREs RNA 2016, 7:620–636. doi: 10.1002/wrna.1354 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Clarence Ling
- Department of Biochemistry and Biophysics & Center for RNA Biology, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA
| | - Dmitri N Ermolenko
- Department of Biochemistry and Biophysics & Center for RNA Biology, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA
| |
Collapse
|
40
|
Chakraborty B, Sejpal NV, Payghan PV, Ghoshal N, Sengupta J. Structure-based designing of sordarin derivative as potential fungicide with pan-fungal activity. J Mol Graph Model 2016; 66:133-42. [PMID: 27060894 DOI: 10.1016/j.jmgm.2016.03.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 03/23/2016] [Accepted: 03/24/2016] [Indexed: 11/25/2022]
Abstract
Fungal infections have become a significant problem for immunosuppressed patients. Sordarin, a promising fungicidal agent, inhibits fungal protein synthesis by impairing elongation factor-2 (eEF2) function. Intriguingly, despite high sequence similarity among eEF2s from different species, sordarin has been shown to inhibit translation specifically in certain fungi while unable to do so in some other fungal species (e.g. Candida parapsilosis and Candida lusitaniae). The sordarin binding site on eEF2 as well as its mechanism of action is known. In a previous study, we have detailed the interactions between sordarin and eEF2 cavities from different fungal species at the molecular level and predicted the probable cause of sordarin sensitivity. Guided by our previous analysis, we aimed for computer-aided designing of sordarin derivatives as potential fungicidal agents that still remain ineffective against human eEF2. We have performed structural knowledge-based designing of several sordarin derivatives and evaluated predicted interactions of those derivatives with the sordarin-binding cavities of different eEF2s, against which sordarin shows no inhibitory action. Our analyses identify an amino-pyrrole derivative as a good template for further designing of promising broad-spectrum antifungal agents. The drug likeness and ADMET prediction on this derivative also supports its suitability as a drug candidate.
Collapse
Affiliation(s)
- Biprashekhar Chakraborty
- Structural Biology & Bio-Informatics Division, Indian Institute of Chemical Biology (Council of Scientific & Industrial Research), 4, Raja S.C. Mullick Road, Kolkata 700 032, India
| | - Nikunjkumar Vinodray Sejpal
- The National Institute of Pharmaceutical Education and Research (NIPER), Indian Institute of Chemical Biology, Kolkata, India
| | - Pavan V Payghan
- Structural Biology & Bio-Informatics Division, Indian Institute of Chemical Biology (Council of Scientific & Industrial Research), 4, Raja S.C. Mullick Road, Kolkata 700 032, India
| | - Nanda Ghoshal
- Structural Biology & Bio-Informatics Division, Indian Institute of Chemical Biology (Council of Scientific & Industrial Research), 4, Raja S.C. Mullick Road, Kolkata 700 032, India
| | - Jayati Sengupta
- Structural Biology & Bio-Informatics Division, Indian Institute of Chemical Biology (Council of Scientific & Industrial Research), 4, Raja S.C. Mullick Road, Kolkata 700 032, India.
| |
Collapse
|
41
|
Büschleb M, Dorich S, Hanessian S, Tao D, Schenthal KB, Overman LE. Synthetic Strategies toward Natural Products Containing Contiguous Stereogenic Quaternary Carbon Atoms. Angew Chem Int Ed Engl 2016; 55:4156-86. [PMID: 26836448 PMCID: PMC4865016 DOI: 10.1002/anie.201507549] [Citation(s) in RCA: 268] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Indexed: 11/06/2022]
Abstract
Strategies for the total synthesis of complex natural products that contain two or more contiguous stereogenic quaternary carbon atoms in their intricate structures are reviewed with 12 representative examples. Emphasis has been put on methods to create quaternary carbon stereocenters, including syntheses of the same natural product by different groups, thereby showcasing the diversity of thought and individual creativity. A compendium of selected natural products containing two or more contiguous stereogenic quaternary carbon atoms and key reactions in their total or partial syntheses is provided in the Supporting Information.
Collapse
Affiliation(s)
- Martin Büschleb
- Department of Chemistry, Université de Montréal, Station Centre-Ville, C. P. 6128, Montréal, Qc, H3C 3J7, Canada
| | - Stéphane Dorich
- Department of Chemistry, Université de Montréal, Station Centre-Ville, C. P. 6128, Montréal, Qc, H3C 3J7, Canada
| | - Stephen Hanessian
- Department of Chemistry, Université de Montréal, Station Centre-Ville, C. P. 6128, Montréal, Qc, H3C 3J7, Canada.
| | - Daniel Tao
- Department of Chemistry, University of California, 1102 Natural Sciences II, Irvine, CA, 92697-2025, USA
| | - Kyle B Schenthal
- Department of Chemistry, University of California, 1102 Natural Sciences II, Irvine, CA, 92697-2025, USA
| | - Larry E Overman
- Department of Chemistry, University of California, 1102 Natural Sciences II, Irvine, CA, 92697-2025, USA
| |
Collapse
|
42
|
Büschleb M, Dorich S, Hanessian S, Tao D, Schenthal KB, Overman LE. Strategien für die Synthese von Naturstoffen mit benachbarten stereogenen quartären Kohlenstoffatomen. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201507549] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Martin Büschleb
- Department of Chemistry; Université de Montréal, Station Centre-Ville; C. P. 6128 Montréal Qc H3C 3J7 Kanada
| | - Stéphane Dorich
- Department of Chemistry; Université de Montréal, Station Centre-Ville; C. P. 6128 Montréal Qc H3C 3J7 Kanada
| | - Stephen Hanessian
- Department of Chemistry; Université de Montréal, Station Centre-Ville; C. P. 6128 Montréal Qc H3C 3J7 Kanada
| | - Daniel Tao
- Department of Chemistry; University of California; 1102 Natural Sciences II Irvine CA 92697-2025 USA
| | - Kyle B. Schenthal
- Department of Chemistry; University of California; 1102 Natural Sciences II Irvine CA 92697-2025 USA
| | - Larry E. Overman
- Department of Chemistry; University of California; 1102 Natural Sciences II Irvine CA 92697-2025 USA
| |
Collapse
|
43
|
Stickel SA, Gomes NP, Frederick B, Raben D, Su TT. Bouvardin is a Radiation Modulator with a Novel Mechanism of Action. Radiat Res 2015; 184:392-403. [PMID: 26414509 DOI: 10.1667/rr14068.1] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Protein synthesis is essential for growth, proliferation and survival of cells. Translation factors are overexpressed in many cancers and in preclinical models, their experimental inhibition has been shown to inhibit cancer growth. Differential regulation of translation also occurs upon exposure to cancer-relevant stressors such as hypoxia and ionizing radiation. The failure to regulate translation has been shown to interfere with recovery after genotoxic stress. These findings suggest that modulation of translation, alone or in conjunction with genotoxins, may be therapeutic in oncology. Yet, only two drugs that directly inhibit translation are FDA-approved for oncology therapies used today. We have previously identified the protein synthesis inhibitor, bouvardin in a screen for small molecule enhancers of ionizing radiation in Drosophila melanogaster . Bouvardin was independently identified in a screen for selective inhibitors of engineered human breast cancer stem cells. Here we report the effect of bouvardin treatment in preclinical models of head and neck cancer (HNC) and glioma, two cancer types for which radiation therapy is the most common treatment. Our data show that bouvardin treatment blocked translation elongation on human ribosomes and suggest that it did so by blocking the dissociation of elongation factor 2 from the ribosome. Bouvardin and radiation enhanced the induction of clonogenic death in HNC and glioma cells, although by different mechanisms. Bouvardin treatment enhanced the radiation-induced antitumor effects in HNC tumor xenografts in mice. These data suggest that inhibition of translation elongation, particularly in combination with radiation treatment, may be a promising treatment option for cancer.
Collapse
Affiliation(s)
- Stefanie A Stickel
- a Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado
| | - Nathan P Gomes
- a Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado;,d SuviCa, Inc., Boulder, Colorado
| | - Barbara Frederick
- a Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado;,c Department of Radiation Oncology, University of Colorado Health Sciences Campus, Aurora, Colorado; and
| | - David Raben
- a Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado;,c Department of Radiation Oncology, University of Colorado Health Sciences Campus, Aurora, Colorado; and
| | - Tin Tin Su
- a Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado;,b University of Colorado, Comprehensive Cancer Center, Aurora, Colorado
| |
Collapse
|
44
|
Baragaña B, Hallyburton I, Lee MCS, Norcross NR, Grimaldi R, Otto TD, Proto WR, Blagborough AM, Meister S, Wirjanata G, Ruecker A, Upton LM, Abraham TS, Almeida MJ, Pradhan A, Porzelle A, Luksch T, Martínez MS, Luksch T, Bolscher JM, Woodland A, Norval S, Zuccotto F, Thomas J, Simeons F, Stojanovski L, Osuna-Cabello M, Brock PM, Churcher TS, Sala KA, Zakutansky SE, Jiménez-Díaz MB, Sanz LM, Riley J, Basak R, Campbell M, Avery VM, Sauerwein RW, Dechering KJ, Noviyanti R, Campo B, Frearson JA, Angulo-Barturen I, Ferrer-Bazaga S, Gamo FJ, Wyatt PG, Leroy D, Siegl P, Delves MJ, Kyle DE, Wittlin S, Marfurt J, Price RN, Sinden RE, Winzeler EA, Charman SA, Bebrevska L, Gray DW, Campbell S, Fairlamb AH, Willis PA, Rayner JC, Fidock DA, Read KD, Gilbert IH. A novel multiple-stage antimalarial agent that inhibits protein synthesis. Nature 2015; 522:315-20. [PMID: 26085270 PMCID: PMC4700930 DOI: 10.1038/nature14451] [Citation(s) in RCA: 334] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 04/07/2015] [Indexed: 02/08/2023]
Abstract
There is an urgent need for new drugs to treat malaria, with broad therapeutic potential and novel modes of action, to widen the scope of treatment and to overcome emerging drug resistance. Here we describe the discovery of DDD107498, a compound with a potent and novel spectrum of antimalarial activity against multiple life-cycle stages of the Plasmodium parasite, with good pharmacokinetic properties and an acceptable safety profile. DDD107498 demonstrates potential to address a variety of clinical needs, including single-dose treatment, transmission blocking and chemoprotection. DDD107498 was developed from a screening programme against blood-stage malaria parasites; its molecular target has been identified as translation elongation factor 2 (eEF2), which is responsible for the GTP-dependent translocation of the ribosome along messenger RNA, and is essential for protein synthesis. This discovery of eEF2 as a viable antimalarial drug target opens up new possibilities for drug discovery.
Collapse
Affiliation(s)
- Beatriz Baragaña
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Irene Hallyburton
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Marcus C S Lee
- Department of Microbiology and Immunology, Columbia University College of Physicians and Surgeons, New York, New York 10032, USA
| | - Neil R Norcross
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Raffaella Grimaldi
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Thomas D Otto
- Malaria Programme, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge CB10 1SA, UK
| | - William R Proto
- Malaria Programme, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge CB10 1SA, UK
| | | | - Stephan Meister
- University of California, San Diego, School of Medicine, 9500 Gilman Drive 0760, La Jolla, California 92093, USA
| | - Grennady Wirjanata
- Global Health and Tropical Medicine Division, Menzies School of Health Research, Charles Darwin University, PO Box 41096, Casuarina, Darwin, Northern Territory 0811, Australia
| | - Andrea Ruecker
- Department of Life Sciences, Imperial College, London SW7 2AZ, UK
| | - Leanna M Upton
- Department of Life Sciences, Imperial College, London SW7 2AZ, UK
| | - Tara S Abraham
- Department of Microbiology and Immunology, Columbia University College of Physicians and Surgeons, New York, New York 10032, USA
| | - Mariana J Almeida
- Department of Microbiology and Immunology, Columbia University College of Physicians and Surgeons, New York, New York 10032, USA
| | - Anupam Pradhan
- Department of Global Health, College of Public Health University of South Florida, 3720 Spectrum Boulevard, Suite 304, Tampa, Florida 33612, USA
| | - Achim Porzelle
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | | | - María Santos Martínez
- GlaxoSmithKline, Tres Cantos Medicines Development Campus-Diseases of the Developing World, Severo Ochoa 2, Tres Cantos 28760, Madrid, Spain
| | | | - Judith M Bolscher
- TropIQ Health Sciences, Geert Grooteplein 28, Huispost 268, 6525 GA Nijmegen, The Netherlands
| | - Andrew Woodland
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Suzanne Norval
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Fabio Zuccotto
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - John Thomas
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Frederick Simeons
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Laste Stojanovski
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Maria Osuna-Cabello
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Paddy M Brock
- Department of Life Sciences, Imperial College, London SW7 2AZ, UK
| | - Tom S Churcher
- Department of Life Sciences, Imperial College, London SW7 2AZ, UK
| | - Katarzyna A Sala
- Department of Life Sciences, Imperial College, London SW7 2AZ, UK
| | | | - María Belén Jiménez-Díaz
- GlaxoSmithKline, Tres Cantos Medicines Development Campus-Diseases of the Developing World, Severo Ochoa 2, Tres Cantos 28760, Madrid, Spain
| | - Laura Maria Sanz
- GlaxoSmithKline, Tres Cantos Medicines Development Campus-Diseases of the Developing World, Severo Ochoa 2, Tres Cantos 28760, Madrid, Spain
| | - Jennifer Riley
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Rajshekhar Basak
- Department of Microbiology and Immunology, Columbia University College of Physicians and Surgeons, New York, New York 10032, USA
| | - Michael Campbell
- Centre for Drug Candidate Optimisation, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Vicky M Avery
- Eskitis Institute, Brisbane Innovation Park, Nathan Campus, Griffith University, Queensland 4111, Australia
| | - Robert W Sauerwein
- TropIQ Health Sciences, Geert Grooteplein 28, Huispost 268, 6525 GA Nijmegen, The Netherlands
| | - Koen J Dechering
- TropIQ Health Sciences, Geert Grooteplein 28, Huispost 268, 6525 GA Nijmegen, The Netherlands
| | - Rintis Noviyanti
- Malaria Pathogenesis Laboratory, Eijkman Institute for Molecular Biology, Jalan Diponegoro 69, 10430 Jakarta, Indonesia
| | - Brice Campo
- Medicines for Malaria Venture, PO Box 1826, 20 route de Pre-Bois, 1215 Geneva 15, Switzerland
| | - Julie A Frearson
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Iñigo Angulo-Barturen
- GlaxoSmithKline, Tres Cantos Medicines Development Campus-Diseases of the Developing World, Severo Ochoa 2, Tres Cantos 28760, Madrid, Spain
| | - Santiago Ferrer-Bazaga
- GlaxoSmithKline, Tres Cantos Medicines Development Campus-Diseases of the Developing World, Severo Ochoa 2, Tres Cantos 28760, Madrid, Spain
| | - Francisco Javier Gamo
- GlaxoSmithKline, Tres Cantos Medicines Development Campus-Diseases of the Developing World, Severo Ochoa 2, Tres Cantos 28760, Madrid, Spain
| | - Paul G Wyatt
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Didier Leroy
- Medicines for Malaria Venture, PO Box 1826, 20 route de Pre-Bois, 1215 Geneva 15, Switzerland
| | - Peter Siegl
- Medicines for Malaria Venture, PO Box 1826, 20 route de Pre-Bois, 1215 Geneva 15, Switzerland
| | - Michael J Delves
- Department of Life Sciences, Imperial College, London SW7 2AZ, UK
| | - Dennis E Kyle
- Department of Global Health, College of Public Health University of South Florida, 3720 Spectrum Boulevard, Suite 304, Tampa, Florida 33612, USA
| | - Sergio Wittlin
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4051 Basel, Switzerland
| | - Jutta Marfurt
- Global Health and Tropical Medicine Division, Menzies School of Health Research, Charles Darwin University, PO Box 41096, Casuarina, Darwin, Northern Territory 0811, Australia
| | - Ric N Price
- 1] Global Health and Tropical Medicine Division, Menzies School of Health Research, Charles Darwin University, PO Box 41096, Casuarina, Darwin, Northern Territory 0811, Australia [2] Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7LJ, UK
| | - Robert E Sinden
- Department of Life Sciences, Imperial College, London SW7 2AZ, UK
| | - Elizabeth A Winzeler
- University of California, San Diego, School of Medicine, 9500 Gilman Drive 0760, La Jolla, California 92093, USA
| | - Susan A Charman
- Centre for Drug Candidate Optimisation, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Lidiya Bebrevska
- Medicines for Malaria Venture, PO Box 1826, 20 route de Pre-Bois, 1215 Geneva 15, Switzerland
| | - David W Gray
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Simon Campbell
- Medicines for Malaria Venture, PO Box 1826, 20 route de Pre-Bois, 1215 Geneva 15, Switzerland
| | - Alan H Fairlamb
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Paul A Willis
- Medicines for Malaria Venture, PO Box 1826, 20 route de Pre-Bois, 1215 Geneva 15, Switzerland
| | - Julian C Rayner
- Malaria Programme, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge CB10 1SA, UK
| | - David A Fidock
- 1] Department of Microbiology and Immunology, Columbia University College of Physicians and Surgeons, New York, New York 10032, USA [2] Division of Infectious Diseases, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York 10032, USA
| | - Kevin D Read
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Ian H Gilbert
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| |
Collapse
|
45
|
Schaffrath R, Abdel-Fattah W, Klassen R, Stark MJR. The diphthamide modification pathway from Saccharomyces cerevisiae--revisited. Mol Microbiol 2014; 94:1213-26. [PMID: 25352115 DOI: 10.1111/mmi.12845] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2014] [Indexed: 01/09/2023]
Abstract
Diphthamide is a conserved modification in archaeal and eukaryal translation elongation factor 2 (EF2). Its name refers to the target function for diphtheria toxin, the disease-causing agent that, through ADP ribosylation of diphthamide, causes irreversible inactivation of EF2 and cell death. Although this clearly emphasizes a pathobiological role for diphthamide, its physiological function is unclear, and precisely why cells need EF2 to contain diphthamide is hardly understood. Nonetheless, the conservation of diphthamide biosynthesis together with syndromes (i.e. ribosomal frame-shifting, embryonic lethality, neurodegeneration and cancer) typical of mutant cells that cannot make it strongly suggests that diphthamide-modified EF2 occupies an important and translation-related role in cell proliferation and development. Whether this is structural and/or regulatory remains to be seen. However, recent progress in dissecting the diphthamide gene network (DPH1-DPH7) from the budding yeast Saccharomyces cerevisiae has significantly advanced our understanding of the mechanisms required to initiate and complete diphthamide synthesis on EF2. Here, we review recent developments in the field that not only have provided novel, previously overlooked and unexpected insights into the pathway and the biochemical players required for diphthamide synthesis but also are likely to foster innovative studies into the potential regulation of diphthamide, and importantly, its ill-defined biological role.
Collapse
Affiliation(s)
- Raffael Schaffrath
- Department of Genetics, University of Leicester, Leicester, LE1 7RH, UK; Institut für Biologie, Abteilung Mikrobiologie, Universität Kassel, 34132, Kassel, Germany
| | | | | | | |
Collapse
|
46
|
Haque E, Abe F, Mori M, Nanjo Y, Komatsu S, Oyanagi A, Kawaguchi K. Quantitative Proteomics of the Root of Transgenic Wheat Expressing TaBWPR-1.2 Genes in Response to Waterlogging. Proteomes 2014; 2:485-500. [PMID: 28250392 PMCID: PMC5302695 DOI: 10.3390/proteomes2040485] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 10/20/2014] [Accepted: 10/22/2014] [Indexed: 01/05/2023] Open
Abstract
Once candidate genes are available, the application of genetic transformation plays a major part to study their function in plants for adaptation to respective environmental stresses, including waterlogging (WL). The introduction of stress-inducible genes into wheat remains difficult because of low transformation and plant regeneration efficiencies and expression variability and instability. Earlier, we found two cDNAs encoding WL stress-responsive wheat pathogenesis-related proteins 1.2 (TaBWPR-1.2), TaBWPR-1.2#2 and TaBWPR-1.2#13. Using microprojectile bombardment, both cDNAs were introduced into "Bobwhite". Despite low transformation efficiency, four independent T₂ homozygous lines for each gene were isolated, where transgenes were ubiquitously and variously expressed. The highest transgene expression was obtained in Ubi:TaBWPR-1.2#2 L#11a and Ubi:TaBWPR-1.2#13 L#4a. Using quantitative proteomics, the root proteins of L#11a were analyzed to explore possible physiological pathways regulated by TaBWPR-1.2 under normal and waterlogged conditions. In L#11a, the abundance of proteasome subunit alpha type-3 decreased under normal conditions, whereas that of ferredoxin precursor and elongation factor-2 increased under waterlogged conditions in comparison with normal plants. Proteomic results suggest that L#11a is one of the engineered wheat plants where TaBWPR-1.2#2 is most probably involved in proteolysis, protein synthesis and alteration in the energy pathway in root tissues via the above proteins in order to gain metabolic adjustment to WL.
Collapse
Affiliation(s)
- Emdadul Haque
- NARO Institute of Crop Science (NICS), National Agriculture and Food Research Organization (NARO), 2-1-18 Kannondai, Tsukuba, Ibaraki 305-8518, Japan.
| | - Fumitaka Abe
- NARO Institute of Crop Science (NICS), National Agriculture and Food Research Organization (NARO), 2-1-18 Kannondai, Tsukuba, Ibaraki 305-8518, Japan.
| | - Masahiko Mori
- NARO Institute of Crop Science (NICS), National Agriculture and Food Research Organization (NARO), 2-1-18 Kannondai, Tsukuba, Ibaraki 305-8518, Japan.
| | - Yohei Nanjo
- NARO Institute of Crop Science (NICS), National Agriculture and Food Research Organization (NARO), 2-1-18 Kannondai, Tsukuba, Ibaraki 305-8518, Japan.
| | - Setsuko Komatsu
- NARO Institute of Crop Science (NICS), National Agriculture and Food Research Organization (NARO), 2-1-18 Kannondai, Tsukuba, Ibaraki 305-8518, Japan.
| | - Atsushi Oyanagi
- NARO Institute of Crop Science (NICS), National Agriculture and Food Research Organization (NARO), 2-1-18 Kannondai, Tsukuba, Ibaraki 305-8518, Japan.
| | - Kentaro Kawaguchi
- NARO Institute of Crop Science (NICS), National Agriculture and Food Research Organization (NARO), 2-1-18 Kannondai, Tsukuba, Ibaraki 305-8518, Japan.
| |
Collapse
|
47
|
Dzialo MC, Travaglini KJ, Shen S, Roy K, Chanfreau GF, Loo JA, Clarke SG. Translational roles of elongation factor 2 protein lysine methylation. J Biol Chem 2014; 289:30511-30524. [PMID: 25231983 DOI: 10.1074/jbc.m114.605527] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Methylation of various components of the translational machinery has been shown to globally affect protein synthesis. Little is currently known about the role of lysine methylation on elongation factors. Here we show that in Saccharomyces cerevisiae, the product of the EFM3/YJR129C gene is responsible for the trimethylation of lysine 509 on elongation factor 2. Deletion of EFM3 or of the previously described EFM2 increases sensitivity to antibiotics that target translation and decreases translational fidelity. Furthermore, the amino acid sequences of Efm3 and Efm2, as well as their respective methylation sites on EF2, are conserved in other eukaryotes. These results suggest the importance of lysine methylation modification of EF2 in fine tuning the translational apparatus.
Collapse
Affiliation(s)
- Maria C Dzialo
- Department of Chemistry and Biochemistry and the Molecular Biology Institute and UCLA, Los Angeles, California 90095
| | - Kyle J Travaglini
- Department of Chemistry and Biochemistry and the Molecular Biology Institute and UCLA, Los Angeles, California 90095
| | - Sean Shen
- Department of Chemistry and Biochemistry and the Molecular Biology Institute and UCLA, Los Angeles, California 90095
| | - Kevin Roy
- Department of Chemistry and Biochemistry and the Molecular Biology Institute and UCLA, Los Angeles, California 90095
| | - Guillaume F Chanfreau
- Department of Chemistry and Biochemistry and the Molecular Biology Institute and UCLA, Los Angeles, California 90095
| | - Joseph A Loo
- Department of Chemistry and Biochemistry and the Molecular Biology Institute and UCLA, Los Angeles, California 90095; Department of Biological Chemistry and UCLA/Department of Energy Institute for Genomics and Proteomics, UCLA, Los Angeles, California 90095
| | - Steven G Clarke
- Department of Chemistry and Biochemistry and the Molecular Biology Institute and UCLA, Los Angeles, California 90095.
| |
Collapse
|
48
|
Davydova E, Ho AYY, Malecki J, Moen A, Enserink JM, Jakobsson ME, Loenarz C, Falnes PØ. Identification and characterization of a novel evolutionarily conserved lysine-specific methyltransferase targeting eukaryotic translation elongation factor 2 (eEF2). J Biol Chem 2014; 289:30499-30510. [PMID: 25231979 DOI: 10.1074/jbc.m114.601658] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The components of the cellular protein translation machinery, such as ribosomal proteins and translation factors, are subject to numerous post-translational modifications. In particular, this group of proteins is frequently methylated. However, for the majority of these methylations, the responsible methyltransferases (MTases) remain unknown. The human FAM86A (family with sequence similarity 86) protein belongs to a recently identified family of protein MTases, and we here show that FAM86A catalyzes the trimethylation of eukaryotic elongation factor 2 (eEF2) on Lys-525. Moreover, we demonstrate that the Saccharomyces cerevisiae MTase Yjr129c, which displays sequence homology to FAM86A, is a functional FAM86A orthologue, modifying the corresponding residue (Lys-509) in yeast eEF2, both in vitro and in vivo. Finally, Yjr129c-deficient yeast cells displayed phenotypes related to eEF2 function (i.e. increased frameshifting during protein translation and hypersensitivity toward the eEF2-specific drug sordarin). In summary, the present study establishes the function of the previously uncharacterized MTases FAM86A and Yjr129c, demonstrating that these enzymes introduce a functionally important lysine methylation in eEF2. Based on the previous naming of similar enzymes, we have redubbed FAM86A and Yjr129c as eEF2-KMT and Efm3, respectively.
Collapse
Affiliation(s)
- Erna Davydova
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, 0316 Oslo, Norway
| | - Angela Y Y Ho
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, 0316 Oslo, Norway
| | - Jedrzej Malecki
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, 0316 Oslo, Norway
| | - Anders Moen
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, 0316 Oslo, Norway
| | - Jorrit M Enserink
- Department of Microbiology, Oslo University Hospital and University of Oslo, 0027 Oslo, Norway, and
| | - Magnus E Jakobsson
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, 0316 Oslo, Norway
| | - Christoph Loenarz
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom
| | - Pål Ø Falnes
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, 0316 Oslo, Norway,.
| |
Collapse
|
49
|
Chaichanan J, Wiyakrutta S, Pongtharangkul T, Isarangkul D, Meevootisom V. Optimization of zofimarin production by an endophytic fungus, Xylaria sp. Acra L38. Braz J Microbiol 2014; 45:287-93. [PMID: 24948947 PMCID: PMC4059313 DOI: 10.1590/s1517-83822014000100042] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Accepted: 09/09/2013] [Indexed: 11/21/2022] Open
Abstract
To optimize the medium for high zofimarin production, sucrose maltose, glucose, tryptone and peptone were used in an orthogonal array design experiment, where the highest value of zofimarin produced was 25.6 μg/mL. This value was about 3 times higher than that obtained with Czapek yeast extract (CzYE) culture medium. A study with Plackett-Burman design showed that sucrose, maltose, glucose and NaNO3 were significant factors in zofimarin production. Further studies using central composite design (CCD) showed the significance of glucose and the interactions of these critical components affecting zofimarin production. Multiple regression analysis of the data yielded a poor fit as shown by the mismatch of the model with these variable factors. When a polynomial equation was applied, the maximum zofimarin production was predicted to be 201.9 μg/mL. Experimental verification yielded a much lower amount of zofimarin, at around 70 μg/mL. Reconsideration of the CCD data and repetition of some runs with high zofimarin production resulted in reproducible zofimarin yield at 79.7 μg/mL. Even though the amount was lower than the predicted value, the medium optimization study was considered to be quite successful as the yield increased to around 8 times that obtained with the original CzYE culture medium.
Collapse
Affiliation(s)
- Jirapan Chaichanan
- Department of Microbiology Faculty of Science Mahidol University RachathewiBangkok Thailand
| | - Suthep Wiyakrutta
- Department of Microbiology Faculty of Science Mahidol University RachathewiBangkok Thailand
| | | | - Duangnate Isarangkul
- Department of Microbiology Faculty of Science Mahidol University RachathewiBangkok Thailand
| | - Vithaya Meevootisom
- Department of Microbiology Faculty of Science Mahidol University RachathewiBangkok Thailand
| |
Collapse
|
50
|
Ramírez C, Dea-Ayuela M, Gutiérrez-Blázquez M, Bolas-Fernández F, Requena J, Puerta C. Identification of proteins interacting with HSP70 mRNAs in Leishmania braziliensis. J Proteomics 2013; 94:124-37. [DOI: 10.1016/j.jprot.2013.09.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 07/09/2013] [Accepted: 09/11/2013] [Indexed: 01/02/2023]
|