1
|
Viakhireva I, Bychkov I, Markova T, Shatokhina O, Karandasheva K, Udalova V, Bekhtereva Y, Ryzhkova O, Skoblov M. The molecular complexity of COL2A1 splicing variants and their significance in phenotype severity. Bone 2024; 181:117013. [PMID: 38246255 DOI: 10.1016/j.bone.2024.117013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/25/2023] [Accepted: 01/05/2024] [Indexed: 01/23/2024]
Abstract
Pathogenic single nucleotide variants (SNVs) found in the COL2A1 gene are associated with a broad range of skeletal dysplasias due to their impact on the structure and function of the Col2a1 protein. However, the molecular mechanisms of some nucleotide variants detected during diagnostic testing remain unclear. The interpretation of missense and splicing variants caused by SNVs poses a significant challenge for clinicians. In this work, we analyzed 22 splicing variants in the COL2A1 gene which have been found in patients with COL2A1-associated skeletal dysplasias. Using a minigene system, we investigated the impact of these SNVs on splicing and gained insights into their molecular mechanisms and genotype-phenotype correlations for each patient. The results of our study are very useful for improving the accuracy of diagnosis and the management of patients with skeletal dysplasias caused by SNVs in the COL2A1 gene.
Collapse
Affiliation(s)
- I Viakhireva
- Research Centre for Medical Genetics, Moscow, Russian Federation.
| | - I Bychkov
- Research Centre for Medical Genetics, Moscow, Russian Federation
| | - T Markova
- Research Centre for Medical Genetics, Moscow, Russian Federation
| | - O Shatokhina
- Research Centre for Medical Genetics, Moscow, Russian Federation
| | - K Karandasheva
- Research Centre for Medical Genetics, Moscow, Russian Federation
| | - V Udalova
- LLC Genomed, Moscow, Russian Federation
| | | | - O Ryzhkova
- Research Centre for Medical Genetics, Moscow, Russian Federation
| | - M Skoblov
- Research Centre for Medical Genetics, Moscow, Russian Federation
| |
Collapse
|
2
|
Szoszkiewicz A, Bukowska-Olech E, Jamsheer A. Molecular landscape of congenital vertebral malformations: recent discoveries and future directions. Orphanet J Rare Dis 2024; 19:32. [PMID: 38291488 PMCID: PMC10829358 DOI: 10.1186/s13023-024-03040-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 01/19/2024] [Indexed: 02/01/2024] Open
Abstract
Vertebral malformations (VMs) pose a significant global health problem, causing chronic pain and disability. Vertebral defects occur as isolated conditions or within the spectrum of various congenital disorders, such as Klippel-Feil syndrome, congenital scoliosis, spondylocostal dysostosis, sacral agenesis, and neural tube defects. Although both genetic abnormalities and environmental factors can contribute to abnormal vertebral development, our knowledge on molecular mechanisms of numerous VMs is still limited. Furthermore, there is a lack of resource that consolidates the current knowledge in this field. In this pioneering review, we provide a comprehensive analysis of the latest research on the molecular basis of VMs and the association of the VMs-related causative genes with bone developmental signaling pathways. Our study identifies 118 genes linked to VMs, with 98 genes involved in biological pathways crucial for the formation of the vertebral column. Overall, the review summarizes the current knowledge on VM genetics, and provides new insights into potential involvement of biological pathways in VM pathogenesis. We also present an overview of available data regarding the role of epigenetic and environmental factors in VMs. We identify areas where knowledge is lacking, such as precise molecular mechanisms in which specific genes contribute to the development of VMs. Finally, we propose future research avenues that could address knowledge gaps.
Collapse
Affiliation(s)
- Anna Szoszkiewicz
- Department of Medical Genetics, Poznan University of Medical Sciences, Rokietnicka 8, 60-806, Poznan, Poland.
| | - Ewelina Bukowska-Olech
- Department of Medical Genetics, Poznan University of Medical Sciences, Rokietnicka 8, 60-806, Poznan, Poland
| | - Aleksander Jamsheer
- Department of Medical Genetics, Poznan University of Medical Sciences, Rokietnicka 8, 60-806, Poznan, Poland.
- Centers for Medical Genetics GENESIS, Dąbrowskiego 77A, 60-529, Poznan, Poland.
| |
Collapse
|
3
|
Bruni V, Spoleti CB, La Barbera A, Dattilo V, Colao E, Votino C, Bellacchio E, Perrotti N, Giglio S, Iuliano R. A Novel Splicing Variant of COL2A1 in a Fetus with Achondrogenesis Type II: Interpretation of Pathogenicity of In-Frame Deletions. Genes (Basel) 2021; 12:genes12091395. [PMID: 34573377 PMCID: PMC8467821 DOI: 10.3390/genes12091395] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/07/2021] [Accepted: 09/08/2021] [Indexed: 01/08/2023] Open
Abstract
Achondrogenesis type II (ACG2) is a lethal skeletal dysplasia caused by dominant pathogenic variants in COL2A1. Most of the variants found in patients with ACG2 affect the glycine residue included in the Gly-X-Y tripeptide repeat that characterizes the type II collagen helix. In this study, we reported a case of a novel splicing variant of COL2A1 in a fetus with ACG2. An NGS analysis of fetal DNA revealed a heterozygous variant c.1267-2_1269del located in intron 20/exon 21. The variant occurred de novo since it was not detected in DNA from the blood samples of parents. We generated an appropriate minigene construct to study the effect of the variant detected. The minigene expression resulted in the synthesis of a COL2A1 messenger RNA lacking exon 21, which generated a predicted in-frame deleted protein. Usually, in-frame deletion variants of COL2A1 cause a phenotype such as Kniest dysplasia, which is milder than ACG2. Therefore, we propose that the size and position of an in-frame deletion in COL2A1 may be relevant in determining the phenotype of skeletal dysplasia.
Collapse
Affiliation(s)
- Valentina Bruni
- Medical Genetics Unit, Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (V.B.); (C.B.S.); (V.D.); (E.C.); (N.P.)
| | - Cristina Barbara Spoleti
- Medical Genetics Unit, Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (V.B.); (C.B.S.); (V.D.); (E.C.); (N.P.)
| | - Andrea La Barbera
- Medical Genetics Unit, Department of Clinical and Experimental Biomedical Sciences “Mario Serio”, University of Florence, 50121 Florence, Italy;
| | - Vincenzo Dattilo
- Medical Genetics Unit, Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (V.B.); (C.B.S.); (V.D.); (E.C.); (N.P.)
| | - Emma Colao
- Medical Genetics Unit, Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (V.B.); (C.B.S.); (V.D.); (E.C.); (N.P.)
| | | | - Emanuele Bellacchio
- Genetics and Rare Diseases Research Division, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy;
| | - Nicola Perrotti
- Medical Genetics Unit, Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (V.B.); (C.B.S.); (V.D.); (E.C.); (N.P.)
| | - Sabrina Giglio
- Unit of Medical Genetics, Department of Medical Sciences and Public Health, University of Cagliari, 09124 Cagliari, Italy;
| | - Rodolfo Iuliano
- Medical Genetics Unit, Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (V.B.); (C.B.S.); (V.D.); (E.C.); (N.P.)
- Correspondence: ; Tel.: +39-0961-3695182
| |
Collapse
|
4
|
Jhamb T, Masood H, Arigo J, Rossouw PE. Orthodontic Treatment in a Patient With Kniest Dysplasia: A Case Study and Review of Literature. Cleft Palate Craniofac J 2019; 56:1393-1403. [DOI: 10.1177/1055665619854617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Kniest dysplasia is a rare autosomal dominant chondrodysplasia that is characterized by distinct musculoskeletal and craniofacial irregularities. These craniofacial abnormalities include cleft palate, midface anomalies, tracheomalacia, and hearing loss. This article illustrates a case of Kniest dysplasia that presented for orthodontic treatment. The purpose of this literature review is to describe clinical manifestations, radiographic features, histopathological features, genetic mutation, and management of Kniest dysplasia.
Collapse
Affiliation(s)
- Tania Jhamb
- Department of Clinical Dentistry, Eastman Institute for Oral Health, University of Rochester, Rochester, NY, USA
| | - Hayat Masood
- Division of Orthodontics and Dentofacial Orthopedics, Eastman Institute for Oral Health, University of Rochester, Rochester, NY, USA
| | - Jeffrey Arigo
- Division of Orthodontics and Dentofacial Orthopedics, Eastman Institute for Oral Health, University of Rochester, Rochester, NY, USA
| | - P. Emile Rossouw
- Division of Orthodontics and Dentofacial Orthopedics, Eastman Institute for Oral Health, University of Rochester, Rochester, NY, USA
| |
Collapse
|
5
|
Chakkalakal SA, Heilig J, Baumann U, Paulsson M, Zaucke F. Impact of Arginine to Cysteine Mutations in Collagen II on Protein Secretion and Cell Survival. Int J Mol Sci 2018; 19:ijms19020541. [PMID: 29439465 PMCID: PMC5855763 DOI: 10.3390/ijms19020541] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 02/04/2018] [Accepted: 02/06/2018] [Indexed: 12/27/2022] Open
Abstract
Inherited point mutations in collagen II in humans affecting mainly cartilage are broadly classified as chondrodysplasias. Most mutations occur in the glycine (Gly) of the Gly-X-Y repeats leading to destabilization of the triple helix. Arginine to cysteine substitutions that occur at either the X or Y position within the Gly-X-Y cause different phenotypes like Stickler syndrome and congenital spondyloepiphyseal dysplasia (SEDC). We investigated the consequences of arginine to cysteine substitutions (X or Y position within the Gly-X-Y) towards the N and C terminus of the triple helix. Protein expression and its secretion trafficking were analyzed. Substitutions R75C, R134C and R704C did not alter the thermal stability with respect to wild type; R740C and R789C proteins displayed significantly reduced melting temperatures (Tm) affecting thermal stability. Additionally, R740C and R789C were susceptible to proteases; in cell culture, R789C protein was further cleaved by matrix metalloproteinases (MMPs) resulting in expression of only a truncated fragment affecting its secretion and intracellular retention. Retention of misfolded R740C and R789C proteins triggered an ER stress response leading to apoptosis of the expressing cells. Arginine to cysteine mutations towards the C-terminus of the triple helix had a deleterious effect, whereas mutations towards the N-terminus of the triple helix (R75C and R134C) and R704C had less impact.
Collapse
Affiliation(s)
- Salin A Chakkalakal
- Center for Research in FOP and Related Disorders, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Juliane Heilig
- Center for Biochemistry, Medical Faculty, University of Cologne, 50931 Cologne, Germany.
- Cologne Center for Musculoskeletal Biomechanics (CCMB), 50931 Cologne, Germany.
| | - Ulrich Baumann
- Institute of Biochemistry, University of Cologne, 50931 Cologne, Germany.
| | - Mats Paulsson
- Center for Biochemistry, Medical Faculty, University of Cologne, 50931 Cologne, Germany.
- Cologne Center for Musculoskeletal Biomechanics (CCMB), 50931 Cologne, Germany.
- Cluster of Excellence Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany.
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany.
| | - Frank Zaucke
- Center for Biochemistry, Medical Faculty, University of Cologne, 50931 Cologne, Germany.
- Cologne Center for Musculoskeletal Biomechanics (CCMB), 50931 Cologne, Germany.
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Orthopedic University Hospital Friedrichsheim, 60528 Frankfurt/Main, Germany.
| |
Collapse
|
6
|
Deng H, Huang X, Yuan L. Molecular genetics of the COL2A1-related disorders. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2016; 768:1-13. [PMID: 27234559 DOI: 10.1016/j.mrrev.2016.02.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 01/08/2016] [Accepted: 02/23/2016] [Indexed: 12/16/2022]
Abstract
Type II collagen, comprised of three identical alpha-1(II) chains, is the major collagen synthesized by chondrocytes, and is found in articular cartilage, vitreous humour, inner ear and nucleus pulposus. Mutations in the collagen type II alpha-1 gene (COL2A1) have been reported to be responsible for a series of abnormalities, known as type II collagenopathies. To date, 16 definite disorders, inherited in an autosomal dominant or recessive pattern, have been described to be associated with the COL2A1 mutations, and at least 405 mutations ranging from point mutations to complex rearrangements have been reported, though the underlying pathogenesis remains unclear. Significant clinical heterogeneity has been reported in COL2A1-associated type II collagenopathies. In this review, we highlight current knowledge of known mutations in the COL2A1 gene for these disorders, as well as genetic animal models related to the COL2A1 gene, which may help us understand the nature of complex phenotypes and underlying pathogenesis of these conditions.
Collapse
Affiliation(s)
- Hao Deng
- Center for Experimental Medicine and Department of Neurology, the Third Xiangya Hospital, Central South University, Changsha 410013, China.
| | - Xiangjun Huang
- Center for Experimental Medicine and Department of Neurology, the Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Lamei Yuan
- Center for Experimental Medicine and Department of Neurology, the Third Xiangya Hospital, Central South University, Changsha 410013, China
| |
Collapse
|
7
|
Barat-Houari M, Sarrabay G, Gatinois V, Fabre A, Dumont B, Genevieve D, Touitou I. Mutation Update for COL2A1 Gene Variants Associated with Type II Collagenopathies. Hum Mutat 2015; 37:7-15. [PMID: 26443184 DOI: 10.1002/humu.22915] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 09/23/2015] [Indexed: 12/19/2022]
Abstract
Mutations in the COL2A1 gene cause a spectrum of rare autosomal-dominant conditions characterized by skeletal dysplasia, short stature, and sensorial defects. An early diagnosis is critical to providing relevant patient care and follow-up, and genetic counseling to affected families. There are no recent exhaustive descriptions of the causal mutations in the literature. Here, we provide a review of COL2A1 mutations extracted from the Leiden Open Variation Database (LOVD) that we updated with data from PubMed and our own patients. Over 700 patients were recorded, harboring 415 different mutations. One-third of the mutations are dominant-negative mutations that affect the glycine residue in the G-X-Y repeats of the alpha 1 chain. These mutations disrupt the collagen triple helix and are common in achondrogenesis type II and hypochondrogenesis. The mutations resulting in a premature stop codon are found in less severe phenotypes such as Stickler syndrome. The p.(Arg275Cys) substitution is found in all patients with COL2A1-associated Czech dysplasia. LOVD-COL2A1 provides support and potential collaborative material for scientific and clinical projects aimed at elucidating phenotype-genotype correlation and differential diagnosis in patients with type II collagenopathies.
Collapse
Affiliation(s)
- Mouna Barat-Houari
- Laboratory of Rare and Autoinflammatory Diseases, CHRU, Montpellier, France.,Genetics & Immunopathology of Inflammatory Osteoarticular Diseases, INSERM UMR1183, Montpellier, France
| | - Guillaume Sarrabay
- Laboratory of Rare and Autoinflammatory Diseases, CHRU, Montpellier, France.,Genetics & Immunopathology of Inflammatory Osteoarticular Diseases, INSERM UMR1183, Montpellier, France
| | - Vincent Gatinois
- Laboratory of Rare and Autoinflammatory Diseases, CHRU, Montpellier, France.,University of Montpellier, Montpellier, France
| | - Aurélie Fabre
- Laboratory of Rare and Autoinflammatory Diseases, CHRU, Montpellier, France
| | - Bruno Dumont
- Laboratory of Rare and Autoinflammatory Diseases, CHRU, Montpellier, France
| | - David Genevieve
- Genetics & Immunopathology of Inflammatory Osteoarticular Diseases, INSERM UMR1183, Montpellier, France.,University of Montpellier, Montpellier, France.,Department of Medical Genetics, Reference Center for Developmental Abnormalities and Constitutional Bone Diseases, CHRU, Montpellier, France
| | - Isabelle Touitou
- Laboratory of Rare and Autoinflammatory Diseases, CHRU, Montpellier, France.,Genetics & Immunopathology of Inflammatory Osteoarticular Diseases, INSERM UMR1183, Montpellier, France.,University of Montpellier, Montpellier, France
| |
Collapse
|
8
|
Terhal PA, Nievelstein RJAJ, Verver EJJ, Topsakal V, van Dommelen P, Hoornaert K, Le Merrer M, Zankl A, Simon MEH, Smithson SF, Marcelis C, Kerr B, Clayton-Smith J, Kinning E, Mansour S, Elmslie F, Goodwin L, van der Hout AH, Veenstra-Knol HE, Herkert JC, Lund AM, Hennekam RCM, Mégarbané A, Lees MM, Wilson LC, Male A, Hurst J, Alanay Y, Annerén G, Betz RC, Bongers EMHF, Cormier-Daire V, Dieux A, David A, Elting MW, van den Ende J, Green A, van Hagen JM, Hertel NT, Holder-Espinasse M, den Hollander N, Homfray T, Hove HD, Price S, Raas-Rothschild A, Rohrbach M, Schroeter B, Suri M, Thompson EM, Tobias ES, Toutain A, Vreeburg M, Wakeling E, Knoers NV, Coucke P, Mortier GR. A study of the clinical and radiological features in a cohort of 93 patients with aCOL2A1mutation causing spondyloepiphyseal dysplasia congenita or a related phenotype. Am J Med Genet A 2015; 167A:461-75. [DOI: 10.1002/ajmg.a.36922] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 10/22/2014] [Indexed: 11/05/2022]
Affiliation(s)
- Paulien A. Terhal
- Department of Medical Genetics; University Medical Centre Utrecht; Utrecht The Netherlands
| | | | - Eva J. J. Verver
- Department of Otorhinolaryngology and Head and Neck Surgery; Rudolf Magnus Institute of Neuroscience; University Medical Centre Utrecht; Utrecht The Netherlands
| | - Vedat Topsakal
- Department of Otorhinolaryngology and Head and Neck Surgery; Rudolf Magnus Institute of Neuroscience; University Medical Centre Utrecht; Utrecht The Netherlands
| | | | | | - Martine Le Merrer
- Department of Genetics, INSERM UMR_1163, Paris Descartes-Sorbonne Paris Cité University, Imagine Institute; Hôpital Necker-Enfants Malades; Paris France
| | - Andreas Zankl
- Academic Department of Medical Genetics; Discipline of Genetic Medicine, The University of Sydney; Sydney Children's Hospital Network (Westmead); Sydney Australia
| | - Marleen E. H. Simon
- Department of Clinical Genetics; Erasmus Medical Centre; University Medical Centre; Rotterdam The Netherlands
| | - Sarah F. Smithson
- Department of Clinical Genetics; St. Michael's Hospital; Bristol United Kingdom
| | - Carlo Marcelis
- Department of Human Genetics; Nijmegen Centre for Molecular Life Sciences; Institute for Genetic and Metabolic Disease; Radboud University Medical Centre; Nijmegen The Netherlands
| | - Bronwyn Kerr
- Manchester Centre For Genomic Medicine, University of Manchester; St Mary's Hospital; Manchester United Kingdom
| | - Jill Clayton-Smith
- Manchester Centre For Genomic Medicine, University of Manchester; St Mary's Hospital; Manchester United Kingdom
| | - Esther Kinning
- Department of Clinical Genetics; Southern General Hospital; Glasgow United Kingdom
| | - Sahar Mansour
- SW Thames Regional Genetics Service; St George's NHS Trust; London United Kingdom
| | - Frances Elmslie
- SW Thames Regional Genetics Service; St George's NHS Trust; London United Kingdom
| | - Linda Goodwin
- Department of Genetics; Nepean Hospital; Penrith Australia
| | | | | | - Johanna C. Herkert
- Department of Genetics; University Medical Centre Groningen; Groningen The Netherlands
| | - Allan M. Lund
- Centre for Inherited Metabolic Diseases; Department of Clinical Genetics; Copenhagen University Hospital; Copenhagen Denmark
| | - Raoul C. M. Hennekam
- Department of Pediatrics; Academic Medical Centre; University of Amsterdam; Amsterdam The Netherlands
| | - André Mégarbané
- Unité de Génétique Médicale et Laboratoire Associé Institut National de la Santé et de la Recherche Médicale UMR-S910; Université Saint-Joseph; Beirut Lebanon
| | - Melissa M. Lees
- Department of Clinical Genetics; Great Ormond Street Hospital; London United Kingdom
| | - Louise C. Wilson
- Department of Clinical Genetics; Great Ormond Street Hospital; London United Kingdom
| | - Alison Male
- Department of Clinical Genetics; Great Ormond Street Hospital; London United Kingdom
| | - Jane Hurst
- Department of Clinical Genetics; Great Ormond Street Hospital; London United Kingdom
- Department of Clinical Genetics; Churchill Hospital; Oxford United Kingdom
| | - Yasemin Alanay
- Pediatric Genetics Unit; Department of Pediatrics; Acibadem University School of Medicine; Istanbul Turkey
| | - Göran Annerén
- Department of Immunology; Genetics and Pathology; Science for Life Laboratory; Uppsala University; Uppsala Sweden
| | - Regina C. Betz
- Institute of Human Genetics; University of Bonn; Bonn Germany
| | - Ernie M. H. F. Bongers
- Department of Human Genetics; Nijmegen Centre for Molecular Life Sciences; Institute for Genetic and Metabolic Disease; Radboud University Medical Centre; Nijmegen The Netherlands
| | - Valerie Cormier-Daire
- Department of Genetics, INSERM UMR_1163, Paris Descartes-Sorbonne Paris Cité University, Imagine Institute; Hôpital Necker-Enfants Malades; Paris France
| | - Anne Dieux
- Service de Génétique Clinique; Hôpital Jeanne de Flandre; Lille France
| | - Albert David
- Service de Génétique Médicale; CHU de Nantes; Nantes France
| | - Mariet W. Elting
- Department of Clinical Genetics; VU University Medical Centre; Amsterdam The Netherlands
| | - Jenneke van den Ende
- Department of Medical Genetics; Antwerp University Hospital; University of Antwerp; Edegem Belgium
| | - Andrew Green
- National Centre for Medical Genetics and School of Medicine and Medical Science; University College Dublin, Our Lady's Hospital Crumlin; Dublin Ireland
| | - Johanna M. van Hagen
- Department of Clinical Genetics; VU University Medical Centre; Amsterdam The Netherlands
| | - Niels Thomas Hertel
- H.C. Andersen Children's Hospital; Odense University Hospital; Odense Denmark
| | - Muriel Holder-Espinasse
- Service de Génétique Clinique; Hôpital Jeanne de Flandre; Lille France
- Department of Clinical Genetics; Guy's Hospital; London United Kingdom
| | | | | | - Hanne D. Hove
- Department of Clinical Genetics; Rigshospitalet; Copenhagen Denmark
| | - Susan Price
- Department of Clinical Genetics; Churchill Hospital; Oxford United Kingdom
| | - Annick Raas-Rothschild
- Institute of Medical Genetics; Meir Medical Centre, Kfar Saba, and Sackler School of Medicine Tel Aviv University; Tel Aviv Israel
| | - Marianne Rohrbach
- Division of Metabolism, Children's Research Centre, Connective Tissue Unit; University Children's Hospital Zurich; Zurich Switzerland
| | | | - Mohnish Suri
- Nottingham Clinical Genetics Service, City Hospital Campus; Nottingham University Hospitals NHS Trust; Nottingham United Kingdom
| | - Elizabeth M. Thompson
- SA Clinical Genetics, SA Pathology at the Women's and Children's Hospital, North Adelaide, South Australia, Australia and Department of Paediatrics; University of Adelaide; Adelaide North Terrace, South Australia
| | - Edward S. Tobias
- Medical Genetics, School of Medicine, Coll Med Vet and Life Sci; University of Glasgow; Glasgow Scotland
| | | | - Maaike Vreeburg
- Department of Clinical Genetics; Maastricht University Medical Centre; Maastricht The Netherlands
| | - Emma Wakeling
- North West Thames Regional Genetic Service; North West London Hospitals NHS Trust; London United Kingdom
| | - Nine V. Knoers
- Department of Medical Genetics; University Medical Centre Utrecht; Utrecht The Netherlands
| | - Paul Coucke
- Department of Medical Genetics; Ghent University Hospital; Ghent Belgium
- Ghent University; Ghent Belgium
| | - Geert R. Mortier
- Department of Medical Genetics; Antwerp University Hospital; University of Antwerp; Edegem Belgium
- Ghent University; Ghent Belgium
| |
Collapse
|
9
|
Sergouniotis PI, Fincham GS, McNinch AM, Spickett C, Poulson AV, Richards AJ, Snead MP. Ophthalmic and molecular genetic findings in Kniest dysplasia. Eye (Lond) 2015; 29:475-82. [PMID: 25592122 DOI: 10.1038/eye.2014.334] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Accepted: 12/09/2014] [Indexed: 02/04/2023] Open
Abstract
PURPOSE To study the variability of the ophthalmic phenotype in Kniest dysplasia. Kniest dysplasia is an inherited disorder associated with defects in type II collagen and characterised by short-trunked dwarfism, kyphoscoliosis, and enlarged joints with restricted mobility. Other features include marked hand arthropathy, cleft palate, hearing loss, and ocular abnormalities (myopia, abnormal vitreous, and high risk of developing retinal detachment). METHODS Data from eight unrelated individuals with a clinical and molecular diagnosis of Kniest dysplasia are reported. Clinical assessment included an audiogram and ophthalmological examination in all but one patient who died in the immediate postnatal period. Sanger sequencing of the COL2A1 gene was performed. RESULTS Six of the seven patients tested were high myopes with one patient being an emmetrope. Bilateral quandratic cataracts and subluxed lenses were noted in one subject. Variable but abnormal vitreous architecture was observed in all seven individuals tested. Six of the seven patients had significant hearing impairment and five of the seven patients exhibited clefting abnormalities. One patient had bilateral retinal detachments in his twenties. Six dominant disease-causing COL2A1 variants were detected. In three cases, testing of parental samples revealed that the disease-causing variant was not present in either parent. CONCLUSION The ophthalmic features in Kniest dysplasia are very similar to those in other disorders of type II collagen such as Stickler syndrome. It is likely that different type II collagenopathies have a similar level of ocular morbidity and regular ophthalmologic examination is recommended. Kniest dysplasia is associated with heterozygous COL2A1 mutations that are frequently de novo.
Collapse
Affiliation(s)
- P I Sergouniotis
- Vitreoretinal Service, Addenbrooke's Hospital, Cambridge University NHS Foundation Trust, Cambridge, UK
| | - G S Fincham
- Vitreoretinal Service, Addenbrooke's Hospital, Cambridge University NHS Foundation Trust, Cambridge, UK
| | - A M McNinch
- 1] Vitreoretinal Service, Addenbrooke's Hospital, Cambridge University NHS Foundation Trust, Cambridge, UK [2] Department of Pathology, University of Cambridge, Cambridge, UK
| | - C Spickett
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - A V Poulson
- Vitreoretinal Service, Addenbrooke's Hospital, Cambridge University NHS Foundation Trust, Cambridge, UK
| | - A J Richards
- 1] Vitreoretinal Service, Addenbrooke's Hospital, Cambridge University NHS Foundation Trust, Cambridge, UK [2] Department of Pathology, University of Cambridge, Cambridge, UK
| | - M P Snead
- Vitreoretinal Service, Addenbrooke's Hospital, Cambridge University NHS Foundation Trust, Cambridge, UK
| |
Collapse
|
10
|
Terhal PA, van Dommelen P, Le Merrer M, Zankl A, Simon MEH, Smithson SF, Marcelis C, Kerr B, Kinning E, Mansour S, Hennekam RCM, van der Hout AH, Cormier-Daire V, Lund AM, Goodwin L, Mégarbané A, Lees M, Betz RC, Tobias ES, Coucke P, Mortier GR. Mutation-based growth charts for SEDC and other COL2A1 related dysplasias. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2012; 160C:205-16. [PMID: 22791362 DOI: 10.1002/ajmg.c.31332] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
From data collected via a large international collaborative study, we have constructed a growth chart for patients with molecularly confirmed congenital spondylo-epiphyseal dysplasia (SEDC) and other COL2A1 related dysplasias. The growth chart is based on longitudinal height measurements of 79 patients with glycine substitutions in the triple-helical domain of COL2A1. In addition, measurements of 27 patients with other molecular defects, such as arginine to cysteine substitutions, splice mutations, and mutations in the C-terminal propeptide have been plotted on the chart. Height of the patients progressively deviate from that of normal children: compared to normal WHO charts, the mean length/height is -2.6 SD at birth, -4.2 SD at 5 years, and -5.8 SD in adulthood. The mean adult height (male and female combined) of patients with glycine substitutions in the triple-helical region is 138.2 cm but there is a large variation. Patients with glycine to cysteine substitutions tend to cluster within the upper part of the chart, while patients with glycine to serine or valine substitutions are situated between +1 SD and -1 SD. Patients with carboxy-terminal glycine substitutions tend to be shorter than patients with amino-terminal substitutions, while patients with splice mutations are relatively tall. However, there are exceptions and specific mutations can have a strong or a relatively mild negative effect on growth. The observation of significant difference in adult height between affected members of the same family indicates that height remains a multifactorial trait even in the presence of a mutation with a strong dominant effect.
Collapse
Affiliation(s)
- Paulien A Terhal
- Department of Biomedical Genetics, University Medical Centre Utrecht, Utrecht, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
BACKGROUND Bone strength depends on both bone quantity and quality. The former is routinely estimated in clinical settings through bone mineral density measurements but not the latter. Bone quality encompasses the structural and material properties of bone. Although its importance is appreciated, its contribution in determining bone strength has been difficult to precisely quantify partly because it is multifactorial and requires investigation of all bone hierarchical levels. Fourier transform infrared spectroscopy provides one way to explore these levels. QUESTIONS/PURPOSES The purposes of our review were to (1) provide a brief overview of Fourier transform infrared spectroscopy as a way to establish bone quality, (2) review the major bone material parameters determined from Fourier transform infrared spectroscopy, and (3) review the role of Fourier transform infrared microspectroscopic analysis in establishing bone quality. METHODS We used the ISI Web of Knowledge database initially to identify articles containing the Boolean term "infrared" AND "bone." We then focused on articles on infrared spectroscopy in bone-related journals. RESULTS Infrared spectroscopy provides information on bone material properties. Their microspectroscopic versions allow one to establish these properties as a function of anatomic location, mineralization extent, and bone metabolic activity. It provides answers pertaining to the contribution of mineral to matrix ratio, mineral maturity, mineral carbonate substitution, and collagen crosslinks to bone strength. Alterations of bone material properties have been identified in disease (especially osteoporosis) not attainable by other techniques. CONCLUSIONS Infrared spectroscopic analysis is a powerful tool for establishing the important material properties contributing to bone strength and thus has helped better understand changes in fragile bone.
Collapse
Affiliation(s)
- Eleftherios P Paschalis
- Ludwig Boltzmann Institute of Osteology, Hanusch Hospital of WGKK, Viennese Sickness Insurance Funds, and AUVA, Austrian Social Insurance for Occupational Risks, Trauma Centre Meidling, Vienna, Austria.
| | | | | |
Collapse
|
12
|
Tsang KY, Chan D, Bateman JF, Cheah KSE. In vivo cellular adaptation to ER stress: survival strategies with double-edged consequences. J Cell Sci 2010; 123:2145-54. [PMID: 20554893 DOI: 10.1242/jcs.068833] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Disturbances to the balance of protein synthesis, folding and secretion in the endoplasmic reticulum (ER) induce stress and thereby the ER stress signaling (ERSS) response, which alleviates this stress. In this Commentary, we review the emerging idea that ER stress caused by abnormal physiological conditions and/or mutations in genes that encode client proteins of the ER is a key factor underlying different developmental processes and the pathology of diverse diseases, including diabetes, neurodegeneration and skeletal dysplasias. Recent studies in mouse models indicate that the effect of ERSS in vivo and the nature of the cellular strategies induced to ameliorate pathological ER stress are crucial factors in determining cell fate and clinical disease features. Importantly, ERSS can affect cellular proliferation and the differentiation program; cells that survive the stress can become 'reprogrammed' or dysfunctional. These cell-autonomous adaptation strategies can generate a spectrum of context-dependent cellular consequences, ranging from recovery to death. Secondary effects can include altered cell-extracellular-matrix interactions and non-cell-autonomous alteration of paracrine signaling, which contribute to the final phenotypic outcome. Recent reports showing that ER stress can be alleviated by chemical compounds suggest the potential for novel therapeutic approaches.
Collapse
Affiliation(s)
- Kwok Yeung Tsang
- Department of Biochemistry and Centre for Reproduction, Development and Growth, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China
| | | | | | | |
Collapse
|
13
|
Eyre DR, Weis MA, Wu JJ. Maturation of collagen Ketoimine cross-links by an alternative mechanism to pyridinoline formation in cartilage. J Biol Chem 2010; 285:16675-82. [PMID: 20363745 DOI: 10.1074/jbc.m110.111534] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The tensile strength of fibrillar collagens depends on stable intermolecular cross-links formed through the lysyl oxidase mechanism. Such cross-links based on hydroxylysine aldehydes are particularly important in cartilage, bone, and other skeletal tissues. In adult cartilages, the mature cross-linking structures are trivalent pyridinolines, which form spontaneously from the initial divalent ketoimines. We examined whether this was the complete story or whether other ketoimine maturation products also form, as the latter are known to disappear almost completely from mature tissues. Denatured, insoluble, bovine articular cartilage collagen was digested with trypsin, and cross-linked peptides were isolated by copper chelation chromatography, which selects for their histidine-containing sequence motifs. The results showed that in addition to the naturally fluorescent pyridinoline peptides, a second set of cross-linked peptides was recoverable at a high yield from mature articular cartilage. Sequencing and mass spectral analysis identified their origin from the same molecular sites as the initial ketoimine cross-links, but the latter peptides did not fluoresce and were nonreducible with NaBH(4). On the basis of their mass spectra, they were identical to their precursor ketoimine cross-linked peptides, but the cross-linking residue had an M+188 adduct. Considering the properties of an analogous adduct of identical added mass on a glycated lysine-containing peptide from type II collagen, we predicted that similar dihydroxyimidazolidine structures would form from their ketoimine groups by spontaneous oxidation and free arginine addition. We proposed the trivial name arginoline for the ketoimine cross-link derivative. Mature bovine articular cartilage contains about equimolar amounts of arginoline and hydroxylysyl pyridinoline based on peptide yields.
Collapse
Affiliation(s)
- David R Eyre
- Orthopedic Research Laboratories, Department of Orthopedics and Sports Medicine, University of Washington, Seattle, Washington 98195-6500, USA.
| | | | | |
Collapse
|
14
|
Affiliation(s)
- E P Paschalis
- Ludwig Boltzmann Institute of Osteology, Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, 4th Medical Department, Hanusch Hospital, 1140 Vienna, Austria.
| |
Collapse
|
15
|
Miyamoto Y, Nakashima E, Hiraoka H, Ohashi H, Ikegawa S. A type II collagen mutation also results in oto-spondylo-megaepiphyseal dysplasia. Hum Genet 2005; 118:175-8. [PMID: 16189708 DOI: 10.1007/s00439-005-0058-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2005] [Accepted: 08/09/2005] [Indexed: 10/25/2022]
Abstract
Oto-spondylo-megaepiphyseal dysplasia (OSMED) is a skeletal dysplasia characterized by severe sensorineural hearing loss, enlarged epiphyses and early onset of osteoarthritis. COL11A2 has been reported as a causative gene for OSMED. We have identified a novel COL2A1 mutation at a splice-acceptor site within intron 10 (c.709-2A>G) in an OSMED patient. This mutation caused the skipping of exon 11, and of exons 11 and 13. These exon-skipping events are presumed to cause an in-frame deletion of the triple helical region of the COL2A1 product. Thus, our findings highlight the genetic heterogeneity of OSMED and extend the phenotypic spectrum of type II collagenopathy, as well as confirming the overlap between type II and type XI collagenopathies.
Collapse
Affiliation(s)
- Yoshinari Miyamoto
- Laboratory for Bone and Joint Diseases, SNP Research Center, RIKEN, 4-6-1 Shirokanedai, Tokyo, 108-8639, Japan
| | | | | | | | | |
Collapse
|
16
|
Jakkula E, Melkoniemi M, Kiviranta I, Lohiniva J, Räinä SS, Perälä M, Warman ML, Ahonen K, Kröger H, Göring HHH, Ala-Kokko L. The role of sequence variations within the genes encoding collagen II, IX and XI in non-syndromic, early-onset osteoarthritis. Osteoarthritis Cartilage 2005; 13:497-507. [PMID: 15922184 DOI: 10.1016/j.joca.2005.02.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2004] [Accepted: 02/06/2005] [Indexed: 02/02/2023]
Abstract
OBJECTIVE We sought to determine whether sequence variations in cartilage collagen genes are associated with primary, early-onset osteoarthritis (OA). METHODS The cartilage collagen genes, COL2A1, COL9A1, COL9A2, COL9A3, COL11A1 and COL11A2, were screened for sequence variations in 72 Finnish probands and one US family with primary early-onset hip and/or knee OA. In addition, allelic association studies were performed using six to 12 common polymorphisms from each gene by genotyping 72 OA patients and 103 controls. RESULTS Altogether 239 sequence variations were found, of which 16 were not present in the controls. Seven of the unique variations, four in COL11A1, two in COL11A2 and one in COL2A1, were studied further, because they resulted in the substitution of conserved amino acids or were predicted to affect mRNA splicing. Co-segregation of a sequence variation and the phenotype was found in all four families available for study. Association analysis failed to identify any common predisposing alleles. CONCLUSIONS Early-onset OA demonstrates locus and allelic heterogeneity since the identified variations were in three different collagen genes and each of the six probands had a different mutation. It is also possible that some OA cases represent the mild end of the chondrodysplasia phenotypic spectrum. The major susceptibility alleles in this form of OA, however, remain to be identified.
Collapse
Affiliation(s)
- E Jakkula
- Collagen research Unit, Biocenter and Department of Medical Biochemistry and Molecular Biology, University of Oulu, Oulu, Finland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Ihanamäki T, Pelliniemi LJ, Vuorio E. Collagens and collagen-related matrix components in the human and mouse eye. Prog Retin Eye Res 2004; 23:403-34. [PMID: 15219875 DOI: 10.1016/j.preteyeres.2004.04.002] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The three-dimensional structure of the eye plays an important role in providing a correct optical environment for vision. Much of this function is dependent on the unique structural features of ocular connective tissue, especially of the collagen types and their supramolecular structures. For example, the organization of collagen fibrils is largely responsible for transparency and refraction of cornea, lens and vitreous body, and collagens present in the sclera are largely responsible for the structural strength of the eye. Phylogenetically, most of the collagens are highly conserved between different species, which suggests that collagens also share similar functions in mice and men. Despite considerable differences between the mouse and the human eye, particularly in the proportion of the different tissue components, the difficulty of performing systematic histologic and molecular studies on the human eye has made mouse an appealing alternative to studies addressing the role of individual genes and their mutations in ocular diseases. From a genetic standpoint, the mouse has major advantages over other experimental animals as its genome is better known than that of other species and it can be manipulated by the modern techniques of genetic engineering. Furthermore, it is easy, quick and relatively cheap to produce large quantities of mice for systematic studies. Thus, transgenic techniques have made it possible to study consequences of specific mutations in genes coding for structural components of ocular connective tissues in mice. As these changes in mice have been shown to resemble those in human diseases, mouse models are likely to provide efficient tools for pathogenetic studies on human disorders affecting the extracellular matrix. This review is aimed to clarify the role of collagenous components in the mouse and human eye with a closer look at the new findings of the collagens in the cartilage and the eye, the so-called "cartilage collagens".
Collapse
Affiliation(s)
- Tapio Ihanamäki
- Department of Ophthalmology, Helsinki University Central Hospital, PO Box 220, FIN-00029 HUS Helsinki, Finland.
| | | | | |
Collapse
|
18
|
Tysoe C, Saunders J, White L, Hills N, Nicol M, Evans G, Cole T, Chapman S, Pope FM. A glycine to aspartic acid substitution of COL2A1 in a family with the Strudwick variant of spondyloepimetaphyseal dysplasia. QJM 2003; 96:663-71. [PMID: 12925722 DOI: 10.1093/qjmed/hcg112] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Spondyloepimetaphyseal dysplasia (SEMD) is one of a clinically heterogeneous group of skeletal disorders, characterized by defective growth and modelling of the spine and long bones. Common clinical features include disproportionate short stature, malformed vertebrae and abnormal epiphyses or metaphyses. Some cases have been associated with mutations in the COL2A1 gene. AIM To determine whether the autosomal dominant Strudwick-type SEMD in a three-generation family, showing specific phenotypical features such as chest deformity, limb shortening, myopia and early-onset degenerative osteoarthrosis, might be caused by a novel COL2A1 mutation. DESIGN Genetic testing and clinical examination of family members. METHODS Direct sequencing of PCR-amplified genomic DNA from the COL2A1 gene. RESULTS A point mutation within exon 20 of the COL2A1 gene was identified that substituted a glycine for an aspartic acid residue at codon 262. DISCUSSION All previously reported autosomal dominant mutations causing SEMD have substituted an obligate glycine within the triple helix, in particular at codons 292, 304 and 709 in the three reported Strudwick-type patients. Additionally, a recurrent glycine substitution at codon 154 has been identified in two unrelated Finnish cases with radiological features consistent with the Strudwick subtype. Our sixth helical glycine substitution extends the mutational spectrum and genotype/phenotype correlations of Strudwick-type SEMD.
Collapse
Affiliation(s)
- C Tysoe
- Connective Tissue Genetics Group, Institute of Medical Genetics, University of Wales College of Medicine, Cardiff, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Pan TC, Zhang RZ, Sudano DG, Marie SK, Bönnemann CG, Chu ML. New molecular mechanism for Ullrich congenital muscular dystrophy: a heterozygous in-frame deletion in the COL6A1 gene causes a severe phenotype. Am J Hum Genet 2003; 73:355-69. [PMID: 12840783 PMCID: PMC1180372 DOI: 10.1086/377107] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2003] [Accepted: 05/21/2003] [Indexed: 02/05/2023] Open
Abstract
Recessive mutations in two of the three collagen VI genes, COL6A2 and COL6A3, have recently been shown to cause Ullrich congenital muscular dystrophy (UCMD), a frequently severe disorder characterized by congenital muscle weakness with joint contractures and coexisting distal joint hyperlaxity. Dominant mutations in all three collagen VI genes had previously been associated with the considerably milder Bethlem myopathy. Here we report that a de novo heterozygous deletion of the COL6A1 gene can also result in a severe phenotype of classical UCMD precluding ambulation. The internal gene deletion occurs near a minisatellite DNA sequence in intron 8 that removes 1.1 kb of genomic DNA encompassing exons 9 and 10. The resulting mutant chain contains a 33-amino acid deletion near the amino-terminus of the triple-helical domain but preserves a unique cysteine in the triple-helical domain important for dimer formation prior to secretion. Thus, dimer formation and secretion of abnormal tetramers can occur and exert a strong dominant negative effect on microfibrillar assembly, leading to a loss of normal localization of collagen VI in the basement membrane surrounding muscle fibers. Consistent with this mechanism was our analysis of a patient with a much milder phenotype, in whom we identified a previously described Bethlem myopathy heterozygous in-frame deletion of 18 amino acids somewhat downstream in the triple-helical domain, a result of exon 14 skipping in the COL6A1 gene. This deletion removes the crucial cysteine, so that dimer formation cannot occur and the abnormal molecule is not secreted, preventing the strong dominant negative effect. Our studies provide a biochemical insight into genotype-phenotype correlations in this group of disorders and establish that UCMD can be caused by dominantly acting mutations.
Collapse
Affiliation(s)
- Te-Cheng Pan
- Department of Dermatology and Cutaneous Biology, Jefferson Institute of Molecular Medicine and Department of Biochemistry and Molecular Pharmacology, Thomas Jefferson University, and Division of Neurology, The Children’s Hospital of Philadelphia and University of Pennsylvania School of Medicine, Philadelphia; and Department of Medicine, University of São Paulo, Brazil
| | - Rui-Zhu Zhang
- Department of Dermatology and Cutaneous Biology, Jefferson Institute of Molecular Medicine and Department of Biochemistry and Molecular Pharmacology, Thomas Jefferson University, and Division of Neurology, The Children’s Hospital of Philadelphia and University of Pennsylvania School of Medicine, Philadelphia; and Department of Medicine, University of São Paulo, Brazil
| | - Dominick G. Sudano
- Department of Dermatology and Cutaneous Biology, Jefferson Institute of Molecular Medicine and Department of Biochemistry and Molecular Pharmacology, Thomas Jefferson University, and Division of Neurology, The Children’s Hospital of Philadelphia and University of Pennsylvania School of Medicine, Philadelphia; and Department of Medicine, University of São Paulo, Brazil
| | - Suely K. Marie
- Department of Dermatology and Cutaneous Biology, Jefferson Institute of Molecular Medicine and Department of Biochemistry and Molecular Pharmacology, Thomas Jefferson University, and Division of Neurology, The Children’s Hospital of Philadelphia and University of Pennsylvania School of Medicine, Philadelphia; and Department of Medicine, University of São Paulo, Brazil
| | - Carsten G. Bönnemann
- Department of Dermatology and Cutaneous Biology, Jefferson Institute of Molecular Medicine and Department of Biochemistry and Molecular Pharmacology, Thomas Jefferson University, and Division of Neurology, The Children’s Hospital of Philadelphia and University of Pennsylvania School of Medicine, Philadelphia; and Department of Medicine, University of São Paulo, Brazil
| | - Mon-Li Chu
- Department of Dermatology and Cutaneous Biology, Jefferson Institute of Molecular Medicine and Department of Biochemistry and Molecular Pharmacology, Thomas Jefferson University, and Division of Neurology, The Children’s Hospital of Philadelphia and University of Pennsylvania School of Medicine, Philadelphia; and Department of Medicine, University of São Paulo, Brazil
| |
Collapse
|
20
|
Cabral WA, Fertala A, Green LK, Korkko J, Forlino A, Marini JC. Procollagen with skipping of alpha 1(I) exon 41 has lower binding affinity for alpha 1(I) C-telopeptide, impaired in vitro fibrillogenesis, and altered fibril morphology. J Biol Chem 2002; 277:4215-22. [PMID: 11706004 DOI: 10.1074/jbc.m109048200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Previous in vitro data on type I collagen self-assembly into fibrils suggested that the amino acid 776-796 region of the alpha1(I) chain is crucial for fibril formation because it serves as the recognition site for the telopeptide of a docking collagen monomer. We used a natural collagen mutation with a deletion of amino acids 766-801 to confirm the importance of this region for collagen fibril formation. The proband has type III osteogenesis imperfecta and is heterozygous for a COL1A1 IVS 41 A(+4) --> C substitution. The intronic mutation causes splicing of exon 41, confirmed by sequencing of normal and shorter reverse transcriptase-PCR products. Reverse transcriptase-PCR using RNA from proband dermal fibroblasts and clonal cell lines showed the mutant cDNA was about 15% of total alpha1(I) cDNA. The mutant transcript is translated; structurally abnormal alpha chains are demonstrated in the cell layer of proband fibroblasts by SDS-urea-PAGE. The proportion of mutant chains in the secreted procollagen was determined to be 10% by resistance to digestion with MMP-1, since chains lacking exon 41 are missing the vertebral collagenase cleavage site. Secreted proband collagen was used for analysis of kinetics of binding of alpha1(I) C-telopeptide using an optical biosensor. Telopeptide had slower association and faster dissociation from proband than from normal collagen. Purified proband pC-collagen was used to study fibril formation. The presence of the mutant molecules decreases the rate of fibril formation. The fibrils formed in the presence of 10-15% mutant molecules have strikingly increased length compared with normal collagen, but are well organized, as demonstrated by D-periodicity. These results suggest that some collagen molecules containing the mutant chain are incorporated into fibrils and that the absence of the telopeptide binding region from even a small portion of the monomers interferes with fibril growth. Both abnormal fibrils and slower remodeling may contribute to the severe phenotype.in
Collapse
Affiliation(s)
- Wayne A Cabral
- Section on Connective Tissue Disorders, Heritable Disorders Branch, NICHD, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | |
Collapse
|
21
|
Abstract
The 3rd Workshop on Heritable Disorders of Connective Tissue was held at the National Institutes of Health from 16th to 18th November, 2000. The Workshop was sponsored by the National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH Office of Rare Diseases, March of Dimes, Coalition for Heritable Disorders of Connective Tissue, and the Foundation for Basic Cutaneous Research. It was supported by specific grants R13 AR46912 (US Public Health Service) and 4-FY00-4511 (March of Dimes Birth Defects Foundation). The Workshop was divided into six sessions, featuring 29 invited presentations. In addition to the invited participants, more than eighty guests (scientists, NIH staff, and members of the Coalition for Heritable Disorders of Connective Tissue) attended.
Collapse
Affiliation(s)
- Lynn Y Sakai
- Department of Biochemistry and Molecular Biology, Shriners Hospital for Children, Oregon Health Sciences University, 3101 SW Sam Jackson Park Road, Portland, OR 97201, USA.
| | | | | |
Collapse
|
22
|
Pace JM, Atkinson M, Willing MC, Wallis G, Byers PH. Deletions and duplications of Gly-Xaa-Yaa triplet repeats in the triple helical domains of type I collagen chains disrupt helix formation and result in several types of osteogenesis imperfecta. Hum Mutat 2001; 18:319-26. [PMID: 11668615 DOI: 10.1002/humu.1193] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Triple helix formation is a prerequisite for the passage of type I procollagen from the endoplasmic reticulum and secretion from the cell to form extracellular fibrils that will support mineral deposition in bone. Analysis of cDNA from 11 unrelated individuals with osteogenesis imperfecta (OI) revealed the presence of 11 novel, short in-frame deletions or duplications of three, nine, or 18 nucleotides in the helical coding regions of the COL1A1 and COL1A2 collagen genes. Triple helix formation was impaired, type I collagen alpha chains were post-translationally overmodified, and extracellular secretion was markedly reduced. With one exception, the obligate Gly-Xaa-Yaa repeat pattern of amino acids in the helical domains was not altered, but the Xaa- and Yaa position residues were out of register relative to the amino acid sequences of adjacent chains in the triple helix. Thus, the identity of these amino acids, in addition to third position glycines, is important for normal helix formation. These findings expand the known repertoire of uncommon in-frame deletions and duplications in OI, and provide insight into normal collagen biosynthesis and collagen triple helix formation.
Collapse
Affiliation(s)
- J M Pace
- Department of Pathology, University of Washington, Seattle, Washington, USA
| | | | | | | | | |
Collapse
|
23
|
Kleemann-Fischer D, Kleemann GR, Engel D, Yates JR, Wu JJ, Eyre DR. Molecular Properties of Matrilin-3 Isolated from Human Growth Cartilage. Arch Biochem Biophys 2001; 387:209-15. [PMID: 11370843 DOI: 10.1006/abbi.2000.2256] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Matrilin-3 is a recently identified matrix protein of cartilage that shows sequence homology to matrilin-1 (cartilage matrix protein or CMP). Here we identify and characterize the molecular properties of matrilin-3 from human growth cartilage by immunochemical and mass spectrometry methods. Extracts of fetal skeletal cartilage were resolved by SDS-PAGE and candidate matrilin subunits were identified by electrospray mass spectrometry of tryptic peptides. Matrilin-3 and matrilin-1 were both present in disulfide-bonded tetrameric components. Polyclonal antisera to synthetic peptides specific to each subunit confirmed the identities by Western blotting and further demonstrated the existence of several forms of tetramer. A homotetramer (matrilin-3)4 and more than one species of heterotetramer containing matrilin-3 and matrilin-1 chains were resolved. Immunohistochemistry of tissue sections confirmed that both matrilin-1 and matrilin-3 are widely codistributed throughout human skeletal growth cartilage.
Collapse
Affiliation(s)
- D Kleemann-Fischer
- Department of Orthopaedics, University of Washington, Seattle 98195, USA
| | | | | | | | | | | |
Collapse
|
24
|
Hicks J, De Jong A, Barrish J, Zhu SH, Popek E. Tracheomalacia in a neonate with kniest dysplasia: histopathologic and ultrastructural features. Ultrastruct Pathol 2001; 25:79-83. [PMID: 11297324 DOI: 10.1080/019131201300004726] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Kniest dysplasia is an autosomal-dominant chondrodysplastic condition characterized by disproportionate dwarfism, short trunk, small pelvis, kyphoscoliosis, short limbs, prominent joints, premature osteoarthritis, and craniofacial manifestations. The craniofacial abnormalities include tracheomalacia, midface hypoplasia, cleft palate, early onset myopia, retinal detachment, prominent eyes, and sensorineural hearing loss. Radiologic features include dumbbell-shaped femora, platyspondylia with anterior wedging of vertebral bodies, coronal clefts of thoracolumbar vertebral bodies, low broad ilia, and short tubular bones with broad metaphyses and deformed large epiphyses. This form of chondrodysplasia is associated with mutations in type II collagen splicing sequences. Mutations have been identified in the COL2A1 (type II collagen) gene between exons 12 and 24. Type II collagen is the predominant structural protein in cartilage, and mutations in this collagen account for the Kniest dysplasia phenotype. Histopathologic and ultrastructural features of epiphyseal plate cartilage have been described, but tracheal cartilage in an affected neonate has not been examined. The authors report the histopathologic and ultrastructural findings of anterior tracheal cartilage from a 35-day-old female with suspected chondrodysplasia who had tracheomalacia with airway obstruction. The tracheal cartilage was moderately cellular, but lacked cystic and myxoid changes in its matrix. The chondrocytes had abundant cytoplasmic PAS-positive inclusions. Some of these inclusions were diastase-resistant and were also highlighted on Alcian blue staining. Ultrastructural examination revealed chondrocytes with greatly dilated rough endoplasmic reticulum containing granular proteinaceous material. There were also frequent aggregates of typical glycogen. The defect in the COL2A1 gene is secondary to mutations, especially at splice junctions, and this markedly disrupts triple helix formation. The mutated type II procollagen results in intracellular retention within the chondrocytes, as abundant granular proteinaceous material within the dilated RER. A relationship is known to exist between the proportion of mutated to normal type II collagen in the matrix and the severity of the phenotype. With low levels of normal type II collagen, the phenotypic manifestations become more severe, such as in achondrogenesis type II. Both the quantity and quality of type II collagen modulates the phenotypic expression of type II collagenopathies.
Collapse
Affiliation(s)
- J Hicks
- Department of Pathology, Texas Children's Hospital, Houston 77030-2399, USA.
| | | | | | | | | |
Collapse
|
25
|
Gayraud B, Keene DR, Sakai LY, Ramirez F. New insights into the assembly of extracellular microfibrils from the analysis of the fibrillin 1 mutation in the tight skin mouse. J Cell Biol 2000; 150:667-80. [PMID: 10931876 PMCID: PMC2175205 DOI: 10.1083/jcb.150.3.667] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/1999] [Accepted: 06/15/2000] [Indexed: 11/22/2022] Open
Abstract
The Tight skin (Tsk) mutation is a duplication of the mouse fibrillin 1 (Fbn1) gene that results in a larger (418 kD) than normal (350 kD) protein; Tsk/+ mice display increased connective tissue, bone overgrowth, and lung emphysema. Lung emphysema, bone overgrowth, and vascular complications are the distinctive traits of mice with reduced Fbn1 gene expression and of Marfan syndrome (MFS) patients with heterozygous fibrillin 1 mutations. Although Tsk/+ mice produce equal amounts of the 418- and 350-kD proteins, they exhibit a relatively mild phenotype without the vascular complications that are associated with MFS patients and fibrillin 1-deficient mice. We have used genetic crosses, cell culture assays and Tsk-specific antibodies to reconcile this discrepancy and gain new insights into microfibril assembly. Mice compound heterozygous for the Tsk mutation and hypomorphic Fbn1 alleles displayed both Tsk and MFS traits. Analyses of immunoreactive fibrillin 1 microfibrils using Tsk- and species-specific antibodies revealed that the mutant cell cultures elaborate a less abundant and morphologically different meshwork than control cells. Cocultures of Tsk/Tsk fibroblasts and human WISH cells that do not assemble fibrillin 1 microfibrils, demonstrated that Tsk fibrillin 1 copolymerizes with wild-type fibrillin 1. Additionally, copolymerization of Tsk fibrillin 1 with wild-type fibrillin 1 rescues the abnormal morphology of the Tsk/Tsk aggregates. Therefore, the studies suggest that bone and lung abnormalities of Tsk/+ mice are due to copolymerization of mutant and wild-type molecules into functionally deficient microfibrils. However, vascular complications are not present in these animals because the level of functional microfibrils does not drop below the critical threshold. Indirect in vitro evidence suggests that a potential mechanism for the dominant negative effects of incorporating Tsk fibrillin 1 into microfibrils is increased proteolytic susceptibility conferred by the duplicated Tsk region.
Collapse
Affiliation(s)
- Barbara Gayraud
- Brookdale Center, Department of Biochemistry and Molecular Biology, Mount Sinai School of Medicine, New York University, New York, New York 10029
| | | | - Lynn Y. Sakai
- The Shriners Hospital for Children, Portland, Oregon 97201
| | - Francesco Ramirez
- Brookdale Center, Department of Biochemistry and Molecular Biology, Mount Sinai School of Medicine, New York University, New York, New York 10029
| |
Collapse
|
26
|
Mortier GR, Weis M, Nuytinck L, King LM, Wilkin DJ, De Paepe A, Lachman RS, Rimoin DL, Eyre DR, Cohn DH. Report of five novel and one recurrent COL2A1 mutations with analysis of genotype-phenotype correlation in patients with a lethal type II collagen disorder. J Med Genet 2000; 37:263-71. [PMID: 10745044 PMCID: PMC1734564 DOI: 10.1136/jmg.37.4.263] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Achondrogenesis II-hypochondrogenesis and severe spondyloepiphyseal dysplasia congenita (SEDC) are lethal forms of dwarfism caused by dominant mutations in the type II collagen gene (COL2A1). To identify the underlying defect in seven cases with this group of conditions, we used the combined strategy of cartilage protein analysis and COL2A1 mutation analysis. Overmodified type II collagen and the presence of type I collagen was found in the cartilage matrix of all seven cases. Five patients were heterozygous for a nucleotide change that predicted a glycine substitution in the triple helical domain (G313S, G517V, G571A, G910C, G943S). In all five cases, analysis of cartilage type II collagen suggested incorporation of the abnormal alpha1(II) chain in the extracellular collagen trimers. The G943S mutation has been reported previously in another unrelated patient with a strikingly similar phenotype, illustrating the possible specific effect of the mutation. The radiographically less severely affected patient was heterozygous for a 4 bp deletion in the splice donor site of intron 35, likely to result in aberrant splicing. One case was shown to be heterozygous for a single nucleotide change predicted to result in a T1191N substitution in the carboxy-propeptide of the proalpha1(II) collagen chain. Study of the clinical, radiographic, and morphological features of the seven cases supports evidence for a phenotypic continuum between achondrogenesis II-hypochondrogenesis and lethal SEDC and suggests a relationship between the amount of type I collagen in the cartilage and the severity of the phenotype.
Collapse
Affiliation(s)
- G R Mortier
- Department of Medical Genetics, University Hospital of Gent, De Pintelaan 185, B-9000 Gent, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Lamandé SR, Shields KA, Kornberg AJ, Shield LK, Bateman JF. Bethlem myopathy and engineered collagen VI triple helical deletions prevent intracellular multimer assembly and protein secretion. J Biol Chem 1999; 274:21817-22. [PMID: 10419498 DOI: 10.1074/jbc.274.31.21817] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mutations in the genes that code for collagen VI subunits, COL6A1, COL6A2, and COL6A3, are the cause of the autosomal dominant disorder, Bethlem myopathy. Although three different collagen VI structural mutations have previously been reported, the effect of these mutations on collagen VI assembly, structure, and function is currently unknown. We have characterized a new Bethlem myopathy mutation that results in skipping of COL6A1 exon 14 during pre-mRNA splicing and the deletion of 18 amino acids from the triple helical domain of the alpha1(VI) chain. Sequencing of genomic DNA identified a G to A transition in the +1 position of the splice donor site of intron 14 in one allele. The mutant alpha1(VI) chains associated intracellularly with alpha2(VI) and alpha3(VI) to form disulfide-bonded monomers, but further assembly into dimers and tetramers was prevented, and molecules containing the mutant chain were not secreted. This triple helical deletion thus resulted in production of half the normal amount of collagen VI. To further explore the biosynthetic consequences of collagen VI triple helical deletions, an alpha3(VI) cDNA expression construct containing a 202-amino acid deletion within the triple helix was produced and stably expressed in SaOS-2 cells. The transfected mutant alpha3(VI) chains associated with endogenous alpha1(VI) and alpha2(VI) to form collagen VI monomers, but dimers and tetramers did not form and the mutant-containing molecules were not secreted. Thus, deletions within the triple helical region of both the alpha1(VI) and alpha3(VI) chains can prevent intracellular dimer and tetramer assembly and secretion. These results provide the first evidence of the biosynthetic consequences of structural collagen VI mutations and suggest that functional protein haploinsufficiency may be a common pathogenic mechanism in Bethlem myopathy.
Collapse
Affiliation(s)
- S R Lamandé
- Orthopaedic Molecular Biology Research Unit, Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Parkville, Victoria 3052, Australia.
| | | | | | | | | |
Collapse
|
28
|
Wilkin DJ, Artz AS, South S, Lachman RS, Rimoin DL, Wilcox WR, McKusick VA, Stratakis CA, Francomano CA, Cohn DH. Small deletions in the type II collagen triple helix produce Kniest dysplasia. ACTA ACUST UNITED AC 1999. [DOI: 10.1002/(sici)1096-8628(19990716)85:2<105::aid-ajmg2>3.0.co;2-z] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
29
|
Fernandes RJ, Wilkin DJ, Weis MA, Wilcox WR, Cohn DH, Rimoin DL, Eyre DR. Incorporation of structurally defective type II collagen into cartilage matrix in kniest chondrodysplasia. Arch Biochem Biophys 1998; 355:282-90. [PMID: 9675039 DOI: 10.1006/abbi.1998.0745] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Kniest dysplasia, a human chondrodysplasia that severely affects skeletal growth, is caused by mutations in the type II collagen gene, COL2A1. We report here on abnormal type II collagen in the cartilage from a lethal Kniest dysplasia case and identify a novel exon-skipping mutation. Screening of cyanogen bromide (CB) peptides from the cartilage samples by SDS-PAGE indicated an abnormality in peptide alpha1(II)CB11. Further peptide mapping and N-terminal sequence analysis showed a 15-amino-acid deletion encoded by exon 15 in about 25% of the alpha1(II) chains in the cartilage. The mutation responsible for exon skipping was found by sequencing amplified genomic DNA. The baby was heterozygous for a G to A transition at the first position of the splice donor of intron 15. Pepsin-solubilized type II collagen from the cartilage matrix contained both normal alpha1(II) and shortened chains expressed from the mutant allele. Trypsin cleaved the native molecules below 37 degrees C selectively at a site within the exon 15-encoded domain of the normal alpha1(II) chains. This is best explained by the coassembly of normal and truncated alpha1(II) chains into heterotrimers in which the triple helix is normally folded in both directions from the deletion site but the latter presents a region of local disruption. The findings support an emerging pattern of COL2A1 mutations that can cause Kniest dysplasia. Short deletions (single or partial exon) clustered in one region of the alpha1(II) chain are favored, resulting in abnormal heterotrimeric molecules that become a significant component of the cartilage extracellular matrix.
Collapse
Affiliation(s)
- R J Fernandes
- Department of Orthopaedics, University of Washington, Seattle, Washington, 98195, USA.
| | | | | | | | | | | | | |
Collapse
|