1
|
Ashraf AA, Aljuhani M, Hubens CJ, Jeandriens J, Parkes HG, Geraki K, Mahmood A, Herlihy AH, So PW. Inflammation subsequent to mild iron excess differentially alters regional brain iron metabolism, oxidation and neuroinflammation status in mice. Front Aging Neurosci 2024; 16:1393351. [PMID: 38836051 PMCID: PMC11148467 DOI: 10.3389/fnagi.2024.1393351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/26/2024] [Indexed: 06/06/2024] Open
Abstract
Iron dyshomeostasis and neuroinflammation, characteristic features of the aged brain, and exacerbated in neurodegenerative disease, may induce oxidative stress-mediated neurodegeneration. In this study, the effects of potential priming with mild systemic iron injections on subsequent lipopolysaccharide (LPS)-induced inflammation in adult C57Bl/6J mice were examined. After cognitive testing, regional brain tissues were dissected for iron (metal) measurements by total reflection X-ray fluorescence and synchrotron radiation X-Ray fluorescence-based elemental mapping; and iron regulatory, ferroptosis-related, and glia-specific protein analysis, and lipid peroxidation by western blotting. Microglial morphology and astrogliosis were assessed by immunohistochemistry. Iron only treatment enhanced cognitive performance on the novel object location task compared with iron priming and subsequent LPS-induced inflammation. LPS-induced inflammation, with or without iron treatment, attenuated hippocampal heme oxygenase-1 and augmented 4-hydroxynonenal levels. Conversely, in the cortex, elevated ferritin light chain and xCT (light chain of System Xc-) were observed in response to LPS-induced inflammation, without and with iron-priming. Increased microglial branch/process lengths and astrocyte immunoreactivity were also increased by combined iron and LPS in both the hippocampus and cortex. Here, we demonstrate iron priming and subsequent LPS-induced inflammation led to iron dyshomeostasis, compromised antioxidant function, increased lipid peroxidation and altered neuroinflammatory state in a brain region-dependent manner.
Collapse
Affiliation(s)
- Azhaar Ahmad Ashraf
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Manal Aljuhani
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Chantal J Hubens
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Jérôme Jeandriens
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
- Department of Human Biology and Toxicology, Faculty of Medicine, University of Mons, Mons, Belgium
| | - Harold G Parkes
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Kalotina Geraki
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, United Kingdom
| | - Ayesha Mahmood
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | | | - Po-Wah So
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| |
Collapse
|
2
|
Dufrusine B, Valentinuzzi S, Bibbò S, Damiani V, Lanuti P, Pieragostino D, Del Boccio P, D’Alessandro E, Rabottini A, Berghella A, Allocati N, Falasca K, Ucciferri C, Mucedola F, Di Perna M, Martino L, Vecchiet J, De Laurenzi V, Dainese E. Iron Dyshomeostasis in COVID-19: Biomarkers Reveal a Functional Link to 5-Lipoxygenase Activation. Int J Mol Sci 2022; 24:15. [PMID: 36613462 PMCID: PMC9819889 DOI: 10.3390/ijms24010015] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/13/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) is characterized by a broad spectrum of clinical symptoms. After acute infection, some subjects develop a post-COVID-19 syndrome known as long-COVID. This study aims to recognize the molecular and functional mechanisms that occur in COVID-19 and long-COVID patients and identify useful biomarkers for the management of patients with COVID-19 and long-COVID. Here, we profiled the response to COVID-19 by performing a proteomic analysis of lymphocytes isolated from patients. We identified significant changes in proteins involved in iron metabolism using different biochemical analyses, considering ceruloplasmin (Cp), transferrin (Tf), hemopexin (HPX), lipocalin 2 (LCN2), and superoxide dismutase 1 (SOD1). Moreover, our results show an activation of 5-lipoxygenase (5-LOX) in COVID-19 and in long-COVID possibly through an iron-dependent post-translational mechanism. Furthermore, this work defines leukotriene B4 (LTB4) and lipocalin 2 (LCN2) as possible markers of COVID-19 and long-COVID and suggests novel opportunities for prevention and treatment.
Collapse
Affiliation(s)
- Beatrice Dufrusine
- Department of Bioscience and Technology for Food Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
- Department of Innovative Technologies in Medicine and Dentistry, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| | - Silvia Valentinuzzi
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| | - Sandra Bibbò
- Department of Innovative Technologies in Medicine and Dentistry, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| | - Verena Damiani
- Department of Innovative Technologies in Medicine and Dentistry, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| | - Paola Lanuti
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
- Department of Medicine and Aging Science, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Damiana Pieragostino
- Department of Innovative Technologies in Medicine and Dentistry, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| | - Piero Del Boccio
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| | - Ersilia D’Alessandro
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| | - Alberto Rabottini
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| | - Alessandro Berghella
- Department of Bioscience and Technology for Food Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| | - Nerino Allocati
- Department of Innovative Technologies in Medicine and Dentistry, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| | - Katia Falasca
- Department of Medicine and Aging Science, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
- Clinic of Infectious Diseases, S.S. Annunziata Hospital, 66100 Chieti, Italy
| | - Claudio Ucciferri
- Clinic of Infectious Diseases, S.S. Annunziata Hospital, 66100 Chieti, Italy
| | - Francesco Mucedola
- Clinic of Infectious Diseases, S.S. Annunziata Hospital, 66100 Chieti, Italy
| | - Marco Di Perna
- Pneumology Department, “SS Annunziata” Hospital, 66100 Chieti, Italy
| | - Laura Martino
- Pneumology Department, “SS Annunziata” Hospital, 66100 Chieti, Italy
| | - Jacopo Vecchiet
- Department of Medicine and Aging Science, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
- Clinic of Infectious Diseases, S.S. Annunziata Hospital, 66100 Chieti, Italy
| | - Vincenzo De Laurenzi
- Department of Innovative Technologies in Medicine and Dentistry, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| | - Enrico Dainese
- Department of Bioscience and Technology for Food Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| |
Collapse
|
3
|
Guo Y, Zhao H, Lin Z, Ye T, Xu D, Zeng Q. Heme in Cardiovascular Diseases: A Ubiquitous Dangerous Molecule Worthy of Vigilance. Front Cell Dev Biol 2022; 9:781839. [PMID: 35127704 PMCID: PMC8807526 DOI: 10.3389/fcell.2021.781839] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 12/13/2021] [Indexed: 12/20/2022] Open
Abstract
Heme, the protoporphyrin IX iron complex is widely present in the human body and it is involved in oxygen storage, electron transfer, and enzymatic reactions. However, free heme can be toxic as it catalyzes the production of reactive oxygen species, oxidizes lipids and proteins, and causes DNA damage, thereby inducing a pro-inflammatory environment. The generation, metabolism, and degradation of heme in the human body are regulated by precise mechanisms to ensure that heme remains non-toxic. However, in several types of cardiovascular diseases, impaired metabolism and exposure to heme may occur in pathological processes, including neovascularization, internal hemorrhage, ischemia, and reperfusion. Based on years of research, in this review, we aimed to summarize the underlying mechanisms by which heme contributes to the development of cardiovascular diseases through oxidative stress, relative pathway gene expression regulation and phenotypic changes in cells. Excess heme plays a detrimental role in atherosclerosis, heart failure, myocardial ischemia-reperfusion injury, degenerative aortic valve stenosis, cardiac iron overload. Recent researches revealed that in some cases heme involved in cardiac damage though ferroptosis. Thus, heme concentrations beyond normal levels are dangerous. Further research on the role of heme in cardiovascular diseases is needed.
Collapse
Affiliation(s)
- Yuyang Guo
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Hengli Zhao
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Zhibin Lin
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Taochun Ye
- Department of Cardiopulmonary Rehabilitation, First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Dingli Xu
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
- *Correspondence: Qingchun Zeng, ; Dingli Xu,
| | - Qingchun Zeng
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
- *Correspondence: Qingchun Zeng, ; Dingli Xu,
| |
Collapse
|
4
|
Canesin G, Di Ruscio A, Li M, Ummarino S, Hedblom A, Choudhury R, Krzyzanowska A, Csizmadia E, Palominos M, Stiehm A, Ebralidze A, Chen SY, Bassal MA, Zhao P, Tolosano E, Hurley L, Bjartell A, Tenen DG, Wegiel B. Scavenging of Labile Heme by Hemopexin Is a Key Checkpoint in Cancer Growth and Metastases. Cell Rep 2021; 32:108181. [PMID: 32966797 PMCID: PMC7551404 DOI: 10.1016/j.celrep.2020.108181] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 07/03/2020] [Accepted: 09/01/2020] [Indexed: 12/25/2022] Open
Abstract
Hemopexin (Hx) is a scavenger of labile heme. Herein, we present data defining the role of tumor stroma-expressed Hx in suppressing cancer progression. Labile heme and Hx levels are inversely correlated in the plasma of patients with prostate cancer (PCa). Further, low expression of Hx in PCa biopsies characterizes poorly differentiated tumors and correlates with earlier time to relapse. Significantly, heme promotes tumor growth and metastases in an orthotopic murine model of PCa, with the most aggressive phenotype detected in mice lacking Hx. Mechanistically, labile heme accumulates in the nucleus and modulates specific gene expression via interacting with guanine quadruplex (G4) DNA structures to promote PCa growth. We identify c-MYC as a heme:G4-regulated gene and a major player in heme-driven cancer progression. Collectively, these results reveal that sequestration of labile heme by Hx may block heme-driven tumor growth and metastases, suggesting a potential strategy to prevent and/or arrest cancer dissemination. Canesin et al. describe a role and mechanism for labile heme as a key player in regulating gene expression to promote carcinogenesis via binding to G-quadruplex in the c-MYC promoter. Hemopexin, a heme scavenger, may be used as a strategy to block progression of cancer.
Collapse
Affiliation(s)
- Giacomo Canesin
- Department of Surgery, Division of Surgical Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02214, USA
| | - Annalisa Di Ruscio
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02214, USA; University of Eastern Piedmont, Department of Translational Medicine, Novara, Italy; Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02214, USA; HMS Initiative for RNA Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02214, USA.
| | - Mailin Li
- Department of Surgery, Division of Surgical Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02214, USA; University of Eastern Piedmont, Department of Translational Medicine, Novara, Italy
| | - Simone Ummarino
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02214, USA; University of Eastern Piedmont, Department of Translational Medicine, Novara, Italy
| | - Andreas Hedblom
- Department of Surgery, Division of Surgical Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02214, USA
| | - Reeham Choudhury
- Department of Surgery, Division of Surgical Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02214, USA
| | - Agnieszka Krzyzanowska
- Department of Translational Medicine, Division of Urological Cancers, Lund University, Malmo, Sweden
| | - Eva Csizmadia
- Department of Surgery, Division of Surgical Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02214, USA
| | - Macarena Palominos
- Department of Translational Medicine, Division of Urological Cancers, Lund University, Malmo, Sweden
| | - Anna Stiehm
- Department of Translational Medicine, Division of Urological Cancers, Lund University, Malmo, Sweden
| | - Alexander Ebralidze
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02214, USA
| | - Shao-Yong Chen
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02214, USA
| | - Mahmoud A Bassal
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02214, USA
| | - Ping Zhao
- College of Pharmacy, University of Arizona, Tucson, AZ 85721, USA
| | - Emanuela Tolosano
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Laurence Hurley
- College of Pharmacy, University of Arizona, Tucson, AZ 85721, USA
| | - Anders Bjartell
- Department of Translational Medicine, Division of Urological Cancers, Lund University, Malmo, Sweden
| | - Daniel G Tenen
- Cancer Science Institute of Singapore, Singapore; Harvard Stem Cell Institute, Harvard Medical School, Cambridge, MA 02138, USA
| | - Barbara Wegiel
- Department of Surgery, Division of Surgical Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02214, USA; Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02214, USA.
| |
Collapse
|
5
|
Karnaukhova E, Owczarek C, Schmidt P, Schaer DJ, Buehler PW. Human Plasma and Recombinant Hemopexins: Heme Binding Revisited. Int J Mol Sci 2021; 22:ijms22031199. [PMID: 33530421 PMCID: PMC7866118 DOI: 10.3390/ijms22031199] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 12/24/2020] [Indexed: 11/24/2022] Open
Abstract
Plasma hemopexin (HPX) is the key antioxidant protein of the endogenous clearance pathway that limits the deleterious effects of heme released from hemoglobin and myoglobin (the term “heme” is used in this article to denote both the ferrous and ferric forms). During intra-vascular hemolysis, heme partitioning to protein and lipid increases as the plasma concentration of HPX declines. Therefore, the development of HPX as a replacement therapy during high heme stress could be a relevant intervention for hemolytic disorders. A logical approach to enhance HPX yield involves recombinant production strategies from human cell lines. The present study focuses on a biophysical assessment of heme binding to recombinant human HPX (rhHPX) produced in the Expi293FTM (HEK293) cell system. In this report, we examine rhHPX in comparison with plasma HPX using a systematic analysis of protein structural and functional characteristics related to heme binding. Analysis of rhHPX by UV/Vis absorption spectroscopy, circular dichroism (CD), size-exclusion chromatography (SEC)-HPLC, and catalase-like activity demonstrated a similarity to HPX fractionated from plasma. In particular, the titration of HPX apo-protein(s) with heme was performed for the first time using a wide range of heme concentrations to model HPX–heme interactions to approximate physiological conditions (from extremely low to more than two-fold heme molar excess over the protein). The CD titration data showed an induced bisignate CD Soret band pattern typical for plasma and rhHPX versions at low heme-to-protein molar ratios and demonstrated that further titration is dependent on the amount of protein-bound heme to the extent that the arising opposite CD couplet results in a complete inversion of the observed CD pattern. The data generated in this study suggest more than one binding site in both plasma and rhHPX. Furthermore, our study provides a useful analytical platform for the detailed characterization of HPX–heme interactions and potentially novel HPX fusion constructs.
Collapse
Affiliation(s)
- Elena Karnaukhova
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA
- Correspondence: (E.K.); (P.W.B.)
| | - Catherine Owczarek
- CSL Limited, Bio21 Institute, Parkville, Victoria 3010, Australia; (C.O.); (P.S.)
| | - Peter Schmidt
- CSL Limited, Bio21 Institute, Parkville, Victoria 3010, Australia; (C.O.); (P.S.)
| | - Dominik J. Schaer
- Division of Internal Medicine, University Hospital of Zurich, 8091 Zurich, Switzerland;
| | - Paul W. Buehler
- Department of Pathology, The University of Maryland School of Medicine, Baltimore, MD 21201, USA
- The Center for Blood Oxygen Transport and Hemostasis, Department of Pediatrics, The University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Correspondence: (E.K.); (P.W.B.)
| |
Collapse
|
6
|
Peoc'h K, Puy V, Fournier T. Haem oxygenases play a pivotal role in placental physiology and pathology. Hum Reprod Update 2020; 26:634-649. [PMID: 32347305 DOI: 10.1093/humupd/dmaa014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 02/20/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Haem oxygenases (HO) catabolise haem, which is the prosthetic group of numerous haemoproteins. Thus, multiple primary cellular pathways and functions rely on haem availability. HO exists in two isoforms, both expressed in the placenta, namely HO-1 and HO-2, the first being inducible. Haem oxygenases, particularly HO-1, have garnered specific interest in the field of physiological and pathological placental function. These enzymes mediate haem degradation by cleaving the alpha methene bridge to produce biliverdin, which is subsequently converted to bilirubin, carbon monoxide and iron. HO-1 has anti-inflammatory and antioxidant activities. SEARCH METHODS An initial literature analysis was performed using PubMed on 3 October 2018 using key terms such as 'haem oxygenase and pregnancy', 'haem oxygenase and placenta', 'HO-1 and pregnancy', 'HO-1 and placenta', 'HO and placenta', 'HO and pregnancy', 'genetic variant and HO', 'CO and pregnancy', 'CO and placenta', 'Bilirubin and pregnancy', 'Iron and pregnancy' and 'PPAR and Haem', selecting consensus conferences, recommendations, meta-analyses, practical recommendations and reviews. A second literature analysis was performed, including notable miscarriages, foetal loss and diabetes mellitus, on 20 December 2019. The three authors studied the publications independently to decipher whether they should be included in the manuscript. OBJECTIVE AND RATIONALE This review aimed to summarise current pieces of knowledge of haem oxygenase location, function and regulation in the placenta, either in healthy pregnancies or those associated with miscarriages and foetal loss, pre-eclampsia, foetal growth restriction and diabetes mellitus. OUTCOMES HO-1 exerts some protective effects on the placentation, probably by a combination of factors, including its interrelation with the PGC-1α/PPAR pathway and the sFlt1/PlGF balance, and through its primary metabolites, notably carbon monoxide and bilirubin. Its protective role has been highlighted in numerous pregnancy conditions, including pre-eclampsia, foetal growth restriction, gestational diabetes mellitus and miscarriages. WIDER IMPLICATIONS HO-1 is a crucial enzyme in physiological and pathological placentation. This protective enzyme is currently considered a potential therapeutic target in various pregnancy diseases.
Collapse
Affiliation(s)
- Katell Peoc'h
- Université de Paris, Laboratory of Excellence GR-Ex, Centre de Recherche sur l'Inflammation, INSERM U1149, UFR de Médecine Bichat, 75018 Paris, France
- Assistance Publique des Hôpitaux de Paris, APHP Nord, Paris, France
| | - Vincent Puy
- Reproductive Biology Unit CECOS, Paris-Saclay University, Antoine Béclère Hospital, APHP, Clamart 92140, France
- Laboratoire de Développement des Gonades, UMRE008 Stabilité Génétique Cellules Souches et Radiations, Université de Paris, Université Paris-Saclay, CEA, F-92265 Fontenay-aux-Roses, France
| | - Thierry Fournier
- Université de Paris, INSERM, UMR-S 1139, 3PHM, F-75006, Paris, France
- Fondation PremUp, F-75014, Paris, France
| |
Collapse
|
7
|
Ashraf AA, Dani M, So PW. Low Cerebrospinal Fluid Levels of Hemopexin Are Associated With Increased Alzheimer's Pathology, Hippocampal Hypometabolism, and Cognitive Decline. Front Mol Biosci 2020; 7:590979. [PMID: 33392254 PMCID: PMC7775585 DOI: 10.3389/fmolb.2020.590979] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 11/20/2020] [Indexed: 12/13/2022] Open
Abstract
Brain iron dyshomeostasis is a feature of Alzheimer's disease. Conventionally, research has focused on non-heme iron although degradation of heme from hemoglobin subunits can generate iron to augment the redox-active iron pool. Hemopexin both detoxifies heme to maintain iron homeostasis and bolsters antioxidant capacity via catabolic products, biliverdin and carbon monoxide to combat iron-mediated lipid peroxidation. The aim of the present study was to examine the association of cerebrospinal fluid levels (CSF) hemopexin and hemoglobin subunits (α and β) to Alzheimer's pathological proteins (amyloid and tau), hippocampal volume and metabolism, and cognitive performance. We analyzed baseline CSF heme/iron proteins (multiplexed mass spectrometry-based assay), amyloid and tau (Luminex platform), baseline/longitudinal neuroimaging (MRI, FDG-PET) and cognitive outcomes in 86 cognitively normal, 135 mild-cognitive impairment and 66 Alzheimer's participants from the Alzheimer's Disease Neuroimaging Initiative-1 (ADNI-1) cohort. Multivariate regression analysis was performed to delineate differences in CSF proteins between diagnosis groups and evaluated their association to amyloid and tau, neuroimaging and cognition. A p-value ≤ 0.05 was considered significant. Higher hemopexin was associated with higher CSF amyloid (implying decreased brain amyloid deposition), improved hippocampal metabolism and cognitive performance. Meanwhile, hemoglobin subunits were associated with increased CSF tau (implying increased brain tau deposition). When dichotomizing individuals with mild-cognitive impairment into stable and converters to Alzheimer's disease, significantly higher baseline hemoglobin subunits were observed in the converters compared to non-converters. Heme/iron dyshomeostasis is an early and crucial event in AD pathophysiology, which warrants further investigation as a potential therapeutic target.
Collapse
Affiliation(s)
- Azhaar A Ashraf
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Melanie Dani
- Imperial College London Healthcare National Health Service Trust, London, United Kingdom
| | - Po-Wah So
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| |
Collapse
|
8
|
Hemolysis Derived Products Toxicity and Endothelium: Model of the Second Hit. Toxins (Basel) 2019; 11:toxins11110660. [PMID: 31766155 PMCID: PMC6891750 DOI: 10.3390/toxins11110660] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/02/2019] [Accepted: 11/06/2019] [Indexed: 12/16/2022] Open
Abstract
Vascular diseases are multifactorial, often requiring multiple challenges, or ‘hits’, for their initiation. Intra-vascular hemolysis illustrates well the multiple-hit theory where a first event lyses red blood cells, releasing hemolysis-derived products, in particular cell-free heme which is highly toxic for the endothelium. Physiologically, hemolysis derived-products are rapidly neutralized by numerous defense systems, including haptoglobin and hemopexin which scavenge hemoglobin and heme, respectively. Likewise, cellular defense mechanisms are involved, including heme-oxygenase 1 upregulation which metabolizes heme. However, in cases of intra-vascular hemolysis, those systems are overwhelmed. Heme exerts toxic effects by acting as a damage-associated molecular pattern and promoting, together with hemoglobin, nitric oxide scavenging and ROS production. In addition, it activates the complement and the coagulation systems. Together, these processes lead to endothelial cell injury which triggers pro-thrombotic and pro-inflammatory phenotypes. Moreover, among endothelial cells, glomerular ones display a particular susceptibility explained by a weaker capacity to counteract hemolysis injury. In this review, we illustrate the ‘multiple-hit’ theory through the example of intra-vascular hemolysis, with a particular focus on cell-free heme, and we advance hypotheses explaining the glomerular susceptibility observed in hemolytic diseases. Finally, we describe therapeutic options for reducing endothelial injury in hemolytic diseases.
Collapse
|
9
|
What Is Next in This "Age" of Heme-Driven Pathology and Protection by Hemopexin? An Update and Links with Iron. Pharmaceuticals (Basel) 2019; 12:ph12040144. [PMID: 31554244 PMCID: PMC6958331 DOI: 10.3390/ph12040144] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 09/08/2019] [Accepted: 09/19/2019] [Indexed: 02/07/2023] Open
Abstract
This review provides a synopsis of the published literature over the past two years on the heme-binding protein hemopexin (HPX), with some background information on the biochemistry of the HPX system. One focus is on the mechanisms of heme-driven pathology in the context of heme and iron homeostasis in human health and disease. The heme-binding protein hemopexin is a multi-functional protectant against hemoglobin (Hb)-derived heme toxicity as well as mitigating heme-mediated effects on immune cells, endothelial cells, and stem cells that collectively contribute to driving inflammation, perturbing vascular hemostasis and blood–brain barrier function. Heme toxicity, which may lead to iron toxicity, is recognized increasingly in a wide range of conditions involving hemolysis and immune system activation and, in this review, we highlight some newly identified actions of heme and hemopexin especially in situations where normal processes fail to maintain heme and iron homeostasis. Finally, we present preliminary data showing that the cytokine IL-6 cross talks with activation of the c-Jun N-terminal kinase pathway in response to heme-hemopexin in models of hepatocytes. This indicates another level of complexity in the cell responses to elevated heme via the HPX system when the immune system is activated and/or in the presence of inflammation.
Collapse
|
10
|
Van Avondt K, Nur E, Zeerleder S. Mechanisms of haemolysis-induced kidney injury. Nat Rev Nephrol 2019; 15:671-692. [PMID: 31455889 DOI: 10.1038/s41581-019-0181-0] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2019] [Indexed: 12/16/2022]
Abstract
Intravascular haemolysis is a fundamental feature of chronic hereditary and acquired haemolytic anaemias, including those associated with haemoglobinopathies, complement disorders and infectious diseases such as malaria. Destabilization of red blood cells (RBCs) within the vasculature results in systemic inflammation, vasomotor dysfunction, thrombophilia and proliferative vasculopathy. The haemoprotein scavengers haptoglobin and haemopexin act to limit circulating levels of free haemoglobin, haem and iron - potentially toxic species that are released from injured RBCs. However, these adaptive defence systems can fail owing to ongoing intravascular disintegration of RBCs. Induction of the haem-degrading enzyme haem oxygenase 1 (HO1) - and potentially HO2 - represents a response to, and endogenous defence against, large amounts of cellular haem; however, this system can also become saturated. A frequent adverse consequence of massive and/or chronic haemolysis is kidney injury, which contributes to the morbidity and mortality of chronic haemolytic diseases. Intravascular destruction of RBCs and the resulting accumulation of haemoproteins can induce kidney injury via a number of mechanisms, including oxidative stress and cytotoxicity pathways, through the formation of intratubular casts and through direct as well as indirect proinflammatory effects, the latter via the activation of neutrophils and monocytes. Understanding of the detailed pathophysiology of haemolysis-induced kidney injury offers opportunities for the design and implementation of new therapeutic strategies to counteract the unfavourable and potentially fatal effects of haemolysis on the kidney.
Collapse
Affiliation(s)
- Kristof Van Avondt
- Department of Immunopathology, Sanquin Research, and Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands. .,Institute for Cardiovascular Prevention (IPEK), Ludwig Maximilian University of Munich, Munich, Germany.
| | - Erfan Nur
- Department of Haematology, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Sacha Zeerleder
- Department of Immunopathology, Sanquin Research, and Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands. .,Department of Haematology and Central Haematology Laboratory, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland. .,Department for BioMedical Research, University of Bern, Bern, Switzerland.
| |
Collapse
|
11
|
Gáll T, Pethő D, Nagy A, Hendrik Z, Méhes G, Potor L, Gram M, Åkerström B, Smith A, Nagy P, Balla G, Balla J. Heme Induces Endoplasmic Reticulum Stress (HIER Stress) in Human Aortic Smooth Muscle Cells. Front Physiol 2018; 9:1595. [PMID: 30515102 PMCID: PMC6255930 DOI: 10.3389/fphys.2018.01595] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 10/24/2018] [Indexed: 12/17/2022] Open
Abstract
Accumulation of damaged or misfolded proteins resulted from oxidative protein modification induces endoplasmic reticulum (ER) stress by activating the pathways of unfolded protein response. In pathologic hemolytic conditions, extracellular free hemoglobin is submitted to rapid oxidation causing heme release. Resident cells of atherosclerotic lesions, after intraplaque hemorrhage, are exposed to heme leading to oxidative injury. Therefore, we raised the question whether heme can also provoke ER stress. Smooth muscle cells are one of the key players of atherogenesis; thus, human aortic smooth muscle cells (HAoSMCs) were selected as a model cell to reveal the possible link between heme and ER stress. Using immunoblotting, quantitative polymerase chain reaction and immunocytochemistry, we quantitated the markers of ER stress. These were: phosphorylated eIF2α, Activating transcription factor-4 (ATF4), DNA-damage-inducible transcript 3 (also known as C/EBP homology protein, termed CHOP), X-box binding protein-1 (XBP1), Activating transcription factor-6 (ATF6), GRP78 (glucose-regulated protein, 78kDa) and heme responsive genes heme oxygenase-1 and ferritin. In addition, immunohistochemistry was performed on human carotid artery specimens from patients who had undergone carotid endarterectomy. We demonstrate that heme increases the phosphorylation of eiF2α in HAoSMCs and the expression of ATF4. Heme also enhances the splicing of XBP1 and the proteolytic cleavage of ATF6. Consequently, there is up-regulation of target genes increasing both mRNA and protein levels of CHOP and GRP78. However, TGFβ and collagen type I decreased. When the heme binding proteins, alpha-1-microglobulin (A1M) and hemopexin (Hpx) are present in cell media, the ER stress provoked by heme is inhibited. ER stress pathways are also retarded by the antioxidant N-acetyl cysteine (NAC) indicating that reactive oxygen species are involved in heme-induced ER stress. Consistent with these findings, elevated expression of the ER stress marker GRP78 and CHOP were observed in smooth muscle cells of complicated lesions with hemorrhage compared to either atheromas or healthy arteries. In conclusion, heme triggers ER stress in a time- and dose-dependent manner in HAoSMCs. A1M and Hpx as well as NAC effectively hamper heme-induced ER stress, supporting their use as a potential therapeutic approach to reverse such a deleterious effects of heme toxicity.
Collapse
Affiliation(s)
- Tamás Gáll
- HAS-UD Vascular Biology and Myocardial Pathophysiology Research Group, Hungarian Academy of Sciences, Debrecen, Hungary
- Department of Pediatrics, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Dávid Pethő
- Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Annamária Nagy
- Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Zoltán Hendrik
- Department of Pathology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Gábor Méhes
- Department of Pathology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - László Potor
- HAS-UD Vascular Biology and Myocardial Pathophysiology Research Group, Hungarian Academy of Sciences, Debrecen, Hungary
- Department of Pediatrics, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Magnus Gram
- Department of Clinical Sciences Lund, Infection Medicine, Lund University, Lund, Sweden
| | - Bo Åkerström
- Department of Clinical Sciences Lund, Infection Medicine, Lund University, Lund, Sweden
| | - Ann Smith
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, MO, United States
| | - Péter Nagy
- Department of Vascular Surgery, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - György Balla
- HAS-UD Vascular Biology and Myocardial Pathophysiology Research Group, Hungarian Academy of Sciences, Debrecen, Hungary
- Department of Pediatrics, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - József Balla
- HAS-UD Vascular Biology and Myocardial Pathophysiology Research Group, Hungarian Academy of Sciences, Debrecen, Hungary
- Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
12
|
Aggarwal S, Ahmad I, Lam A, Carlisle MA, Li C, Wells JM, Raju SV, Athar M, Rowe SM, Dransfield MT, Matalon S. Heme scavenging reduces pulmonary endoplasmic reticulum stress, fibrosis, and emphysema. JCI Insight 2018; 3:120694. [PMID: 30385726 DOI: 10.1172/jci.insight.120694] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 09/13/2018] [Indexed: 12/14/2022] Open
Abstract
Pulmonary fibrosis and emphysema are irreversible chronic events after inhalation injury. However, the mechanism(s) involved in their development remain poorly understood. Higher levels of plasma and lung heme have been recorded in acute lung injury associated with several insults. Here, we provide the molecular basis for heme-induced chronic lung injury. We found elevated plasma heme in chronic obstructive pulmonary disease (COPD) (GOLD stage 4) patients and also in a ferret model of COPD secondary to chronic cigarette smoke inhalation. Next, we developed a rodent model of chronic lung injury, where we exposed C57BL/6 mice to the halogen gas, bromine (Br2) (400 ppm, 30 minutes), and returned them to room air resulting in combined airway fibrosis and emphysematous phenotype, as indicated by high collagen deposition in the peribronchial spaces, increased lung hydroxyproline concentrations, and alveolar septal damage. These mice also had elevated pulmonary endoplasmic reticulum (ER) stress as seen in COPD patients; the pharmacological or genetic diminution of ER stress in mice attenuated Br2-induced lung changes. Finally, treating mice with the heme-scavenging protein, hemopexin, reduced plasma heme, ER stress, airway fibrosis, and emphysema. This is the first study to our knowledge to report elevated heme in COPD patients and establishes heme scavenging as a potential therapy after inhalation injury.
Collapse
Affiliation(s)
- Saurabh Aggarwal
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular and Translational Biomedicine.,Pulmonary Injury and Repair Center
| | - Israr Ahmad
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular and Translational Biomedicine
| | - Adam Lam
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular and Translational Biomedicine.,Pulmonary Injury and Repair Center
| | - Matthew A Carlisle
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular and Translational Biomedicine.,Pulmonary Injury and Repair Center
| | | | - J Michael Wells
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine.,UAB Lung Health Center, and.,Gregory Fleming James Cystic Fibrosis Research Center, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA.,Birmingham Veterans Administration Medical Center, Birmingham, Alabama, USA
| | - S Vamsee Raju
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine.,UAB Lung Health Center, and.,Gregory Fleming James Cystic Fibrosis Research Center, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | - Steven M Rowe
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine.,UAB Lung Health Center, and.,Gregory Fleming James Cystic Fibrosis Research Center, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Mark T Dransfield
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine.,UAB Lung Health Center, and.,Gregory Fleming James Cystic Fibrosis Research Center, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA.,Birmingham Veterans Administration Medical Center, Birmingham, Alabama, USA
| | - Sadis Matalon
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular and Translational Biomedicine.,Pulmonary Injury and Repair Center
| |
Collapse
|
13
|
Gouveia Z, Carlos AR, Yuan X, Aires-da-Silva F, Stocker R, Maghzal GJ, Leal SS, Gomes CM, Todorovic S, Iranzo O, Ramos S, Santos AC, Hamza I, Gonçalves J, Soares MP. Characterization of plasma labile heme in hemolytic conditions. FEBS J 2017; 284:3278-3301. [PMID: 28783254 PMCID: PMC5978748 DOI: 10.1111/febs.14192] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 06/13/2017] [Accepted: 08/03/2017] [Indexed: 01/29/2023]
Abstract
Extracellular hemoglobin, a byproduct of hemolysis, can release its prosthetic heme groups upon oxidation. This produces metabolically active heme that is exchangeable between acceptor proteins, macromolecules and low molecular weight ligands, termed here labile heme. As it accumulates in plasma labile heme acts in a pro‐oxidant manner and regulates cellular metabolism while exerting pro‐inflammatory and cytotoxic effects that foster the pathogenesis of hemolytic diseases. Here, we developed and characterized a panel of heme‐specific single domain antibodies (sdAbs) that together with a cellular‐based heme reporter assay, allow for quantification and characterization of labile heme in plasma during hemolytic conditions. Using these approaches, we demonstrate that when generated during hemolytic conditions labile heme is bound to plasma molecules with an affinity higher than 10−7m and that 2–8% (~ 2–5 μm) of the total amount of heme detected in plasma can be internalized by bystander cells, termed here bioavailable heme. Acute, but not chronic, hemolysis is associated with transient reduction of plasma heme‐binding capacity, that is, the ability of plasma molecules to bind labile heme with an affinity higher than 10−7m. The heme‐specific sdAbs neutralize the pro‐oxidant activity of soluble heme in vitro, suggesting that these maybe used to counter the pathologic effects of labile heme during hemolytic conditions. Finally, we show that heme‐specific sdAbs can be used to visualize cellular heme. In conclusion, we describe a panel of heme‐specific sdAbs that when used with other approaches provide novel insights to the pathophysiology of heme.
Collapse
Affiliation(s)
| | - Ana R Carlos
- Instituto Gulbenkian da Ciência, Oeiras, Portugal
| | - Xiaojing Yuan
- Department of Animal and Avian Sciences and Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
| | - Frederico Aires-da-Silva
- Technophage S.A., Lisboa, Portugal.,CIISA-Faculdade de Medicina Veterinária, Universidade de Lisboa, Portugal
| | - Roland Stocker
- Vascular Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia.,School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Ghassan J Maghzal
- Vascular Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia.,School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Sónia S Leal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Cláudio M Gomes
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Smilja Todorovic
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Olga Iranzo
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Susana Ramos
- Instituto Gulbenkian da Ciência, Oeiras, Portugal
| | - Ana C Santos
- IMM, Faculdade Medicina, Universidade de Lisboa, Portugal.,CPM-URIA, Faculdade Farmácia, Universidade de Lisboa, Portugal
| | - Iqbal Hamza
- Department of Animal and Avian Sciences and Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
| | - João Gonçalves
- IMM, Faculdade Medicina, Universidade de Lisboa, Portugal.,CPM-URIA, Faculdade Farmácia, Universidade de Lisboa, Portugal
| | | |
Collapse
|
14
|
Hahl P, Hunt R, Bjes ES, Skaff A, Keightley A, Smith A. Identification of oxidative modifications of hemopexin and their predicted physiological relevance. J Biol Chem 2017; 292:13658-13671. [PMID: 28596380 DOI: 10.1074/jbc.m117.783951] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 06/07/2017] [Indexed: 12/26/2022] Open
Abstract
Hemopexin protects against heme toxicity in hemolytic diseases and conditions, sepsis, and sickle cell disease. This protection is sustained by heme-hemopexin complexes in biological fluids that resist oxidative damage during heme-driven inflammation. However, apo-hemopexin is vulnerable to inactivation by reactive nitrogen (RNS) and oxygen species (ROS) that covalently modify amino acids. The resultant nitration of amino acids is considered a specific effect reflecting biological events. Using LC-MS, we discovered low endogenous levels of tyrosine nitration in the peptide YYCFQGNQFLR in the heme-binding site of human hemopexin, which was similarly nitrated in rabbit and rat hemopexins. Immunoblotting and selective reaction monitoring were used to quantify tyrosine nitration of in vivo samples and when hemopexin was incubated in vitro with nitrating nitrite/myeloperoxidase/glucose oxidase. Significantly, heme binding by hemopexin declined as tyrosine nitration proceeded in vitro Three nitrated tyrosines reside in the heme-binding site of hemopexin, and we found that one, Tyr-199, interacts directly with the heme ring D propionate. Investigating the oxidative modifications of amino acids after incubation with tert-butyl hydroperoxide and hypochlorous acid in vitro, we identified additional covalent oxidative modifications on four tyrosine residues and one tryptophan residue of hemopexin. Importantly, three of the four modified tyrosines, some of which have more than one modification, cluster in the heme-binding site, supporting a hierarchy of vulnerable amino acids. We propose that during inflammation, apo-hemopexin is nitrated and oxidated in niches of the body containing activated RNS- and ROS-generating immune and endothelial cells, potentially impairing hemopexin's protective extracellular antioxidant function.
Collapse
Affiliation(s)
- Peter Hahl
- From the Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, Missouri 64110-2239
| | - Rachel Hunt
- From the Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, Missouri 64110-2239
| | - Edward S Bjes
- From the Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, Missouri 64110-2239
| | - Andrew Skaff
- From the Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, Missouri 64110-2239
| | - Andrew Keightley
- From the Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, Missouri 64110-2239
| | - Ann Smith
- From the Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, Missouri 64110-2239
| |
Collapse
|
15
|
Smith A, McCulloh RJ. Mechanisms of haem toxicity in haemolysis and protection by the haem-binding protein, haemopexin. ACTA ACUST UNITED AC 2017. [DOI: 10.1111/voxs.12340] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- A. Smith
- School of Biological Sciences; University of Missouri-Kansas City; Kansas City MO USA
| | - R. J. McCulloh
- Department of Pediatrics; Children's Mercy Hospital; Kansas City MO USA
- University of Missouri-Kansas City School of Medicine; Kansas City MO USA
| |
Collapse
|
16
|
Salifu H, Wilson NO, Liu M, Dickinson-Copeland C, Yatich N, Keenan J, Turpin C, Jolly P, Gyasi R, Adjei AA, Stiles JK. Iron Supplementation Alters Heme and Heme Oxygenase 1 (HO-1) Levels In Pregnant Women in Ghana. SOJ MICROBIOLOGY & INFECTIOUS DISEASES 2016; 4. [PMID: 28124024 DOI: 10.15226/sojmid/4/2/00154] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
BACKGROUND Iron supplementation is recommended for pregnant women to meet their iron requirement for a healthy pregnancy. The benefits and risks of universal iron supplementation during pregnancy in malaria endemic countries are currently being debated. As part of a broader study that focused on the effect of heme/HO-1 on pregnancy outcomes in malaria in pregnancy, we determined the association between iron supplementation and free heme levels in blood of pregnant women with and without malaria in Ghana. We hypothesized that pregnant women with malaria who took iron supplements will have higher levels of Heme/HO-1 than those who did not take iron supplements. METHODS A total of 337 women were recruited for this study. Blood samples were collected for malaria diagnosis and heme/HO-1 measurement. Quantification of heme was done using a heme colorimetric assay kit and HO-1 levels were performed using Enzyme-Linked Immunosorbent Assay (ELISA) on plasma samples. RESULTS Malaria positive iron supplemented women, in their third trimester, had significantly higher median levels of heme 59.3(43.1 - 60.4) than non-malaria iron supplemented women 35.7(33.0 - 62.2), p = 0.026. Also, malaria positive iron supplemented women had significant higher median levels of HO-16.2(IQR 4.9 - 8.1) than pregnant women who did not take iron supplements 2.9 (IQR 2.1 - 3.8), p = <0.001. CONCLUSION Although iron supplementation may be highly beneficial and improve pregnancy outcomes for iron deficient or anemic mothers, it is also likely that iron supplementation for pregnant women who are not iron deficient may put this group of women at risk for adverse pregnancy outcomes. Findings from this study sheds light on the effect of iron supplementation on malaria derived heme in pregnancy, which may inform how iron supplementation is recommended for pregnant women who are not iron deficient.
Collapse
Affiliation(s)
- Hassana Salifu
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine
| | - Nana O Wilson
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine
| | - Mingli Liu
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine
| | | | - Nelly Yatich
- University of Alabama, Birmingham Alabama, Department of Epidemiology
| | - John Keenan
- University of Alabama, Birmingham Alabama, Department of Epidemiology
| | - Cornelius Turpin
- University of Alabama, Birmingham Alabama, Department of Epidemiology
| | - Pauline Jolly
- University of Alabama, Birmingham Alabama, Department of Epidemiology
| | - Richard Gyasi
- University of Ghana Medical School, Department of Pathology, Korle-Bu Teaching Hospital, Accra, Ghana
| | - Andrew A Adjei
- University of Ghana Medical School, Department of Pathology, Korle-Bu Teaching Hospital, Accra, Ghana
| | - Jonathan K Stiles
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine
| |
Collapse
|
17
|
Lam A, Vetal N, Matalon S, Aggarwal S. Role of heme in bromine-induced lung injury. Ann N Y Acad Sci 2016; 1374:105-10. [PMID: 27244263 DOI: 10.1111/nyas.13086] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 04/06/2016] [Accepted: 04/08/2016] [Indexed: 01/19/2023]
Abstract
Bromine (Br2 ) gas inhalation poses an environmental and occupational hazard resulting in high morbidity and mortality. In this review, we underline the acute lung pathology (within 24 h of exposure) and potential therapeutic interventions that may be utilized to mitigate Br2 -induced human toxicity. We discuss our latest published data, which suggest that an increase in heme-dependent tissue injury underlies the pathogenesis of Br2 toxicity. Our study was based on previous findings that demonstrated that Br2 upregulates the heme-degrading enzyme heme oxygenase-1 (HO-1), which converts toxic heme into bilverdin. Interestingly, following Br2 inhalation, heme levels were indeed elevated in bronchoalveolar lavage fluid, plasma, and whole lung tissue in C57BL/6 mice. High heme levels correlated with increased lung oxidative stress, lung inflammation, respiratory acidosis, lung edema, higher airway resistance, and mortality. However, therapeutic reduction of heme levels, by either scavenging with hemopexin or degradation by HO-1, improved lung function and survival. Therefore, heme attenuation may prove a useful adjuvant therapy to treat patients after Br2 exposure.
Collapse
Affiliation(s)
- Adam Lam
- Department of Anesthesiology and Perioperative Medicine and Division of Molecular and Translational Biomedicine, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Nilam Vetal
- Department of Anesthesiology and Perioperative Medicine and Division of Molecular and Translational Biomedicine, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Sadis Matalon
- Department of Anesthesiology and Perioperative Medicine and Division of Molecular and Translational Biomedicine, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Saurabh Aggarwal
- Department of Anesthesiology and Perioperative Medicine and Division of Molecular and Translational Biomedicine, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
18
|
Aggarwal S, Lam A, Bolisetty S, Carlisle MA, Traylor A, Agarwal A, Matalon S. Heme Attenuation Ameliorates Irritant Gas Inhalation-Induced Acute Lung Injury. Antioxid Redox Signal 2016; 24:99-112. [PMID: 26376667 PMCID: PMC4742996 DOI: 10.1089/ars.2015.6347] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
AIMS Exposure to irritant gases, such as bromine (Br2), poses an environmental and occupational hazard that results in severe lung and systemic injury. However, the mechanism(s) of Br2 toxicity and the therapeutic responses required to mitigate lung damage are not known. Previously, it was demonstrated that Br2 upregulates the heme degrading enzyme, heme oxygenase-1 (HO-1). Since heme is a major inducer of HO-1, we determined whether an increase in heme and heme-dependent oxidative injury underlies the pathogenesis of Br2 toxicity. RESULTS C57BL/6 mice were exposed to Br2 gas (600 ppm, 30 min) and returned to room air. Thirty minutes postexposure, mice were injected intraperitoneally with a single dose of the heme scavenging protein, hemopexin (Hx) (3 μg/gm body weight), or saline. Twenty-four hours postexposure, saline-treated mice had elevated total heme in bronchoalveolar lavage fluid (BALF) and plasma and acute lung injury (ALI) culminating in 80% mortality after 10 days. Hx treatment significantly lowered heme, decreased evidence of ALI (lower protein and inflammatory cells in BALF, lower lung wet-to-dry weight ratios, and decreased airway hyperreactivity to methacholine), and reduced mortality. In addition, Br2 caused more severe ALI and mortality in mice with HO-1 gene deletion (HO-1-/-) compared to wild-type controls, while transgenic mice overexpressing the human HO-1 gene (hHO-1) showed significant protection. INNOVATION This is the first study delineating the role of heme in ALI caused by Br2. CONCLUSION The data suggest that attenuating heme may prove to be a useful adjuvant therapy to treat patients with ALI.
Collapse
Affiliation(s)
- Saurabh Aggarwal
- 1 Division of Molecular and Translational Biomedicine, Department of Anesthesiology and Perioperative Medicine, School of Medicine, University of Alabama at Birmingham , Birmingham, Alabama.,2 Pulmonary Injury and Repair Center, School of Medicine, University of Alabama at Birmingham , Birmingham, Alabama
| | - Adam Lam
- 1 Division of Molecular and Translational Biomedicine, Department of Anesthesiology and Perioperative Medicine, School of Medicine, University of Alabama at Birmingham , Birmingham, Alabama
| | - Subhashini Bolisetty
- 3 Division of Nephrology, Department of Medicine, School of Medicine, University of Alabama at Birmingham , Birmingham, Alabama.,4 Nephrology Research and Training Center, School of Medicine, University of Alabama at Birmingham , Birmingham, Alabama
| | - Matthew A Carlisle
- 1 Division of Molecular and Translational Biomedicine, Department of Anesthesiology and Perioperative Medicine, School of Medicine, University of Alabama at Birmingham , Birmingham, Alabama
| | - Amie Traylor
- 3 Division of Nephrology, Department of Medicine, School of Medicine, University of Alabama at Birmingham , Birmingham, Alabama.,4 Nephrology Research and Training Center, School of Medicine, University of Alabama at Birmingham , Birmingham, Alabama
| | - Anupam Agarwal
- 3 Division of Nephrology, Department of Medicine, School of Medicine, University of Alabama at Birmingham , Birmingham, Alabama.,4 Nephrology Research and Training Center, School of Medicine, University of Alabama at Birmingham , Birmingham, Alabama
| | - Sadis Matalon
- 1 Division of Molecular and Translational Biomedicine, Department of Anesthesiology and Perioperative Medicine, School of Medicine, University of Alabama at Birmingham , Birmingham, Alabama.,2 Pulmonary Injury and Repair Center, School of Medicine, University of Alabama at Birmingham , Birmingham, Alabama
| |
Collapse
|
19
|
Karnaukhova E, Rutardottir S, Rajabi M, Wester Rosenlöf L, Alayash AI, Åkerström B. Characterization of heme binding to recombinant α1-microglobulin. Front Physiol 2014; 5:465. [PMID: 25538624 PMCID: PMC4255499 DOI: 10.3389/fphys.2014.00465] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 11/13/2014] [Indexed: 11/13/2022] Open
Abstract
Background: Alpha-1-microglobulin (A1M), a small lipocalin protein found in plasma and tissues, has been identified as a heme1 and radical scavenger that may participate in the mitigation of toxicities caused by degradation of hemoglobin. The objective of this work was to investigate heme interactions with A1M in vitro using various analytical techniques and to optimize analytical methodology suitable for rapid evaluation of the ligand binding properties of recombinant A1M versions. Methods: To examine heme binding properties of A1M we utilized UV/Vis absorption spectroscopy, visible circular dichroism (CD), catalase-like activity, migration shift electrophoresis, and surface plasmon resonance (SPR), which was specifically developed for the assessment of His-tagged A1M. Results: The results of this study confirm that A1M is a heme binding protein that can accommodate heme at more than one binding site and/or in coordination with different amino acid residues depending upon heme concentration and ligand-to-protein molar ratio. UV/Vis titration of A1M with heme revealed an unusually large bathochromic shift, up to 38 nm, observed for heme binding to a primary binding site. UV/Vis spectroscopy, visible CD and catalase-like activity suggested that heme is accommodated inside His-tagged (tgA1M) and tagless A1M (ntA1M) in a rather similar fashion although the His-tag is very likely involved into coordination with iron of the heme molecule. SPR data indicated kinetic rate constants and equilibrium binding constants with KD values in a μM range. Conclusions: This study provided experimental evidence of the A1M heme binding properties by aid of different techniques and suggested an analytical methodology for a rapid evaluation of ligand-binding properties of recombinant A1M versions, also suitable for other His-tagged proteins.
Collapse
Affiliation(s)
- Elena Karnaukhova
- Laboratory of Biochemistry and Vascular Biology, Division of Hematology Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration Silver Spring, MD, USA
| | - Sigurbjörg Rutardottir
- Division of Infection Medicine, Department of Clinical Sciences in Lund, Lund University Lund, Sweden
| | - Mohsen Rajabi
- Division of Therapeutic Proteins, Office of Biotechnology Products, Office of Pharmaceutical Science, Center for Drug Evaluation and Research, Food and Drug Administration Silver Spring, MD, USA
| | - Lena Wester Rosenlöf
- Division of Infection Medicine, Department of Clinical Sciences in Lund, Lund University Lund, Sweden
| | - Abdu I Alayash
- Laboratory of Biochemistry and Vascular Biology, Division of Hematology Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration Silver Spring, MD, USA
| | - Bo Åkerström
- Division of Infection Medicine, Department of Clinical Sciences in Lund, Lund University Lund, Sweden
| |
Collapse
|
20
|
Abstract
Iron is essential for the normal physiological function of all organisms. In humans it is required for a plethora of biochemical roles including the transport of oxygen in the blood and energy production in the mitochondria. However, iron is also highly cytotoxic when present at high levels as it readily participates in oxidation-reduction reactions that lead to the generation of reactive oxygen species. One unique feature of iron biology is the lack of excretory mechanisms to remove excess iron from the body. Therefore, the concerted action of several genes and proteins working together to regulate the movement of iron across cell membranes, its storage in peripheral tissues and its physiological utilization in the body is essential for maintaining iron homeostasis. Humans are exposed to iron in a number of chemical forms (haem or non-haem; ferric or ferrous). This chapter will describe how humans acquire iron from their diet; the subsequent delivery of iron to its sites of utilization and storage; and how iron is recycled from effete erythrocytes for re-use in metabolism. Mutations in a number of the genes controlling iron metabolism have been identified and study of the pathological consequences of these mutations has allowed us to gain a greater understanding of how the body senses changes in iron status and coordinates its transport, storage and utilization to maintain homeostasis.
Collapse
Affiliation(s)
- Paul Sharp
- Diabetes & Nutritional Sciences Division, King's College London, School of Medicine Franklin Wilkins Building, 150 Stamford Street London SE1 9NH UK
| |
Collapse
|
21
|
Dutra FF, Bozza MT. Heme on innate immunity and inflammation. Front Pharmacol 2014; 5:115. [PMID: 24904418 PMCID: PMC4035012 DOI: 10.3389/fphar.2014.00115] [Citation(s) in RCA: 235] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Accepted: 04/29/2014] [Indexed: 12/30/2022] Open
Abstract
Heme is an essential molecule expressed ubiquitously all through our tissues. Heme plays major functions in cellular physiology and metabolism as the prosthetic group of diverse proteins. Once released from cells and from hemeproteins free heme causes oxidative damage and inflammation, thus acting as a prototypic damage-associated molecular pattern. In this context, free heme is a critical component of the pathological process of sterile and infectious hemolytic conditions including malaria, hemolytic anemias, ischemia-reperfusion, and hemorrhage. The plasma scavenger proteins hemopexin and albumin reduce heme toxicity and are responsible for transporting free heme to intracellular compartments where it is catabolized by heme-oxygenase enzymes. Upon hemolysis or severe cellular damage the serum capacity to scavenge heme may saturate and increase free heme to sufficient amounts to cause tissue damage in various organs. The mechanism by which heme causes reactive oxygen generation, activation of cells of the innate immune system and cell death are not fully understood. Although heme can directly promote lipid peroxidation by its iron atom, heme can also induce reactive oxygen species generation and production of inflammatory mediators through the activation of selective signaling pathways. Heme activates innate immune cells such as macrophages and neutrophils through activation of innate immune receptors. The importance of these events has been demonstrated in infectious and non-infectious diseases models. In this review, we will discuss the mechanisms behind heme-induced cytotoxicity and inflammation and the consequences of these events on different tissues and diseases.
Collapse
Affiliation(s)
- Fabianno F. Dutra
- Laboratório de Inflamação e Imunidade, Departamento de Imunologia, Instituto de Microbiologia, Universidade Federal do Rio de JaneiroRio de Janeiro, Brazil
| | - Marcelo T. Bozza
- Laboratório de Inflamação e Imunidade, Departamento de Imunologia, Instituto de Microbiologia, Universidade Federal do Rio de JaneiroRio de Janeiro, Brazil
| |
Collapse
|
22
|
Chiabrando D, Vinchi F, Fiorito V, Mercurio S, Tolosano E. Heme in pathophysiology: a matter of scavenging, metabolism and trafficking across cell membranes. Front Pharmacol 2014; 5:61. [PMID: 24782769 PMCID: PMC3986552 DOI: 10.3389/fphar.2014.00061] [Citation(s) in RCA: 308] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 03/18/2014] [Indexed: 01/19/2023] Open
Abstract
Heme (iron-protoporphyrin IX) is an essential co-factor involved in multiple biological processes: oxygen transport and storage, electron transfer, drug and steroid metabolism, signal transduction, and micro RNA processing. However, excess free-heme is highly toxic due to its ability to promote oxidative stress and lipid peroxidation, thus leading to membrane injury and, ultimately, apoptosis. Thus, heme metabolism needs to be finely regulated. Intracellular heme amount is controlled at multiple levels: synthesis, utilization by hemoproteins, degradation and both intracellular and intercellular trafficking. This review focuses on recent findings highlighting the importance of controlling intracellular heme levels to counteract heme-induced oxidative stress. The contributions of heme scavenging from the extracellular environment, heme synthesis and incorporation into hemoproteins, heme catabolism and heme transport in maintaining adequate intracellular heme content are discussed. Particular attention is put on the recently described mechanisms of heme trafficking through the plasma membrane mediated by specific heme importers and exporters. Finally, the involvement of genes orchestrating heme metabolism in several pathological conditions is illustrated and new therapeutic approaches aimed at controlling heme metabolism are discussed.
Collapse
Affiliation(s)
- Deborah Chiabrando
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin Turin, Italy
| | - Francesca Vinchi
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin Turin, Italy
| | - Veronica Fiorito
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin Turin, Italy
| | - Sonia Mercurio
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin Turin, Italy
| | - Emanuela Tolosano
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin Turin, Italy
| |
Collapse
|
23
|
Dong B, Cai M, Fang Z, Wei H, Zhu F, Li G, Dong H, Xiong L. Hemopexin induces neuroprotection in the rat subjected to focal cerebral ischemia. BMC Neurosci 2013; 14:58. [PMID: 23758755 PMCID: PMC3694464 DOI: 10.1186/1471-2202-14-58] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 05/31/2013] [Indexed: 11/10/2022] Open
Abstract
Background The plasma protein hemopexin (HPX) exhibits the highest binding affinity to free heme. In vitro experiments and gene-knock out technique have suggested that HPX may have a neuroprotective effect. However, the expression of HPX in the brain was not well elucidated and its expression after cerebral ischemia-reperfusion injury was also poorly studied. Furthermore, no in vivo data were available on the effect of HPX given centrally on the prognosis of focal cerebral ischemia. Results In the present study, we systematically investigated expression of HPX in normal rat brain by immunofluorescent staining. The results showed that HPX was mainly expressed in vascular system and neurons, as well as in a small portion of astrocytes adjacent to the vessels in normal rat brain. Further, we determined the role of HPX in the process of focal cerebral ischemic injury and explored the effects of HPX treatment in a rat model of transient focal cerebral ischemia. After 2 h’ middle cerebral artery occlusion (MCAO) followed by 24 h’ reperfusion, the expression of HPX was increased in the neurons and astrocytes in the penumbra area, as demonstrated by immunohistochemistry and Western blot techniques. Intracerebroventricular injection of HPX at the onset of reperfusion dose-dependently reduced the infarct volumes and improved measurements of neurological function of the rat subjected to transient focal cerebral ischemia. The neuroprotective effects of HPX sustained for up to 7 days after experiments. Conclusions Our study provides a new insight into the potential neuroprotective role of HPX as a contributing factor of endogenous protective mechanisms against focal cerebral ischemia injury, and HPX might be developed as a potential agent for treatment of ischemic stroke.
Collapse
Affiliation(s)
- Beibei Dong
- Department of Anesthesiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shanxi 710032, China
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Hahl P, Davis T, Washburn C, Rogers JT, Smith A. Mechanisms of neuroprotection by hemopexin: modeling the control of heme and iron homeostasis in brain neurons in inflammatory states. J Neurochem 2013; 125:89-101. [PMID: 23350672 DOI: 10.1111/jnc.12165] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Revised: 01/18/2013] [Accepted: 01/18/2013] [Indexed: 12/21/2022]
Abstract
Hemopexin provides neuroprotection in mouse models of stroke and intracerebral hemorrhage and protects neurons in vitro against heme or reactive oxygen species (ROS) toxicity via heme oxygenase-1 (HO1) activity. To model human brain neurons experiencing hemorrhages and inflammation, we used human neuroblastoma cells, heme-hemopexin complexes, and physiologically relevant ROS, for example, H(2)O(2) and HOCl, to provide novel insights into the underlying mechanism whereby hemopexin safely maintains heme and iron homeostasis. Human amyloid precursor protein (hAPP), needed for iron export from neurons, is induced ~twofold after heme-hemopexin endocytosis by iron from heme catabolism via the iron-regulatory element of hAPP mRNA. Heme-hemopexin is relatively resistant to damage by ROS and retains its ability to induce the cytoprotective HO1 after exposure to tert-butylhydroperoxide, although induction is impaired, but not eliminated, by exposure to high concentrations of H(2)O(2) in vitro. Apo-hemopexin, which predominates in non-hemolytic states, resists damage by H(2)O(2) and HOCl, except for the highest concentrations likely in vivo. Heme-albumin and albumin are preferential targets for ROS; thus, albumin protects hemopexin in biological fluids like CSF and plasma where it is abundant. These observations provide strong evidence that hemopexin will be neuroprotective after traumatic brain injury, with heme release in the CNS, and during the ensuing inflammation. Hemopexin sequesters heme, thus preventing unregulated heme uptake that leads to toxicity; it safely delivers heme to neuronal cells; and it activates the induction of proteins including HO1 and hAPP that keep heme and iron at safe levels in neurons.
Collapse
Affiliation(s)
- Peter Hahl
- School of Biological Sciences, University of Missouri - Kansas City, Kansas City, MO, USA
| | | | | | | | | |
Collapse
|
25
|
Dey S, Bindu S, Goyal M, Pal C, Alam A, Iqbal MS, Kumar R, Sarkar S, Bandyopadhyay U. Impact of intravascular hemolysis in malaria on liver dysfunction: involvement of hepatic free heme overload, NF-κB activation, and neutrophil infiltration. J Biol Chem 2012; 287:26630-46. [PMID: 22696214 DOI: 10.1074/jbc.m112.341255] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
We have investigated the impact of persistent intravascular hemolysis on liver dysfunction using the mouse malaria model. Intravascular hemolysis showed a positive correlation with liver damage along with the increased accumulation of free heme and reactive oxidants in liver. Hepatocytes overinduced heme oxygenase-1 (HO-1) to catabolize free heme in building up defense against this pro-oxidant milieu. However, in a condition of persistent free heme overload in malaria, the overactivity of HO-1 resulted in continuous transient generation of free iron to favor production of reactive oxidants as evident from 2',7'-dichlorofluorescein fluorescence studies. Electrophoretic mobility shift assay documented the activation of NF-κB, which in turn up-regulated intercellular adhesion molecule 1 as evident from chromatin immunoprecipitation studies. NF-κB activation also induced vascular cell adhesion molecule 1, keratinocyte chemoattractant, and macrophage inflammatory protein 2, which favored neutrophil extravasation and adhesion in liver. The infiltration of neutrophils correlated positively with the severity of hemolysis, and neutrophil depletion significantly prevented liver damage. The data further documented the elevation of serum TNFα in infected mice, and the treatment of anti-TNFα antibodies also significantly prevented neutrophil infiltration and liver injury. Deferoxamine, which chelates iron, interacts with free heme and bears antioxidant properties that prevented oxidative stress, NF-κB activation, neutrophil infiltration, hepatocyte apoptosis, and liver damage. Furthermore, the administration of N-acetylcysteine also prevented NF-κB activation, neutrophil infiltration, hepatocyte apoptosis, and liver damage. Thus, hepatic free heme accumulation, TNFα release, oxidative stress, and NF-κB activation established a link to favor neutrophil infiltration in inducing liver damage during hemolytic conditions in malaria.
Collapse
Affiliation(s)
- Sumanta Dey
- Division of Infectious Diseases and Immunology, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata 700032, West Bengal, India
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Larsen R, Gouveia Z, Soares MP, Gozzelino R. Heme cytotoxicity and the pathogenesis of immune-mediated inflammatory diseases. Front Pharmacol 2012; 3:77. [PMID: 22586395 PMCID: PMC3343703 DOI: 10.3389/fphar.2012.00077] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Accepted: 04/11/2012] [Indexed: 01/01/2023] Open
Abstract
Heme, iron (Fe) protoporphyrin IX, functions as a prosthetic group in a range of hemoproteins essential to support life under aerobic conditions. The Fe contained within the prosthetic heme groups of these hemoproteins can catalyze the production of reactive oxygen species. Presumably for this reason, heme must be sequestered within those hemoproteins, thereby shielding the reactivity of its Fe-heme. However, under pathologic conditions associated with oxidative stress, some hemoproteins can release their prosthetic heme groups. While this heme is not necessarily damaging per se, it becomes highly cytotoxic in the presence of a range of inflammatory mediators such as tumor necrosis factor. This can lead to tissue damage and, as such, exacerbate the pathologic outcome of several immune-mediated inflammatory conditions. Presumably, targeting “free heme” may be used as a therapeutic intervention against these diseases.
Collapse
|
27
|
Hemopexin decreases hemin accumulation and catabolism by neural cells. Neurochem Int 2012; 60:488-94. [PMID: 22342655 DOI: 10.1016/j.neuint.2012.01.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Revised: 01/19/2012] [Accepted: 01/20/2012] [Indexed: 01/01/2023]
Abstract
Hemopexin is a serum, CSF, and neuronal protein that is protective after experimental stroke. Its efficacy in the latter has been linked to increased expression and activity of heme oxygenase (HO)-1, suggesting that it facilitates heme degradation and subsequent release of cytoprotective biliverdin and carbon monoxide. In this study, the effect of hemopexin on the rate of hemin breakdown by CNS cells was investigated in established in vitro models. Equimolar hemopexin decreased hemin breakdown, as assessed by gas chromatography, by 60-75% in primary cultures of murine neurons and glia. Extracellular hemopexin reduced cell accumulation of ⁵⁵Fe-hemin by over 90%, while increasing hemin export or extraction from membranes by fourfold. This was associated with significant reduction in HO-1 expression and neuroprotection. In a cell-free system, hemin breakdown by recombinant HO-1 was reduced over 80% by hemopexin; in contrast, albumin and two other heme-binding proteins had no effect. Although hemopexin was detected on immunoblots of cortical lysates from adult mice, hemopexin knockout per se did not alter HO activity in cortical cells treated with hemin. These results demonstrate that hemopexin decreases the accumulation and catabolism of exogenous hemin by neural cells. Its beneficial effect in stroke models is unlikely to be mediated by increased production of cytoprotective heme breakdown products.
Collapse
|
28
|
Chen L, Zhang X, Chen-Roetling J, Regan RF. Increased striatal injury and behavioral deficits after intracerebral hemorrhage in hemopexin knockout mice. J Neurosurg 2011; 114:1159-67. [PMID: 21128737 PMCID: PMC3061252 DOI: 10.3171/2010.10.jns10861] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT Heme toxicity may contribute to the pathogenesis of intracerebral hemorrhage (ICH). The primary defense against extracellular heme is provided by hemopexin, a serum and neuronal glycoprotein that binds it with very high affinity and mitigates its prooxidant effect. In the present study, the authors tested the hypothesis that hemopexin knockout mice would sustain more injury after experimental ICH than their wild-type counterparts. METHODS Striatal ICH was induced by the stereotactic injection of bacterial collagenase or autologous blood. Three days later, striatal protein oxidation was assessed via carbonyl assay. Cell viability was quantified at 8-9 days by using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Behavioral deficits were detected with high-resolution digital analysis of 6-hour home cage video recordings and standard testing. RESULTS Perihematomal protein oxidation was increased in wild-type collagenase-injected striata by approximately 2.1-fold, as compared with contralateral striata; protein carbonyls were increased 3-fold in knockout mice. Striatal cell viability was reduced by collagenase injection in wild-type mice to 52.9 ± 6.5% of that in the contralateral striata, and to 31.1 ± 3.7% of that in the contralateral striata in knockout mice; similar results were obtained after blood injection. Digital analysis of 6-hour video recordings demonstrated an activity deficit in both models that was significantly exacerbated at 8 days in knockout mice. Striatal heme content 9 days after blood injection was increased approximately 2.7-fold in knockouts as compared with wild-type mice. CONCLUSIONS These results suggest that hemopexin has a protective effect against hemorrhagic CNS injuries. Hemopexin deficiency, which is often associated with sickle cell disease, may worsen outcome after ICH.
Collapse
Affiliation(s)
- Lifen Chen
- Department of Emergency Medicine, Thomas Jefferson University, 1025 Walnut St., College Building Room 813, Philadelphia, PA 19107
| | - Xuefeng Zhang
- Department of Emergency Medicine, Thomas Jefferson University, 1025 Walnut St., College Building Room 813, Philadelphia, PA 19107
| | - Jing Chen-Roetling
- Department of Emergency Medicine, Thomas Jefferson University, 1025 Walnut St., College Building Room 813, Philadelphia, PA 19107
| | - Raymond F. Regan
- Department of Emergency Medicine, Thomas Jefferson University, 1025 Walnut St., College Building Room 813, Philadelphia, PA 19107
| |
Collapse
|
29
|
Fournier C, Smith A, Delepelaire P. Haem release from haemopexin by HxuA allows Haemophilus influenzae to escape host nutritional immunity. Mol Microbiol 2011; 80:133-48. [DOI: 10.1111/j.1365-2958.2011.07562.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
30
|
Larsen R, Gozzelino R, Jeney V, Tokaji L, Bozza FA, Japiassu AM, Bonaparte D, Cavalcante MM, Chora A, Ferreira A, Marguti I, Cardoso S, Sepulveda N, Smith A, Soares MP. A Central Role for Free Heme in the Pathogenesis of Severe Sepsis. Sci Transl Med 2010; 2:51ra71. [DOI: 10.1126/scitranslmed.3001118] [Citation(s) in RCA: 339] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
31
|
Dysfunction of the heme recycling system in heme oxygenase 1-deficient mice: effects on macrophage viability and tissue iron distribution. Blood 2010; 116:6054-62. [PMID: 20844238 DOI: 10.1182/blood-2010-03-272138] [Citation(s) in RCA: 208] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
To better understand the tissue iron overload and anemia previously reported in a human patient and mice that lack heme oxygenase-1 (HO-1), we studied iron distribution and pathology in HO-1(Hmox1)(-/-) mice. We found that resident splenic and liver macrophages were mostly absent in HO-1(-/-) mice. Erythrophagocytosis caused the death of HO-1(-/-) macrophages in in vitro experiments, supporting the hypothesis that HO-1(-/-) macrophages died of exposure to heme released on erythrophagocytosis. Rupture of HO-1(-/-) macrophages in vivo and release of nonmetabolized heme probably caused tissue inflammation. In the spleen, initial splenic enlargement progressed to red pulp fibrosis, atrophy, and functional hyposplenism in older mice, recapitulating the asplenia of an HO-1-deficient patient. We postulate that the failure of tissue macrophages to remove senescent erythrocytes led to intravascular hemolysis and increased expression of the heme and hemoglobin scavenger proteins, hemopexin and haptoglobin. Lack of macrophages expressing the haptoglobin receptor, CD163, diminished the ability of haptoglobin to neutralize circulating hemoglobin, and iron overload occurred in kidney proximal tubules, which were able to catabolize heme with HO-2. Thus, in HO-1(-/-) mammals, the reduced function and viability of erythrophagocytosing macrophages are the main causes of tissue damage and iron redistribution.
Collapse
|
32
|
Yang Z, Philips JD, Doty RT, Giraudi P, Ostrow JD, Tiribelli C, Smith A, Abkowitz JL. Kinetics and specificity of feline leukemia virus subgroup C receptor (FLVCR) export function and its dependence on hemopexin. J Biol Chem 2010; 285:28874-82. [PMID: 20610401 PMCID: PMC2937914 DOI: 10.1074/jbc.m110.119131] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Revised: 06/22/2010] [Indexed: 02/04/2023] Open
Abstract
The feline leukemia virus subgroup C receptor (FLVCR) is a heme export protein that is required for proerythroblast survival and facilitates macrophage heme iron recycling. However, its mechanism of heme export and substrate specificity are uncharacterized. Using [(55)Fe]heme and the fluorescent heme analog zinc mesoporphyrin, we investigated whether export by FLVCR depends on the availability and avidity of extracellular heme-binding proteins. Export was 100-fold more efficient when the medium contained hemopexin (K(d) < 1 pm) compared with albumin (K(d) = 5 nm) at the same concentration and was not detectable when the medium lacked heme-binding proteins. Besides heme, FLVCR could export other cyclic planar porphyrins, such as protoporphyrin IX and coproporphyrin. However, FLVCR has a narrow substrate range because unconjugated bilirubin, the primary breakdown product of heme, was not transported. As neither protoporphyrin IX nor coproporphyrin export improved with extracellular hemopexin (versus albumin), our observations further suggest that hemopexin, an abundant protein with a serum concentration (6.7-25 mum) equivalent to that of the iron transport protein transferrin (22-31 mum), by accepting heme from FLVCR and targeting it to the liver, might regulate macrophage heme export and heme iron recycling in vivo. Final studies show that hemopexin directly interacts with FLVCR, which also helps explain why FLVCR, in contrast to some major facilitator superfamily members, does not function as a bidirectional gradient-dependent transporter. Together, these data argue that hemopexin has a role in assuring systemic iron balance during homeostasis in addition to its established role as a scavenger during internal bleeding or hemolysis.
Collapse
Affiliation(s)
| | - John D. Philips
- the Division of Hematology, University of Utah School of Medicine, Salt Lake City, Utah 84132
| | | | - Pablo Giraudi
- the Centro Studi Fegato, AREA Science Park, Basovizza Campus, and Department of Clinical Anesthesiology, Surgery, Anatomical Pathology, Dermatology, Hepatology, and Molecular Science, University of Trieste, 34127 Trieste, Italy, and
| | - J. Donald Ostrow
- Gastroenterology/Hepatology, Department of Medicine, University of Washington, Seattle, Washington 98195-7710
| | - Claudio Tiribelli
- the Centro Studi Fegato, AREA Science Park, Basovizza Campus, and Department of Clinical Anesthesiology, Surgery, Anatomical Pathology, Dermatology, Hepatology, and Molecular Science, University of Trieste, 34127 Trieste, Italy, and
| | - Ann Smith
- the Division of Molecular Biology and Biochemistry, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, Missouri 64110
| | | |
Collapse
|
33
|
Miyashita M, Oishi S, Kiso A, Kikuchi Y, Ueda O, Hirai K, Shibata Y, Fujimura S. Hemoglobin binding activity and hemoglobin-binding protein of Prevotella nigrescens. Eur J Med Res 2010; 15:314-8. [PMID: 20696644 PMCID: PMC3351957 DOI: 10.1186/2047-783x-15-7-314] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Prevotella nigrescens, lacking siderophores was found to bind to the hemoproteins. The binding was observed also in the envelope which was prepared by sonication of the cell. The binding occurred in the pH-dependent manner; the binding was observed below neutral pHs of the incubation mixtures but only slightly observed in the neutral and alkaline pHs. Furthermore, hemoglobin bound to the envelope was dissociated at high pHs buffers. Maximum amounts of hemoglobin bound to 1 mg envelope was 51.2 μg. Kd for the reaction at pH 5.0 was 2.1 × 10-10M (210 pM). From the dot blot assay, hemoglobin could bind to a protein solubilized from the envelope by a detergent, referred to as hemoglobin-binding protein (HbBP), then it was purified by the sequential procedures of ion exchange chromatography, affinity chromatography and isoelectric focusing. Molecular weight and isoelectric point of the HbBP were 46 kDa and 6.1, respectively.
Collapse
Affiliation(s)
- M Miyashita
- Department of Oral Health Promotion, Graduate School of Oral Medicine, Matsumoto Dental University, Shiojiri-Nagano, Japan
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
Heme oxygenases (HO) catabolize free heme, that is, iron (Fe) protoporphyrin (IX), into equimolar amounts of Fe(2+), carbon monoxide (CO), and biliverdin. The stress-responsive HO-1 isoenzyme affords protection against programmed cell death. The mechanism underlying this cytoprotective effect relies on the ability of HO-1 to catabolize free heme and prevent it from sensitizing cells to undergo programmed cell death. This cytoprotective effect inhibits the pathogenesis of a variety of immune-mediated inflammatory diseases.
Collapse
|
35
|
Tolosano E, Fagoonee S, Morello N, Vinchi F, Fiorito V. Heme scavenging and the other facets of hemopexin. Antioxid Redox Signal 2010; 12:305-320. [PMID: 19650691 DOI: 10.1089/ars.2009.2787] [Citation(s) in RCA: 214] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Hemopexin is an acute-phase plasma glycoprotein, produced mainly by the liver and released into plasma, where it binds heme with high affinity. Other sites of hemopexin synthesis are the nervous system, skeletal muscle, retina, and kidney. The only known receptor for the heme-hemopexin complex is the scavenger receptor, LDL receptor-related protein (LRP)1, which is expressed in most cell types, thus indicating multiple sites of heme-hemopexin complex recovery. The better-characterized function of hemopexin is heme scavenging at the systemic level, consisting of the transport of heme to the liver, where it is catabolyzed or used for the synthesis of hemoproteins or exported to bile canaliculi. This is important both in physiologic heme management for heme-iron recycling and in pathologic conditions associated with intravascular hemolysis to prevent the prooxidant and proinflammatory effects of heme. Other than scavenging heme, the heme-hemopexin complex has been shown to be able to activate signaling pathways, thus promoting cell survival, and to modulate gene expression. In this review, the importance of heme scavenging by hemopexin, as well as the other emerging functions of this protein, are discussed.
Collapse
Affiliation(s)
- Emanuela Tolosano
- Molecular Biotechnology Center, University of Torino, Torino, Italy.
| | | | | | | | | |
Collapse
|
36
|
Morello N, Tonoli E, Logrand F, Fiorito V, Fagoonee S, Turco E, Silengo L, Vercelli A, Altruda F, Tolosano E. Haemopexin affects iron distribution and ferritin expression in mouse brain. J Cell Mol Med 2009; 13:4192-4204. [PMID: 19120692 PMCID: PMC4496126 DOI: 10.1111/j.1582-4934.2008.00611.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Haemopexin (Hx) is an acute phase plasma glycoprotein, mainly produced by the liver and released into plasma where it binds heme with high affinity and delivers it to the liver. This system provides protection against free heme-mediated oxidative stress, limits access by pathogens to heme and contributes to iron homeostasis by recycling heme iron. Hx protein has been found in the sciatic nerve, skeletal muscle, retina, brain and cerebrospinal fluid (CSF). Recently, a comparative proteomic analysis has shown an increase of Hx in CSF from patients with Alzheimer's disease, thus suggesting its involvement in heme detoxification in brain. Here, we report that Hx is synthesised in brain by the ventricular ependymal cells. To verify whether Hx is involved in heme scavenging in brain, and consequently, in the control of iron level, iron deposits and ferritin expression were analysed in cerebral regions known for iron accumulation. We show a twofold increase in the number of iron-loaded oligodendrocytes in the basal ganglia and thalamus of Hx-null mice compared to wild-type controls. Interestingly, there was no increase in H- and L-ferritin expression in these regions. This condition is common to several human neurological disorders such as Alzheimer's disease and Parkinson's disease in which iron loading is not associated with an adequate increase in ferritin expression. However, a strong reduction in the number of ferritin-positive cells was observed in the cerebral cortex of Hx-null animals. Consistent with increased iron deposits and inadequate ferritin expression, malondialdehyde level and Cu-Zn superoxide dismutase-1 expression were higher in the brain of Hx-null mice than in that of wild-type controls. These data demonstrate that Hx plays an important role in controlling iron distribution within brain, thus suggesting its involvement in iron-related neurodegenerative diseases.
Collapse
Affiliation(s)
- Noemi Morello
- Molecular Biotechnology Center, University of TorinoTorino, Italy
| | - Elisabetta Tonoli
- Department of Anatomy, Pharmacology and Forensic Medicine, University of TorinoTorino, Italy
| | - Federica Logrand
- Molecular Biotechnology Center, University of TorinoTorino, Italy
| | - Veronica Fiorito
- Molecular Biotechnology Center, University of TorinoTorino, Italy
| | | | - Emilia Turco
- Molecular Biotechnology Center, University of TorinoTorino, Italy
| | - Lorenzo Silengo
- Molecular Biotechnology Center, University of TorinoTorino, Italy
| | - Alessandro Vercelli
- Department of Anatomy, Pharmacology and Forensic Medicine, University of TorinoTorino, Italy
| | - Fiorella Altruda
- Molecular Biotechnology Center, University of TorinoTorino, Italy
| | | |
Collapse
|
37
|
Li RC, Saleem S, Zhen G, Cao W, Zhuang H, Lee J, Smith A, Altruda F, Tolosano E, Doré S. Heme-hemopexin complex attenuates neuronal cell death and stroke damage. J Cereb Blood Flow Metab 2009; 29:953-64. [PMID: 19277051 PMCID: PMC6015738 DOI: 10.1038/jcbfm.2009.19] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Hemoproteins undergo degradation during hypoxic/ischemic conditions, but the pro-oxidant free heme that is released cannot be recycled and must be degraded. The extracellular heme associates with its high-affinity binding protein, hemopexin (HPX). Hemopexin is shown here to be expressed by cortical neurons and it is present in mouse cerebellum, cortex, hippocampus, and striatum. Using the transient ischemia model (90-min middle cerebral artery occlusion followed by 96-h survival), we provide evidence that HPX is protective in the brain, as neurologic deficits and infarct volumes were significantly greater in HPX(-/-) than in wild-type mice. Addressing the potential protective HPX cellular pathway, we observed that exogenous free heme decreased cell survival in primary mouse cortical neuron cultures, whereas the heme bound to HPX was not toxic. Heme-HPX complexes induce HO1 and, consequently, protect primary neurons against the toxicity of both heme and pro-oxidant tert-butyl hydroperoxide; such protection was decreased in HO1(-/-) neuronal cultures. Taken together, these data show that HPX protects against heme-induced toxicity and oxidative stress and that HO1 is required. We propose that the heme-HPX system protects against stroke-related damage by maintaining a tight balance between free and bound heme. Thus, regulating extracellular free heme levels, such as with HPX, could be neuroprotective.
Collapse
Affiliation(s)
- Rung-chi Li
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Smith A, Rish KR, Lovelace R, Hackney JF, Helston RM. Role for copper in the cellular and regulatory effects of heme-hemopexin. Biometals 2008; 22:421-37. [DOI: 10.1007/s10534-008-9178-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2008] [Accepted: 11/04/2008] [Indexed: 10/21/2022]
|
39
|
Murai N, Kirkegaard M, Järlebark L, Risling M, Suneson A, Ulfendahl M. Activation of JNK in the inner ear following impulse noise exposure. J Neurotrauma 2008; 25:72-7. [PMID: 18355160 DOI: 10.1089/neu.2007.0346] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Noise exposure is known to induce cell death signaling in the cochlea. Since c-Jun N-terminal kinase (JNK) signaling is known to induce both cell survival and apoptosis, the present study focused on early changes (within 24 h) after impulse noise exposure, inquiring whether cell death is always related to phosphorylation of JNK in the inner ear. Anesthetized adult albino rats were exposed to a single impulse noise exposure (194 kPa) and sacrificed 3 or 24 h later. Paraffin-embedded sections were examined for positive staining of phosphorylated JNK and the presence of cells with fragmented DNA (TUNEL staining). Positive TUNEL staining was observed at the spiral limbus and in the stria vascularis at 24 h following impulse noise exposure, but no correlation with JNK activation was found at these locations. In the hearing organ (organ of Corti) and in the lateral wall, TUNEL-reactive cells were observed at 24 h following trauma. This was preceded by p-JNK staining at 3 h, indicating JNK-activated cell death in these regions. Finally, p-JNK reactivity was observed in the spiral ganglion with no correlation to TUNEL staining within the time frame of this study. These results suggest that JNK activation following impulse noise exposure may not always be related to cell death, and conversely, some cells may die through JNK-independent signaling.
Collapse
Affiliation(s)
- Norihiko Murai
- Department of Otolaryngology, Kyoto-Katsura Hospital, Kyoto, Japan
| | | | | | | | | | | |
Collapse
|
40
|
Ratra R, Kar-Roy A, Lal SK. The ORF3 protein of hepatitis E virus interacts with hemopexin by means of its 26 amino acid N-terminal hydrophobic domain II. Biochemistry 2008; 47:1957-69. [PMID: 18211098 DOI: 10.1021/bi7016552] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Hepatitis E virus (HEV) is a nonenveloped plus-stranded RNA virus that is a major cause of acute hepatitis in many developing countries. Recent work has shown HEV may be endemic in developed countries also. The 5' two-thirds of the 7.2 kb single-stranded RNA genome of HEV encodes ORF1, and the 3' end encodes the structural proteins ORF2 and ORF3. ORF1 is the nonstructural protein involved in viral RNA synthesis, and ORF2 is the major capsid protein, whereas ORF3 is a very small protein of only 123 amino acids. The precise cellular functions of ORF3 protein remain obscure, although it has been postulated to be a viral regulatory protein. To elucidate the role of ORF3 in viral pathogenesis, the yeast two-hybrid system was used to screen a human liver cDNA library for proteins interacting with ORF3. One of the ORF3-interacting partners thus isolated and identified was hemopexin, a 60 kDa acute-phase plasma glycoprotein with a high binding affinity to heme. The two-hybrid result was validated by in vitro pull-down and co-immunoprecipitation assays and finally by intracellular fluorescence resonance energy transfer. Using a deletion mapping approach, the hydrophobic domain II of ORF3 (spanning amino acids 37 to 62) was found to be responsible for binding to Hpx, with amino acids 63 to 77 possibly contributing to the strength of the interaction. The biological significance of this interaction in the virus life cycle has been discussed.
Collapse
Affiliation(s)
- Ruchi Ratra
- Virology Group, International Centre for Genetic Engineering and Biotechnology, P.O. Box 10504, Aruna Asaf Ali Marg, New Delhi-110067, India
| | | | | |
Collapse
|
41
|
Balla J, Vercellotti GM, Jeney V, Yachie A, Varga Z, Jacob HS, Eaton JW, Balla G. Heme, heme oxygenase, and ferritin: how the vascular endothelium survives (and dies) in an iron-rich environment. Antioxid Redox Signal 2007; 9:2119-37. [PMID: 17767398 DOI: 10.1089/ars.2007.1787] [Citation(s) in RCA: 155] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Iron-derived reactive oxygen species are involved in the pathogenesis of numerous vascular disorders. One abundant source of redox active iron is heme, which is inherently dangerous when it escapes from its physiologic sites. Here, we present a review of the nature of heme-mediated cytotoxicity and of the strategies by which endothelium manages to protect itself from this clear and present danger. Of all sites in the body, the endothelium may be at greatest risk of exposure to heme. Heme greatly potentiates endothelial cell killing mediated by leukocytes and other sources of reactive oxygen. Heme also promotes the conversion of low-density lipoprotein to cytotoxic oxidized products. Hemoglobin in plasma, when oxidized, transfers heme to endothelium and lipoprotein, thereby enhancing susceptibility to oxidant-mediated injury. As a defense against such stress, endothelial cells upregulate heme oxygenase-1 and ferritin. Heme oxygenase opens the porphyrin ring, producing biliverdin, carbon monoxide, and a most dangerous product-redox active iron. The latter can be effectively controlled by ferritin via sequestration and ferroxidase activity. These homeostatic adjustments have been shown to be effective in the protection of endothelium against the damaging effects of heme and oxidants; lack of adaptation in an iron-rich environment led to extensive endothelial damage in humans.
Collapse
Affiliation(s)
- József Balla
- Department of Medicine, University of Debrecen, Debrecen, Hungary.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Gibbs PEM, Maines MD. Biliverdin inhibits activation of NF-kappaB: reversal of inhibition by human biliverdin reductase. Int J Cancer 2007; 121:2567-74. [PMID: 17683071 DOI: 10.1002/ijc.22978] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
hBVR functions in the cell as a reductase and as a kinase. In the first capacity, it reduces biliverdin, the product of HO activity, to the effective intracellular antioxidant, bilirubin; as a dual-specificity kinase (S/T/Y) it activates the MAPK and IGF/IRK receptor signal transduction pathways. NF-kappaB and the MAPK pathway are activated by ROS, which results in the activation of stress-inducible genes, including ho-1. Presently, we report on the negative effect of biliverdin on NF-kappaB activation and the converse effect of hBVR. Biliverdin, in a concentration- and time-dependent manner, inhibited transcriptional activity of NF-kappaB in HEK293A cells. Nuclear extracts from biliverdin-treated cells show reduced DNA binding of NF-kappaB in an electromobility shift assay, whereas extracts from cells treated with TNF-alpha showed enhanced binding. Coimmunoprecipitation data show hBVR binds to the 65 kDa subunit of NF-kappaB, and that this is dependent on activation by TNF-alpha. Overexpression of hBVR enhanced both the basal and TNF-alpha-mediated activation of NF-kappaB and also that of the NF-kappaB-activated iNOS gene. Also, overexpression of hBVR arrested the cell cycle in the G(1)/G(0) phase and reduced the number of cells in S phase. Similar results were observed with MCF-7 cells. Because of the Janus nature of NF-kappaB activity in the cell and the inhibitory action of biliverdin, the present findings provide a foundation for therapeutic intervention in inflammatory diseases and cancer that may be attained by preventing reduction of biliverdin. On the other hand, by increasing BVR levels beneficial functions of NF-kappaB might be augmented.
Collapse
Affiliation(s)
- Peter E M Gibbs
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY 14642, USA
| | | |
Collapse
|
43
|
Flaherty MM, Rish KR, Smith A, Crumbliss AL. An investigation of hemopexin redox properties by spectroelectrochemistry: biological relevance for heme uptake. Biometals 2007; 21:239-48. [PMID: 17712531 DOI: 10.1007/s10534-007-9112-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2007] [Accepted: 07/26/2007] [Indexed: 10/22/2022]
Abstract
Hemopexin (HPX) has two principal roles: it sequesters free heme in vivo for the purpose of preventing the toxic effects of this moiety, which is largely due to heme's ability to catalyze free radical formation, and it transports heme intracellularly thus limiting its availability as an iron source for pathogens. Spectroelectrochemistry was used to determine the redox potential for heme and meso-heme (mH) when bound by HPX. At pH 7.2, the heme-HPX assembly exhibits E (1/2) values in the range 45-90 mV and the mH-HPX assembly in the range 5-55 mV, depending on environmental electrolyte identity. The E (1/2) value exhibits a 100 mV positive shift with a change in pH from 7.2 to 5.5 for mH-HPX, suggesting a single proton dependent equilibrium. The E (1/2) values for heme-HPX are more positive in the presence of NaCl than KCl indicating that Na(+), as well as low pH (5.5) stabilizes ferro-heme-HPX. Furthermore, comparing KCl with K(2)HPO(4), the chloride salt containing system has a lower potential, indicating that heme-HPX is easier to oxidize. These physical properties related to ferri-/ferro-heme reduction are both structurally and biologically relevant for heme release from HPX for transport and regulation of heme oxygenase expression. Consistent with this, when the acidification of endosomes is prevented by bafilomycin then heme oxygenase-1 induction by heme-HPX no longer occurs.
Collapse
Affiliation(s)
- Meghan M Flaherty
- Department of Chemistry, Duke University, Box 90346, Durham, NC 27708-0346, USA
| | | | | | | |
Collapse
|
44
|
Mocny JC, Olson JS, Connell TD. Passively released heme from hemoglobin and myoglobin is a potential source of nutrient iron for Bordetella bronchiseptica. Infect Immun 2007; 75:4857-66. [PMID: 17664260 PMCID: PMC2044545 DOI: 10.1128/iai.00407-07] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Colonization by Bordetella bronchiseptica results in a variety of inflammatory respiratory infections, including canine kennel cough, porcine atrophic rhinitis, and a whooping cough-like disease in humans. For successful colonization, B. bronchiseptica must acquire iron (Fe) from the infected host. A vast amount of Fe within the host is sequestered within heme, a metalloporphyrin which is coordinately bound in hemoglobin and myoglobin. Utilization of hemoglobin and myoglobin as sources of nutrient Fe by B. bronchiseptica requires expression of BhuR, an outer membrane protein. We hypothesize that hemin is acquired by B. bronchiseptica in a BhuR-dependent manner after spontaneous loss of the metalloporphyrin from hemoglobin and/or myoglobin. Sequestration experiments demonstrated that direct contact with hemoglobin or myoglobin was not required to support growth of B. bronchiseptica in an Fe-limiting environment. Mutant myoglobins, each exhibiting a different affinity for heme, were employed to demonstrate that the rate of growth of B. bronchiseptica was directly correlated with the rate at which heme was lost from the hemoprotein. Finally, Escherichia coli cells expressing recombinant BhuR had the capacity to remove hemin from solution. Collectively, these experiments provided strong experimental support for the model that BhuR is a hemin receptor and B. bronchiseptica likely acquires heme during infection after passive loss of the metalloporphyrin from hemoglobin and/or myoglobin. These results also suggest that spontaneous hemin loss by hemoglobin and myoglobin may be a common mechanism by which many pathogenic bacteria acquire heme and heme-bound Fe.
Collapse
Affiliation(s)
- Jeffrey C Mocny
- Department of Microbiology and Immunology, The University at Buffalo, NY 14221, USA
| | | | | |
Collapse
|
45
|
Rish KR, Swartzlander R, Sadikot TN, Berridge MV, Smith A. Interaction of heme and heme-hemopexin with an extracellular oxidant system used to measure cell growth-associated plasma membrane electron transport. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2007; 1767:1107-17. [PMID: 17643387 DOI: 10.1016/j.bbabio.2007.06.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2006] [Revised: 06/12/2007] [Accepted: 06/13/2007] [Indexed: 11/18/2022]
Abstract
Since redox active metals are often transported across membranes into cells in the reduced state, we have investigated whether exogenous ferri-heme or heme bound to hemopexin (HPX), which delivers heme to cells via receptor-mediated endocytosis, interact with a cell growth-associated plasma membrane electron transport (PMET) pathway. PMET reduces the cell-impermeable tetrazolium salt, WST-1, in the presence of the mandatory low potential intermediate electron acceptor, mPMS. In human promyelocytic (HL60) cells, protoheme (iron protoporphyrin IX; 2,4-vinyl), mesoheme (2,4-ethyl) and deuteroheme (2,4-H) inhibited reduction of WST-1/mPMS in a saturable manner supporting interaction with a finite number of high affinity acceptor sites (Kd 221 nM for naturally occurring protoheme). A requirement for the redox-active iron was shown using gallium-protoporphyrin IX (PPIX) and tin-PPIX. Heme-hemopexin, but not apo-hemopexin, also inhibited WST-1 reduction, and copper was required. Importantly, since neither heme nor heme-hemopexin replace mPMS as an intermediate electron acceptor and since inhibition of WST-1/mPMS reduction requires living cells, the experimental evidence supports the view that heme and heme-hemopexin interact with electrons from PMET. We therefore propose that heme and heme-hemopexin are natural substrates for this growth-associated electron transfer across the plasma membrane.
Collapse
Affiliation(s)
- Kimberly R Rish
- School of Biological Sciences, University of Missouri-Kansas City, 5007 Rockhill Road, Kansas City, MO 64110-2499, USA
| | | | | | | | | |
Collapse
|
46
|
Korrapati MC, Chilakapati J, Witzmann FA, Rao C, Lock EA, Mehendale HM. Proteomics of S-(1, 2-dichlorovinyl)-L-cysteine-induced acute renal failure and autoprotection in mice. Am J Physiol Renal Physiol 2007; 293:F994-F1006. [PMID: 17581926 DOI: 10.1152/ajprenal.00114.2007] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Previous studies (Vaidya VS, Shankar K, Lock EA, Bucci TJ, Mehendale HM. Toxicol Sci 74: 215-227, 2003; Korrapati MC, Lock EA, Mehendale HM. Am J Physiol Renal Physiol 289: F175-F185, 2005; Korrapati MC, Chilakapati J, Lock EA, Latendresse JR, Warbritton A, Mehendale HM. Am J Physiol Renal Physiol 291: F439-F455, 2006) demonstrated that renal repair stimulated by a low dose of S-(1,2-dichlorovinyl)l-cysteine (DCVC; 15 mg/kg i.p.) 72 h before administration of a normally lethal dose (75 mg/kg i.p.) protects mice from acute renal failure (ARF) and death (autoprotection). The present study identified the proteins indicative of DCVC-induced ARF and autoprotection in male Swiss Webster mice. Renal dysfunction and injury were assessed by plasma creatinine and histopathology, respectively. Whole-kidney homogenates were run on two-dimensional gel electrophoresis gels, and the expression of 18 common proteins was maximally changed (> or =10-fold) in all the treatment groups and they were conclusively identified by liquid chromatography tandem mass spectrometry. These proteins were mildly downregulated after low dose alone and in autoprotected mice in contrast to severe downregulation with high dose alone. Glucose-regulated protein 75 and proteasome alpha-subunit type 1 were further investigated by immunohistochemistry for their localization in the kidneys of all the groups. These proteins were substantially higher in the proximal convoluted tubular epithelial cells in the low-dose and autoprotected groups compared with high-dose alone group. Proteins involved in energetics were downregulated in all the three groups of mice, leading to a compromise in cellular energy. However, energy is recovered completely in low-dose and autoprotected mice. This study provides the first report on proteomics of DCVC-induced ARF and autoprotection in mice and reflects the application of proteomics in mechanistic studies as well as biomarker development in a variety of toxicological paradigms.
Collapse
Affiliation(s)
- Midhun C Korrapati
- Department of Toxicology, College of Pharmacy, University of Louisiana Monroe, Monroe, Louisiana 71209-0470, USA
| | | | | | | | | | | |
Collapse
|
47
|
Kirkegaard M, Murai N, Risling M, Suneson A, Järlebark L, Ulfendahl M. Differential gene expression in the rat cochlea after exposure to impulse noise. Neuroscience 2006; 142:425-35. [PMID: 16887274 DOI: 10.1016/j.neuroscience.2006.06.037] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2006] [Revised: 06/21/2006] [Accepted: 06/22/2006] [Indexed: 12/20/2022]
Abstract
Understanding the molecular biology of noise trauma is vital to developing effective and timely interventions. In a model of explosion-mediated impulse noise injury, differential gene expression was studied in whole rat cochlea preparations at 3 and 24 h following the exposure. We developed a technique using mRNA from a single cochlea on each oligonucleotide microarray to avoid pooling of mRNA samples. Application of a conservative statistical analysis approach resulted in the identification of 61 differentially expressed genes. Within 3 h after the exposure, there was an up-regulation of immediate early genes, mainly transcription factors and genes involved in the tissue's response to oxidative stress. No genes were found to be significantly down-regulated. At 24 h following the exposure, up-regulated genes included members of inflammatory and antioxidant pathways and one gene involved in glutathione metabolism was down-regulated. A subset of genes was confirmed by real-time reverse transcriptase-polymerase chain reaction (RT-PCR). The present study demonstrates the power of the microarray technique in providing a global view of the gene regulation following noise exposure, and in identifying genes that may be mechanistically important in hearing loss, and thereby serve as a basis for the development of therapeutic interventions.
Collapse
Affiliation(s)
- M Kirkegaard
- Center for Hearing and Communication Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | | | | | |
Collapse
|
48
|
Fagoonee S, Di Cunto F, Vozzi D, Volinia S, Pellegrino M, Gasparini P, Silengo L, Altruda F, Tolosano E. Microarray and large-scale in silico--based identification of genes functionally related to Haptoglobin and/or Hemopexin. DNA Cell Biol 2006; 25:323-30. [PMID: 16792502 DOI: 10.1089/dna.2006.25.323] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Haptoglobin and Hemopexin are plasma acute phase proteins that bind with high-affinity hemoglobin and heme, respectively. They play a key role in the protection against oxidative stress and inflammation. To dissect in more detail the mechanism of action of Haptoglobin and Hemopexin, it is important to identify their downstream effectors as well as genes functionally related to them. To this end, we performed a cDNA microarray analysis to compare gene expression profiles of the liver of Haptoglobin and Hemopexin single and double null mice to that of wild-type controls. Then, to extract the best candidates considered to be functionally related to Haptoglobin and/or Hemopexin from microarray-derived gene lists, we used a bioinformatic approach consisting in the screening of published microarray data for genes showing coexpression with Haptoglobin or Hemopexin. This strategy allowed us to identify a group of genes coexpressed with Haptoglobin or Hemopexin and transcriptionally modulated by their lack. These genes present a high probability to be functionally related to Haptoglobin and Hemopexin. Based on literature data, we picked up from this group of genes the ras suppressor Rsu1, the member of the G-protein signal transduction family Gnai2, and the cytokine Mdk as the best candidates mediating the anti-inflammatory action of Haptoglobin and Hemopexin.
Collapse
Affiliation(s)
- Sharmila Fagoonee
- Department of Genetics, Biology, and Biochemistry, University of Torino, Torino, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Balla J, Vercellotti GM, Jeney V, Yachie A, Varga Z, Eaton JW, Balla G. Heme, heme oxygenase and ferritin in vascular endothelial cell injury. Mol Nutr Food Res 2005; 49:1030-43. [PMID: 16208635 DOI: 10.1002/mnfr.200500076] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Iron-derived reactive oxygen species are implicated in the pathogenesis of numerous vascular disorders including atherosclerosis, microangiopathic hemolytic anemia, vasculitis, and reperfusion injury. One abundant source of redox active iron is heme, which is inherently dangerous when released from intracellular heme proteins. The present review concerns the involvement of heme in vascular endothelial cell damage and the strategies used by endothelium to minimize such damage. Exposure of endothelium to heme greatly potentiates cell killing mediated by polymorphonuclear leukocytes and other sources of reactive oxygen. Free heme also promotes the conversion of low-density lipoprotein (LDL) into cytotoxic oxidized products. Only because of its abundance, hemoglobin probably represents the most important potential source of heme within the vascular endothelium; hemoglobin in plasma, when oxidized, transfers heme to endothelium and LDL, thereby enhancing cellular susceptibility to oxidant-mediated injury. As a defense against such toxicity, upon exposure to heme or hemoglobin, endothelial cells up-regulate heme oxygenase-1 and ferritin. Heme oxygenase-1 is a heme-degrading enzyme that opens the porphyrin ring, producing biliverdin, carbon monoxide, and the most dangerous product - free redox active iron. The latter can be effectively controlled by ferritin via sequestration and ferroxidase activity. Ferritin serves as a protective gene by virtue of antioxidant, antiapoptotic, and antiproliferative actions. These homeostatic adjustments have been shown effective in the protection of endothelium against the damaging effects of exogenous heme and oxidants. The central importance of this protective system was recently highlighted by a child diagnosed with heme oxygenase-1 deficiency, who exhibited extensive endothelial damage.
Collapse
Affiliation(s)
- József Balla
- Department of Medicine, University of Debrecen, Debrecen, Hungary.
| | | | | | | | | | | | | |
Collapse
|
50
|
Soares MP, Brouard S, Smith RN, Otterbein L, Choi AM, Bach FH. Expression of heme oxygenase-1 by endothelial cells: a protective response to injury in transplantation. ACTA ACUST UNITED AC 2005. [DOI: 10.1517/14728222.4.1.11] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|