1
|
Wang R, Amoyel M. mRNA Translation Is Dynamically Regulated to Instruct Stem Cell Fate. Front Mol Biosci 2022; 9:863885. [PMID: 35433828 PMCID: PMC9008482 DOI: 10.3389/fmolb.2022.863885] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 02/25/2022] [Indexed: 12/12/2022] Open
Abstract
Stem cells preserve tissue homeostasis by replacing the cells lost through damage or natural turnover. Thus, stem cells and their daughters can adopt two identities, characterized by different programs of gene expression and metabolic activity. The composition and regulation of these programs have been extensively studied, particularly by identifying transcription factor networks that define cellular identity and the epigenetic changes that underlie the progressive restriction in gene expression potential. However, there is increasing evidence that post-transcriptional mechanisms influence gene expression in stem cells and their progeny, in particular through the control of mRNA translation. Here, we review the described roles of translational regulation in controlling all aspects of stem cell biology, from the decision to enter or exit quiescence to maintaining self-renewal and promoting differentiation. We focus on mechanisms controlling global translation rates in cells, mTOR signaling, eIF2ɑ phosphorylation, and ribosome biogenesis and how they allow stem cells to rapidly change their gene expression in response to tissue needs or environmental changes. These studies emphasize that translation acts as an additional layer of control in regulating gene expression in stem cells and that understanding this regulation is critical to gaining a full understanding of the mechanisms that underlie fate decisions in stem cells.
Collapse
Affiliation(s)
| | - Marc Amoyel
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| |
Collapse
|
2
|
Sun L, Wang W, Han C, Huang W, Sun Y, Fang K, Zeng Z, Yang Q, Pan Q, Chen T, Luo X, Chen Y. The oncomicropeptide APPLE promotes hematopoietic malignancy by enhancing translation initiation. Mol Cell 2021; 81:4493-4508.e9. [PMID: 34555354 DOI: 10.1016/j.molcel.2021.08.033] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 07/09/2021] [Accepted: 08/23/2021] [Indexed: 01/21/2023]
Abstract
Initiation is the rate-limiting step in translation, and its dysregulation is vital for carcinogenesis, including hematopoietic malignancy. Thus, discovery of novel translation initiation regulators may provide promising therapeutic targets. Here, combining Ribo-seq, mass spectrometry, and RNA-seq datasets, we discovered an oncomicropeptide, APPLE (a peptide located in ER), encoded by a non-coding RNA transcript in acute myeloid leukemia (AML). APPLE is overexpressed in various subtypes of AML and confers a poor prognosis. The micropeptide is enriched in ribosomes and regulates the initiation step to enhance translation and to maintain high rates of oncoprotein synthesis. Mechanically, APPLE promotes PABPC1-eIF4G interaction and facilitates mRNA circularization and eIF4F initiation complex assembly to support a specific pro-cancer translation program. Targeting APPLE exhibited broad anti-cancer effects in vitro and in vivo. This study not only reports a previously unknown function of micropeptides but also provides new opportunities for targeting the translation machinery in cancer cells.
Collapse
Affiliation(s)
- Linyu Sun
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Wentao Wang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Cai Han
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Wei Huang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Yumeng Sun
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Ke Fang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Zhancheng Zeng
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Qianqian Yang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Qi Pan
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Tianqi Chen
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Xuequn Luo
- The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Yueqin Chen
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China.
| |
Collapse
|
3
|
Pereira IT, Spangenberg L, Robert AW, Amorín R, Stimamiglio MA, Naya H, Dallagiovanna B. Cardiomyogenic differentiation is fine-tuned by differential mRNA association with polysomes. BMC Genomics 2019; 20:219. [PMID: 30876407 PMCID: PMC6420765 DOI: 10.1186/s12864-019-5550-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 02/20/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Cardiac cell fate specification occurs through progressive steps, and its gene expression regulation features are still being defined. There has been an increasing interest in understanding the coordination between transcription and post-transcriptional regulation during the differentiation processes. Here, we took advantage of the polysome profiling technique to isolate and high-throughput sequence ribosome-free and polysome-bound RNAs during cardiomyogenesis. RESULTS We showed that polysome-bound RNAs exhibit the cardiomyogenic commitment gene expression and that mesoderm-to-cardiac progenitor stages are strongly regulated. Additionally, we compared ribosome-free and polysome-bound RNAs and found that the post-transcriptional regulation vastly contributes to cardiac phenotype determination, including RNA recruitment to and dissociation from ribosomes. Moreover, we found that protein synthesis is decreased in cardiomyocytes compared to human embryonic stem-cells (hESCs), possibly due to the down-regulation of translation-related genes. CONCLUSIONS Our data provided a powerful tool to investigate genes potentially controlled by post-transcriptional mechanisms during the cardiac differentiation of hESC. This work could prospect fundamental tools to develop new therapy and research approaches.
Collapse
Affiliation(s)
- Isabela Tiemy Pereira
- Basic Stem-cell Biology Laboratory, Instituto Carlos Chagas - FIOCRUZ-PR, Rua Professor Algacyr Munhoz Mader, 3775, Curitiba, PR, 81.350-010, Brazil
| | - Lucia Spangenberg
- Bioinformatics Unit, Institut Pasteur de Montevideo, Mataojo 2020, 11400, Montevideo, Uruguay
| | - Anny Waloski Robert
- Basic Stem-cell Biology Laboratory, Instituto Carlos Chagas - FIOCRUZ-PR, Rua Professor Algacyr Munhoz Mader, 3775, Curitiba, PR, 81.350-010, Brazil
| | - Rocío Amorín
- Bioinformatics Unit, Institut Pasteur de Montevideo, Mataojo 2020, 11400, Montevideo, Uruguay
| | - Marco Augusto Stimamiglio
- Basic Stem-cell Biology Laboratory, Instituto Carlos Chagas - FIOCRUZ-PR, Rua Professor Algacyr Munhoz Mader, 3775, Curitiba, PR, 81.350-010, Brazil
| | - Hugo Naya
- Bioinformatics Unit, Institut Pasteur de Montevideo, Mataojo 2020, 11400, Montevideo, Uruguay
| | - Bruno Dallagiovanna
- Basic Stem-cell Biology Laboratory, Instituto Carlos Chagas - FIOCRUZ-PR, Rua Professor Algacyr Munhoz Mader, 3775, Curitiba, PR, 81.350-010, Brazil.
| |
Collapse
|
4
|
Smalheiser NR. The RNA-centred view of the synapse: non-coding RNAs and synaptic plasticity. Philos Trans R Soc Lond B Biol Sci 2015; 369:rstb.2013.0504. [PMID: 25135965 PMCID: PMC4142025 DOI: 10.1098/rstb.2013.0504] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
If mRNAs were the only RNAs made by a neuron, there would be a simple mapping of mRNAs to proteins. However, microRNAs and other non-coding RNAs (ncRNAs; endo-siRNAs, piRNAs, BC1, BC200, antisense and long ncRNAs, repeat-related transcripts, etc.) regulate mRNAs via effects on protein translation as well as transcriptional and epigenetic mechanisms. Not only are genes ON or OFF, but their ability to be translated can be turned ON or OFF at the level of synapses, supporting an enormous increase in information capacity. Here, I review evidence that ncRNAs are expressed pervasively within dendrites in mammalian brain; that some are activity-dependent and highly enriched near synapses; and that synaptic ncRNAs participate in plasticity responses including learning and memory. Ultimately, ncRNAs can be viewed as the post-it notes of the neuron. They have no literal meaning of their own, but derive their functions from where (and to what) they are stuck. This may explain, in part, why ncRNAs differ so dramatically from protein-coding genes, both in terms of the usual indicators of functionality and in terms of evolutionary constraints. ncRNAs do not appear to be direct mediators of synaptic transmission in the manner of neurotransmitters or receptors, yet they orchestrate synaptic plasticity—and may drive species-specific changes in cognition.
Collapse
Affiliation(s)
- Neil R Smalheiser
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
5
|
Downregulation of rRNA transcription triggers cell differentiation. PLoS One 2014; 9:e98586. [PMID: 24879416 PMCID: PMC4039485 DOI: 10.1371/journal.pone.0098586] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Accepted: 05/05/2014] [Indexed: 11/19/2022] Open
Abstract
Responding to various stimuli is indispensable for the maintenance of homeostasis. The downregulation of ribosomal RNA (rRNA) transcription is one of the mechanisms involved in the response to stimuli by various cellular processes, such as cell cycle arrest and apoptosis. Cell differentiation is caused by intra- and extracellular stimuli and is associated with the downregulation of rRNA transcription as well as reduced cell growth. The downregulation of rRNA transcription during differentiation is considered to contribute to reduced cell growth. However, the downregulation of rRNA transcription can induce various cellular processes; therefore, it may positively regulate cell differentiation. To test this possibility, we specifically downregulated rRNA transcription using actinomycin D or a siRNA for Pol I-specific transcription factor IA (TIF-IA) in HL-60 and THP-1 cells, both of which have differentiation potential. The inhibition of rRNA transcription induced cell differentiation in both cell lines, which was demonstrated by the expression of the common differentiation marker CD11b. Furthermore, TIF-IA knockdown in an ex vivo culture of mouse hematopoietic stem cells increased the percentage of myeloid cells and reduced the percentage of immature cells. We also evaluated whether differentiation was induced via the inhibition of cell cycle progression because rRNA transcription is tightly coupled to cell growth. We found that cell cycle arrest without affecting rRNA transcription did not induce differentiation. To the best of our knowledge, our results demonstrate the first time that the downregulation of rRNA levels could be a trigger for the induction of differentiation in mammalian cells. Furthermore, this phenomenon was not simply a reflection of cell cycle arrest. Our results provide a novel insight into the relationship between rRNA transcription and cell differentiation.
Collapse
|
6
|
Spengler RM, Oakley CK, Davidson BL. Functional microRNAs and target sites are created by lineage-specific transposition. Hum Mol Genet 2013; 23:1783-93. [PMID: 24234653 DOI: 10.1093/hmg/ddt569] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Transposable elements (TEs) account for nearly one-half of the sequence content in the human genome, and de novo germline transposition into regulatory or coding sequences of protein-coding genes can cause heritable disorders. TEs are prevalent in and around protein-coding genes, providing an opportunity to impart regulation. Computational studies reveal that microRNA (miRNA) genes and miRNA target sites reside within TE sequences, but there is little experimental evidence supporting a role for TEs in the birth of miRNAs, or as platform for gene regulation by miRNAs. In this work, we validate miRNAs and target sites derived from TE families prevalent in the human genome, including the ancient long interspersed nuclear element 2 (LINE2/L2), mammalian-wide interspersed repeat (MIR) retrotransposons and the primate-specific Alu family. We show that genes with 3' untranslated region (3' UTR) MIR elements are enriched for let-7 targets and that these sites are conserved and responsive to let-7 expression. We also demonstrate that 3' UTR-embedded Alus are a source of miR-24 and miR-122 target sites and that a subset of active genomic Alus provide for de novo target site creation. Finally, we report that although the creation of miRNA genes by Alu elements is relatively uncommon relative to their overall genomic abundance, Alu-derived miR-1285-1 is efficiently processed from its genomic locus and regulates genes with target sites contained within homologous elements. Taken together, our data provide additional evidence for TEs as a source for miRNAs and miRNA target sites, with instances of conservation through the course of mammalian evolution.
Collapse
|
7
|
PKCδ Regulates Translation Initiation through PKR and eIF2α in Response to Retinoic Acid in Acute Myeloid Leukemia Cells. LEUKEMIA RESEARCH AND TREATMENT 2012; 2012:482905. [PMID: 23259068 PMCID: PMC3505929 DOI: 10.1155/2012/482905] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 05/08/2012] [Accepted: 05/10/2012] [Indexed: 11/17/2022]
Abstract
Translation initiation and activity of eukaryotic initiation factor-alpha (eIF2α), the rate-limiting step of translation initiation, is often overactivated in malignant cells. Here, we investigated the regulation and role of eIF2α in acute promyelocytic (APL) and acute myeloid leukemia (AML) cells in response to all-trans retinoic acid (ATRA) and arsenic trioxide (ATO), the front-line therapies in APL. ATRA and ATO induce Ser-51 phosphorylation (inactivation) of eIF2α, through the induction of protein kinase C delta (PKCδ) and PKR, but not other eIF2α kinases, such as GCN2 and PERK in APL (NB4) and AML cells (HL60, U937, and THP-1). Inhibition of eIF2α reduced the expression of cellular proteins that are involved in apoptosis (DAP5/p97), cell cycle (p21Waf1/Cip1), differentiation (TG2) and induced those regulating proliferation (c-myc) and survival (p70S6K). PI3K/Akt/mTOR pathway is involved in regulation of eIF2α through PKCδ/PKR axis. PKCδ and p-eIF2α protein expression levels revealed a significant association between the reduced levels of PKCδ (P = 0.0378) and peIF2 (P = 0.0041) and relapses in AML patients (n = 47). In conclusion, our study provides the first evidence that PKCδ regulates/inhibits eIF2α through induction of PKR in AML cells and reveals a novel signaling mechanism regulating translation initiation.
Collapse
|
8
|
Misfolded human tRNA isodecoder binds and neutralizes a 3' UTR-embedded Alu element. Proc Natl Acad Sci U S A 2011; 108:E794-802. [PMID: 21896722 DOI: 10.1073/pnas.1103698108] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Several classes of small noncoding RNAs are key players in cellular metabolism including mRNA decoding, RNA processing, and mRNA stability. Here we show that a tRNA(Asp) isodecoder, corresponding to a human tRNA-derived sequence, binds to an embedded Alu RNA element contained in the 3' UTR of the human aspartyl-tRNA synthetase mRNA. This interaction between two well-known classes of RNA molecules, tRNA and Alu RNA, is driven by an unexpected structural motif and induces a global rearrangement of the 3' UTR. Besides, this 3' UTR contains two functional polyadenylation signals. We propose a model where the tRNA/Alu interaction would modulate the accessibility of the two alternative polyadenylation sites and regulate the stability of the mRNA. This unique regulation mechanism would link gene expression to RNA polymerase III transcription and may have implications in a primate-specific signal pathway.
Collapse
|
9
|
Liu W, Lee HW, Liu Y, Wang R, Rodgers GP. Olfactomedin 4 is a novel target gene of retinoic acids and 5-aza-2'-deoxycytidine involved in human myeloid leukemia cell growth, differentiation, and apoptosis. Blood 2010; 116:4938-47. [PMID: 20724538 PMCID: PMC3012588 DOI: 10.1182/blood-2009-10-246439] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2009] [Accepted: 08/07/2010] [Indexed: 12/13/2022] Open
Abstract
Clinical application of retinoic acids (RAs) and demethylation agents has proven to be effective in treating certain myeloid leukemia patients. However, the target genes that mediate these antileukemia activities are still poorly understood. In this study, we identified olfactomedin 4 (OLFM4), a myeloid-lineage-specific gene from the olfactomedin family, as a novel target gene for RAs and the demethylation agent, 5-aza-2'-deoxycytidine. We demonstrated that the retinoic acid receptor alpha/retinoic X receptor alpha heterodimer binds to a retinoic acid response-element (DR5) site in the OLFM4 promoter and mediates all-trans-retinoic acid (ATRA)-induced transactivation of the OLFM4 gene. OLFM4 overexpression in HL-60 cells led to growth inhibition, differentiation, and apoptosis, and potentiated ATRA induction of these effects. Conversely, down-regulation of endogenous OLFM4 in acute myeloid leukemia-193 cells compromised ATRA-induced growth inhibition, differentiation, and apoptosis. Overexpression of OLFM4 in HL-60 cells inhibited constitutive and ATRA-induced phosphorylation of the eukaryote initiation factor 4E-binding protein 1 (4E-BP1), whereas down-regulation of OLFM4 protein in acute myeloid leukemia-193 cells increased 4E-BP1 phosphorylation, suggesting that OLFM4 is a potent upstream inhibitor of 4E-BP1 phosphorylation/deactivation. Thus, our study demonstrates that OLFM4 plays an important role in myeloid leukemia cellular functions and induction of OLFM4-mediated effects may contribute to the therapeutic value of ATRA.
Collapse
Affiliation(s)
- Wenli Liu
- Molecular and Clinical Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
10
|
Death-associated protein 5 (DAP5/p97/NAT1) contributes to retinoic acid-induced granulocytic differentiation and arsenic trioxide-induced apoptosis in acute promyelocytic leukemia. Apoptosis 2008; 13:915-28. [PMID: 18491231 DOI: 10.1007/s10495-008-0222-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
All-trans-retinoic acid (ATRA) and arsenic trioxide (ATO) induce differentiation and apoptosis in acute promyelocytic leukemia (APL) cells. Here we investigated the role and regulation of death-associated protein-5 (DAP5/p97/NAT1), a novel inhibitor of translational initiation, in APL cell differentiation and apoptosis. We found that ATRA markedly induced DAP5/p97 protein and gene expression and nuclear translocation during terminal differentiation of APL (NB4) and HL60 cells but not differentiation-resistant cells (NB4.R1 and HL60R), which express very low levels of DAP5/p97. At the differentiation inducing concentrations, ATO (<0.5 microM), dimethyl sulfoxide, 1,25-dihydroxy-vitamin-D3, and phorbol-12-myristate 13-acetate also significantly induced DAP5/p97 expression in NB4 cells. However, ATO administered at apoptotic doses (1-2 microM) induced expression of DAP5/p86, a proapoptotic derivative of DAP5/p97. ATRA and ATO-induced expression of DAP5/p97 was associated with inhibition of the phosphatidylinositol 3-kinase (PI3K)/Akt pathway. Furthermore, DAP5/p97 expression was upregulated by inhibition of the PI3K/Akt/mammalian target of rapamycin (mTOR) pathway via LY294002 and via rapamycin. Finally, knockdown of DAP5/p97 expression by small interfering RNA inhibited ATRA-induced granulocytic differentiation and ATO-induced apoptosis. Together, our data reveal new roles for DAP5/p97 in ATRA-induced differentiation and ATO-induced apoptosis in APL and suggest a novel regulatory mechanism by which PI3K/Akt/mTOR pathway inhibition mediates ATRA- and ATO-induced expression of DAP5/p97.
Collapse
|
11
|
Yamashita R, Suzuki Y, Takeuchi N, Wakaguri H, Ueda T, Sugano S, Nakai K. Comprehensive detection of human terminal oligo-pyrimidine (TOP) genes and analysis of their characteristics. Nucleic Acids Res 2008; 36:3707-15. [PMID: 18480124 PMCID: PMC2441802 DOI: 10.1093/nar/gkn248] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2007] [Revised: 03/25/2008] [Accepted: 04/17/2008] [Indexed: 12/03/2022] Open
Abstract
Although the knowledge accumulated on the transcriptional regulations of eukaryotes is significant, the knowledge on their translational regulations remains limited. Thus, we performed a comprehensive detection of terminal oligo-pyrimidine (TOP), which is one of the well-characterized cis-regulatory motifs for translational controls located immediately downstream of the transcriptional start sites of mRNAs. Utilizing our precise 5'-end information of the full-length cDNAs, we could screen 1645 candidate TOP genes by position specific matrix search. Among them, not only 75 out of 78 ribosomal protein genes but also eight previously identified non-ribosomal-protein TOP genes were included. We further experimentally validated the translational activities of 83 TOP candidate genes. Clear translational regulations exerted on the stimulation of 12-O-tetradecanoyl-1-phorbol-13-acetate for at least 41 of them was observed, indicating that there should be a few hundreds of human genes which are subjected to regulation at translation levels via TOPs. Our result suggests that TOP genes code not only formerly characterized ribosomal proteins and translation-related proteins but also a wider variety of proteins, such as lysosome-related proteins and metabolism-related proteins, playing pivotal roles in gene expression controls in the majority of cellular mRNAs.
Collapse
Affiliation(s)
- Riu Yamashita
- Human Genome Center, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa, Chiba 277-8562 and Institute for Bioinformatics Research and Development (BIRD), Japan Science and Technology Agency (JST), 4-5-3 Chiyoda-ku, Tokyo, Japan
| | - Yutaka Suzuki
- Human Genome Center, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa, Chiba 277-8562 and Institute for Bioinformatics Research and Development (BIRD), Japan Science and Technology Agency (JST), 4-5-3 Chiyoda-ku, Tokyo, Japan
| | - Nono Takeuchi
- Human Genome Center, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa, Chiba 277-8562 and Institute for Bioinformatics Research and Development (BIRD), Japan Science and Technology Agency (JST), 4-5-3 Chiyoda-ku, Tokyo, Japan
| | - Hiroyuki Wakaguri
- Human Genome Center, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa, Chiba 277-8562 and Institute for Bioinformatics Research and Development (BIRD), Japan Science and Technology Agency (JST), 4-5-3 Chiyoda-ku, Tokyo, Japan
| | - Takuya Ueda
- Human Genome Center, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa, Chiba 277-8562 and Institute for Bioinformatics Research and Development (BIRD), Japan Science and Technology Agency (JST), 4-5-3 Chiyoda-ku, Tokyo, Japan
| | - Sumio Sugano
- Human Genome Center, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa, Chiba 277-8562 and Institute for Bioinformatics Research and Development (BIRD), Japan Science and Technology Agency (JST), 4-5-3 Chiyoda-ku, Tokyo, Japan
| | - Kenta Nakai
- Human Genome Center, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa, Chiba 277-8562 and Institute for Bioinformatics Research and Development (BIRD), Japan Science and Technology Agency (JST), 4-5-3 Chiyoda-ku, Tokyo, Japan
| |
Collapse
|
12
|
Sharma A, Masri J, Jo OD, Bernath A, Martin J, Funk A, Gera J. Protein kinase C regulates internal initiation of translation of the GATA-4 mRNA following vasopressin-induced hypertrophy of cardiac myocytes. J Biol Chem 2007; 282:9505-9516. [PMID: 17284439 DOI: 10.1074/jbc.m608874200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
GATA-4 is a key member of the GATA family of transcription factors involved in cardiac development and growth as well as in cardiac hypertrophy and heart failure. Our previous studies suggest that GATA-4 protein synthesis may be translationally regulated. We report here that the 518-nt long 5'-untranslated region (5'-UTR) of the GATA-4 mRNA, which is predicted to form stable secondary structures (-65 kcal/mol) such as to be inhibitory to cap-dependent initiation, confers efficient translation to monocistronic reporter mRNAs in cell-free extracts. Moreover, uncapped GATA-4 5'-UTR containing monocistronic reporter mRNAs continue to be well translated while capped reporters are insensitive to the inhibition of initiation by cap-analog, suggesting a cap-independent mechanism of initiation. Utilizing a dicistronic luciferase mRNA reporter containing the GATA-4 5'-UTR within the intercistronic region, we demonstrate that this leader sequence confers functional internal ribosome entry site (IRES) activity. The activity of the GATA-4 IRES is unaffected in trans-differentiating P19CL6 cells, however, is strongly stimulated immediately following arginine-vasopressin exposure of H9c2 ventricular myocytes. IRES activity is then maintained at submaximal levels during hypertrophic growth of these cells. Supraphysiological Ca(2+) levels diminished stimulation of IRES activity immediately following exposure to vasopressin and inhibition of protein kinase C activity utilizing a pseudosubstrate peptide sequence blocked IRES activity during hypertrophy. Thus, our data suggest a mechanism for GATA-4 protein synthesis under conditions of reduced global cap-dependent translation, which is maintained at a submaximal level during hypertrophic growth and point to the regulation of GATA-4 IRES activity by sarco(ER)-reticular Ca(2+) stores and PKC.
Collapse
Affiliation(s)
- Anushree Sharma
- Department of Research & Development, Greater Los Angeles Veterans Affairs Healthcare System, Los Angeles, California 91343
| | - Janine Masri
- Department of Research & Development, Greater Los Angeles Veterans Affairs Healthcare System, Los Angeles, California 91343
| | - Oak D Jo
- Department of Research & Development, Greater Los Angeles Veterans Affairs Healthcare System, Los Angeles, California 91343
| | - Andrew Bernath
- Department of Research & Development, Greater Los Angeles Veterans Affairs Healthcare System, Los Angeles, California 91343
| | - Jheralyn Martin
- Department of Research & Development, Greater Los Angeles Veterans Affairs Healthcare System, Los Angeles, California 91343
| | - Alexander Funk
- Department of Research & Development, Greater Los Angeles Veterans Affairs Healthcare System, Los Angeles, California 91343
| | - Joseph Gera
- Department of Research & Development, Greater Los Angeles Veterans Affairs Healthcare System, Los Angeles, California 91343; Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California 90048.
| |
Collapse
|
13
|
Edgil D, Polacek C, Harris E. Dengue virus utilizes a novel strategy for translation initiation when cap-dependent translation is inhibited. J Virol 2006; 80:2976-86. [PMID: 16501107 PMCID: PMC1395423 DOI: 10.1128/jvi.80.6.2976-2986.2006] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Viruses have developed numerous mechanisms to usurp the host cell translation apparatus. Dengue virus (DEN) and other flaviviruses, such as West Nile and yellow fever viruses, contain a 5' m7GpppN-capped positive-sense RNA genome with a nonpolyadenylated 3' untranslated region (UTR) that has been presumed to undergo translation in a cap-dependent manner. However, the means by which the DEN genome is translated effectively in the presence of capped, polyadenylated cellular mRNAs is unknown. This report demonstrates that DEN replication and translation are not affected under conditions that inhibit cap-dependent translation by targeting the cap-binding protein eukaryotic initiation factor 4E, a key regulator of cellular translation. We further show that under cellular conditions in which translation factors are limiting, DEN can alternate between canonical cap-dependent translation initiation and a noncanonical mechanism that appears not to require a functional m7G cap. This DEN noncanonical translation is not mediated by an internal ribosome entry site but requires the interaction of the DEN 5' and 3' UTRs for activity, suggesting a novel strategy for translation of animal viruses.
Collapse
Affiliation(s)
- Dianna Edgil
- Division of Infectious Diseases, School of Public Health, 140 Warren Hall, University of California, Berkeley, Berkeley, California 94720-7360, USA
| | | | | |
Collapse
|
14
|
Edgil D, Harris E. End-to-end communication in the modulation of translation by mammalian RNA viruses. Virus Res 2005; 119:43-51. [PMID: 16307817 PMCID: PMC7172311 DOI: 10.1016/j.virusres.2005.10.012] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2005] [Revised: 09/14/2005] [Accepted: 10/20/2005] [Indexed: 02/05/2023]
Abstract
A 5′–3′ end interaction leading to stimulation of translation has been described for many cellular and viral mRNAs. Enhancement of viral translational efficiency mediated by 5′ and 3′ untranslated regions (UTRs) has been shown to occur via RNA–RNA interactions or novel RNA–protein interactions. Mammalian RNA viruses make use of end-to-end communication in conjunction with both viral and cellular factors to regulate multiple processes including translation initiation and the switch between translation and RNA synthesis during the viral lifecycle.
Collapse
Affiliation(s)
- Dianna Edgil
- Division of Infectious Diseases, School of Public Health, University of California, Berkeley, CA 94720-7360, USA
| | | |
Collapse
|
15
|
Gratenstein K, Heggestad AD, Fortun J, Notterpek L, Pestov DG, Fletcher BS. The WD-repeat protein GRWD1: potential roles in myeloid differentiation and ribosome biogenesis. Genomics 2005; 85:762-73. [PMID: 15885502 DOI: 10.1016/j.ygeno.2005.02.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2004] [Revised: 02/15/2005] [Accepted: 02/17/2005] [Indexed: 11/27/2022]
Abstract
A cDNA fragment originally identified in U-937 cells as a vitamin D(3)-regulated gene is here designated the glutamate-rich WD-repeat (GRWD1) gene. WD-repeat proteins are a class of functionally divergent molecules that cooperate with other proteins to regulate cellular processes. GRWD1 encodes a 446-amino-acid protein containing a glutamate-rich region followed by four WD repeats. The yeast homologue of GRWD1, Rrb1, has been shown to be an essential protein involved in ribosome biogenesis. Northern analysis of GRWD1 message levels in the myeloid cell line HL-60 undergoing differentiation induced by vitamin D(3) or retinoic acid demonstrate downregulation coincident with slowing of cellular proliferation. A siRNA designed to downregulate GRWD1 similarly results in a decrease in cellular proliferation within 293 cells. Metabolic labeling of cells expressing the siRNA to GRWD1 shows a decrease in global protein synthesis. Finally, nuclear fractionation studies show cosedimentation of GRWD1 with preribosomal complexes, as well as the WD-repeat-containing protein Bop1, which has previously been implicated in ribosome biogenesis. These studies suggest that within mammalian cells GRWD1 plays a role in ribosome biogenesis and during myeloid differentiation its levels are regulated.
Collapse
Affiliation(s)
- Kim Gratenstein
- Department of Pharmacology and Therapeutics, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | | | | | | | | | | |
Collapse
|
16
|
Yamakoshi K, Shishido Y, Shimoda N. Generation of aberrant transcripts of and free DNA ends in zebrafish no tail gene. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2005; 7:163-72. [PMID: 15933901 DOI: 10.1007/s10126-004-3500-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2003] [Accepted: 02/19/2004] [Indexed: 05/02/2023]
Abstract
The zebrafish no tail gene (ntl) is indispensable for the formation of the notochord and the tail structure. In a wild-type zebrafish population, we occasionally observed adult zebrafish with a narrow or no tailfin. This led us to examine the hypothesis that the activity of ntl was somehow genetically unstable. Here we present two findings regarding the gene. First, approximately 3% of ntl transcripts were aberrant; most of them carried deletions at various positions. Second, free, DNA double-stranded ends (DSEs) were formed at an AT dinucleotide repeat in ntl. DSEs were also generated in another zebrafish gene, noggin2 (nog2). DSEs in ntl and nog2 had common characteristics, which suggested that the AT repeats in these genes elicited DSEs by blocking progression of the replication.
Collapse
Affiliation(s)
- Kimi Yamakoshi
- Japan Science and Technology Corporation (JST), Institute for Genome Research, University of Tokushima, 3-18-15 Kuramoto, Tokushima, 770-8503, Japan
| | | | | |
Collapse
|
17
|
Cho S, Kim JH, Back SH, Jang SK. Polypyrimidine tract-binding protein enhances the internal ribosomal entry site-dependent translation of p27Kip1 mRNA and modulates transition from G1 to S phase. Mol Cell Biol 2005; 25:1283-97. [PMID: 15684381 PMCID: PMC548013 DOI: 10.1128/mcb.25.4.1283-1297.2005] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2004] [Revised: 09/06/2004] [Accepted: 11/29/2004] [Indexed: 02/05/2023] Open
Abstract
The p27(Kip1) protein plays a critical role in the regulation of cell proliferation through the inhibition of cyclin-dependent kinase activity. Translation of p27(Kip1) is directed by an internal ribosomal entry site (IRES) in the 5' nontranslated region of p27(Kip1) mRNA. Here, we report that polypyrimidine tract-binding protein (PTB) specifically enhances the IRES activity of p27(Kip1) mRNA through an interaction with the IRES element. We found that addition of PTB to an in vitro translation system and overexpression of PTB in 293T cells augmented the IRES activity of p27(Kip1) mRNA but that knockdown of PTB by introduction of PTB-specific small interfering RNAs (siRNAs) diminished the IRES activity of p27(Kip1) mRNA. Moreover, the G(1) phase in the cell cycle (which is maintained in part by p27(Kip1)) was shortened in cells depleted of PTB by siRNA knockdown. 12-O-Tetradecanoylphorbol-13-acetate (TPA)-induced differentiation in HL60 cells was used to examine PTB-induced modulation of p27(Kip1) protein synthesis during differentiation. The IRES activity of p27(Kip1) mRNA in HL60 cells was increased by TPA treatment (with a concomitant increase in PTB protein levels), but the levels of p27(Kip1) mRNA remained unchanged. Together, these data suggest that PTB modulates cell cycle and differentiation, at least in part, by enhancing the IRES activity of p27(Kip1) mRNA.
Collapse
Affiliation(s)
- Sungchan Cho
- PBC, Division of Molecular and Life Science, Pohang University of Science and Technology, San 31, Hyoja Dong, Pohang, Kyungbuk 790-784, South Korea.
| | | | | | | |
Collapse
|
18
|
Choi YH, Park MJ, Kim KW, Lee HC, Choi YH, Cheong J. The orphan nuclear receptor SHP is involved in monocytic differentiation, and its expression is increased by c-Jun. J Leukoc Biol 2004; 76:1082-8. [PMID: 15292277 DOI: 10.1189/jlb.1203658] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Small heterodimer partner (SHP) is an atypical member of nuclear receptor superfamily that lacks a DNA binding domain. Here, we show that SHP expression increases during monocytic differentiaton with exposure HL-60 leukemia cells to a 12-O-tetradecanoylphorbol-13-acetate (TPA) response element, whose treatment induced the SHP promoter activity dependent on c-Jun expression, which is well known to be involved in the commitment step in the TPA-induced differentiation of HL-60 leukemia cells. We also show that overexpression and activation signaling of c-Jun increase the SHP promoter activity, suggesting that the level of SHP expression is normally limiting for c-Jun-dependent monocytic differentiation. Electrophoretic mobility shift assays using oligonucleotides derived from the SHP promoter reveal that c-Jun exhibit TPA-induced DNA binding, providing a mechanism for the transcriptional activation of SHP gene expression. It was also found that overexpression of SHP and c-Jun greatly facilitated monocytic differentiation by TPA and surprisingly, that expression of SHP or c-Jun alone was sufficient to make cells differentiate into functionally mature monocytes, but silencing of SHP and c-Jun by RNA interference diminished the TPA-induced monocytic differentiation. Taken together, these works suggest that c-Jun works to activate the expression of SHP genes associated with the cascade regulation of monocytic differentiation.
Collapse
Affiliation(s)
- Yoon Ha Choi
- Department of Molecular Biology, Pusan National University, Busan, Korea
| | | | | | | | | | | |
Collapse
|
19
|
Takeuchi N, Ueda T. Down-regulation of the mitochondrial translation system during terminal differentiation of HL-60 cells by 12-O-tetradecanoyl-1-phorbol-13-acetate: comparison with the cytoplasmic translation system. J Biol Chem 2003; 278:45318-24. [PMID: 12952954 DOI: 10.1074/jbc.m307620200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mitochondrial (mt) biogenesis depends on both the nuclear and mt genomes, and a coordination of these two genetic systems is necessary for proper cell functioning. Little is known about the regulatory mechanisms of mt translation or about the expression of mt translation factors. Here, we studied the expression of mt translation factors during 12-O-tetradecanoyl-1-phorbol-13-acetate (TPA)-induced terminal differentiation of HL-60 cells. For all mt translation factors investigated, mRNA expression was markedly down-regulated in a coordinate and specific manner, whereas mRNA levels for the cytoplasmic translation factors showed only a slight reduction. An actinomycin D chase study and nuclear run-on assay revealed that the TPA-induced decrease in mt elongation factor Tu (EF-Tumt) mRNA mainly results from decreased mRNA stability. Polysome analysis showed that there was no significant translational control of mt translation factor (EF-Tumt, ribosomal proteins L7/L12mt and S12mt) mRNA expression during differentiation. Thus, the decreased protein level of one of these mt translation factors (EF-Tumt) simply reflects its decreased mRNA level. It was also demonstrated by pulse labeling of mt translation products that the down-regulation of mt translational activity is actually associated with down-regulated mt translation factor expression during cellular differentiation. Our results illustrate that the regulatory mechanisms of mt translational activity upon terminal differentiation (in response to the growth arrest) is different to that of the cytoplasmic system, where the control of mRNA translational efficiency of major translation factors is the central mechanism for their down-regulation.
Collapse
Affiliation(s)
- Nono Takeuchi
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Building FSB-401, 5-1-5, Kashiwanoha, Kashiwa, Chiba Prefecture 277-8562, Japan.
| | | |
Collapse
|
20
|
Maas K, Chan S, Parker J, Slater A, Moore J, Olsen N, Aune TM. Cutting edge: molecular portrait of human autoimmune disease. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 169:5-9. [PMID: 12077221 DOI: 10.4049/jimmunol.169.1.5] [Citation(s) in RCA: 171] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Autoimmune diseases affect 3-5% of the population, are mediated by the immune response to self-Ags, and are characterized by the site of tissue destruction. We compared expression levels of >4,000 genes in PBMC of control individuals before and after immunization to those of individuals with four distinct autoimmune diseases. The gene expression profile of the normal immune response exhibits coordinate changes in expression of genes with related functions over time. In contrast, each individual from all autoimmune diseases displays a similar gene expression profile unrelated to the pattern of the immunized group. To our surprise, genes with a distinct expression pattern in autoimmunity are not necessarily "immune response" genes, but are genes that encode proteins involved in apoptosis, cell cycle progression, cell differentiation, and cell migration.
Collapse
MESH Headings
- Adult
- Aged
- Arthritis, Rheumatoid/genetics
- Arthritis, Rheumatoid/immunology
- Arthritis, Rheumatoid/metabolism
- Autoimmune Diseases/genetics
- Autoimmune Diseases/immunology
- Autoimmune Diseases/metabolism
- Cluster Analysis
- Diabetes Mellitus, Type 1/genetics
- Diabetes Mellitus, Type 1/immunology
- Diabetes Mellitus, Type 1/metabolism
- Gene Expression Profiling
- Gene Expression Regulation/immunology
- Humans
- Influenza Vaccines/administration & dosage
- Influenza Vaccines/immunology
- Leukocytes, Mononuclear/immunology
- Leukocytes, Mononuclear/metabolism
- Lupus Erythematosus, Systemic/genetics
- Lupus Erythematosus, Systemic/immunology
- Lupus Erythematosus, Systemic/metabolism
- Lymphocyte Activation/genetics
- Middle Aged
- Multigene Family/immunology
- Multiple Sclerosis/genetics
- Multiple Sclerosis/immunology
- Multiple Sclerosis/metabolism
- Signal Transduction/genetics
- Signal Transduction/immunology
Collapse
Affiliation(s)
- Kevin Maas
- Division of Rheumatology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Gerlitz G, Jagus R, Elroy-Stein O. Phosphorylation of initiation factor-2 alpha is required for activation of internal translation initiation during cell differentiation. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:2810-9. [PMID: 12047392 DOI: 10.1046/j.1432-1033.2002.02974.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The long uORF-burdened 5'UTRs of many genes encoding regulatory proteins involved in cell growth and differentiation contain internal ribosomal entry site (IRES) elements. In a previous study we showed that utilization of the weak IRES of platelet-derived growth factor (PDGF2) is activated during megakaryocytic differentiation. The establishment of permissive conditions for IRES-mediated translation during differentiation has been confirmed by our demonstration of the enhanced activity of vascular endothelial growth factor, c-Myc and encephalomyocarditis virus IRES elements under these conditions, although their mRNAs are not naturally expressed in differentiated K562 cells. In contrast with the enhancement of IRES-mediated protein synthesis during differentiation, global protein synthesis is reduced, as judged by polysomal profiles and radiolabelled amino acid incorporation rate. The reduction in protein synthesis rate correlates with increased phosphorylation of the translation initiation factor eIF2 alpha. Furthermore, IRES use is decreased by over-expression of the dominant-negative form of the eIF2 alpha kinase, PKR, the vaccinia virus K3L gene, or the eIF2 alpha-S51A variant which result in decreased eIF2 alpha phosphorylation. These data demonstrate a connection between eIF2 alpha phosphorylation and activation of cellular IRES elements. It suggests that phosphorylation of eIF2 alpha, known to be important for cap-dependent translational control, serves to fine-tune the translation efficiency of different mRNA subsets during the course of differentiation and has the potential to regulate expression of IRES-containing mRNAs under a range of physiological circumstances.
Collapse
Affiliation(s)
- Gabi Gerlitz
- Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Israel
| | | | | |
Collapse
|
22
|
Kroll SL, Barth-Baus D, Hensold JO. The carboxyl-terminal domain of the granulocyte colony-stimulating factor receptor uncouples ribosomal biogenesis from cell cycle progression in differentiating 32D myeloid cells. J Biol Chem 2001; 276:49410-8. [PMID: 11598144 DOI: 10.1074/jbc.m109577200] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Translational regulation plays an important role in development. In terminally differentiating cells a decrease in translation rate is common, although the regulatory mechanisms are unknown. We utilized 32Dcl3 myeloblast cells to investigate translational regulation during granulocyte colony-stimulating factor (G-CSF)-induced differentiation. G-CSF causes a significant decrease in translation rate compared with interleukin-3, which is a mitogen for these cells. Although these two cytokines exhibit modest differences in their effect on translation factor phosphorylation, they exhibit dramatic differences in their effect on ribosomal abundance and ribosomal DNA transcription. However, because both cytokines stimulate cell cycling, G-CSF induces a dissociation of ribosomal biogenesis from cell cycle progression. This uncoupling of ribosomal biogenesis from cell cycle progression appears to be closely related to the transmission of a differentiation signal, because it is not observed in cells expressing a carboxyl-terminally truncated G-CSF receptor, which supports proliferation but not differentiation of these cells. Because a similar event occurs early in differentiation of murine erythroleukemic cells, this suggests that ribosomal content is a common target of differentiating agents.
Collapse
Affiliation(s)
- S L Kroll
- Department of Medicine & University/Ireland Cancer Center, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | | | | |
Collapse
|
23
|
Peiretti F, Lopez S, Deprez-Beauclair P, Bonardo B, Juhan-Vague I, Nalbone G. Inhibition of p70(S6) kinase during transforming growth factor-beta 1/vitamin D(3)-induced monocyte differentiation of HL-60 cells allows tumor necrosis factor-alpha to stimulate plasminogen activator inhibitor-1 synthesis. J Biol Chem 2001; 276:32214-9. [PMID: 11402043 DOI: 10.1074/jbc.m103357200] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
We investigated intracellular mechanisms involved in the up-regulation of plasminogen activator inhibitor I (PAI-1) synthesis by human recombinant tumor necrosis factor-alpha (TNF) during monocyte differentiation of HL-60 cells triggered by the transforming growth factor-beta1/vitamin D(3) (TGF/D3) mixture. TGF/D3-treated cells expressed surface monocytic markers and produced noticeable amounts of PAI-1 but stopped to proliferate. A reduced p70 S6 kinase (p70(S6K)) phosphorylation was also observed and, in this situation, TNF dramatically enhanced PAI-1 synthesis. Similarly, TNF significantly up-regulated PAI-1 synthesis when p70(S6K) phosphorylation was inhibited by rapamycin. This phenomenon was not due to a general decrease in protein synthesis but involved the activation of gene transcription rather than PAI-1 mRNA stabilization. The level of the transcriptional regulator factor E2F1, a repressor of PAI-1 gene expression, was shown to be down-modulated in TGF/D3- as well as in rapamycin-treated cells. Furthermore, the apoptotic effect of TNF in HL-60 cells appeared to be prevented by the addition of either TGF/D3 or rapamycin. In conclusion, these results indicate that inhibition of p70(S6K) phosphorylation during TGF/D3-induced monocyte differentiation of HL-60 cells is a determinant factor that allows TNF to exert its up-regulating effect on PAI-1 synthesis while protecting cells from apoptosis.
Collapse
Affiliation(s)
- F Peiretti
- EPI 99-36, Laboratoire d'Hématologie, Faculté de Médecine, 27, Bd. Jean Moulin, Marseilles 13385 cedex 5, France.
| | | | | | | | | | | |
Collapse
|
24
|
Kwok SC, Daskal I. Molecular cloning and sequence analysis of a human untranslated Alu-containing RNA. DNA SEQUENCE : THE JOURNAL OF DNA SEQUENCING AND MAPPING 2001; 12:85-9. [PMID: 11697148 DOI: 10.3109/10425170109042055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
A cDNA, designated LNX1, has been identified by subtractive hybridization on the basis that it is expressed in normal human prostate but not in LNCaP cells. Sequence analysis revealed that it contained two Alu repetitive sequences but no long open reading frame. Hence, it belongs to a class of untranslated Alu-containing RNAs. LNX1 is expressed in most tissues. It is encoded by a single copy gene, which is localized on human chromosome 14.
Collapse
Affiliation(s)
- S C Kwok
- Department of Pathology and Laboratory Medicine, Albert Einstein Medical Center, 5501 Old York Road, Korman 214, Philadelphia, PA 19141-3098, USA.
| | | |
Collapse
|
25
|
Gallagher WM, Greene LM, Ryan MP, Sierra V, Berger A, Laurent-Puig P, Conseiller E. Human fibulin-4: analysis of its biosynthetic processing and mRNA expression in normal and tumour tissues. FEBS Lett 2001; 489:59-66. [PMID: 11231014 DOI: 10.1016/s0014-5793(00)02389-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Here, we report the identification of a human orthologue of fibulin-4, along with analysis of its biosynthetic processing and mRNA expression levels in normal and tumour tissues. Comparative sequence analysis of fibulin-4 cDNAs revealed apparent polymorphisms in the signal sequence that could account for previously reported inefficient secretion in fibulin-4 transfectants. In vitro translation of fibulin-4 mRNA revealed the presence of full-length and truncated polypeptides, the latter apparently generated from an alternative translation initiation site. Since this polypeptide failed to incorporate into endoplasmic reticulum membrane preparations, it was concluded that it lacked a signal sequence and thus could represent an intracellular form of fibulin-4. Using fluorescence in situ hybridisation analysis, the human fibulin-4 gene was localised to chromosome 11q13, this region being syntenic to portions of mouse chromosomes 7 and 19. Considering the fact that translocations, amplifications and other rearrangements of the 11q13 region are associated with a variety of human cancers, the expression of human fibulin-4 was evaluated in a series of colon tumours. Reverse transcription-polymerase chain reaction analysis of RNA from paired human colon tumour and adjacent normal tissue biopsies showed that a significant proportion of tumours had approximately 2-7-fold increases in the level of fibulin-4 mRNA expression. Taken together, results reported here suggest that an intracellular form of fibulin-4 protein may exist and that dysregulated expression of the fibulin-4 gene is associated with human colon tumourigenesis.
Collapse
Affiliation(s)
- W M Gallagher
- Conway Institute of Biomolecular and Biomedical Research, Department of Pharmacology, University College Dublin, Belfield, Ireland.
| | | | | | | | | | | | | |
Collapse
|
26
|
Meyuhas O. Synthesis of the translational apparatus is regulated at the translational level. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:6321-30. [PMID: 11029573 DOI: 10.1046/j.1432-1327.2000.01719.x] [Citation(s) in RCA: 411] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The synthesis of many mammalian proteins associated with the translational apparatus is selectively regulated by mitogenic and nutritional stimuli, at the translational level. The apparent advantages of the regulation of gene expression at the translational level are the speed and the readily reversible nature of the response to altering physiological conditions. These two features enable cells to rapidly repress the biosynthesis of the translational machinery upon shortage of amino acids or growth arrest, thus rapidly blocking unnecessary energy wastage. Likewise, when amino acids are replenished or mitogenic stimulation is applied, then cells can rapidly respond in resuming the costly biosynthesis of the translational apparatus. A structural hallmark, common to mRNAs encoding many components of the translational machinery, is the presence of a 5' terminal oligopyrimidine tract (5'TOP), referred to as TOP mRNAs. This structural motif comprises the core of the translational cis-regulatory element of these mRNAs. The present review focuses on the mechanism underlying the translational control of TOP mRNAs upon growth and nutritional stimuli. A special emphasis is put on the pivotal role played by ribosomal protein S6 kinase (S6K) in this mode of regulation, and the upstream regulatory pathways, which might be engaged in transducing external signals into activation of S6K. Finally, the possible involvement of pyrimidine-binding proteins in the translational control of TOP mRNAs is discussed.
Collapse
Affiliation(s)
- O Meyuhas
- Department of Biochemistry, The Hebrew University-Hadassah Medical School, Jerusalem, Israel.
| |
Collapse
|
27
|
Carter MS, Sarnow P. Distinct mRNAs that encode La autoantigen are differentially expressed and contain internal ribosome entry sites. J Biol Chem 2000; 275:28301-7. [PMID: 10871624 DOI: 10.1074/jbc.m004657200] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Analysis by reverse transcription-polymerase chain reaction has suggested the existence of at least two La autoantigen-encoding mRNAs that contain different 5' noncoding regions (NCRs) linked to the same La coding region (Troster, H., Metzger, T. E., Semsei, I., Schwemmle, M., Winterpacht, A., Zabel, B., and Bachmann, M. (1994) J. Exp. Med. 180, 2059-2067). La-encoding transcripts La1 and La1' contain 115- and 483-nucleotide 5' NCRs, respectively. To determine whether the various La transcripts are functional mRNAs, the expression and polysomal association of natural La1 and La1' RNAs were examined. Although La1 transcripts were ubiquitously expressed in human tissues, La1' transcripts were predominantly expressed in peripheral blood leukocytes, especially in B, T, and natural killer cells. Both La1 and La1' transcripts associated with polysomes in natural killer cells, suggesting that these transcripts were functional mRNAs. Upon activation of B cells with the mitogens phorbol 12-myristate 13-acetate and ionomycin, the amount of La1' mRNA, but not La1, declined. In contrast, after chemical activation of T cells, the amount of La 1 mRNA, but not La1', declined. The mechanism by which the La1 and La1' 5' NCRs initiate translation initiation was tested in cultured human HeLa cells and in two different in vitro translation systems. It was found that both 5' NCRs can mediate translation initiation by internal initiation. These findings indicate that the constitutive expression of La1 mRNA and the tissue-specific expression of La1' mRNA can both allow La protein synthesis under conditions when cap-dependent translation is compromised, such as inflammation, apoptosis, or certain viral infections.
Collapse
Affiliation(s)
- M S Carter
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California 94305, USA
| | | |
Collapse
|
28
|
Stuart JJ, Egry LA, Wong GH, Kaspar RL. The 3' UTR of human MnSOD mRNA hybridizes to a small cytoplasmic RNA and inhibits gene expression. Biochem Biophys Res Commun 2000; 274:641-8. [PMID: 10924331 DOI: 10.1006/bbrc.2000.3189] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Human MnSOD localizes to the mitochondria and plays a key protective role by detoxifying oxygen free radicals. The MnSOD mRNA 3' UTR contains a 280-bp region (Alu-like element or Alu-E) that shows high homology to human Alu and 7SL sequences. MnSOD 3' UTR probes hybridize to a specific cytoplasmic RNA species of approximately 300 nucleotides. This antisense RNA is most likely 7SL RNA based on its size, ubiquitousness, high levels, and lack of inducibility. Hybridization of this small RNA to the MnSOD 3' UTR may modulate posttranscriptional MnSOD gene expression. This regulation could occur by several means including inhibition of translation and mRNA destabilization. Regulation at the level of translational initiation does not seem to occur as MnSOD mRNA containing the Alu-E is efficiently bound by ribosomes. To test the role of the MnSOD 3' UTR, and in particular the Alu-E in gene expression, luciferase reporter gene constructs were made containing various regions of the MnSOD 3' UTR including the Alu-E. These constructs were transfected into human A549 lung carcinoma cells and luciferase activity was measured. Reporter constructs containing the MnSOD 3' UTR and the Alu-E repress luciferase activity. Taken together, these results suggest that naturally occurring antisense RNA may bind MnSOD mRNA and repress its expression. These results also suggest that other mRNAs containing Alu elements may be similarly repressed.
Collapse
Affiliation(s)
- J J Stuart
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah, 84602, USA
| | | | | | | |
Collapse
|
29
|
Snell K, Baumann U, Byrne PC, Chave KJ, Renwick SB, Sanders PG, Whitehouse SK. The genetic organization and protein crystallographic structure of human serine hydroxymethyltransferase. ADVANCES IN ENZYME REGULATION 2000; 40:353-403. [PMID: 10828359 DOI: 10.1016/s0065-2571(99)00035-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- K Snell
- Section of Structural Biology, Institute of Cancer Research, University of London, SW7 3RP, London, UK.
| | | | | | | | | | | | | |
Collapse
|