1
|
Yang F, Chen C, Chen R, Yang C, Liu Z, Wen L, Xiao H, Geng B, Xia Y. Unraveling the Potential of SGK1 in Osteoporosis: From Molecular Mechanisms to Therapeutic Targets. Biomolecules 2025; 15:686. [PMID: 40427579 PMCID: PMC12109298 DOI: 10.3390/biom15050686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2025] [Revised: 04/15/2025] [Accepted: 05/06/2025] [Indexed: 05/29/2025] Open
Abstract
Osteoporosis (OP) is a prevalent metabolic bone disease, with several million cases of fractures resulting from osteoporosis worldwide each year. This phenomenon contributes to a substantial increase in direct medical expenditures and poses a considerable socioeconomic burden. Despite its prevalence, our understanding of the underlying mechanisms remains limited. Recent studies have demonstrated the involvement of serum glucocorticoid-regulated protein kinase 1 (SGK1) in multiple signaling pathways that regulate bone metabolism and its significant role in the development of osteoporosis. Therefore, it is of great significance to deeply explore the mechanism of SGK1 in osteoporosis and its therapeutic potential. In this paper, we present a comprehensive review of the structure and activation mechanism of SGK1, its biological function, the role of SGK1 in different types of osteoporosis, and the inhibitors of SGK1. The aim is to comprehensively assess the latest research progress with regards to SGK1's role in osteoporosis, clarify its role in the regulation of bone metabolism and its potential as a therapeutic target, and lay the foundation for the development of novel therapeutic strategies and personalized treatment in the future. Furthermore, by thoroughly examining the interactions between SGK1 and other molecules or signaling pathways, potential biomarkers may be identified, thereby enhancing the efficacy of early screening and intervention for osteoporosis.
Collapse
Affiliation(s)
- Fei Yang
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou 730030, China; (F.Y.); (C.C.); (R.C.); (C.Y.); (Z.L.); (L.W.); (H.X.); (B.G.)
- The Second Clinical Medical School, Lanzhou University, Lanzhou 730030, China
- Department of Orthopedics, Nanchong Central Hospital, Nanchong 637000, China
| | - Changshun Chen
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou 730030, China; (F.Y.); (C.C.); (R.C.); (C.Y.); (Z.L.); (L.W.); (H.X.); (B.G.)
- The Second Clinical Medical School, Lanzhou University, Lanzhou 730030, China
- Department of Orthopedics and Trauma Surgery, Affiliated Hospital of Yunnan University, Kunming 650032, China
| | - Rongjin Chen
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou 730030, China; (F.Y.); (C.C.); (R.C.); (C.Y.); (Z.L.); (L.W.); (H.X.); (B.G.)
- The Second Clinical Medical School, Lanzhou University, Lanzhou 730030, China
| | - Chenghui Yang
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou 730030, China; (F.Y.); (C.C.); (R.C.); (C.Y.); (Z.L.); (L.W.); (H.X.); (B.G.)
- The Second Clinical Medical School, Lanzhou University, Lanzhou 730030, China
| | - Zirui Liu
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou 730030, China; (F.Y.); (C.C.); (R.C.); (C.Y.); (Z.L.); (L.W.); (H.X.); (B.G.)
- The Second Clinical Medical School, Lanzhou University, Lanzhou 730030, China
| | - Lei Wen
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou 730030, China; (F.Y.); (C.C.); (R.C.); (C.Y.); (Z.L.); (L.W.); (H.X.); (B.G.)
- The Second Clinical Medical School, Lanzhou University, Lanzhou 730030, China
- Department of Orthopedics and Trauma Surgery, Affiliated Hospital of Yunnan University, Kunming 650032, China
| | - Hefang Xiao
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou 730030, China; (F.Y.); (C.C.); (R.C.); (C.Y.); (Z.L.); (L.W.); (H.X.); (B.G.)
- The Second Clinical Medical School, Lanzhou University, Lanzhou 730030, China
| | - Bin Geng
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou 730030, China; (F.Y.); (C.C.); (R.C.); (C.Y.); (Z.L.); (L.W.); (H.X.); (B.G.)
- The Second Clinical Medical School, Lanzhou University, Lanzhou 730030, China
| | - Yayi Xia
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou 730030, China; (F.Y.); (C.C.); (R.C.); (C.Y.); (Z.L.); (L.W.); (H.X.); (B.G.)
- The Second Clinical Medical School, Lanzhou University, Lanzhou 730030, China
| |
Collapse
|
2
|
Ramachandran CD, Gholami K, Lam SK, Hoe SZ. Effects of a high-salt diet on MAP and expression levels of renal ENaCs and aquaporins in SHR. Exp Biol Med (Maywood) 2023; 248:1768-1779. [PMID: 37828834 PMCID: PMC10792424 DOI: 10.1177/15353702231198085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 06/05/2023] [Indexed: 10/14/2023] Open
Abstract
An increase in blood pressure by a high-salt (HS) diet may change the expression levels of renal epithelial sodium channels (ENaCs) and aquaporins (AQPs). Spontaneously hypertensive rats (SHRs) and Wistar Kyoto (WKY) rats were exposed to HS and regular-salt (RS) diets for 6 weeks. Mean arterial pressure (MAP) and plasma atrial natriuretic peptide (ANP), angiotensin II (Ang II), aldosterone, and arginine vasopressin (AVP) levels were determined. Expression of mRNA levels of ENaCs and AQPs were quantified by real-time PCR. The MAP was higher in SHRs on the HS diet. Plasma Ang II and aldosterone levels were low while plasma ANP level was high in both strains of rats. Renal expression of mRNA levels of α-, β-, and γ-ENaCs was lowered in SHRs on the HS diet. Meanwhile, renal AQP1, AQP2, and AQP7 mRNA expression levels were lowered in both strains of rats on the HS diet. Suppression of mRNA expression levels of ENaC and AQP subunits suggests that the high-salt-induced increase in the MAP of SHR may not be solely due to renal sodium and water retention.
Collapse
Affiliation(s)
| | - Khadijeh Gholami
- Department of Physiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
- Department of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Sau-Kuen Lam
- Department of Physiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
- Department of Pre-Clinical Sciences, Faculty of Medicine & Health Sciences, Universiti Tunku Abdul Rahman, Kajang 43000, Malaysia
| | - See-Ziau Hoe
- Department of Physiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| |
Collapse
|
3
|
Johnston JG, Welch AK, Cain BD, Sayeski PP, Gumz ML, Wingo CS. Aldosterone: Renal Action and Physiological Effects. Compr Physiol 2023; 13:4409-4491. [PMID: 36994769 PMCID: PMC11472823 DOI: 10.1002/cphy.c190043] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Aldosterone exerts profound effects on renal and cardiovascular physiology. In the kidney, aldosterone acts to preserve electrolyte and acid-base balance in response to changes in dietary sodium (Na+ ) or potassium (K+ ) intake. These physiological actions, principally through activation of mineralocorticoid receptors (MRs), have important effects particularly in patients with renal and cardiovascular disease as demonstrated by multiple clinical trials. Multiple factors, be they genetic, humoral, dietary, or otherwise, can play a role in influencing the rate of aldosterone synthesis and secretion from the adrenal cortex. Normally, aldosterone secretion and action respond to dietary Na+ intake. In the kidney, the distal nephron and collecting duct are the main targets of aldosterone and MR action, which stimulates Na+ absorption in part via the epithelial Na+ channel (ENaC), the principal channel responsible for the fine-tuning of Na+ balance. Our understanding of the regulatory factors that allow aldosterone, via multiple signaling pathways, to function properly clearly implicates this hormone as central to many pathophysiological effects that become dysfunctional in disease states. Numerous pathologies that affect blood pressure (BP), electrolyte balance, and overall cardiovascular health are due to abnormal secretion of aldosterone, mutations in MR, ENaC, or effectors and modulators of their action. Study of the mechanisms of these pathologies has allowed researchers and clinicians to create novel dietary and pharmacological targets to improve human health. This article covers the regulation of aldosterone synthesis and secretion, receptors, effector molecules, and signaling pathways that modulate its action in the kidney. We also consider the role of aldosterone in disease and the benefit of mineralocorticoid antagonists. © 2023 American Physiological Society. Compr Physiol 13:4409-4491, 2023.
Collapse
Affiliation(s)
- Jermaine G Johnston
- Division of Nephrology, Hypertension and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida, USA
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida, USA
- Nephrology Section, Veteran Administration Medical Center, North Florida/South Georgia Malcom Randall Department of Veterans Affairs Medical Center, Gainesville, Florida, USA
| | - Amanda K Welch
- Division of Nephrology, Hypertension and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida, USA
- Nephrology Section, Veteran Administration Medical Center, North Florida/South Georgia Malcom Randall Department of Veterans Affairs Medical Center, Gainesville, Florida, USA
| | - Brian D Cain
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, USA
| | - Peter P Sayeski
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida, USA
| | - Michelle L Gumz
- Division of Nephrology, Hypertension and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida, USA
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida, USA
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, USA
- Nephrology Section, Veteran Administration Medical Center, North Florida/South Georgia Malcom Randall Department of Veterans Affairs Medical Center, Gainesville, Florida, USA
| | - Charles S Wingo
- Division of Nephrology, Hypertension and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida, USA
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida, USA
- Nephrology Section, Veteran Administration Medical Center, North Florida/South Georgia Malcom Randall Department of Veterans Affairs Medical Center, Gainesville, Florida, USA
| |
Collapse
|
4
|
Kui M, Pluznick JL, Zaidman NA. The transcription factor Foxi1 promotes expression of V-ATPase and Gpr116 in M-1 cells. Am J Physiol Renal Physiol 2023; 324:F267-F273. [PMID: 36603001 PMCID: PMC9942906 DOI: 10.1152/ajprenal.00272.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/22/2022] [Accepted: 12/22/2022] [Indexed: 01/06/2023] Open
Abstract
The diverse functions of each nephron segment rely on the coordinated action of specialized cell populations that are uniquely defined by their transcriptional profile. In the collecting duct, there are two critical and distinct cell populations: principal cells and intercalated cells. Principal cells play key roles in the regulation of water, Na+, and K+, whereas intercalated cells are best known for their role in acid-base homeostasis. Currently, there are no in vitro systems that recapitulate the heterogeneity of the collecting ducts, which limits high-throughput and replicate investigations of genetic and physiological phenomena. Here, we demonstrated that the transcription factor Foxi1 is sufficient to alter the transcriptional identity of M-1 cells, a murine cortical collecting duct cell line. Specifically, overexpression of Foxi1 induces the expression of intercalated cell transcripts including Gpr116, Atp6v1b1, Atp6v1g3, Atp6v0d2, Slc4a9, and Slc26a4. These data indicate that overexpression of Foxi1 differentiates M-1 cells toward a non-A, non-B type intercalated cell phenotype and may provide a novel in vitro tool to study transcriptional regulation and physiological function of the renal collecting duct.NEW & NOTEWORTHY Transfection of M-1 cells with the transcription factor Foxi1 generates cells that express V-ATPase and Gpr116 as well as other genes associated with renal intercalated cells. This straightforward and novel in vitro system could be used to study processes including transcriptional regulation and cell specification and differentiation in renal intercalated cells.
Collapse
Affiliation(s)
- Mackenzie Kui
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Jennifer L Pluznick
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Nathan A Zaidman
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
- Department of Biochemistry and Molecular Biology, University of New Mexico School of Medicine, Albuquerque, New Mexico, United States
| |
Collapse
|
5
|
Loughlin S, Costello HM, Roe AJ, Buckley C, Wilson SM, Bailey MA, Mansley MK. Mapping the Transcriptome Underpinning Acute Corticosteroid Action within the Cortical Collecting Duct. KIDNEY360 2023; 4:226-240. [PMID: 36821614 PMCID: PMC10103384 DOI: 10.34067/kid.0003582022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 11/08/2022] [Indexed: 11/10/2022]
Abstract
Key Points We report the transcriptomes associated with acute corticosteroid regulation of ENaC activity in polarized mCCDcl1 collecting duct cells. Nine genes were regulated by aldosterone (ALDO), 0 with corticosterone alone, and 151 with corticosterone when 11βHSD2 activity was inhibited. We validated three novel ALDO-induced genes, Rasd1 , Sult1d1 , and Gm43305 , in primary cells isolated from a novel principal cell reporter mouse. Background Corticosteroids regulate distal nephron and collecting duct (CD) Na+ reabsorption, contributing to fluid-volume and blood pressure homeostasis. The transcriptional landscape underpinning the acute stimulation of the epithelial sodium channel (ENaC) by physiological concentrations of corticosteroids remains unclear. Methods Transcriptomic profiles underlying corticosteroid-stimulated ENaC activity in polarized mCCDcl1 cells were generated by coupling electrophysiological measurements of amiloride-sensitive currents with RNAseq. Generation of a principal cell-specific reporter mouse line, mT/mG -Aqp2Cre, enabled isolation of primary CD principal cells by FACS, and ENaC activity was measured in cultured primary cells after acute application of corticosteroids. Expression of target genes was assessed by qRT-PCR in cultured cells or freshly isolated cells after the acute elevation of steroid hormones in mT/mG -Aqp2Cre mice. Results Physiological relevance of the mCCDcl1 model was confirmed with aldosterone (ALDO)-specific stimulation of SGK1 and ENaC activity. Corticosterone (CORT) only modulated these responses at supraphysiological concentrations or when 11βHSD2 was inhibited. When 11βHSD2 protection was intact, CORT caused no significant change in transcripts. We identified a small number of ALDO-induced transcripts associated with stimulated ENaC activity in mCCDcl1 cells and a much larger number with CORT in the absence of 11βHSD2 activity. Principal cells isolated from mT/mG -Aqp2Cre mice were validated and assessment of identified ALDO-induced genes revealed that Sgk1 , Zbtbt16 , Sult1d1 , Rasd1 , and Gm43305 are acutely upregulated by corticosteroids both in vitro and in vivo . Conclusions This study reports the transcriptome of mCCDcl1 cells and identifies a small number of ALDO-induced genes associated with acute stimulation of ENaC, including three previously undescribed genes.
Collapse
Affiliation(s)
- Struan Loughlin
- Cellular Medicine Research Division, University of St Andrews, St Andrews, United Kingdom
- Centre for Cardiovascular Science, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Hannah M. Costello
- Centre for Cardiovascular Science, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Andrew J. Roe
- Division of Pharmacy, School of Medicine, Pharmacy and Health, Durham University Queen's Campus, Stockton-on-Tees, United Kingdom
| | - Charlotte Buckley
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Stuart M. Wilson
- Division of Pharmacy, School of Medicine, Pharmacy and Health, Durham University Queen's Campus, Stockton-on-Tees, United Kingdom
| | - Matthew A. Bailey
- Centre for Cardiovascular Science, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Morag K. Mansley
- Cellular Medicine Research Division, University of St Andrews, St Andrews, United Kingdom
- Centre for Cardiovascular Science, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
- Division of Pharmacy, School of Medicine, Pharmacy and Health, Durham University Queen's Campus, Stockton-on-Tees, United Kingdom
| |
Collapse
|
6
|
Palmer LG. How Does Aldosterone Work? KIDNEY360 2023; 4:131-133. [PMID: 36821603 PMCID: PMC10103331 DOI: 10.34067/kid.0000000000000058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Affiliation(s)
- Lawrence G Palmer
- Department of Physiology and Biophysics, Weill-Cornell Medicine, New York, New York
- Correspondence: Dr. Lawrence G. Palmer, Department of Physiology and Biophysics, Weill Cornell Medicine, 1300 York Ave., Room C-501 C. New York, NY 10065.
| |
Collapse
|
7
|
Castañeda-Bueno M, Ellison DH. Blood pressure effects of sodium transport along the distal nephron. Kidney Int 2022; 102:1247-1258. [PMID: 36228680 PMCID: PMC9754644 DOI: 10.1016/j.kint.2022.09.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/22/2022] [Accepted: 09/01/2022] [Indexed: 11/06/2022]
Abstract
The mammalian distal nephron is a target of highly effective antihypertensive drugs. Genetic variants that alter its transport activity are also inherited causes of high or low blood pressure, clearly establishing its central role in human blood pressure regulation. Much has been learned during the past 25 years about salt transport along this nephron segment, spurred by the cloning of major transport proteins and the discovery of disease-causing genetic variants. Recognition is increasing that substantial cellular and segmental heterogeneity is present along this segment, with electroneutral sodium transport dominating more proximal segments and electrogenic sodium transport dominating more distal segments. Coupled with recent insights into factors that modulate transport along these segments, we now understand one important mechanism by which dietary potassium intake influences sodium excretion and blood pressure. This finding has solved the aldosterone paradox, by demonstrating how aldosterone can be both kaliuretic, when plasma potassium is elevated, and anti-natriuretic, when extracellular fluid volume is low. However, what also has become clear is that aldosterone itself only stimulates a portion of the mineralocorticoid receptors along this segment, with the others being activated by glucocorticoid hormones instead. These recent insights provide an increasingly clear picture of how this short nephron segment contributes to blood pressure homeostasis and have important implications for hypertension prevention and treatment.
Collapse
Affiliation(s)
- María Castañeda-Bueno
- Department of Nephrology and Mineral Metabolism, National Institute of Medical Sciences and Nutrition, Salvador Zubirán, Tlalpan, Mexico City, Mexico
| | - David H Ellison
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, Oregon, USA; Oregon Clinical & Translational Research Institute, Oregon Health & Science University, Portland, Oregon, USA; LeDucq Transatlantic Network of Excellence, Portland, Oregon, USA; Renal Section, VA Portland Healthcare System, Portland, Oregon, USA.
| |
Collapse
|
8
|
Vu TA, Lema I, Hani I, Cheval L, Atger-Lallier L, Souvannarath V, Perrot J, Souvanheuane M, Marie Y, Fabrega S, Blanchard A, Bouligand J, Kamenickỷ P, Crambert G, Martinerie L, Lombès M, Viengchareun S. miR-324-5p and miR-30c-2-3p Alter Renal Mineralocorticoid Receptor Signaling under Hypertonicity. Cells 2022; 11:cells11091377. [PMID: 35563683 PMCID: PMC9104010 DOI: 10.3390/cells11091377] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/04/2022] [Accepted: 04/12/2022] [Indexed: 11/16/2022] Open
Abstract
The Mineralocorticoid Receptor (MR) mediates the sodium-retaining action of aldosterone in the distal nephron, but mechanisms regulating MR expression are still poorly understood. We previously showed that RNA Binding Proteins (RBPs) regulate MR expression at the post-transcriptional level in response to variations of extracellular tonicity. Herein, we highlight a novel regulatory mechanism involving the recruitment of microRNAs (miRNAs) under hypertonicity. RT-qPCR validated miRNAs candidates identified by high throughput screening approaches and transfection of a luciferase reporter construct together with miRNAs Mimics or Inhibitors demonstrated their functional interaction with target transcripts. Overexpression strategies using Mimics or lentivirus revealed the impact on MR expression and signaling in renal KC3AC1 cells. miR-324-5p and miR-30c-2-3p expression are increased under hypertonicity in KC3AC1 cells. These miRNAs directly affect Nr3c2 (MR) transcript stability, act with Tis11b to destabilize MR transcript but also repress Elavl1 (HuR) transcript, which enhances MR expression and signaling. Overexpression of miR-324-5p and miR-30c-2-3p alter MR expression and signaling in KC3AC1 cells with blunted responses in terms of aldosterone-regulated genes expression. We also confirm that their expression is increased by hypertonicity in vivo in the kidneys of mice treated with furosemide. These findings may have major implications for the pathogenesis of renal dysfunctions, sodium retention, and mineralocorticoid resistance.
Collapse
Affiliation(s)
- Thi An Vu
- Physiologie et Physiopathologie Endocriniennes, Université Paris-Saclay, Inserm, 94276 Le Kremlin-Bicêtre, France; (T.A.V.); (I.L.); (I.H.); (L.A.-L.); (V.S.); (J.P.); (M.S.); (J.B.); (P.K.); (L.M.); (M.L.)
| | - Ingrid Lema
- Physiologie et Physiopathologie Endocriniennes, Université Paris-Saclay, Inserm, 94276 Le Kremlin-Bicêtre, France; (T.A.V.); (I.L.); (I.H.); (L.A.-L.); (V.S.); (J.P.); (M.S.); (J.B.); (P.K.); (L.M.); (M.L.)
| | - Imene Hani
- Physiologie et Physiopathologie Endocriniennes, Université Paris-Saclay, Inserm, 94276 Le Kremlin-Bicêtre, France; (T.A.V.); (I.L.); (I.H.); (L.A.-L.); (V.S.); (J.P.); (M.S.); (J.B.); (P.K.); (L.M.); (M.L.)
| | - Lydie Cheval
- Centre de Recherche des Cordeliers, Inserm, Sorbonne Université, Université Paris Cité, 75006 Paris, France; (L.C.); (G.C.)
| | - Laura Atger-Lallier
- Physiologie et Physiopathologie Endocriniennes, Université Paris-Saclay, Inserm, 94276 Le Kremlin-Bicêtre, France; (T.A.V.); (I.L.); (I.H.); (L.A.-L.); (V.S.); (J.P.); (M.S.); (J.B.); (P.K.); (L.M.); (M.L.)
| | - Vilayvane Souvannarath
- Physiologie et Physiopathologie Endocriniennes, Université Paris-Saclay, Inserm, 94276 Le Kremlin-Bicêtre, France; (T.A.V.); (I.L.); (I.H.); (L.A.-L.); (V.S.); (J.P.); (M.S.); (J.B.); (P.K.); (L.M.); (M.L.)
| | - Julie Perrot
- Physiologie et Physiopathologie Endocriniennes, Université Paris-Saclay, Inserm, 94276 Le Kremlin-Bicêtre, France; (T.A.V.); (I.L.); (I.H.); (L.A.-L.); (V.S.); (J.P.); (M.S.); (J.B.); (P.K.); (L.M.); (M.L.)
| | - Mélanie Souvanheuane
- Physiologie et Physiopathologie Endocriniennes, Université Paris-Saclay, Inserm, 94276 Le Kremlin-Bicêtre, France; (T.A.V.); (I.L.); (I.H.); (L.A.-L.); (V.S.); (J.P.); (M.S.); (J.B.); (P.K.); (L.M.); (M.L.)
| | - Yannick Marie
- Plateforme de Genotypage Séquençage (iGenSeq), Institut du Cerveau et de la Moelle Epinière, Hôpital Sapêtrière, 75013 Paris, France;
| | - Sylvie Fabrega
- Plateforme Vecteurs Viraux et Transfert de Gènes, Structure Federative de Recherche Necker, UMS 24, UMS 3633, Faculté de Santé, Université Paris Cité, 75015 Paris, France;
| | - Anne Blanchard
- Inserm, Centre d’Investigations Cliniques 9201, 75015 Paris, France;
| | - Jérôme Bouligand
- Physiologie et Physiopathologie Endocriniennes, Université Paris-Saclay, Inserm, 94276 Le Kremlin-Bicêtre, France; (T.A.V.); (I.L.); (I.H.); (L.A.-L.); (V.S.); (J.P.); (M.S.); (J.B.); (P.K.); (L.M.); (M.L.)
- Assistance Publique-Hôpitaux de Paris, Hôpital Bicêtre, Service de Génétique Moléculaire, Pharmacogénétique et Hormonologie, 94275 Le Kremlin-Bicêtre, France
| | - Peter Kamenickỷ
- Physiologie et Physiopathologie Endocriniennes, Université Paris-Saclay, Inserm, 94276 Le Kremlin-Bicêtre, France; (T.A.V.); (I.L.); (I.H.); (L.A.-L.); (V.S.); (J.P.); (M.S.); (J.B.); (P.K.); (L.M.); (M.L.)
- Assistance Publique-Hopitaux de Paris, Hôpital Bicêtre, Service d’Endocrinologie et des Maladies de la Reproduction, 94275 Le Kremlin-Bicêtre, France
| | - Gilles Crambert
- Centre de Recherche des Cordeliers, Inserm, Sorbonne Université, Université Paris Cité, 75006 Paris, France; (L.C.); (G.C.)
| | - Laetitia Martinerie
- Physiologie et Physiopathologie Endocriniennes, Université Paris-Saclay, Inserm, 94276 Le Kremlin-Bicêtre, France; (T.A.V.); (I.L.); (I.H.); (L.A.-L.); (V.S.); (J.P.); (M.S.); (J.B.); (P.K.); (L.M.); (M.L.)
- Assistance-Publique Hôpitaux de Paris, Hôpital Robert Debré, Service d’Endocrinologie Pédiatrique, Université Paris Cité, 75019 Paris, France
| | - Marc Lombès
- Physiologie et Physiopathologie Endocriniennes, Université Paris-Saclay, Inserm, 94276 Le Kremlin-Bicêtre, France; (T.A.V.); (I.L.); (I.H.); (L.A.-L.); (V.S.); (J.P.); (M.S.); (J.B.); (P.K.); (L.M.); (M.L.)
| | - Say Viengchareun
- Physiologie et Physiopathologie Endocriniennes, Université Paris-Saclay, Inserm, 94276 Le Kremlin-Bicêtre, France; (T.A.V.); (I.L.); (I.H.); (L.A.-L.); (V.S.); (J.P.); (M.S.); (J.B.); (P.K.); (L.M.); (M.L.)
- Correspondence:
| |
Collapse
|
9
|
Pearce D, Manis AD, Nesterov V, Korbmacher C. Regulation of distal tubule sodium transport: mechanisms and roles in homeostasis and pathophysiology. Pflugers Arch 2022; 474:869-884. [PMID: 35895103 PMCID: PMC9338908 DOI: 10.1007/s00424-022-02732-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/09/2022] [Accepted: 07/11/2022] [Indexed: 02/03/2023]
Abstract
Regulated Na+ transport in the distal nephron is of fundamental importance to fluid and electrolyte homeostasis. Further upstream, Na+ is the principal driver of secondary active transport of numerous organic and inorganic solutes. In the distal nephron, Na+ continues to play a central role in controlling the body levels and concentrations of a more select group of ions, including K+, Ca++, Mg++, Cl-, and HCO3-, as well as water. Also, of paramount importance are transport mechanisms aimed at controlling the total level of Na+ itself in the body, as well as its concentrations in intracellular and extracellular compartments. Over the last several decades, the transporters involved in moving Na+ in the distal nephron, and directly or indirectly coupling its movement to that of other ions have been identified, and their interrelationships brought into focus. Just as importantly, the signaling systems and their components-kinases, ubiquitin ligases, phosphatases, transcription factors, and others-have also been identified and many of their actions elucidated. This review will touch on selected aspects of ion transport regulation, and its impact on fluid and electrolyte homeostasis. A particular focus will be on emerging evidence for site-specific regulation of the epithelial sodium channel (ENaC) and its role in both Na+ and K+ homeostasis. In this context, the critical regulatory roles of aldosterone, the mineralocorticoid receptor (MR), and the kinases SGK1 and mTORC2 will be highlighted. This includes a discussion of the newly established concept that local K+ concentrations are involved in the reciprocal regulation of Na+-Cl- cotransporter (NCC) and ENaC activity to adjust renal K+ secretion to dietary intake.
Collapse
Affiliation(s)
- David Pearce
- Department of Medicine, Division of Nephrology, and Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA USA
| | - Anna D. Manis
- Department of Medicine, Division of Nephrology, and Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA USA
| | - Viatcheslav Nesterov
- Institut für Zelluläre und Molekulare Physiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany, Erlangen, Germany
| | - Christoph Korbmacher
- Institut für Zelluläre und Molekulare Physiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany, Erlangen, Germany
| |
Collapse
|
10
|
Harada Y, Tanaka T, Arai Y, Isomoto Y, Nakano A, Nakao S, Urasaki A, Watanabe Y, Kawamura T, Nakagawa O. ETS-dependent enhancers for endothelial-specific expression of serum/glucocorticoid-regulated kinase 1 during mouse embryo development. Genes Cells 2021; 26:611-626. [PMID: 34081835 DOI: 10.1111/gtc.12874] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 05/31/2021] [Accepted: 06/01/2021] [Indexed: 12/23/2022]
Abstract
Serum/glucocorticoid-regulated kinase 1 (SGK1) is predominantly expressed in endothelial cells of mouse embryos, and Sgk1 null mice show embryonic lethality due to impaired vascular formation. However, how the SGK1 expression is controlled in developing vasculature remains unknown. In this study, we first identified a proximal endothelial enhancer through lacZ reporter mouse analyses. The mouse Sgk1 proximal enhancer was narrowed down to the 5' region of the major transcription initiation site, while a human corresponding region possessed relatively weak activity. We then searched for distal enhancer candidates using in silico analyses of publicly available databases for DNase accessibility, RNA polymerase association and chromatin modification. A region approximately 500 kb distant from the human SGK1 gene was conserved in the mouse, and the mouse and human genomic fragments drove transcription restricted to embryonic endothelial cells. Minimal fragments of both proximal and distal enhancers had consensus binding elements for the ETS transcription factors, which were essential for the responsiveness to ERG, FLI1 and ETS1 proteins in luciferase assays and the endothelial lacZ reporter expression in mouse embryos. These results suggest that endothelial SGK1 expression in embryonic vasculature is maintained through at least two ETS-regulated enhancers located in the proximal and distal regions.
Collapse
Affiliation(s)
- Yukihiro Harada
- Department of Molecular Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Japan.,Laboratory of Stem Cell & Regenerative Medicine, Department of Biomedical Sciences, College of Life Sciences, Ritsumeikan University, Kusatsu, Japan
| | - Toru Tanaka
- Department of Molecular Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Japan
| | - Yuji Arai
- Department of Molecular Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Japan.,Laboratory of Animal Experiment and Medical Management, National Cerebral and Cardiovascular Center Research Institute, Suita, Japan
| | - Yoshie Isomoto
- Laboratory of Animal Experiment and Medical Management, National Cerebral and Cardiovascular Center Research Institute, Suita, Japan
| | - Atsushi Nakano
- Laboratory of Animal Experiment and Medical Management, National Cerebral and Cardiovascular Center Research Institute, Suita, Japan
| | - Shu Nakao
- Laboratory of Stem Cell & Regenerative Medicine, Department of Biomedical Sciences, College of Life Sciences, Ritsumeikan University, Kusatsu, Japan
| | - Akihiro Urasaki
- Department of Molecular Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Japan
| | - Yusuke Watanabe
- Department of Molecular Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Japan
| | - Teruhisa Kawamura
- Laboratory of Stem Cell & Regenerative Medicine, Department of Biomedical Sciences, College of Life Sciences, Ritsumeikan University, Kusatsu, Japan
| | - Osamu Nakagawa
- Department of Molecular Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Japan
| |
Collapse
|
11
|
Abstract
The Epithelial Na+ Channel, ENaC, comprised of 3 subunits (αβγ, or sometimes δβγENaC), plays a critical role in regulating salt and fluid homeostasis in the body. It regulates fluid reabsorption into the blood stream from the kidney to control blood volume and pressure, fluid absorption in the lung to control alveolar fluid clearance at birth and maintenance of normal airway surface liquid throughout life, and fluid absorption in the distal colon and other epithelial tissues. Moreover, recent studies have also revealed a role for sodium movement via ENaC in nonepithelial cells/tissues, such as endothelial cells in blood vessels and neurons. Over the past 25 years, major advances have been made in our understanding of ENaC structure, function, regulation, and role in human disease. These include the recently solved three-dimensional structure of ENaC, ENaC function in various tissues, and mutations in ENaC that cause a hereditary form of hypertension (Liddle syndrome), salt-wasting hypotension (PHA1), or polymorphism in ENaC that contributes to other diseases (such as cystic fibrosis). Moreover, great strides have been made in deciphering the regulation of ENaC by hormones (e.g., the mineralocorticoid aldosterone, glucocorticoids, vasopressin), ions (e.g., Na+ ), proteins (e.g., the ubiquitin-protein ligase NEDD4-2, the kinases SGK1, AKT, AMPK, WNKs & mTORC2, and proteases), and posttranslational modifications [e.g., (de)ubiquitylation, glycosylation, phosphorylation, acetylation, palmitoylation]. Characterization of ENaC structure, function, regulation, and role in human disease, including using animal models, are described in this article, with a special emphasis on recent advances in the field. © 2021 American Physiological Society. Compr Physiol 11:1-29, 2021.
Collapse
Affiliation(s)
- Daniela Rotin
- The Hospital for Sick Children, and The University of Toronto, Toronto, Canada
| | - Olivier Staub
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
12
|
Frindt G, Bertog M, Korbmacher C, Palmer LG. Ubiquitination of renal ENaC subunits in vivo. Am J Physiol Renal Physiol 2020; 318:F1113-F1121. [PMID: 32174140 DOI: 10.1152/ajprenal.00609.2019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Ubiquitination of the epithelial Na+ channel (ENaC) in epithelial cells may influence trafficking and hormonal regulation of the channels. We assessed ENaC ubiquitination (ub-ENaC) in mouse and rat kidneys using affinity beads to capture ubiquitinated proteins from tissue homogenates and Western blot analysis with anti-ENaC antibodies. Ub-αENaC was observed primarily as a series of proteins of apparent molecular mass of 40-70 kDa, consistent with the addition of variable numbers of ubiquitin molecules primarily to the NH2-terminal cleaved fragment (~30 kDa) of the subunit. No significant Ub-βENaC was detected, indicating that ubiquitination of this subunit is minimal. For γENaC, the protein eluted from the affinity beads had the same apparent molecular mass as the cleaved COOH-terminal fragment of the subunit (~65 kDa). This suggests that the ubiquitinated NH2 terminus remains attached to the COOH-terminal moiety during isolation through disulfide bonds. Consistent with this, under nonreducing conditions, eluates contained material with increased molecular mass (90-150 kDa). In mice with a Liddle syndrome mutation (β566X) deleting a putative binding site for the ubiquitin ligase neural precursor cell expressed developmentally downregulated 4-2, the amount of ub-γENaC was reduced as expected. To assess aldosterone dependence of ubiquitination, we fed rats either control or low-Na+ diets for 7 days before kidney harvest. Na+ depletion increased the amounts of ub-αENaC and ub-γENaC by three- to fivefold, probably reflecting increased amounts of fully cleaved ENaC. We conclude that ubiquitination occurs after complete proteolytic processing of the subunits, contributing to retrieval and/or disposal of channels expressed at the cell surface. Diminished ubiquitination does not appear to be a major factor in aldosterone-dependent ENaC upregulation.
Collapse
Affiliation(s)
- Gustavo Frindt
- Department of Physiology and Biophysics, Weill-Cornell Medical College, New York, New York
| | - Marko Bertog
- Institut für Zelluläre und Molekulare Physiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Christoph Korbmacher
- Institut für Zelluläre und Molekulare Physiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Lawrence G Palmer
- Department of Physiology and Biophysics, Weill-Cornell Medical College, New York, New York
| |
Collapse
|
13
|
Thomas W, Dooley R, Quinn S, Robles MY, Harvey BJ. Protein kinase D2 regulates epithelial sodium channel activity and aldosterone non-genomic responses in renal cortical collecting duct cells. Steroids 2020; 155:108553. [PMID: 31836481 DOI: 10.1016/j.steroids.2019.108553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 11/20/2019] [Accepted: 12/05/2019] [Indexed: 10/25/2022]
Abstract
Protein kinase D2 (PKD2) is a serine/threonine protein kinase which plays an important role in vesicle fission at the trans-Golgi network (TGN) to coordinate subcellular trafficking with gene expression. We found that in the rat kidney, PKD2 is specifically expressed in collecting duct principal cells predominantly at the apical membrane and with lower basal expression in cytosolic compartments. When rats were maintained on a Na+ depleted diet (<0.87 mmol Na+/kg) to increase plasma aldosterone levels, PKD2 became internalized to a cytoplasmic compartment. Treatment of murine M1 cortical collecting duct (M1-CCD) cells with aldosterone (10 nM) promoted PKD2 co-localization with the trans-Golgi network within 30 min. PKD2 underwent autophosphorylation at Ser876 within 10 min of aldosterone treatment and remained phosphorylated (active) for at least 24 h. A stable PKD2 shRNA knock-down (PKD2 KD) M1-CCD cell line was developed to study the role of PKD2 in epithelial Na+ channel (ENaC) trafficking and transepithelial Na+ transport (SCC) in epithelial monolayers grown in Ussing chambers. The PKD2 KD cells developed transepithelial resistance with kinetics equivalent to wild-type cells, however the transepithelial voltage and Na+ current were significantly elevated in PKD2 knock-down CCD epithelia. The higher basal SCC was due to increased ENaC activity. Aldosterone treatment for 24 h resulted in a decline in ENaC activity in the PKD2 KD cells as opposed to the increase observed in the wild-type cells. The paradoxical inhibition of SCC by aldosterone in PKD2 KD epithelium was attributed to a reduction in ENaC current and lower membrane abundance of ENaC, demonstrating that PKD2 plays a critical tonic role in ENaC trafficking and channel subunit stability. The rapid activation of PKD2 by aldosterone is synergistic with the transcriptional activity of MR and contributes to increased ENaC activity.
Collapse
Affiliation(s)
- Warren Thomas
- Department of Molecular Medicine, Royal College of Surgeons in Ireland, RCSI Education and Research Centre, Beaumont Hospital, Dublin 9, Ireland; Perdana University - Royal College of Surgeons in Ireland School of Medicine, Block D MAEPS, Serdang 43400, Selangor, Malaysia
| | - Ruth Dooley
- Department of Molecular Medicine, Royal College of Surgeons in Ireland, RCSI Education and Research Centre, Beaumont Hospital, Dublin 9, Ireland
| | - Sinead Quinn
- Department of Molecular Medicine, Royal College of Surgeons in Ireland, RCSI Education and Research Centre, Beaumont Hospital, Dublin 9, Ireland
| | - Manuel Yusef Robles
- Department of Molecular Medicine, Royal College of Surgeons in Ireland, RCSI Education and Research Centre, Beaumont Hospital, Dublin 9, Ireland
| | - Brian J Harvey
- Department of Molecular Medicine, Royal College of Surgeons in Ireland, RCSI Education and Research Centre, Beaumont Hospital, Dublin 9, Ireland; Centro di Estudios Cientificos CECs, Valdivia, Chile.
| |
Collapse
|
14
|
Schewe J, Seidel E, Forslund S, Marko L, Peters J, Muller DN, Fahlke C, Stölting G, Scholl U. Elevated aldosterone and blood pressure in a mouse model of familial hyperaldosteronism with ClC-2 mutation. Nat Commun 2019; 10:5155. [PMID: 31727896 PMCID: PMC6856192 DOI: 10.1038/s41467-019-13033-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 10/17/2019] [Indexed: 12/11/2022] Open
Abstract
Gain-of-function mutations in the chloride channel ClC-2 were recently described as a cause of familial hyperaldosteronism type II (FH-II). Here, we report the generation of a mouse model carrying a missense mutation homologous to the most common FH-II-associated CLCN2 mutation. In these Clcn2R180Q/+ mice, adrenal morphology is normal, but Cyp11b2 expression and plasma aldosterone levels are elevated. Male Clcn2R180Q/+ mice have increased aldosterone:renin ratios as well as elevated blood pressure levels. The counterpart knockout model (Clcn2−/−), in contrast, requires elevated renin levels to maintain normal aldosterone levels. Adrenal slices of Clcn2R180Q/+ mice show increased calcium oscillatory activity. Together, our work provides a knockin mouse model with a mild form of primary aldosteronism, likely due to increased chloride efflux and depolarization. We demonstrate a role of ClC-2 in normal aldosterone production beyond the observed pathophysiology. Mutations in the chloride channel ClC-2 have been associated with familial forms of hyperaldosteronism. Here, Schewe et al. generated a mouse model carrying the most common mutation found in patients and find it recapitulates key features of the disease, providing a unique tool for future studies on its pathogenesis.
Collapse
Affiliation(s)
- Julia Schewe
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin Berlin Institute of Health, Department of Nephrology and Medical Intensive Care, Augustenburger Platz 1, Berlin, 13353, Germany.,Berlin Institute of Health (BIH), Anna-Louisa-Karsch-Str. 2, 10178, Berlin, Germany.,Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, BIH Center for Regenerative Therapies, Föhrer Str. 15, Berlin, 13353, Germany.,Department of Nephrology, School of Medicine, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Eric Seidel
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin Berlin Institute of Health, Department of Nephrology and Medical Intensive Care, Augustenburger Platz 1, Berlin, 13353, Germany.,Berlin Institute of Health (BIH), Anna-Louisa-Karsch-Str. 2, 10178, Berlin, Germany.,Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, BIH Center for Regenerative Therapies, Föhrer Str. 15, Berlin, 13353, Germany.,Department of Nephrology, School of Medicine, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Sofia Forslund
- Berlin Institute of Health (BIH), Anna-Louisa-Karsch-Str. 2, 10178, Berlin, Germany.,Max Delbruck Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,Experimental and Clinical Research Center, a cooperation of Charité-Universitätsmedizin Berlin and Max Delbruck Center for Molecular Medicine, Lindenberger Weg 80, Berlin, 13125, Germany.,Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Lajos Marko
- Berlin Institute of Health (BIH), Anna-Louisa-Karsch-Str. 2, 10178, Berlin, Germany.,Max Delbruck Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,Experimental and Clinical Research Center, a cooperation of Charité-Universitätsmedizin Berlin and Max Delbruck Center for Molecular Medicine, Lindenberger Weg 80, Berlin, 13125, Germany.,Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Jörg Peters
- Department of Physiology, Universitätsmedizin Greifswald, Friedrich-Ludwig-Jahn-Str. 15a, 17475, Greifswald, Germany
| | - Dominik N Muller
- Berlin Institute of Health (BIH), Anna-Louisa-Karsch-Str. 2, 10178, Berlin, Germany.,Max Delbruck Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,Experimental and Clinical Research Center, a cooperation of Charité-Universitätsmedizin Berlin and Max Delbruck Center for Molecular Medicine, Lindenberger Weg 80, Berlin, 13125, Germany.,Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Christoph Fahlke
- Institute of Complex Systems, Zelluläre Biophysik (ICS-4), Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Gabriel Stölting
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin Berlin Institute of Health, Department of Nephrology and Medical Intensive Care, Augustenburger Platz 1, Berlin, 13353, Germany.,Berlin Institute of Health (BIH), Anna-Louisa-Karsch-Str. 2, 10178, Berlin, Germany.,Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, BIH Center for Regenerative Therapies, Föhrer Str. 15, Berlin, 13353, Germany.,Institute of Complex Systems, Zelluläre Biophysik (ICS-4), Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Ute Scholl
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin Berlin Institute of Health, Department of Nephrology and Medical Intensive Care, Augustenburger Platz 1, Berlin, 13353, Germany. .,Berlin Institute of Health (BIH), Anna-Louisa-Karsch-Str. 2, 10178, Berlin, Germany. .,Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, BIH Center for Regenerative Therapies, Föhrer Str. 15, Berlin, 13353, Germany. .,Department of Nephrology, School of Medicine, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany.
| |
Collapse
|
15
|
Ware AW, Rasulov SR, Cheung TT, Lott JS, McDonald FJ. Membrane trafficking pathways regulating the epithelial Na + channel. Am J Physiol Renal Physiol 2019; 318:F1-F13. [PMID: 31657249 DOI: 10.1152/ajprenal.00277.2019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Renal Na+ reabsorption, facilitated by the epithelial Na+ channel (ENaC), is subject to multiple forms of control to ensure optimal body blood volume and pressure through altering both the ENaC population and activity at the cell surface. Here, the focus is on regulating the number of ENaCs present in the apical membrane domain through pathways of ENaC synthesis and targeting to the apical membrane as well as ENaC removal, recycling, and degradation. Finally, the mechanisms by which ENaC trafficking pathways are regulated are summarized.
Collapse
Affiliation(s)
- Adam W Ware
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Sahib R Rasulov
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Tanya T Cheung
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - J Shaun Lott
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Fiona J McDonald
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
16
|
Enslow BT, Stockand JD, Berman JM. Liddle's syndrome mechanisms, diagnosis and management. Integr Blood Press Control 2019; 12:13-22. [PMID: 31564964 PMCID: PMC6731958 DOI: 10.2147/ibpc.s188869] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Accepted: 08/23/2019] [Indexed: 12/26/2022] Open
Abstract
Liddle's syndrome is a genetic disorder characterized by hypertension with hypokalemic metabolic alkalosis, hyporeninemia and suppressed aldosterone secretion that often appears early in life. It results from inappropriately elevated sodium reabsorption in the distal nephron. Liddle's syndrome is caused by mutations to subunits of the Epithelial Sodium Channel (ENaC). Among other mechanisms, such mutations typically prevent ubiquitination of these subunits, slowing the rate at which they are internalized from the membrane, resulting in an elevation of channel activity. A minority of Liddle's syndrome mutations, though, result in a complementary effect that also elevates activity by increasing the probability that ENaC channels within the membrane are open. Potassium-sparing diuretics such as amiloride and triamterene reduce ENaC activity, and in combination with a reduced sodium diet can restore normotension and electrolyte imbalance in Liddle's syndrome patients and animal models. Liddle's syndrome can be diagnosed clinically by phenotype and confirmed through genetic testing. This review examines the clinical features of Liddle's syndrome, the differential diagnosis of Liddle's syndrome and differentiation from other genetic diseases with similar phenotype, and what is currently known about the population-level prevalence of Liddle's syndrome. This review gives special focus to the molecular mechanisms of Liddle's syndrome.
Collapse
Affiliation(s)
| | | | - Jonathan M Berman
- New York Institute of Technology College of Osteopathic Medicine at Arkansas State University, Jonesboro, AR, USA
| |
Collapse
|
17
|
Spirli A, Cheval L, Debonneville A, Penton D, Ronzaud C, Maillard M, Doucet A, Loffing J, Staub O. The serine-threonine kinase PIM3 is an aldosterone-regulated protein in the distal nephron. Physiol Rep 2019; 7:e14177. [PMID: 31397090 PMCID: PMC6687858 DOI: 10.14814/phy2.14177] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 06/20/2019] [Accepted: 06/20/2019] [Indexed: 12/30/2022] Open
Abstract
The mineralocorticoid hormone aldosterone plays a crucial role in the control of Na+ and K+ balance, blood volume, and arterial blood pressure, by acting in the aldosterone-sensitive distal nephron (ASDN) and stimulating a complex transcriptional, translational, and cellular program. Because the complexity of the aldosterone response is still not fully appreciated, we aimed at identifying new elements in this pathway. Here, we demonstrate that the expression of the proto-oncogene PIM3 (Proviral Integration Site of Moloney Murine Leukemia Virus 3), a serine/threonine kinase belonging to the calcium/calmodulin-regulated group of kinases, is stimulated by aldosterone in vitro (mCCDcl1 cells), ex vivo (mouse kidney slices), and in vivo in mice. Characterizing a germline Pim3-/- mouse model, we found that these mice have an upregulated Renin-Angiotensin-Aldosterone System (RAAS), with high circulating aldosterone and plasma renin activity levels on both standard or Na+ -deficient diet. Surprisingly, we did not observe any obvious salt-losing phenotype in Pim3 KO mice as shown by normal blood pressure, plasma and urinary electrolytes, as well as unchanged expression levels of the major Na+ transport proteins. These observations suggest that the potential effects of the loss of the Pim3 gene are physiologically compensated. Indeed, the 2 other family members of the PIM kinase family, PIM1 and PIM2 are upregulated in the kidney of Pim3-/- mice, and may therefore be involved in such compensation. In conclusion, our data demonstrate that the PIM3 kinase is a novel aldosterone-induced protein, but its precise role in aldosterone-dependent renal homeostasis remains to be determined.
Collapse
Affiliation(s)
- Alessia Spirli
- Department of Pharmacology & ToxicologyUniversity of LausanneLausanneSwitzerland
- National Centre of Competence in Research “Kidney.ch”LausanneSwitzerland
| | - Lydie Cheval
- Centre de Recherche des CordeliersINSERM, Sorbonne Universités, USPC, Université Paris Descartes, Université Paris Diderot, Physiologie Rénale et TubulopathiesParisFrance
| | - Anne Debonneville
- Department of Pharmacology & ToxicologyUniversity of LausanneLausanneSwitzerland
- National Centre of Competence in Research “Kidney.ch”LausanneSwitzerland
| | - David Penton
- National Centre of Competence in Research “Kidney.ch”LausanneSwitzerland
- Institute of AnatomyUniversity of ZurichZurichSwitzerland
| | - Caroline Ronzaud
- Department of Pharmacology & ToxicologyUniversity of LausanneLausanneSwitzerland
- National Centre of Competence in Research “Kidney.ch”LausanneSwitzerland
| | - Marc Maillard
- Service of NephrologyLausanne University Hospital (CHUV)LausanneSwitzerland
| | - Alain Doucet
- Centre de Recherche des CordeliersINSERM, Sorbonne Universités, USPC, Université Paris Descartes, Université Paris Diderot, Physiologie Rénale et TubulopathiesParisFrance
| | - Johannes Loffing
- National Centre of Competence in Research “Kidney.ch”LausanneSwitzerland
- Institute of AnatomyUniversity of ZurichZurichSwitzerland
| | - Olivier Staub
- Department of Pharmacology & ToxicologyUniversity of LausanneLausanneSwitzerland
- National Centre of Competence in Research “Kidney.ch”LausanneSwitzerland
| |
Collapse
|
18
|
Swanson EA, Nelson JW, Jeng S, Erspamer KJ, Yang CL, McWeeney S, Ellison DH. Salt-sensitive transcriptome of isolated kidney distal tubule cells. Physiol Genomics 2019; 51:125-135. [PMID: 30875275 DOI: 10.1152/physiolgenomics.00119.2018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
In the distal kidney tubule, the steroid hormone aldosterone regulates sodium reabsorption via the epithelial sodium channel (ENaC). Most studies seeking to identify ENaC-regulating aldosterone-induced proteins have used transcriptional profiling of cultured cells. To identify salt-sensitive transcripts in an in vivo model, we used low-NaCl or high-NaCl diet to stimulate or suppress endogenous aldosterone, in combination with magnetic- and fluorescence-activated cell sorting to isolate distal tubule cells from mouse kidney for transcriptional profiling. Of the differentially expressed transcripts, 162 were more abundant in distal tubule cells isolated from mice fed low-NaCl diet, and 161 were more abundant in distal tubule cells isolated from mice fed high-NaCl diet. Enrichment analysis of Gene Ontology biological process terms identified multiple statistically overrepresented pathways among the differentially expressed transcripts that were more abundant in distal tubule cells isolated from mice fed low-NaCl diet, including ion transmembrane transport, regulation of growth, and negative regulation of apoptosis. Analysis of Gene Ontology molecular function terms identified differentially expressed transcription factors, transmembrane transporters, kinases, and G protein-coupled receptors. Finally, comparison with a recently published study of gene expression changes in distal tubule cells in response to administration of aldosterone identified 18 differentially expressed genes in common between the two experiments. When expression of these genes was measured in cortical collecting ducts microdissected from mice fed low-NaCl or high-NaCl diet, eight were differentially expressed. These genes are likely to be regulated directly by aldosterone and may provide insight into aldosterone signaling to ENaC in the distal tubule.
Collapse
Affiliation(s)
- Elizabeth A Swanson
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health & Science University , Portland, Oregon
| | - Jonathan W Nelson
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health & Science University , Portland, Oregon
| | - Sophia Jeng
- Division of Bioinformatics & Computational Biology, Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University , Portland, Oregon
| | - Kayla J Erspamer
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health & Science University , Portland, Oregon
| | - Chao-Ling Yang
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health & Science University , Portland, Oregon
| | - Shannon McWeeney
- Division of Bioinformatics & Computational Biology, Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University , Portland, Oregon.,Oregon Clinical & Translational Research Institute, Oregon Health & Science University , Portland, Oregon
| | - David H Ellison
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health & Science University , Portland, Oregon.,Oregon Clinical & Translational Research Institute, Oregon Health & Science University , Portland, Oregon.,Renal Section, Portland VA Medical Center , Portland, Oregon
| |
Collapse
|
19
|
Cheung TT, Ismail NAS, Moir R, Arora N, McDonald FJ, Condliffe SB. Annexin II Light Chain p11 Interacts With ENaC to Increase Functional Activity at the Membrane. Front Physiol 2019; 10:7. [PMID: 30800070 PMCID: PMC6375906 DOI: 10.3389/fphys.2019.00007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 01/07/2019] [Indexed: 11/13/2022] Open
Abstract
The epithelial Na+ channel (ENaC) provides for Na+ absorption in various types of epithelia including the kidney, lung, and colon where ENaC is localized to the apical membrane to enable Na+ entry into the cell. The degree of Na+ entry via ENaC largely depends on the number of active channels localized to the cell membrane, and is tightly controlled by interactions with ubiquitin ligases, kinases, and G-proteins. While regulation of ENaC endocytosis has been well-studied, relatively little is understood of the proteins that govern ENaC exocytosis. We hypothesized that the annexin II light chain, p11, could participate in the transport of ENaC along the exocytic pathway. Our results demonstrate that all three ENaC channel subunits interacted with p11 in an in vitro binding assay. Furthermore, p11 was able to immunoprecipitate ENaC in epithelial cells. Quantitative mass spectrometry of affinity-purified ENaC-p11 complexes recovered several other trafficking proteins including HSP-90 and annexin A6. We also report that p11 exhibits a robust protein expression in cortical collecting duct epithelial cells. However, the expression of p11 in these cells was not influenced by either short-term or long-term exposure to aldosterone. To determine whether the p11 interaction affected ENaC function, we measured amiloride sensitive Na+ currents in Xenopus oocytes or mammalian epithelia co-expressing ENaC and p11 or a siRNA to p11. Results from these experiments showed that p11 significantly augmented ENaC current, whereas knockdown of p11 decreased current. Further, knockdown of p11 reduced ENaC cell surface population suggesting p11 promotes membrane insertion of ENaC. Overall, our findings reveal a novel protein interaction that controls the number of ENaC channels inserted at the membrane via the exocytic pathway.
Collapse
Affiliation(s)
- Tanya T Cheung
- Department of Physiology, University of Otago, Dunedin, New Zealand
| | - Noor A S Ismail
- Department of Physiology, University of Otago, Dunedin, New Zealand.,Biochemistry Department, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Rachel Moir
- Department of Physiology, University of Otago, Dunedin, New Zealand
| | - Nikhil Arora
- Department of Physiology, University of Otago, Dunedin, New Zealand
| | - Fiona J McDonald
- Department of Physiology, University of Otago, Dunedin, New Zealand
| | | |
Collapse
|
20
|
Wang H, Zhang J, You G. The mechanistic links between insulin and human organic anion transporter 4. Int J Pharm 2019; 555:165-174. [PMID: 30453017 DOI: 10.1016/j.ijpharm.2018.11.040] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 11/10/2018] [Accepted: 11/15/2018] [Indexed: 11/18/2022]
Abstract
Human organic anion transporter 4 (hOAT4) belongs to a class of organic anion transporters that exert critical function in the secretion, absorption, and distribution of numerous drugs in the body, such as anti-viral drugs, anti-cancer therapeutics, antibiotics, antihypertensive medicine, and anti-inflammatory drugs. hOAT4 is richly existent in the kidney and placenta. We previously established that serum- and glucocorticoid-inducible kinases (sgk) stimulate hOAT4 expression and transport activity by abrogating the inhibitory effect of a ubiquitin ligase Nedd4-2. Insulin is one of the upstream signaling molecules for sgk. We therefore investigated the effect of insulin on hOAT4 function. We showed that insulin stimulated hOAT4 expression and transport activity, and the action of insulin was abolished in cells overexpressing Nedd4-2-specific siRNA to knockdown the endogenous Nedd4-2. We further showed that insulin phosphorylated serine 327 on Nedd4-2 and weakened the interaction between hOAT4 and Nedd4-2. Interestingly, in cells overexpressing sgk2, the stimulatory effect of insulin on hOAT4 was diminished. In addition, the stimulatory effect of insulin on hOAT4 was blocked by wortmannin and buparlisib, two PI3K inhibitors. In conclusion, our study demonstrated that insulin stimulates hOAT4 expression and transport activity by abrogating the inhibition effect of Nedd4-2 on the transporter. Moreover, insulin regulates hOAT4 by competing with sgk2 rather than through sgk2.
Collapse
Affiliation(s)
- Haoxun Wang
- Department of Pharmaceutics, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Jinghui Zhang
- Department of Pharmaceutics, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Guofeng You
- Department of Pharmaceutics, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.
| |
Collapse
|
21
|
Abstract
Aldosterone was characterized as the major mineralocorticoid hormone 65 years ago, and since then its physiologic role in epidural electrolyte homeostasis the province of nephrologists. In epithelia it acts via the mineralocorticoid receptor (MR) to retain Na+ and excrete K+; MRs, however, are widely expressed in organs not known to be aldosterone target tissues. MRs are not merely "aldosterone receptors," as they have equivalently high affinity for the physiologic glucocorticoids, and for progesterone. In epithelia (plus in the blood vessel wall and in the nucleus tractus solitarius of the brain) MRs are "protected" by coexpression of the enzyme 11β-hydroxysteroid dehydrogenase. This enzyme converts cortisol-which circulates at much higher concentrations than aldosterone-to receptor-inactive cortisone, thus allowing aldosterone selectively to activate "protected" MR. In tissues which do not express 11β-hydroxysteroid dehydrogenase, the default MR ligand is cortisol, which circulates at ≥100-fold higher plasma free concentrations than aldosterone. In such tissues there is as yet scant evidence for the physiologic role of cortisol-occupied MR: over the past decade, however, it has become clear that in damaged tissues cortisol can act as an MR-agonist, mimicking the effects seen with aldosterone under experimental conditions, in vitro and in vivo. Many pathophysiologic roles have been attributed to aldosterone: on the current evidence there are none outside its long established epithelial actions, those on the blood vessel wall and on the nucleus tractus solitarius.
Collapse
Affiliation(s)
- John W Funder
- Hudson Institute and Monash University, Monash Health, Clayton, VIC, Australia.
| |
Collapse
|
22
|
Haas JG, Weber J, Gonzalez O, Zimmer R, Griffiths SJ. Antiviral activity of the mineralocorticoid receptor NR3C2 against Herpes simplex virus Type 1 (HSV-1) infection. Sci Rep 2018; 8:15876. [PMID: 30367157 PMCID: PMC6203759 DOI: 10.1038/s41598-018-34241-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 10/11/2018] [Indexed: 01/23/2023] Open
Abstract
Analysis of a genome-scale RNA interference screen of host factors affecting herpes simplex virus type 1 (HSV-1) revealed that the mineralocorticoid receptor (MR) inhibits HSV-1 replication. As a ligand-activated transcription factor the MR regulates sodium transport and blood pressure in the kidney in response to aldosterone, but roles have recently been elucidated for the MR in other cellular processes. Here, we show that the MR and other members of the mineralocorticoid signalling pathway including HSP90 and FKBP4, possess anti-viral activity against HSV-1 independent of their effect on sodium transport, as shown by sodium channel inhibitors. Expression of the MR is upregulated upon infection in an interferon (IFN) and viral transcriptional activator VP16-dependent fashion. Furthermore, the MR and VP16, together with the cellular co-activator Oct-1, transactivate the hormone response element (HRE) present in the MR promoter and those of its transcriptional targets. As the MR induces IFN expression, our data suggests the MR is involved in a positive feedback loop that controls HSV-1 infection.
Collapse
Affiliation(s)
- Jürgen G Haas
- Division of Infection and Pathway Medicine, University of Edinburgh, Edinburgh, EH16 4SB, UK
| | - Julia Weber
- Division of Infection and Pathway Medicine, University of Edinburgh, Edinburgh, EH16 4SB, UK
| | - Orland Gonzalez
- Institute for Informatics, Ludwig-Maximilians Universität München, 80333, München, Germany
| | - Ralf Zimmer
- Institute for Informatics, Ludwig-Maximilians Universität München, 80333, München, Germany
| | - Samantha J Griffiths
- Division of Infection and Pathway Medicine, University of Edinburgh, Edinburgh, EH16 4SB, UK.
| |
Collapse
|
23
|
Ware AW, Cheung TT, Rasulov S, Burstein E, McDonald FJ. Epithelial Na + Channel: Reciprocal Control by COMMD10 and Nedd4-2. Front Physiol 2018; 9:793. [PMID: 29997525 PMCID: PMC6028986 DOI: 10.3389/fphys.2018.00793] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 06/06/2018] [Indexed: 11/25/2022] Open
Abstract
Optimal function of the epithelial sodium channel (ENaC) in the distal nephron is key to the kidney’s long-term control of salt homeostasis and blood pressure. Multiple pathways alter ENaC cell surface populations, including correct processing and trafficking in the secretory pathway to the cell surface, and retrieval from the cell surface through ubiquitination by the ubiquitin ligase Nedd4-2, clathrin-mediated endocytosis, and sorting in the endosomal system. Members of the Copper Metabolism Murr1 Domain containing (COMMD) family of 10 proteins are known to interact with ENaC. COMMD1, 3 and 9 have been shown to down-regulate ENaC, most likely through Nedd4-2, however, the other COMMD family members remain uncharacterized. To investigate the effects of the COMMD10 protein on ENaC trafficking and function, the interaction of ENaC and COMMD10 was confirmed. Stable COMMD10 knockdown in Fischer rat thyroid epithelia decreased ENaC current and this decreased current was associated with increased Nedd4-2 protein, a known negative regulator of ENaC. However, inhibition of Nedd4-2’s ubiquitination of ENaC was only able to partially rescue the observed reduction in current. Stable COMMD10 knockdown results in defects both in endocytosis and recycling of transferrin suggesting COMMD10 likely interacts with multiple pathways to regulate ENaC and therefore could be involved in the long-term control of blood pressure.
Collapse
Affiliation(s)
- Adam W Ware
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Tanya T Cheung
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Sahib Rasulov
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Ezra Burstein
- Department of Internal Medicine and Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Fiona J McDonald
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
24
|
Yang G, Pillich H, White R, Czikora I, Pochic I, Yue Q, Hudel M, Gorshkov B, Verin A, Sridhar S, Isales CM, Eaton DC, Hamacher J, Chakraborty T, Lucas R. Listeriolysin O Causes ENaC Dysfunction in Human Airway Epithelial Cells. Toxins (Basel) 2018; 10:toxins10020079. [PMID: 29439494 PMCID: PMC5848180 DOI: 10.3390/toxins10020079] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 02/01/2018] [Accepted: 02/07/2018] [Indexed: 01/22/2023] Open
Abstract
Pulmonary permeability edema is characterized by reduced alveolar Na⁺ uptake capacity and capillary barrier dysfunction and is a potentially lethal complication of listeriosis. Apical Na⁺ uptake is mainly mediated by the epithelial sodium channel (ENaC) and initiates alveolar liquid clearance. Here we examine how listeriolysin O (LLO), the pore-forming toxin of Listeria monocytogenes, impairs the expression and activity of ENaC. To that purpose, we studied how sub-lytic concentrations of LLO affect negative and positive regulators of ENaC expression in the H441 airway epithelial cell line. LLO reduced expression of the crucial ENaC-α subunit in H441 cells within 2 h and this was preceded by activation of PKC-α, a negative regulator of the channel's expression. At later time points, LLO caused a significant reduction in the phosphorylation of Sgk-1 at residue T256 and of Akt-1 at residue S473, both of which are required for full activation of ENaC. The TNF-derived TIP peptide prevented LLO-mediated PKC-α activation and restored phospho-Sgk-1-T256. The TIP peptide also counteracted the observed LLO-induced decrease in amiloride-sensitive Na⁺ current and ENaC-α expression in H441 cells. Intratracheally instilled LLO caused profound pulmonary edema formation in mice, an effect that was prevented by the TIP peptide; thus indicating the therapeutic potential of the peptide for the treatment of pore-forming toxin-associated permeability edema.
Collapse
Affiliation(s)
- Guang Yang
- Vascular Biology Center, Medical College of Georgia at Augusta University, Room CB-3213B, Augusta, GA 30912-2500, USA.
| | - Helena Pillich
- Institute of Medical Microbiology, Justus-Liebig University Giessen, 35392 Gießen, Germany.
| | - Richard White
- Department of Pharmacology and Toxicology, Medical College of Georgia at Augusta University, Room CB-3213B, Augusta, GA 30912-2500, USA.
- Department of Biomedical Sciences, Georgia Campus-Philadelphia College of Osteopathic Medicine, Atlanta, GA 30224, USA.
| | - Istvan Czikora
- Vascular Biology Center, Medical College of Georgia at Augusta University, Room CB-3213B, Augusta, GA 30912-2500, USA.
| | - Isabelle Pochic
- Biochemical Pharmacology, University of Konstanz, 78464 Konstanz, Germany.
- Sandoz Inc., 83607 Holzkirchen, Germany.
| | - Qiang Yue
- Department of Physiology, Emory School of Medicine, Atlanta, GA 30307, USA.
| | - Martina Hudel
- Institute of Medical Microbiology, Justus-Liebig University Giessen, 35392 Gießen, Germany.
| | - Boris Gorshkov
- Vascular Biology Center, Medical College of Georgia at Augusta University, Room CB-3213B, Augusta, GA 30912-2500, USA.
| | - Alexander Verin
- Vascular Biology Center, Medical College of Georgia at Augusta University, Room CB-3213B, Augusta, GA 30912-2500, USA.
| | - Supriya Sridhar
- Vascular Biology Center, Medical College of Georgia at Augusta University, Room CB-3213B, Augusta, GA 30912-2500, USA.
| | - Carlos M Isales
- Department of Medicine, Medical College of Georgia, Augusta, GA 30901, USA.
| | - Douglas C Eaton
- Department of Physiology, Emory School of Medicine, Atlanta, GA 30307, USA.
| | - Jürg Hamacher
- Biochemical Pharmacology, University of Konstanz, 78464 Konstanz, Germany.
- Department of Pneumology, Lindenhofspital, 3001 Bern, Switzerland.
- Internal, Pulmonary and Critical Care Medicine, Saarland University, 66424 Homburg/Saar, Germany.
- Lungen-und Atmungsstifung, 3001 Bern, Switzerland.
| | - Trinad Chakraborty
- Institute of Medical Microbiology, Justus-Liebig University Giessen, 35392 Gießen, Germany.
| | - Rudolf Lucas
- Vascular Biology Center, Medical College of Georgia at Augusta University, Room CB-3213B, Augusta, GA 30912-2500, USA.
- Department of Pharmacology and Toxicology, Medical College of Georgia at Augusta University, Room CB-3213B, Augusta, GA 30912-2500, USA.
- Department of Medicine, Medical College of Georgia, Augusta, GA 30901, USA.
| |
Collapse
|
25
|
Wang H, Liu C, You G. The activity of organic anion transporter-3: Role of dexamethasone. J Pharmacol Sci 2018; 136:79-85. [PMID: 29422382 DOI: 10.1016/j.jphs.2017.12.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 12/18/2017] [Accepted: 12/28/2017] [Indexed: 12/14/2022] Open
Abstract
Human organic anion transporter-3 (hOAT3) is richly expressed in the kidney, where it plays critical roles in the secretion, from the blood to urine, of clinically important drugs, such as anti-viral therapeutics, anti-cancer drugs, antibiotics, antihypertensives, and anti-inflammatories. In the current study, we examined the role of dexamethasone in hOAT3 transport activity in the kidney HEK293 cells. Cis-inhibition study showed that dexamethasone exhibited a concentration-dependent inhibition of hOAT3-mediated uptake of estrone sulfate, a prototypical substrate for the transporter, with IC50 value of 49.91 μM. Dixon plot analysis revealed that inhibition by dexamethasone was competitive with a Ki = 47.08 μM. In contrast to the cis-inhibition effect of dexamethasone, prolonged incubation (6 h) of hOAT3-expressing cells with dexamethasone resulted in an upregulation of hOAT3 expression and transport activity, kinetically revealed as an increase in the maximum transport velocity Vmax without meaningful alteration in substrate-binding affinity Km. Such upregulation was abrogated by GSK650394, a specific inhibitor for serum- and glucocorticoid-inducible kinases (sgk). Dexamethasone also enhanced sgk1 phosphorylation. Our study demonstrated that dexamethasone exhibits dual effects on hOAT3: it is a competitive inhibitor for hOAT3-mediated transport, and interestingly, when entering the cells, it stimulates hOAT3 expression and transport activity through sgk1.
Collapse
Affiliation(s)
- Haoxun Wang
- Department of Pharmaceutics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Chenchang Liu
- Department of Pharmaceutics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Guofeng You
- Department of Pharmaceutics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA.
| |
Collapse
|
26
|
Kato T, Oka K, Nakamura T. HGF induces the serine‑phosphorylation and cell surface translocation of ROMK (Kir 1.1) channels in rat kidney cells. Mol Med Rep 2017; 17:1031-1034. [PMID: 29115510 DOI: 10.3892/mmr.2017.7969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 02/09/2017] [Indexed: 11/06/2022] Open
Abstract
Extracellular potassium homeostasis is dependent on the activity of potassium channels, which are expressed on the apical membrane of epithelial tubular cells. The renal outer medullary potassium channel (ROMK) is considered to be the major route for potassium transport into the tubule lumen. Hepatocyte growth factor (HGF) exerts multiple biological activities and is important for maintaining renal homeostasis. It is also anti‑apoptotic and mitogenic for protection and recovery from ARF. Whether HGF regulates the ion channel activities remains to be elucidated, therefore, the present study aimed to investigate the modulation of HGF on the expression of ROMK in cultured renal tubular cells. NRK‑52E cells were treated with recombinant HGF, however, no alterations in the total expression of ROMK were observed by western blot analysis. In examining the serine 44 phosphorylation of ROMK in NRK‑52E cells, the present study observed that HGF enhanced the serine 44 phosphorylation of ROMK. In addition, to investigate whether HGF‑Met signaling induces the movement of ROMK to the cell surface in NRK‑52E cells, the protein constituents of cells were separated into plasma membrane and cytoplasm. Using immunofluorescence assay, the expression of ROMK on the plasma membrane was increased in the HGF‑treated NRK‑52E cells, which suggested that ROMK was translocated to the plasma membrane following the HGF‑induced phosphorylation of serine 44. Therefore, HGF may be important in potassium excretion and perform antihyperkalemic effects through the translocation of potassium channels.
Collapse
Affiliation(s)
- Takashi Kato
- Department of Pharmacology, Faculty of Medicine, Kindai University, Osakasayama, Osaka 589‑8511, Japan
| | - Kiyomasa Oka
- Research and Development, Neurogen, Inc., Ibaraki, Osaka 567‑0085, Japan
| | - Toshikazu Nakamura
- Research and Development, Neurogen, Inc., Ibaraki, Osaka 567‑0085, Japan
| |
Collapse
|
27
|
Inhibitors of the proteasome stimulate the epithelial sodium channel (ENaC) through SGK1 and mimic the effect of aldosterone. Pflugers Arch 2017; 470:295-304. [DOI: 10.1007/s00424-017-2060-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 08/17/2017] [Accepted: 08/21/2017] [Indexed: 10/19/2022]
|
28
|
Wang H, You G. SGK1/Nedd4-2 signaling pathway regulates the activity of human organic anion transporters 3. Biopharm Drug Dispos 2017; 38:449-457. [PMID: 28608480 DOI: 10.1002/bdd.2085] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 06/06/2017] [Accepted: 06/07/2017] [Indexed: 01/11/2023]
Abstract
Human organic anion transporter 3 (hOAT3) is localized at the basolateral membrane of renal proximal tubule cells and facilitates the renal secretion of numerous clinical drugs, including anti-HIV therapeutics, anti-tumor drugs, antibiotics, antihypertension drugs and anti-inflammatories. The present study explored the role of serum and glucocorticoid-inducible kinase 1 (sgk1) in the regulation of hOAT3. It was shown that over-expression of sgk1 in hOAT3-expressing cells stimulated hOAT3 transport activity by enhancing the transporter expression at the plasma membrane, kinetically reflected as an increased maximal transport velocity Vmax without substantial change in the substrate-binding affinity Km . In contrast, treatment of cells with the sgk-specific inhibitor GSK650394 resulted in a dose-dependent inhibition of hOAT3 transport activity. Evidence was further provided that sgk1 regulation of hOAT3 activity was mediated by ubiquitin ligase Nedd4-2, an enzyme previously shown to have an inhibitory effect on hOAT3. It was shown that sgk1 phosphorylated Nedd4-2, weakened the association between Nedd4-2 and hOAT3, and decreased hOAT3 ubiquitination. Functionally, the sgk1-stimulated hOAT3 transport activity was attenuated in the presence of a ligase-dead mutant of Nedd4-2. In summary, the investigation established for the first time that sgk1 stimulates hOAT3 transport activity by interfering with the inhibitory effect of Nedd4-2 on the transporter.
Collapse
Affiliation(s)
- Haoxun Wang
- Rutgers The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Guofeng You
- Rutgers The State University of New Jersey, Piscataway, NJ, 08854, USA
| |
Collapse
|
29
|
Abstract
Activation of the PI3K pathway is central to a variety of physiological and pathological processes. In these contexts, AKT is classically considered the de facto mediator of PI3K-dependent signaling. However, in recent years, accumulating data point to the existence of additional effectors of PI3K activity, parallel to and independent of AKT, that play critical and unique roles in mediating different developmental, homeostatic, and pathological processes. In this review, I summarize and discuss our current understanding of the function of the serine/threonine kinase SGK1 as a downstream effector of PI3K, and try to separate targets and pathways validated as uniquely SGK1-dependent from those shared with AKT.
Collapse
|
30
|
Murthy M, Kurz T, O'Shaughnessy KM. WNK signalling pathways in blood pressure regulation. Cell Mol Life Sci 2016; 74:1261-1280. [PMID: 27815594 PMCID: PMC5346417 DOI: 10.1007/s00018-016-2402-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 10/17/2016] [Accepted: 10/27/2016] [Indexed: 01/11/2023]
Abstract
Hypertension (high blood pressure) is a major public health problem affecting more than a billion people worldwide with complications, including stroke, heart failure and kidney failure. The regulation of blood pressure is multifactorial reflecting genetic susceptibility, in utero environment and external factors such as obesity and salt intake. In keeping with Arthur Guyton's hypothesis, the kidney plays a key role in blood pressure control and data from clinical studies; physiology and genetics have shown that hypertension is driven a failure of the kidney to excrete excess salt at normal levels of blood pressure. There is a number of rare Mendelian blood pressure syndromes, which have shed light on the molecular mechanisms involved in dysregulated ion transport in the distal kidney. One in particular is Familial hyperkalemic hypertension (FHHt), an autosomal dominant monogenic form of hypertension characterised by high blood pressure, hyperkalemia, hyperchloremic metabolic acidosis, and hypercalciuria. The clinical signs of FHHt are treated by low doses of thiazide diuretic, and it mirrors Gitelman syndrome which features the inverse phenotype of hypotension, hypokalemic metabolic alkalosis, and hypocalciuria. Gitelman syndrome is caused by loss of function mutations in the thiazide-sensitive Na/Cl cotransporter (NCC); however, FHHt patients do not have mutations in the SCL12A3 locus encoding NCC. Instead, mutations have been identified in genes that have revealed a key signalling pathway that regulates NCC and several other key transporters and ion channels in the kidney that are critical for BP regulation. This is the WNK kinase signalling pathway that is the subject of this review.
Collapse
Affiliation(s)
- Meena Murthy
- Division of Experimental Medicine and Immunotherapeutics, Department of Medicine, University of Cambridge, Cambridge, CB2 2QQ, UK
| | - Thimo Kurz
- Institute of Molecular Cell and Systems Biology, University of Glasgow, Davidson Building, Glasgow, G12 8QQ, Scotland, UK
| | - Kevin M O'Shaughnessy
- Division of Experimental Medicine and Immunotherapeutics, Department of Medicine, University of Cambridge, Cambridge, CB2 2QQ, UK.
| |
Collapse
|
31
|
Pao AC. There and back again: insulin, ENaC, and the cortical collecting duct. Physiol Rep 2016; 4:4/10/e12809. [PMID: 27233302 PMCID: PMC4886174 DOI: 10.14814/phy2.12809] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 05/03/2016] [Indexed: 01/02/2023] Open
Abstract
Cell culture models suggest mechanisms by which insulin stimulates ENaC in the cortical collecting duct. These mechanisms still need to be tested for physiological significance in animal models of insulin resistance.![]()
Collapse
Affiliation(s)
- Alan C Pao
- Department of Medicine Stanford University, Stanford, California
| |
Collapse
|
32
|
(Pro)renin receptor contributes to regulation of renal epithelial sodium channel. J Hypertens 2016; 34:486-94; discussion 494. [PMID: 26771338 DOI: 10.1097/hjh.0000000000000825] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Recent studies reported increased (Pro)renin receptor (PRR) expression during low-salt intake. We hypothesized that PRR plays a role in regulation of renal epithelial sodium channel (ENaC) through serum and glucocorticoid-inducible kinase isoform 1 (SGK-1)-neural precursor cell expressed, developmentally downregulated 4-2 (Nedd4-2) signaling pathway. METHOD Male Sprague-Dawley rats on normal-sodium diet and mouse renal inner medullary collecting duct cells treated with NaCl at 130 mmol/l (normal salt), or 63 mmol/l (low salt) were studied. PRR and α-ENaC expressions were evaluated 1 week after right uninephrectomy and left renal interstitial administration of 5% dextrose, scramble shRNA, or PRR shRNA (n = 6 each treatment). RESULTS In-vivo PRR shRNA significantly reduced expressions of PRR throughout the kidney and α-ENaC subunits in the renal medulla. In inner medullary collecting duct cells, low salt or angiotensin II (Ang II) augmented the mRNA and protein expressions of PRR (P < 0.05), SGK-1 (P < 0.05), and α-ENaC (P < 0.05). Low salt or Ang II increased the phosphorylation of Nedd4-2. In cells treated with low salt or Ang II, PRR siRNA significantly downregulated the mRNA and protein expressions of PRR (P < 0.05), SGK-1 (P < 0.05), and α-ENaC expression (P < 0.05). CONCLUSION We conclude that PRR contributes to the regulation of α-ENaC via SGK-1-Nedd4-2 signaling pathway.
Collapse
|
33
|
Valinsky WC, Jolly A, Miquel P, Touyz RM, Shrier A. Aldosterone Upregulates Transient Receptor Potential Melastatin 7 (TRPM7). J Biol Chem 2016; 291:20163-72. [PMID: 27466368 PMCID: PMC5025699 DOI: 10.1074/jbc.m116.735175] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 07/26/2016] [Indexed: 12/18/2022] Open
Abstract
Transient receptor potential melastatin 7 (TRPM7) is a ubiquitously expressed Mg(2+)-permeable ion channel fused to a C-terminal α-kinase domain. Recently, aldosterone was shown to increase intracellular Mg(2+) levels and alter inflammatory signaling in TRPM7-expressing HEK293 cells. This study was undertaken to assess whether these effects were related to an aldosterone-mediated increase of TRPM7 current and/or plasma membrane localization. Using HEK293 cells stably expressing WT-TRPM7, we found that 18-h application of aldosterone significantly increased TRPM7 current and TRPM7 plasma membrane protein expression by 48% and 34%, respectively. The aldosterone-mediated increase of TRPM7 current was inhibited by eplerenone, a mineralocorticoid receptor (MR) blocker, and GSK-650394, an inhibitor of the serum- and glucocorticoid-regulated kinase 1 (SGK1). SGK1 blockade also prevented the aldosterone-induced increase of TRPM7 plasma membrane protein. It was further determined that K1648R-TRPM7, the phosphotransferase-inactive TRPM7 mutant, was unresponsive to aldosterone. Therefore, chronic aldosterone treatment increases the plasma membrane expression of TRPM7, which is associated with an increase of TRPM7 current. This process occurs via an MR-dependent, genomic signaling cascade involving SGK1 and a functioning TRPM7 α-kinase domain. We suggest that this mechanism may be of general relevance when interpreting the effects of aldosterone because the MR receptor is found in multiple tissues, and TRPM7 and SGK1 are ubiquitously expressed.
Collapse
Affiliation(s)
- William C Valinsky
- From the Department of Physiology, McGill University, Montreal, Quebec H3G 0B1, Canada and
| | - Anna Jolly
- From the Department of Physiology, McGill University, Montreal, Quebec H3G 0B1, Canada and
| | - Perrine Miquel
- From the Department of Physiology, McGill University, Montreal, Quebec H3G 0B1, Canada and
| | - Rhian M Touyz
- the Institute of Cardiovascular and Medical Sciences, University of Glasgow, BHF GCRC, 126 University Place, Glasgow G12 8TA, United Kingdom
| | - Alvin Shrier
- From the Department of Physiology, McGill University, Montreal, Quebec H3G 0B1, Canada and
| |
Collapse
|
34
|
Yang L, Frindt G, Lang F, Kuhl D, Vallon V, Palmer LG. SGK1-dependent ENaC processing and trafficking in mice with high dietary K intake and elevated aldosterone. Am J Physiol Renal Physiol 2016; 312:F65-F76. [PMID: 27413200 DOI: 10.1152/ajprenal.00257.2016] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 07/06/2016] [Indexed: 02/04/2023] Open
Abstract
We examined renal Na and K transporters in mice with deletions in the gene encoding the aldosterone-induced protein SGK1. The knockout mice were hyperkalemic, and had altered expression of the subunits of the epithelial Na channel (ENaC). The kidneys showed decreased expression of the cleaved forms of the γENaC subunit, and the fully glycosylated form of the βENaC subunits when animals were fed a high-K diet. Knockout animals treated with exogenous aldosterone also had reduced subunit processing and diminished surface expression of βENaC and γENaC. Expression of the three upstream Na transporters NHE3, NKCC2, and NCC was reduced in both wild-type and knockout mice in response to K loading. The activity of ENaC measured as whole cell amiloride-sensitive current (INa) in principal cells of the cortical collecting duct (CCD) was minimal under control conditions but was increased by a high-K diet to a similar extent in knockout and wild-type animals. INa in the connecting tubule also increased similarly in the two genotypes in response to exogenous aldosterone administration. The activities of both ROMK channels in principal cells and BK channels in intercalated cells of the CCD were unaffected by the deletion of SGK1. Acute treatment of animals with amiloride produced similar increases in Na excretion and decreases in K excretion in the two genotypes. The absence of changes in ENaC activity suggests compensation for decreased surface expression. Altered K balance in animals lacking SGK1 may reflect defects in ENaC-independent K excretion.
Collapse
Affiliation(s)
- Lei Yang
- Department of Physiology and Biophysics, Weill-Cornell Medical College, New York, New York.,Department of Physiology, Harbin Medical University, Harbin, China
| | - Gustavo Frindt
- Department of Physiology and Biophysics, Weill-Cornell Medical College, New York, New York
| | - Florian Lang
- Department of Cardiology, Vascular Medicine and Physiology, University of Tübingen, Tübingen, Germany
| | - Dietmar Kuhl
- Institute for Molecular and Cellular Cognition, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; and
| | - Volker Vallon
- Departments of Medicine and Pharmacology, University of California San Diego and Veterans Affairs San Diego Healthcare System, San Diego, California
| | - Lawrence G Palmer
- Department of Physiology and Biophysics, Weill-Cornell Medical College, New York, New York;
| |
Collapse
|
35
|
Xu D, Wang H, You G. Posttranslational Regulation of Organic Anion Transporters by Ubiquitination: Known and Novel. Med Res Rev 2016; 36:964-79. [PMID: 27291023 DOI: 10.1002/med.21397] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 04/27/2016] [Accepted: 04/27/2016] [Indexed: 12/25/2022]
Abstract
Organic anion transporters (OATs) encoded by solute carrier 22 family are localized in the epithelia of multiple organs, where they mediate the absorption, distribution, and excretion of a diverse array of negatively charged environmental toxins and clinically important drugs. Alterations in the expression and function of OATs play important roles in intra- and interindividual variability of the therapeutic efficacy and the toxicity of many drugs. As a result, the activity of OATs must be under tight regulation so as to carry out their normal functions. The regulation of OAT transport activity in response to various stimuli can occur at several levels such as transcription, translation, and posttranslational modification. Posttranslational regulation is of particular interest, because it usually happens within a very short period of time (minutes to hours) when the body has to deal with rapidly changing amounts of substances as a consequence of variable intake of drugs, fluids, or meals as well as metabolic activity. This review article highlights the recent advances from our laboratory in uncovering several posttranslational mechanisms underlying OAT regulation. These advances offer the promise of identifying targets for novel strategies that will maximize therapeutic efficacy in drug development.
Collapse
Affiliation(s)
- Da Xu
- Department of Pharmaceutics, Rutgers University, Piscataway, New Jersey, 08854
| | - Haoxun Wang
- Department of Pharmaceutics, Rutgers University, Piscataway, New Jersey, 08854
| | - Guofeng You
- Department of Pharmaceutics, Rutgers University, Piscataway, New Jersey, 08854
| |
Collapse
|
36
|
Jacobs ME, Kathpalia PP, Chen Y, Thomas SV, Noonan EJ, Pao AC. SGK1 regulation by miR-466g in cortical collecting duct cells. Am J Physiol Renal Physiol 2016; 310:F1251-7. [PMID: 26911843 PMCID: PMC4935769 DOI: 10.1152/ajprenal.00024.2016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 02/22/2016] [Indexed: 11/22/2022] Open
Abstract
Micro-RNAs (miRNAs) are noncoding RNAs that bind target mRNA transcripts and modulate gene expression. In the cortical collecting duct (CCD), aldosterone stimulates the expression of genes that increase activity of the epithelial sodium channel (ENaC); in the early phase of aldosterone induction, one such gene is serum and glucocorticoid regulated kinase 1 (SGK1). We hypothesized that aldosterone regulates the expression of miRNAs in the early phase of induction to control the expression of target genes that stimulate ENaC activity. We treated mpkCCDc14 cells with aldosterone or vehicle for 1 h and used a miRNA microarray to analyze differential miRNA expression. We identified miR-466g as a miRNA that decreased by 57% after 1 h of aldosterone treatment. Moreover, we identified a putative miR-466g binding site in the 3'-untranslated region of SGK1. We constructed an SGK1 3'-untranslated region luciferase reporter and found that cotransfection of miR-466g suppressed luciferase activity in human embryonic kidney-293 cells in a dose-dependent manner. Deletion or introduction of point mutations that disrupt the miR-466g target site attenuated miR-466g-directed suppression of luciferase activity. Finally, we generated stably transduced mpkCCDc14 cell lines overexpressing miR-466g. Cells overexpressing miR-466g demonstrated 12.9-fold lower level of SGK1 mRNA compared with control cells after 6 h of aldosterone induction; moreover, cells overexpressing miR-466g exhibited 25% decrease in amiloride-sensitive current after 6 h of aldosterone induction and complete loss of amiloride-sensitive current after 24 h of aldosterone induction. Our findings implicate miR-466g as a novel early-phase aldosterone responsive miRNA that regulates SGK1 and ENaC in CCD cells.
Collapse
Affiliation(s)
- Mollie E Jacobs
- Department of Medicine, Stanford University School of Medicine, Stanford, California; and
| | - Paru P Kathpalia
- Department of Medicine, Stanford University School of Medicine, Stanford, California; and
| | - Yu Chen
- Veterans Affairs Palo Alto Health Care System, Palo Alto, California
| | - Sheela V Thomas
- Department of Medicine, Stanford University School of Medicine, Stanford, California; and
| | - Emily J Noonan
- Department of Medicine, Stanford University School of Medicine, Stanford, California; and Veterans Affairs Palo Alto Health Care System, Palo Alto, California
| | - Alan C Pao
- Department of Medicine, Stanford University School of Medicine, Stanford, California; and Veterans Affairs Palo Alto Health Care System, Palo Alto, California
| |
Collapse
|
37
|
Al-Qusairi L, Basquin D, Roy A, Stifanelli M, Rajaram RD, Debonneville A, Nita I, Maillard M, Loffing J, Subramanya AR, Staub O. Renal tubular SGK1 deficiency causes impaired K+ excretion via loss of regulation of NEDD4-2/WNK1 and ENaC. Am J Physiol Renal Physiol 2016; 311:F330-42. [PMID: 27009335 DOI: 10.1152/ajprenal.00002.2016] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Accepted: 03/21/2016] [Indexed: 11/22/2022] Open
Abstract
The stimulation of postprandial K(+) clearance involves aldosterone-independent and -dependent mechanisms. In this context, serum- and glucocorticoid-induced kinase (SGK)1, a ubiquitously expressed kinase, is one of the primary aldosterone-induced proteins in the aldosterone-sensitive distal nephron. Germline inactivation of SGK1 suggests that this kinase is fundamental for K(+) excretion under conditions of K(+) load, but the specific role of renal SGK1 remains elusive. To avoid compensatory mechanisms that may occur during nephrogenesis, we used inducible, nephron-specific Sgk1(Pax8/LC1) mice to assess the role of renal tubular SGK1 in K(+) regulation. Under a standard diet, these animals exhibited normal K(+) handling. When challenged by a high-K(+) diet, they developed severe hyperkalemia accompanied by a defect in K(+) excretion. Molecular analysis revealed reduced neural precursor cell expressed developmentally downregulated protein (NEDD)4-2 phosphorylation and total expression. γ-Epithelial Na(+) channel (ENaC) expression and α/γENaC proteolytic processing were also decreased in mutant mice. Moreover, with no lysine kinase (WNK)1, which displayed in control mice punctuate staining in the distal convoluted tubule and diffuse distribution in the connecting tubule/cortical colleting duct, was diffused in the distal convoluted tubule and less expressed in the connecting tubule/collecting duct of Sgk(Pax8/LC1) mice. Moreover, Ste20-related proline/alanine-rich kinase phosphorylation, and Na(+)-Cl(-) cotransporter phosphorylation/apical localization were reduced in mutant mice. Consistent with the altered WNK1 expression, increased renal outer medullary K(+) channel apical localization was observed. In conclusion, our data suggest that renal tubular SGK1 is important in the regulation of K(+) excretion via the control of NEDD4-2, WNK1, and ENaC.
Collapse
Affiliation(s)
- Lama Al-Qusairi
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland; National Centre of Competence in Research "Kidney.ch," Lausanne, Switzerland
| | - Denis Basquin
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland; National Centre of Competence in Research "Kidney.ch," Lausanne, Switzerland
| | - Ankita Roy
- Department of Medicine, University of Pittsburgh School of Medicine and Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, Pennsylvania
| | - Matteo Stifanelli
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland
| | - Renuga Devi Rajaram
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland
| | - Anne Debonneville
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland
| | - Izabela Nita
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland
| | - Marc Maillard
- Service of Nephrology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Johannes Loffing
- Institute of Anatomy, University of Zurich, Zurich, Switzerland; and National Centre of Competence in Research "Kidney.ch," Lausanne, Switzerland
| | - Arohan R Subramanya
- Department of Medicine, University of Pittsburgh School of Medicine and Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, Pennsylvania
| | - Olivier Staub
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland; National Centre of Competence in Research "Kidney.ch," Lausanne, Switzerland
| |
Collapse
|
38
|
Wang H, Xu D, Toh MF, Pao AC, You G. Serum- and glucocorticoid-inducible kinase SGK2 regulates human organic anion transporters 4 via ubiquitin ligase Nedd4-2. Biochem Pharmacol 2016; 102:120-129. [PMID: 26740304 PMCID: PMC5166719 DOI: 10.1016/j.bcp.2015.11.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 11/24/2015] [Indexed: 01/08/2023]
Abstract
Human organic anion transporter 4 (hOAT4) belongs to a family of organic anion transporters that play critical roles in the body disposition of clinically important drugs, including anti-viral therapeutics, anti-cancer drugs, antibiotics, antihypertensives, and anti-inflammatories. hOAT4 is abundantly expressed in the kidney and placenta. In the current study, we examined the regulation of hOAT4 by serum- and glucocorticoid-inducible kinase 2 (sgk2) in the kidney COS-7 cells. We showed that sgk2 stimulated hOAT4 transport activity. Such stimulation mainly resulted from an increased cell surface expression of the transporter, kinetically revealed as an increased maximal transport velocity Vmax without significant change in substrate-binding affinity Km. We further showed that regulation of hOAT4 activity by sgk2 was mediated by ubiquitin ligase Nedd4-2. Overexpression of Nedd4-2 enhanced hOAT4 ubiquitination, and inhibited hOAT4 transport activity, whereas overexpression of ubiquitin ligase-dead mutant Nedd4-2/C821A or siRNA knockdown of endogenous Nedd4-2 had opposite effects on hOAT4. Our co-immunoprecipitation experiment revealed that sgk2 weakened the association between hOAT4 and Nedd4-2. In conclusion, our study demonstrated for the first time that sgk2 stimulated hOAT4 transport activity by abrogating the inhibitory effect of Nedd4-2 on the transporter.
Collapse
Affiliation(s)
- Haoxun Wang
- Department of Pharmaceutics, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA
| | - Da Xu
- Department of Pharmaceutics, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA
| | - May Fern Toh
- Department of Pharmaceutics, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA
| | - Alan C Pao
- Department of Medicine, Stanford University, Palo Alto, CA 94304, USA
| | - Guofeng You
- Department of Pharmaceutics, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA.
| |
Collapse
|
39
|
Genes related with apoptosis by inflammation in diabetic keratocytes. Genes Genomics 2015. [DOI: 10.1007/s13258-015-0290-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
40
|
Yang J, Fuller PJ, Morgan J, Shibata H, Clyne CD, Young MJ. GEMIN4 functions as a coregulator of the mineralocorticoid receptor. J Mol Endocrinol 2015; 54:149-60. [PMID: 25555524 DOI: 10.1530/jme-14-0078] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The mineralocorticoid receptor (MR) is a member of the nuclear receptor superfamily. Pathological activation of the MR causes cardiac fibrosis and heart failure, but clinical use of MR antagonists is limited by the renal side effect of hyperkalemia. Coregulator proteins are known to be critical for nuclear receptor-mediated gene expression. Identification of coregulators, which mediate MR activity in a tissue-specific manner, may allow for the development of novel tissue-selective MR modulators that confer cardiac protection without adverse renal effects. Our earlier studies identified a consensus motif among MR-interacting peptides, MPxLxxLL. Gem (nuclear organelle)-associated protein 4 (GEMIN4) is one of the proteins that contain this motif. Transient transfection experiments in HEK293 and H9c2 cells demonstrated that GEMIN4 repressed agonist-induced MR transactivation in a cell-specific manner. Furthermore, overexpression of GEMIN4 significantly decreased, while knockdown of GEMIN4 increased, the mRNA expression of specific endogenous MR target genes. A physical interaction between GEMIN4 and MR is suggested by their nuclear co-localization upon agonist treatment. These findings indicate that GEMIN4 functions as a novel coregulator of the MR.
Collapse
Affiliation(s)
- Jun Yang
- MIMR-PHI InstitutePO Box 5152, Clayton, Victoria 3168, AustraliaDepartment of MedicineMonash University, Clayton, Victoria 3168, AustraliaDepartment of EndocrinologyMetabolism, Rheumatology and Nephrology, Oita University, Yufu 879-5593, Japan MIMR-PHI InstitutePO Box 5152, Clayton, Victoria 3168, AustraliaDepartment of MedicineMonash University, Clayton, Victoria 3168, AustraliaDepartment of EndocrinologyMetabolism, Rheumatology and Nephrology, Oita University, Yufu 879-5593, Japan
| | - Peter J Fuller
- MIMR-PHI InstitutePO Box 5152, Clayton, Victoria 3168, AustraliaDepartment of MedicineMonash University, Clayton, Victoria 3168, AustraliaDepartment of EndocrinologyMetabolism, Rheumatology and Nephrology, Oita University, Yufu 879-5593, Japan MIMR-PHI InstitutePO Box 5152, Clayton, Victoria 3168, AustraliaDepartment of MedicineMonash University, Clayton, Victoria 3168, AustraliaDepartment of EndocrinologyMetabolism, Rheumatology and Nephrology, Oita University, Yufu 879-5593, Japan
| | - James Morgan
- MIMR-PHI InstitutePO Box 5152, Clayton, Victoria 3168, AustraliaDepartment of MedicineMonash University, Clayton, Victoria 3168, AustraliaDepartment of EndocrinologyMetabolism, Rheumatology and Nephrology, Oita University, Yufu 879-5593, Japan
| | - Hirotaka Shibata
- MIMR-PHI InstitutePO Box 5152, Clayton, Victoria 3168, AustraliaDepartment of MedicineMonash University, Clayton, Victoria 3168, AustraliaDepartment of EndocrinologyMetabolism, Rheumatology and Nephrology, Oita University, Yufu 879-5593, Japan
| | - Colin D Clyne
- MIMR-PHI InstitutePO Box 5152, Clayton, Victoria 3168, AustraliaDepartment of MedicineMonash University, Clayton, Victoria 3168, AustraliaDepartment of EndocrinologyMetabolism, Rheumatology and Nephrology, Oita University, Yufu 879-5593, Japan
| | - Morag J Young
- MIMR-PHI InstitutePO Box 5152, Clayton, Victoria 3168, AustraliaDepartment of MedicineMonash University, Clayton, Victoria 3168, AustraliaDepartment of EndocrinologyMetabolism, Rheumatology and Nephrology, Oita University, Yufu 879-5593, Japan MIMR-PHI InstitutePO Box 5152, Clayton, Victoria 3168, AustraliaDepartment of MedicineMonash University, Clayton, Victoria 3168, AustraliaDepartment of EndocrinologyMetabolism, Rheumatology and Nephrology, Oita University, Yufu 879-5593, Japan
| |
Collapse
|
41
|
Hepatic serum- and glucocorticoid-regulated protein kinase 1 (SGK1) regulates insulin sensitivity in mice via extracellular-signal-regulated kinase 1/2 (ERK1/2). Biochem J 2015; 464:281-9. [PMID: 25222560 DOI: 10.1042/bj20141005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Insulin resistance is a major hallmark of metabolic syndromes, including Type 2 diabetes. Although numerous functions of SGK1 (serum- and glucocorticoid-regulated kinase 1) have been identified, a direct effect of SGK1 on insulin sensitivity has not been previously reported. In the present study, we generated liver-specific SGK1-knockout mice and found that these mice developed glucose intolerance and insulin resistance. We also found that insulin signalling is enhanced or impaired in Hep1-6 cells infected with adenoviruses expressing SGK1 (Ad-SGK1) or shRNA directed against the coding region of SGK1 (Ad-shSGK1) respectively. In addition, we determined that SGK1 inhibits ERK1/2 (extracellular-signal-regulated kinase 1/2) activity in liver and Ad-shERK1/2-mediated inhibition of ERK1/2 reverses the attenuated insulin sensitivity in Ad-shSGK1 mice. Finally, we found that SGK1 functions are compromised under insulin-resistant conditions and overexpression of SGK1 by Ad-SGK1 significantly ameliorates insulin resistance in both glucosamine-treated HepG2 cells and livers of db/db mice, a genetic model of insulin resistance.
Collapse
|
42
|
Rossier BC, Baker ME, Studer RA. Epithelial sodium transport and its control by aldosterone: the story of our internal environment revisited. Physiol Rev 2015; 95:297-340. [PMID: 25540145 DOI: 10.1152/physrev.00011.2014] [Citation(s) in RCA: 164] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Transcription and translation require a high concentration of potassium across the entire tree of life. The conservation of a high intracellular potassium was an absolute requirement for the evolution of life on Earth. This was achieved by the interplay of P- and V-ATPases that can set up electrochemical gradients across the cell membrane, an energetically costly process requiring the synthesis of ATP by F-ATPases. In animals, the control of an extracellular compartment was achieved by the emergence of multicellular organisms able to produce tight epithelial barriers creating a stable extracellular milieu. Finally, the adaptation to a terrestrian environment was achieved by the evolution of distinct regulatory pathways allowing salt and water conservation. In this review we emphasize the critical and dual role of Na(+)-K(+)-ATPase in the control of the ionic composition of the extracellular fluid and the renin-angiotensin-aldosterone system (RAAS) in salt and water conservation in vertebrates. The action of aldosterone on transepithelial sodium transport by activation of the epithelial sodium channel (ENaC) at the apical membrane and that of Na(+)-K(+)-ATPase at the basolateral membrane may have evolved in lungfish before the emergence of tetrapods. Finally, we discuss the implication of RAAS in the origin of the present pandemia of hypertension and its associated cardiovascular diseases.
Collapse
Affiliation(s)
- Bernard C Rossier
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland; Division of Nephrology-Hypertension, University of California San Diego, La Jolla, California; and Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, United Kingdom
| | - Michael E Baker
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland; Division of Nephrology-Hypertension, University of California San Diego, La Jolla, California; and Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, United Kingdom
| | - Romain A Studer
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland; Division of Nephrology-Hypertension, University of California San Diego, La Jolla, California; and Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, United Kingdom
| |
Collapse
|
43
|
Verouti SN, Boscardin E, Hummler E, Frateschi S. Regulation of blood pressure and renal function by NCC and ENaC: lessons from genetically engineered mice. Curr Opin Pharmacol 2015; 21:60-72. [PMID: 25613995 DOI: 10.1016/j.coph.2014.12.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 12/22/2014] [Accepted: 12/22/2014] [Indexed: 01/01/2023]
Abstract
The activity of the thiazide-sensitive Na(+)/Cl(-) cotransporter (NCC) and of the amiloride-sensitive epithelial Na(+) channel (ENaC) is pivotal for blood pressure regulation. NCC is responsible for Na(+) reabsorption in the distal convoluted tubule (DCT) of the nephron, while ENaC reabsorbs the filtered Na(+) in the late DCT and in the cortical collecting ducts (CCD) providing the final renal adjustment to Na(+) balance. Here, we aim to highlight the recent advances made using transgenic mouse models towards the understanding of the regulation of NCC and ENaC function relevant to the control of sodium balance and blood pressure. We thus like to pave the way for common mechanisms regulating these two sodium-transporting proteins and their potential implication in structural remodeling of the nephron segments and Na(+) and Cl(-) reabsorption.
Collapse
Affiliation(s)
- Sophia N Verouti
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland
| | - Emilie Boscardin
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland
| | - Edith Hummler
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland.
| | - Simona Frateschi
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
44
|
Penton D, Czogalla J, Loffing J. Dietary potassium and the renal control of salt balance and blood pressure. Pflugers Arch 2015; 467:513-30. [PMID: 25559844 DOI: 10.1007/s00424-014-1673-1] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 12/10/2014] [Accepted: 12/11/2014] [Indexed: 01/09/2023]
Abstract
Dietary potassium (K(+)) intake has antihypertensive effects, prevents strokes, and improves cardiovascular outcomes. The underlying mechanism for these beneficial effects of high K(+) diets may include vasodilation, enhanced urine flow, reduced renal renin release, and negative sodium (Na(+)) balance. Indeed, several studies demonstrate that dietary K(+) intake induces renal Na(+) loss despite elevated plasma aldosterone. This review briefly highlights the epidemiological and experimental evidences for the effects of dietary K(+) on arterial blood pressure. It discusses the pivotal role of the renal distal tubule for the regulation of urinary K(+) and Na(+) excretion and blood pressure and highlights that it depends on the coordinated interaction of different nephron portions, epithelial cell types, and various ion channels, transporters, and ATPases. Moreover, we discuss the relevance of aldosterone and aldosterone-independent factors in mediating the effects of an altered K(+) intake on renal K(+) and Na(+) handling. Particular focus is given to findings suggesting that an aldosterone-independent downregulation of the thiazide-sensitive NaCl cotransporter significantly contributes to the natriuretic and antihypertensive effect of a K(+)-rich diet. Last but not least, we refer to the complex signaling pathways enabling the kidney to adapt its function to the homeostatic needs in response to an altered K(+) intake. Future work will have to further address the underlying cellular and molecular mechanism and to elucidate, among others, how an altered dietary K(+) intake is sensed and how this signal is transmitted to the different epithelial cells lining the distal tubule.
Collapse
Affiliation(s)
- David Penton
- Institute of Anatomy, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | | | | |
Collapse
|
45
|
Frindt G, Palmer LG. Acute effects of aldosterone on the epithelial Na channel in rat kidney. Am J Physiol Renal Physiol 2014; 308:F572-8. [PMID: 25520012 DOI: 10.1152/ajprenal.00585.2014] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The acute effects of aldosterone administration on epithelial Na channels (ENaC) in rat kidney were examined using electrophysiology and immunodetection. Animals received a single injection of aldosterone (20 μg/kg body wt), which reduced Na excretion over the next 3 h. Channel activity was assessed in principal cells of cortical collecting ducts as amiloride-sensitive whole cell clamp current (INa). INa averaged 100 pA/cell, 20-30% of that reported for the same preparation under conditions of chronic stimulation. INa was negligible in control animals that did not receive hormone. The acute physiological response correlated with changes in ENaC processing and trafficking. These effects included increases in the cleaved forms of α-ENaC and γ-ENaC, assessed by Western blot, and increases in the surface expression of β-ENaC and γ-ENaC measured after surface protein biotinylation. These changes were qualitatively and quantitatively similar to those of chronic stimulation. This suggests that altered trafficking to or from the apical membrane is an early response to the hormone and that later increases in channel activity require stimulation of channels residing at the surface.
Collapse
Affiliation(s)
- Gustavo Frindt
- Department of Physiology and Biophysics, Weill-Cornell Medical College, New York, New York
| | - Lawrence G Palmer
- Department of Physiology and Biophysics, Weill-Cornell Medical College, New York, New York
| |
Collapse
|
46
|
Yang J, Fuller PJ, Morgan J, Shibata H, McDonnell DP, Clyne CD, Young MJ. Use of phage display to identify novel mineralocorticoid receptor-interacting proteins. Mol Endocrinol 2014; 28:1571-84. [PMID: 25000480 DOI: 10.1210/me.2014-1101] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The mineralocorticoid receptor (MR) plays a central role in salt and water homeostasis via the kidney; however, inappropriate activation of the MR in the heart can lead to heart failure. A selective MR modulator that antagonizes MR signaling in the heart but not the kidney would provide the cardiovascular protection of current MR antagonists but allow for normal electrolyte balance. The development of such a pharmaceutical requires an understanding of coregulators and their tissue-selective interactions with the MR, which is currently limited by the small repertoire of MR coregulators described in the literature. To identify potential novel MR coregulators, we used T7 phage display to screen tissue-selective cDNA libraries for MR-interacting proteins. Thirty MR binding peptides were identified, from which three were chosen for further characterization based on their nuclear localization and their interaction with other MR-interacting proteins or, in the case of x-ray repair cross-complementing protein 6, its known status as an androgen receptor coregulator. Eukaryotic elongation factor 1A1, structure-specific recognition protein 1, and x-ray repair cross-complementing protein 6 modulated MR-mediated transcription in a ligand-, cell- and/or promoter-specific manner and colocalized with the MR upon agonist treatment when imaged using immunofluorescence microscopy. These results highlight the utility of phage display for rapid and sensitive screening of MR binding proteins and suggest that eukaryotic elongation factor 1A1, structure-specific recognition protein 1, and x-ray repair cross-complementing protein 6 may be potential MR coactivators whose activity is dependent on the ligand, cellular context, and target gene promoter.
Collapse
Affiliation(s)
- Jun Yang
- MIMR-PHI Medical Research Institute (J.Y., P.J.F., J.M., C.D.C., M.J.Y.), Department of Medicine (J.Y., P.J.F., M.J.Y.), Monash University, Clayton, Victoria 3168, Australia; Department of Endocrinology, Metabolism, Rheumatology, and Nephrology (H.S.), Oita University, Yufu 879-5593, Japan; and Department of Pharmacology and Cancer Biology (D.P.M.), Duke University Medical Center, Durham, North Carolina 27710
| | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
A new understanding of renal potassium balance has emerged as the molecular underpinnings of potassium secretion have become illuminated, highlighting the key roles of apical potassium channels, renal outer medullary potassium channel (ROMK) and Big Potassium (BK), in the aldosterone-sensitive distal nephron and collecting duct. These channels act as the final-regulated components of the renal potassium secretory machinery. Their activity, number, and driving forces are precisely modulated to ensure potassium excretion matches dietary potassium intake. Recent identification of the underlying regulatory mechanisms at the molecular level provides a new appreciation of the physiology and reveals a molecular insight to explain the paradoxic actions of aldosterone on potassium secretion. Here, we review the current state of knowledge in the field.
Collapse
Affiliation(s)
- Paul A Welling
- Department of Physiology, University of Maryland Medical School, Baltimore, MD, USA.
| |
Collapse
|
48
|
Morrell ED, Kellum JA, Hallows KR, Pastor-Soler NM. Epithelial transport during septic acute kidney injury. Nephrol Dial Transplant 2013; 29:1312-9. [PMID: 24378526 DOI: 10.1093/ndt/gft503] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
A goal for scientists studying septic acute kidney injury (AKI) should be to formulate a conceptual model of disease that is able to coherently reconcile the molecular and inflammatory consequences of sepsis with impaired epithelial tubular function, diminished glomerular filtration rate (GFR) and ultimately kidney failure. Recent evidence has shed light on how sepsis modulates the tubular regulation of ion, glucose, urea and water transport and acid-base homeostasis in the kidney. The present review summarizes recent discoveries on changes in epithelial transport under septic and endotoxemic conditions as well as the mechanisms that link inflammation with impaired tubular membrane transport. This paper also proposes that the tubular dysfunction that is mediated by inflammation in sepsis ultimately leads to increased sodium and chloride delivery to the distal tubule and macula densa, contributing to tubuloglomerular feedback and impaired GFR. We feel that this conceptual model resolves many of the physiologic and clinical paradoxes that septic AKI presents to practicing researchers and clinicians.
Collapse
Affiliation(s)
- Eric D Morrell
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, S976.1 Scaife Hall, 3550 Terrace Street, Pittsburgh, PA 15261, USA
| | - John A Kellum
- The Center for Critical Care Nephrology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA CRISMA (Clinical Research Systems Modeling of Acute Illness) Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Kenneth R Hallows
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, S976.1 Scaife Hall, 3550 Terrace Street, Pittsburgh, PA 15261, USA The Center for Critical Care Nephrology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Núria M Pastor-Soler
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, S976.1 Scaife Hall, 3550 Terrace Street, Pittsburgh, PA 15261, USA The Center for Critical Care Nephrology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
49
|
Stockand JD, Vallon V, Ortiz P. In vivo and ex vivo analysis of tubule function. Compr Physiol 2013; 2:2495-525. [PMID: 23720256 DOI: 10.1002/cphy.c100051] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Analysis of tubule function with in vivo and ex vivo approaches has been instrumental in revealing renal physiology. This work allows assignment of functional significance to known gene products expressed along the nephron, primary of which are proteins involved in electrolyte transport and regulation of these transporters. Not only we have learned much about the key roles played by these transport proteins and their proper regulation in normal physiology but also the combination of contemporary molecular biology and molecular genetics with in vivo and ex vivo analysis opened a new era of discovery informative about the root causes of many renal diseases. The power of in vivo and ex vivo analysis of tubule function is that it preserves the native setting and control of the tubule and proteins within tubule cells enabling them to be investigated in a "real-life" environment with a high degree of precision. In vivo and ex vivo analysis of tubule function continues to provide a powerful experimental outlet for testing, evaluating, and understanding physiology in the context of the novel information provided by sequencing of the human genome and contemporary genetic screening. These tools will continue to be a mainstay in renal laboratories as this discovery process continues and as we continue to identify new gene products functionally compromised in renal disease.
Collapse
Affiliation(s)
- James D Stockand
- Department of Physiology, University of Texas Health Science Center, San Antonio, Texas, USA.
| | | | | |
Collapse
|
50
|
Orena S, Maurer TS, She L, Eudy R, Bernardo V, Dash D, Loria P, Banker ME, Tugnait M, Okerberg CV, Qian J, Boustany-Kari CM. PF-03882845, a non-steroidal mineralocorticoid receptor antagonist, prevents renal injury with reduced risk of hyperkalemia in an animal model of nephropathy. Front Pharmacol 2013; 4:115. [PMID: 24133446 PMCID: PMC3796291 DOI: 10.3389/fphar.2013.00115] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 08/27/2013] [Indexed: 01/13/2023] Open
Abstract
The mineralocorticoid receptor (MR) antagonists PF-03882845 and eplerenone were evaluated for renal protection against aldosterone-mediated renal disease in uninephrectomized Sprague-Dawley (SD) rats maintained on a high salt diet and receiving aldosterone by osmotic mini-pump for 27 days. Serum K(+) and the urinary albumin to creatinine ratio (UACR) were assessed following 14 and 27 days of treatment. Aldosterone induced renal fibrosis as evidenced by increases in UACR, collagen IV staining in kidney cortex, and expression of pro-fibrotic genes relative to sham-operated controls not receiving aldosterone. While both PF-03882845 and eplerenone elevated serum K(+) levels with similar potencies, PF-03882845 was more potent than eplerenone in suppressing the rise in UACR. PF-03882845 prevented the increase in collagen IV staining at 5, 15 and 50 mg/kg BID while eplerenone was effective only at the highest dose tested (450 mg/kg BID). All doses of PF-03882845 suppressed aldosterone-induced increases in collagen IV, transforming growth factor-β 1 (Tgf-β 1), interleukin-6 (Il-6), intermolecular adhesion molecule-1 (Icam-1) and osteopontin gene expression in kidney while eplerenone was only effective at the highest dose. The therapeutic index (TI), calculated as the ratio of the EC50 for increasing serum K(+) to the EC50 for UACR lowering, was 83.8 for PF-03882845 and 1.47 for eplerenone. Thus, the TI of PF-03882845 against hyperkalemia was 57-fold superior to that of eplerenone indicating that PF-03882845 may present significantly less risk for hyperkalemia compared to eplerenone.
Collapse
Affiliation(s)
- Stephen Orena
- Pfizer Groton Research and Development Groton, CT, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|