1
|
Bruce JW, Park E, Magnano C, Horswill M, Richards A, Potts G, Hebert A, Islam N, Coon JJ, Gitter A, Sherer N, Ahlquist P. HIV-1 virological synapse formation enhances infection spread by dysregulating Aurora Kinase B. PLoS Pathog 2023; 19:e1011492. [PMID: 37459363 PMCID: PMC10374047 DOI: 10.1371/journal.ppat.1011492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 07/27/2023] [Accepted: 06/19/2023] [Indexed: 07/21/2023] Open
Abstract
HIV-1 spreads efficiently through direct cell-to-cell transmission at virological synapses (VSs) formed by interactions between HIV-1 envelope proteins (Env) on the surface of infected cells and CD4 receptors on uninfected target cells. Env-CD4 interactions bring the infected and uninfected cellular membranes into close proximity and induce transport of viral and cellular factors to the VS for efficient virion assembly and HIV-1 transmission. Using novel, cell-specific stable isotope labeling and quantitative mass spectrometric proteomics, we identified extensive changes in the levels and phosphorylation states of proteins in HIV-1 infected producer cells upon mixing with CD4+ target cells under conditions inducing VS formation. These coculture-induced alterations involved multiple cellular pathways including transcription, TCR signaling and, unexpectedly, cell cycle regulation, and were dominated by Env-dependent responses. We confirmed the proteomic results using inhibitors targeting regulatory kinases and phosphatases in selected pathways identified by our proteomic analysis. Strikingly, inhibiting the key mitotic regulator Aurora kinase B (AURKB) in HIV-1 infected cells significantly increased HIV activity in cell-to-cell fusion and transmission but had little effect on cell-free infection. Consistent with this, we found that AURKB regulates the fusogenic activity of HIV-1 Env. In the Jurkat T cell line and primary T cells, HIV-1 Env:CD4 interaction also dramatically induced cell cycle-independent AURKB relocalization to the centromere, and this signaling required the long (150 aa) cytoplasmic C-terminal domain (CTD) of Env. These results imply that cytoplasmic/plasma membrane AURKB restricts HIV-1 envelope fusion, and that this restriction is overcome by Env CTD-induced AURKB relocalization. Taken together, our data reveal a new signaling pathway regulating HIV-1 cell-to-cell transmission and potential new avenues for therapeutic intervention through targeting the Env CTD and AURKB activity.
Collapse
Affiliation(s)
- James W. Bruce
- John and Jeanne Rowe Center for Research in Virology, Morgridge Institute for Research, Madison, Wisconsin, United States of America
- McArdle Laboratory for Cancer Research, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
- Institute for Molecular Virology, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Eunju Park
- John and Jeanne Rowe Center for Research in Virology, Morgridge Institute for Research, Madison, Wisconsin, United States of America
- McArdle Laboratory for Cancer Research, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
- Institute for Molecular Virology, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Chris Magnano
- John and Jeanne Rowe Center for Research in Virology, Morgridge Institute for Research, Madison, Wisconsin, United States of America
- Department of Computer Sciences, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Mark Horswill
- John and Jeanne Rowe Center for Research in Virology, Morgridge Institute for Research, Madison, Wisconsin, United States of America
- McArdle Laboratory for Cancer Research, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
- Institute for Molecular Virology, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Alicia Richards
- Department of Chemistry, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Gregory Potts
- Department of Chemistry, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Alexander Hebert
- Department of Biomolecular Chemistry, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Nafisah Islam
- John and Jeanne Rowe Center for Research in Virology, Morgridge Institute for Research, Madison, Wisconsin, United States of America
- Department of Computer Sciences, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Joshua J. Coon
- Department of Chemistry, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
- Department of Biomolecular Chemistry, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
- Morgridge Institute for Research, Madison, Wisconsin, United States of America
| | - Anthony Gitter
- John and Jeanne Rowe Center for Research in Virology, Morgridge Institute for Research, Madison, Wisconsin, United States of America
- Department of Computer Sciences, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
- Department of Biostatistics and Medical Informatics, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Nathan Sherer
- McArdle Laboratory for Cancer Research, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
- Institute for Molecular Virology, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Paul Ahlquist
- John and Jeanne Rowe Center for Research in Virology, Morgridge Institute for Research, Madison, Wisconsin, United States of America
- McArdle Laboratory for Cancer Research, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
- Institute for Molecular Virology, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
2
|
CircRNAs as Potential Blood Biomarkers and Key Elements in Regulatory Networks in Gastric Cancer. Int J Mol Sci 2022; 23:ijms23020650. [PMID: 35054834 PMCID: PMC8776217 DOI: 10.3390/ijms23020650] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/02/2022] [Accepted: 01/04/2022] [Indexed: 12/21/2022] Open
Abstract
Gastric cancer (GC) is the fifth most common type of cancer and the third leading cause of cancer death in the world. It is a disease that encompasses a variety of molecular alterations, including in non-coding RNAs such as circular RNAs (circRNAs). In the present study, we investigated hsa_circ_0000211, hsa_circ_0000284, hsa_circ_0000524, hsa_circ_0001136 and hsa_circ_0004771 expression profiles using RT-qPCR in 71 gastric tissue samples from GC patients (tumor and tumor-adjacent samples) and volunteers without cancer. In order to investigate the suitability of circRNAs as minimally invasive biomarkers, we also evaluated their expression profile through RT-qPCR in peripheral blood samples from patients with and without GC (n = 41). We also investigated the predicted interactions between circRNA-miRNA-mRNA and circRNA-RBP using the KEGG and Reactome databases. Overall, our results showed that hsa_circ_0000211, hsa_circ_0000284 and hsa_circ_0004771 presented equivalent expression profiles when analyzed by different methods (RNA-Seq and RT-qPCR) and different types of samples (tissue and blood). Further, functional enrichment results identified important signaling pathways related to GC. Thus, our data support the consideration of circRNAs as new, minimally invasive biomarkers capable of aiding in the diagnosis of GC and with great potential to be applied in clinical practice.
Collapse
|
3
|
Yan J, Long Y, Zhou T, Ren J, Li Q, Song G, Cui Z. Dynamic Phosphoproteome Profiling of Zebrafish Embryonic Fibroblasts during Cold Acclimation. Proteomics 2020; 20:e1900257. [PMID: 31826332 DOI: 10.1002/pmic.201900257] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 11/24/2019] [Indexed: 11/09/2022]
Abstract
Temperature affects almost all aspects of the fish life. To cope with low temperature, fish have evolved the ability of cold acclimation for survival. However, intracellular signaling events underlying cold acclimation in fish remain largely unknown. Here, the formation of cold acclimation in zebrafish embryonic fibroblasts (ZF4) is monitored and the phosphorylation events during the process are investigated through a large-scale quantitative phosphoproteomic approach. In total, 11 474 phosphorylation sites are identified on 4066 proteins and quantified 5772 phosphosites on 2519 proteins. Serine, threonine, and tyrosine (Ser/Thr/Tyr) phosphorylation accounted for 85.5%, 13.3%, and 1.2% of total phosphosites, respectively. Among all phosphosites, 702 phosphosites on 510 proteins show differential regulation during cold acclimation of ZF4 cells. These phosphosites are divided into six clusters according to their dynamic changes during cold exposure. Kinase-substrate prediction reveals that mitogen-activated protein kinase (MAPK) among the kinase groups is predominantly responsible for phosphorylation of these phosphosites. The differentially regulated phosphoproteins are functionally associated with various cellular processes such as regulation of actin cytoskeleton and MAPK signaling pathway. These data enrich the database of protein phosphorylation sites in zebrafish and provide key clues for the elucidation of intracellular signaling networks during cold acclimation of fish.
Collapse
Affiliation(s)
- Junjun Yan
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Hubei, Wuhan, 430072, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yong Long
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Hubei, Wuhan, 430072, China
| | - Tong Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Hubei, Wuhan, 430072, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing Ren
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Hubei, Wuhan, 430072, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qing Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Hubei, Wuhan, 430072, China
| | - Guili Song
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Hubei, Wuhan, 430072, China
| | - Zongbin Cui
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Hubei, Wuhan, 430072, China.,The Innovative Academy of Seed Design, Chinese Academy of Sciences, Hubei, Wuhan, 430072, China
| |
Collapse
|
4
|
Schelletter L, Albaum S, Walter S, Noll T, Hoffrogge R. Clonal variations in CHO IGF signaling investigated by SILAC-based phosphoproteomics and LFQ-MS. Appl Microbiol Biotechnol 2019; 103:8127-8143. [DOI: 10.1007/s00253-019-10020-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/08/2019] [Accepted: 07/09/2019] [Indexed: 12/22/2022]
|
5
|
Nakamura H, Fujii K, Gupta V, Hata H, Koizumu H, Hoshikawa M, Naruki S, Miyata Y, Takahashi I, Miyazawa T, Sakai H, Tsumoto K, Takagi M, Saji H, Nishimura T. Identification of key modules and hub genes for small-cell lung carcinoma and large-cell neuroendocrine lung carcinoma by weighted gene co-expression network analysis of clinical tissue-proteomes. PLoS One 2019; 14:e0217105. [PMID: 31166966 PMCID: PMC6550379 DOI: 10.1371/journal.pone.0217105] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 05/03/2019] [Indexed: 12/16/2022] Open
Abstract
Small-cell lung carcinoma (SCLC) and large-cell neuroendocrine lung carcinoma (LCNEC) are high-grade lung neuroendocrine tumors (NET). However, comparative protein expression within SCLC and LCNEC remains unclear. Here, protein expression profiles were obtained via mass spectrometry-based proteomic analysis. Weighted gene co-expression network analysis (WGCNA) identified co-expressed modules and hub genes. Of 34 identified modules, six were significant and selected for protein-protein interaction (PPI) network analysis and pathway enrichment. Within the six modules, the activation of cellular processes and complexes, such as alternative mRNA splicing, translation initiation, nucleosome remodeling and deacetylase (NuRD) complex, SWItch/Sucrose Non-Fermentable (SWI/SNF) superfamily-type complex, chromatin remodeling pathway, and mRNA metabolic processes, were significant to SCLC. Modules enriched in processes, including signal recognition particle (SRP)-dependent co-translational protein targeting to membrane, nuclear-transcribed mRNA catabolic process of nonsense-mediated decay (NMD), and cellular macromolecule catabolic process, were characteristically activated in LCNEC. Novel high-degree hub genes were identified for each module. Master and upstream regulators were predicted via causal network analysis. This study provides an understanding of the molecular differences in tumorigenesis and malignancy between SCLC and LCNEC and may help identify potential therapeutic targets.
Collapse
Affiliation(s)
- Haruhiko Nakamura
- Department of Chest Surgery, St. Marianna University School of Medicine, Kanagawa, Japan
| | - Kiyonaga Fujii
- Department of Translational Medicine Informatics, St. Marianna University School of Medicine, Kanagawa, Japan
| | | | - Hiroko Hata
- Medical Proteomics Laboratory, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Hirotaka Koizumu
- Department of Pathology, St. Marianna University Hospital, Kanagawa, Japan
| | - Masahiro Hoshikawa
- Department of Pathology, St. Marianna University Hospital, Kanagawa, Japan
| | - Saeko Naruki
- Department of Pathology, St. Marianna University Hospital, Kanagawa, Japan
| | - Yuka Miyata
- Corporate Technology Research and Development, NISSHA Co., Kyoto, Japan
| | - Ikuya Takahashi
- Corporate Technology Research and Development, NISSHA Co., Kyoto, Japan
| | - Tomoyuki Miyazawa
- Department of Chest Surgery, St. Marianna University School of Medicine, Kanagawa, Japan
| | - Hiroki Sakai
- Department of Chest Surgery, St. Marianna University School of Medicine, Kanagawa, Japan
| | - Kouhei Tsumoto
- Medical Proteomics Laboratory, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Masayuki Takagi
- Department of Pathology, St. Marianna University Hospital, Kanagawa, Japan
| | - Hisashi Saji
- Department of Chest Surgery, St. Marianna University School of Medicine, Kanagawa, Japan
| | - Toshihide Nishimura
- Department of Translational Medicine Informatics, St. Marianna University School of Medicine, Kanagawa, Japan
| |
Collapse
|
6
|
Zeng W, Du Z, Luo Q, Zhao Y, Wang Y, Wu K, Jia F, Zhang Y, Wang F. Proteomic Strategy for Identification of Proteins Responding to Cisplatin-Damaged DNA. Anal Chem 2019; 91:6035-6042. [PMID: 30990031 DOI: 10.1021/acs.analchem.9b00554] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A new proteomic strategy combining functionalized magnetic nanoparticle affinity probes with mass spectrometry was developed to capture and identify proteins specifically responding to 1,2-d(GpG) intrastrand cisplatin-cross-linked DNA, the major DNA lesion caused by cisplatin and thought to induce apoptosis. A 16-mer oligodeoxynucleotide (ODN) duplex and its cisplatin-cross-linked adduct were immobilized on magnetic nanoparticles via click reaction, respectively, to fabricate negative and positive affinity probes which were very stable in cellular protein extracts due to the excellent bio-orthogonality of click chemistry and the inertness of covalent triazole linker. Quantitative mass spectrometry results unambiguously revealed the predominant binding of HMGB1 and HMGB2, the well-established specific binders of 1,2-cisplatin-cross-linked DNA, to the cisplatin-cross-linked ODN, thus validating the accuracy and reliability of our strategy. Furthermore, 5 RNA or single-stranded DNA binding proteins, namely, hnRNP A/B, RRP44, RL30, RL13, and NCL, were demonstrated to recognize specifically the cisplatinated ODN, indicating the significantly unwound ODN duplex by cisplatin cross-linking. In contrast, the binding of a transcription factor TFIIFa to DNA was retarded due to cisplatin damage, implying that the cisplatin lesion stalls DNA transcription. These findings promote understanding in the cellular responses to cisplatin-damaged DNA and inspire further precise elucidation of the action mechanism of cisplatin.
Collapse
Affiliation(s)
- Wenjuan Zeng
- Beijing National Laboratory for Molecular Sciences; National Centre for Mass Spectrometry in Beijing; CAS Key Laboratory of Analytical Chemistry for Living Biosystems , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , P. R. China.,University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Zhifeng Du
- Beijing National Laboratory for Molecular Sciences; National Centre for Mass Spectrometry in Beijing; CAS Key Laboratory of Analytical Chemistry for Living Biosystems , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , P. R. China
| | - Qun Luo
- Beijing National Laboratory for Molecular Sciences; National Centre for Mass Spectrometry in Beijing; CAS Key Laboratory of Analytical Chemistry for Living Biosystems , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , P. R. China.,University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Yao Zhao
- Beijing National Laboratory for Molecular Sciences; National Centre for Mass Spectrometry in Beijing; CAS Key Laboratory of Analytical Chemistry for Living Biosystems , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , P. R. China
| | - Yuanyuan Wang
- Beijing National Laboratory for Molecular Sciences; National Centre for Mass Spectrometry in Beijing; CAS Key Laboratory of Analytical Chemistry for Living Biosystems , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , P. R. China
| | - Kui Wu
- Beijing National Laboratory for Molecular Sciences; National Centre for Mass Spectrometry in Beijing; CAS Key Laboratory of Analytical Chemistry for Living Biosystems , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , P. R. China
| | - Feifei Jia
- Beijing National Laboratory for Molecular Sciences; National Centre for Mass Spectrometry in Beijing; CAS Key Laboratory of Analytical Chemistry for Living Biosystems , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , P. R. China
| | - Yanyan Zhang
- Beijing National Laboratory for Molecular Sciences; National Centre for Mass Spectrometry in Beijing; CAS Key Laboratory of Analytical Chemistry for Living Biosystems , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , P. R. China
| | - Fuyi Wang
- Beijing National Laboratory for Molecular Sciences; National Centre for Mass Spectrometry in Beijing; CAS Key Laboratory of Analytical Chemistry for Living Biosystems , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , P. R. China.,University of Chinese Academy of Sciences , Beijing 100049 , P. R. China.,Basic Medical College , Shandong University of Chinese Traditional Medicine , Jinan 250355 , P. R. China
| |
Collapse
|
7
|
Pfammatter S, Bonneil E, McManus FP, Thibault P. Accurate Quantitative Proteomic Analyses Using Metabolic Labeling and High Field Asymmetric Waveform Ion Mobility Spectrometry (FAIMS). J Proteome Res 2019; 18:2129-2138. [DOI: 10.1021/acs.jproteome.9b00021] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
8
|
Zhang GL, Zhu Y, Fu WD, Wang P, Zhang RH, Zhang YL, Song Z, Xia GX, Wu JH. iTRAQ Protein Profile Differential Analysis of Dormant and Germinated Grassbur Twin Seeds Reveals that Ribosomal Synthesis and Carbohydrate Metabolism Promote Germination Possibly Through the PI3K Pathway. PLANT & CELL PHYSIOLOGY 2016; 57:1244-1256. [PMID: 27296714 DOI: 10.1093/pcp/pcw074] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 04/03/2016] [Indexed: 06/06/2023]
Abstract
Grassbur is a destructive and invasive weed in pastures, and its burs can cause gastric damage to animals. The strong adaptability and reproductive potential of grassbur are partly due to a unique germination mechanism whereby twin seeds develop in a single bur: one seed germinates, but the other remains dormant. To investigate the molecular mechanism of seed germination in twin seeds, we used isobaric tags for relative and absolute quantitation (iTRAQ) to perform a dynamic proteomic analysis of germination and dormancy. A total of 1,984 proteins were identified, 161 of which were considered to be differentially accumulated. The differentially accumulated proteins comprised 102 up-regulated and 59 down-regulated proteins. These proteins were grouped into seven functional categories, ribosomal proteins being the predominant group. The authenticity and accuracy of the results were confirmed by enzyme-linked immunosorbent assay (ELISA) and quantitative real-time reverse transcription-PCR (qPCR). A dynamic proteomic analysis revealed that ribosome synthesis and carbohydrate metabolism affect seed germination possibly through the phosphoinositide 3-kinase (PI3K) pathway. As the PI3K pathway is generally activated by insulin, analyses of seeds treated with exogenous insulin by qPCR, ELISA and iTRAQ confirmed that the PI3K pathway can be activated, which suppresses dormancy and promotes germination in twin grassbur seeds. Together, these results show that the PI3K pathway may play roles in stimulating seed germination in grassbur by modulating ribosomal synthesis and carbohydrate metabolism.
Collapse
Affiliation(s)
- Guo-Liang Zhang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 10081, China
| | - Yue Zhu
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 10081, China The State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wei-Dong Fu
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 10081, China
| | - Peng Wang
- The State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Rui-Hai Zhang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 10081, China
| | - Yan-Lei Zhang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 10081, China
| | - Zhen Song
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 10081, China
| | - Gui-Xian Xia
- The State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jia-He Wu
- The State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
9
|
Wang R, Ferraris JD, Izumi Y, Dmitrieva N, Ramkissoon K, Wang G, Gucek M, Burg MB. Global discovery of high-NaCl-induced changes of protein phosphorylation. Am J Physiol Cell Physiol 2014; 307:C442-54. [PMID: 24965592 DOI: 10.1152/ajpcell.00379.2013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
High extracellular NaCl, such as in the renal medulla, can perturb and even kill cells, but cells mount protective responses that enable them to survive and function. Many high-NaCl-induced perturbations and protective responses are known, but the signaling pathways involved are less clear. Change in protein phosphorylation is a common mode of cell signaling, but there was no unbiased survey of protein phosphorylation in response to high NaCl. We used stable isotopic labeling of amino acids in cell culture coupled to mass spectrometry to identify changes in protein phosphorylation in human embryonic kidney (HEK 293) cells exposed to high NaCl. We reproducibly identify >8,000 unique phosphopeptides in 4 biological replicate samples with a 1% false discovery rate. High NaCl significantly changed phosphorylation of 253 proteins. Western analysis and targeted ion selection mass spectrometry confirm a representative sample of the phosphorylation events. We analyze the affected proteins by functional category to infer how altered protein phosphorylation might signal cellular responses to high NaCl, including alteration of cell cycle, cyto/nucleoskeletal organization, DNA double-strand breaks, transcription, proteostasis, metabolism of mRNA, and cell death.
Collapse
Affiliation(s)
- Rong Wang
- Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Joan D Ferraris
- Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Yuichiro Izumi
- Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Natalia Dmitrieva
- Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Kevin Ramkissoon
- Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Guanghui Wang
- Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Marjan Gucek
- Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Maurice B Burg
- Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
10
|
Mullen Davis MA, Guo J, Price DH, Luse DS. Functional interactions of the RNA polymerase II-interacting proteins Gdown1 and TFIIF. J Biol Chem 2014; 289:11143-11152. [PMID: 24596085 DOI: 10.1074/jbc.m113.544395] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Gdown1, the substoichiometric 13th subunit of RNA polymerase II (pol II), has an important role in pausing during the initial stage of transcript elongation. However, Gdown1 quantitatively displaces the essential initiation factor TFIIF from free pol II and elongating pol II. Thus, it is not clear how or even if pol II can initiate in the presence of Gdown1. Using an in vitro transcription system with purified factors and pol II lacking Gdown1, we found that although Gdown1 is strongly inhibitory to transcription when prebound to pol II, a fraction of complexes do remain active. Surprisingly, when Gdown1 is added to complete preinitiation complexes (PICs), it does not inhibit initiation or functionally associate with the PICs. Gdown1 does associate with pol II during the early stage of transcript elongation but this association is competitive with TFIIF. By phosphorylating TFIIF, PICs can be assembled that do not retain TFIIF. Gdown1 also fails to functionally associate with these TFIIF-less PICs, but once polymerase enters transcript elongation, complexes lacking TFIIF quantitatively bind Gdown1. Our results provide a partial resolution of the paradox of the competition between Gdown1 and TFIIF for association with pol II. Although Gdown1 completely displaces TFIIF from free pol II and elongation complexes, Gdown1 does not functionally associate with the PIC. Gdown1 can enter the transcription complex immediately after initiation. Modification of TFIIF provides one pathway through which efficient Gdown1 loading can occur early in elongation, allowing downstream pausing to be regulated.
Collapse
Affiliation(s)
- Melissa A Mullen Davis
- Department of Molecular Genetics, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195 and
| | | | - David H Price
- Department of Biochemistry and; Molecular and Cellular Biology Program, University of Iowa, Iowa City, Iowa 52242
| | - Donal S Luse
- Department of Molecular Genetics, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195 and.
| |
Collapse
|
11
|
Luse DS. Rethinking the role of TFIIF in transcript initiation by RNA polymerase II. Transcription 2012; 3:156-9. [PMID: 22771986 DOI: 10.4161/trns.20725] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
TFIIF is considered to be a general transcription factor, based on the fact that it is essential for assembly of RNA polymerase II preinitiation complexes on fully double-stranded templates in vitro. Existing models assign various tasks to TFIIF during preinitiation complex formation and transcript initiation. Recent results do not support all aspects of those models but they do emphasize the significance of the interaction of TFIIF and TFIIB. Other recent findings raise the possibility that a fraction of RNA polymerase II transcription complex assembly proceeds through a pathway that is independent of TFIIF.
Collapse
|
12
|
Transcription factor TFIIF is not required for initiation by RNA polymerase II, but it is essential to stabilize transcription factor TFIIB in early elongation complexes. Proc Natl Acad Sci U S A 2011; 108:15786-91. [PMID: 21896726 DOI: 10.1073/pnas.1104591108] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Transcription factors TFIIB and TFIIF are both required for RNA polymerase II preinitiation complex (PIC) assembly, but their roles at and downstream of initiation are not clear. We now show that TFIIF phosphorylated by casein kinase 2 remains competent to support PIC assembly but is not stably retained in the PIC. PICs completely lacking TFIIF are not defective in initiation or subsequent promoter clearance, demonstrating that TFIIF is not required for initiation or clearance. Lack of TFIIF in the PIC reduces transcription levels at some promoters, coincident with reduced retention of TFIIB. TFIIB is normally associated with the early elongation complex and is only destabilized at +12 to +13. However, if TFIIF is not retained in the PIC, TFIIB can be lost immediately after initiation. TFIIF therefore has an important role in stabilizing TFIIB within the PIC and after transcription initiates.
Collapse
|
13
|
Újvári A, Pal M, Luse DS. The functions of TFIIF during initiation and transcript elongation are differentially affected by phosphorylation by casein kinase 2. J Biol Chem 2011; 286:23160-7. [PMID: 21566144 DOI: 10.1074/jbc.m110.205658] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The RNA polymerase II (pol II) initiation and elongation factor elongation factor TFIIF can be extensively phosphorylated in vivo, although the significance of this modification has not been clear. We now show that phosphorylation of recombinant TFIIF by casein kinase 2 (CK2) reduces or eliminates some of the functions of TFIIF while paradoxically leaving others intact. Phospho-IIF is fully functional in binding to free pol II and is able to support the initiation of transcription. However, the phosphorylated factor does not bind to stalled elongation complexes as measured in a gel mobility shift assay. Significantly, phosphorylation strongly reduces (or for some truncated versions of RAP74, eliminates) stimulation of transcript elongation by TFIIF. Thus, although TFIIF must participate at the initiation of transcription, its ability to continue its association with pol II and stimulate transcript elongation can be specifically regulated by CK2. This is particularly interesting because CK2 is required for initiation at a subset of pol II promoters. Modulation of TFIIF function could be important in controlling promoter-proximal pausing by pol II during the early stage of transcript elongation.
Collapse
Affiliation(s)
- Andrea Újvári
- Department of Molecular Genetics, Lerner Research Institute, The Cleveland Clinic, Cleveland, Ohio 44195, USA
| | | | | |
Collapse
|
14
|
Su YJ, Tsai MS, Kuo YH, Chiu YF, Cheng CM, Lin ST, Lin YW. Role of Rad51 down-regulation and extracellular signal-regulated kinases 1 and 2 inactivation in emodin and mitomycin C-induced synergistic cytotoxicity in human non-small-cell lung cancer cells. Mol Pharmacol 2010; 77:633-43. [PMID: 20042515 DOI: 10.1124/mol.109.061887] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Emodin (1,3,8-trihydroxy-6-methyl-anthraquinone) is a natural anthraquinone derivative found in the roots and rhizomes of numerous plants. It is a tyrosine kinase inhibitor and has anticancer effects on lung cancer. Rad51 plays a central role in homologous recombination, and high levels of Rad51 expression are observed in chemo- or radioresistant carcinomas. Our previous studies have shown that the mitogen-activated protein kinase kinase (MKK) 1/2-extracellular signal-regulated kinase (ERK) 1/2 signal pathway maintains the expression of Rad51. Therefore, in this study, we hypothesized that emodin could enhance the effects of the antitumor antibiotic mitomycin C (MMC)-mediated cytotoxicity by decreasing the expression of Rad51 and the phosphorylation of ERK1/2. Exposure of the human non-small-cell lung cancer H1703 or A549 cell lines to emodin decreased the MMC-elicited phosphorylated ERK1/2 and Rad51 levels. Moreover, emodin significantly decreased the MMC-elicited Rad51 mRNA and protein levels by increasing the instability of Rad51 mRNA and protein. In emodin- and MMC-cotreated cells, ERK1/2 phosphorylation was enhanced by constitutively active MKK1/2 (MKK1/2-CA), thus increasing Rad51 protein levels and protein stability. The synergistic cytotoxic effects induced by emodin combined with MMC were remarkably decreased by MKK1-CA-mediated enhancement of ERK1/2 activation. Depletion of endogenous Rad51 expression by small interfering Rad51 RNA transfection significantly enhanced MMC-induced cell death and cell growth inhibition. In contrast, overexpression of Rad51 protects lung cancer cells from the synergistic cytotoxic effects induced by emodin and MMC. We conclude that suppression of Rad51 expression or a combination of emodin with chemotherapeutic agents may be considered as potential therapeutic modalities for lung cancer.
Collapse
Affiliation(s)
- Ying-Jhen Su
- Molecular Oncology Laboratory, Department of Biochemical Science and Technology, National Chiayi University, Chiayi, Taiwan
| | | | | | | | | | | | | |
Collapse
|
15
|
Høiby T, Zhou H, Mitsiou DJ, Stunnenberg HG. A facelift for the general transcription factor TFIIA. ACTA ACUST UNITED AC 2007; 1769:429-36. [PMID: 17560669 DOI: 10.1016/j.bbaexp.2007.04.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2007] [Revised: 04/20/2007] [Accepted: 04/24/2007] [Indexed: 10/23/2022]
Abstract
TFIIA was classified as a general transcription factor when it was first identified. Since then it has been debated to what extent it can actually be regarded as "general". The most notable feature of TFIIA is the proteolytical cleavage of the TFIIAalphabeta into a TFIIAalpha and TFIIAbeta moiety which has long remained a mystery. Recent studies have showed that TFIIA is cleaved by Taspase1 which was initially identified as the protease for the proto-oncogene MLL. Cleavage of TFIIA does not appear to serve as a step required for its activation as the uncleaved TFIIA in the Taspase1 knock-outs adequately support bulk transcription. Instead, cleavage of TFIIA seems to affect its turn-over and may be a part of an intricate degradation mechanism that allows fine-tuning of cellular levels of TFIIA. Cleavage might also be responsible for switching transcription program as the uncleaved and cleaved TFIIA might have distinct promoter specificity during development and differentiation. This review will focus on functional characteristics of TFIIA and discuss novel insights in the role of this elusive transcription factor.
Collapse
Affiliation(s)
- Torill Høiby
- NCMLS, Department of Molecular Biology, 191, Radboud University of Nijmegen, PO Box 91001, 6500 HB Nijmegen, The Netherlands
| | | | | | | |
Collapse
|
16
|
Abstract
In eukaryotes, the core promoter serves as a platform for the assembly of transcription preinitiation complex (PIC) that includes TFIIA, TFIIB, TFIID, TFIIE, TFIIF, TFIIH, and RNA polymerase II (pol II), which function collectively to specify the transcription start site. PIC formation usually begins with TFIID binding to the TATA box, initiator, and/or downstream promoter element (DPE) found in most core promoters, followed by the entry of other general transcription factors (GTFs) and pol II through either a sequential assembly or a preassembled pol II holoenzyme pathway. Formation of this promoter-bound complex is sufficient for a basal level of transcription. However, for activator-dependent (or regulated) transcription, general cofactors are often required to transmit regulatory signals between gene-specific activators and the general transcription machinery. Three classes of general cofactors, including TBP-associated factors (TAFs), Mediator, and upstream stimulatory activity (USA)-derived positive cofactors (PC1/PARP-1, PC2, PC3/DNA topoisomerase I, and PC4) and negative cofactor 1 (NC1/HMGB1), normally function independently or in combination to fine-tune the promoter activity in a gene-specific or cell-type-specific manner. In addition, other cofactors, such as TAF1, BTAF1, and negative cofactor 2 (NC2), can also modulate TBP or TFIID binding to the core promoter. In general, these cofactors are capable of repressing basal transcription when activators are absent and stimulating transcription in the presence of activators. Here we review the roles of these cofactors and GTFs, as well as TBP-related factors (TRFs), TAF-containing complexes (TFTC, SAGA, SLIK/SALSA, STAGA, and PRC1) and TAF variants, in pol II-mediated transcription, with emphasis on the events occurring after the chromatin has been remodeled but prior to the formation of the first phosphodiester bond.
Collapse
Affiliation(s)
- Mary C Thomas
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH 44106-4935, USA
| | | |
Collapse
|
17
|
Cabrejos ME, Allende CC, Maldonado E. Effects of phosphorylation by protein kinase CK2 on the human basal components of the RNA polymerase II transcription machinery. J Cell Biochem 2005; 93:2-10. [PMID: 15352156 DOI: 10.1002/jcb.20209] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
We have investigated the role of phosphorylation by vertebrate protein kinase CK2 on the activity of the General Transcription Factors TFIIA, TFIIE, TFIIF, and RNAPII. The largest subunits of TFIIA, TFIIE, and TFIIF were phosphorylated by CK2 holoenzyme. Also, RNA polymerase II was phosphorylated by CK2 in the 214,000 and 20,500 daltons subunits. Our results show that phosphorylation of TFIIA, TFIIF, and RNAPII increase the formation of complexes on the TATA box of the Ad-MLP promoter. Also, phosphorylation of TFIIF increases the formation of transcripts, where as phosphorylation of RNA polymerase II dramatically inhibits transcript formation. Furthermore, we demonstrate that CK2 beta directly interacts with RNA polymerase II, TFIIA, TFIIF, and TBP. These results strongly suggest that CK2 may play a role in regulating transcription of protein coding genes.
Collapse
Affiliation(s)
- María Eugenia Cabrejos
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Casilla 70086, Santiago 7, Chile
| | | | | |
Collapse
|
18
|
Sims RJ, Belotserkovskaya R, Reinberg D. Elongation by RNA polymerase II: the short and long of it. Genes Dev 2004; 18:2437-68. [PMID: 15489290 DOI: 10.1101/gad.1235904] [Citation(s) in RCA: 538] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Appreciable advances into the process of transcript elongation by RNA polymerase II (RNAP II) have identified this stage as a dynamic and highly regulated step of the transcription cycle. Here, we discuss the many factors that regulate the elongation stage of transcription. Our discussion includes the classical elongation factors that modulate the activity of RNAP II, and the more recently identified factors that facilitate elongation on chromatin templates. Additionally, we discuss the factors that associate with RNAP II, but do not modulate its catalytic activity. Elongation is highlighted as a central process that coordinates multiple stages in mRNA biogenesis and maturation.
Collapse
Affiliation(s)
- Robert J Sims
- Howard Hughes Medical Institute, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA
| | | | | |
Collapse
|
19
|
Trembley JH, Loyer P, Hu D, Li T, Grenet J, Lahti JM, Kidd VJ. Cyclin Dependent Kinase 11 in RNA Transcription and Splicing. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY VOLUME 77 2004; 77:263-88. [PMID: 15196895 DOI: 10.1016/s0079-6603(04)77007-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Janeen H Trembley
- Department of Genetics and Tumor Cell Biology, St. Jude Children's Research Hospital, 332 N. Lauderdale, Memphis, TN 38105 USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Affiliation(s)
- Frédéric Coin
- Institut de Genetique et de Biologie Moleculaire et Cellulaire, Dept. of Transcription, CNRS/INSERM/ULP, B.P. 162, 67404 Illkirch, C.U. de Strasbourg, France
| | | |
Collapse
|
21
|
Palancade B, Dubois MF, Bensaude O. FCP1 phosphorylation by casein kinase 2 enhances binding to TFIIF and RNA polymerase II carboxyl-terminal domain phosphatase activity. J Biol Chem 2002; 277:36061-7. [PMID: 12138108 DOI: 10.1074/jbc.m205192200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Dephosphorylation of RNA polymerase II carboxyl-terminal domain (CTD) is required to resume sequential transcription cycles. FCP1 (TFIIF-dependent CTD phosphatase 1) is the only known phosphatase targeting RNAP II CTD. Here we show that in Xenopus laevis cells, xFCP1 is a phosphoprotein. On the basis of biochemical fractionation and drug sensitivity, casein kinase 2 (CK2) is shown to be the major kinase involved in xFCP1 phosphorylation in X. laevis egg extracts. CK2 phosphorylates xFCP1 mainly at a cluster of serines centered on Ser(457). CK2-dependent phosphorylation enhances 4-fold the CTD phosphatase activity of FCP1 and its binding to the RAP74 subunit of general transcription factor TFIIF. These findings unravel a new mechanism regulating CTD phosphorylation and hence class II gene transcription.
Collapse
Affiliation(s)
- Benoît Palancade
- UMR 8541 CNRS, Génétique Moléculaire, Ecole Normale Supérieure, 46 rue d'Ulm, 75230 Paris Cedex 05, France
| | | | | |
Collapse
|
22
|
Kobor MS, Greenblatt J. Regulation of transcription elongation by phosphorylation. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1577:261-275. [PMID: 12213657 DOI: 10.1016/s0167-4781(02)00457-8] [Citation(s) in RCA: 153] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The synthesis of mRNA by RNA polymerase II (RNAPII) is a multistep process that is regulated by different mechanisms. One important aspect of transcriptional regulation is phosphorylation of components of the transcription apparatus. The phosphorylation state of RNAPII carboxy-terminal domain (CTD) is controlled by a variety of protein kinases and at least one protein phosphatase. We discuss emerging genetic and biochemical evidence that points to a role of these factors not only in transcription initiation but also in elongation and possibly termination. In addition, we review phosphorylation events involving some of the general transcription factors (GTFs) and other regulatory proteins. As an interesting example, we describe the modulation of transcription associated kinases and phosphatase by the HIV Tat protein. We focus on bringing together recent findings and propose a revised model for the RNAPII phosphorylation cycle.
Collapse
Affiliation(s)
- Michael S Kobor
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | | |
Collapse
|
23
|
Fu M, Wang C, Wang J, Zafonte BT, Lisanti MP, Pestell RG. Acetylation in hormone signaling and the cell cycle. Cytokine Growth Factor Rev 2002; 13:259-76. [PMID: 12486878 DOI: 10.1016/s1359-6101(02)00003-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The last decade has seen a substantial change in thinking about the role of acetylation in regulating diverse cellular processes. The correlation between histone acetylation and gene transcription has been known for many years. The cloning and biochemical characterization of the enzymes that regulate this post-translational modification has led to an understanding of the diverse role histone acetyltransferases (HATs) play in cellular function. Histone acetylases modify histones, transcription factors, co-activators, nuclear transport proteins, structural proteins and components of the cell cycle. This review focuses on the role of histone acetylases in coordinating hormone signaling and the cell cycle. Transition through the cell cycle is regulated by a family of protein kinase holoenzymes, the cyclin-dependent kinases (Cdks) and their heterodimeric cyclin partners. Recent studies have identified important cross-talk between the cell cycle regulatory apparatus and proteins regulating histone acetylation. The evidence for a dynamic interplay between components regulating the cell cycle and acetylation of target substrates provides an important new level of complexity in the mechanisms governing hormone signaling.
Collapse
Affiliation(s)
- Maofu Fu
- Division of Hormone-Dependent Tumor Biology, Albert Einstein Comprehensive Cancer Center, Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Chanin 302, 1300 Morris Park Ave, Bronx, NY 10461, USA
| | | | | | | | | | | |
Collapse
|
24
|
Zhao B, Butler AP. Core promoter involvement in the induction of rat ornithine decarboxylase by phorbol esters. Mol Carcinog 2001; 32:92-9. [PMID: 11746821 DOI: 10.1002/mc.1068] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Overexpression of ornithine decarboxylase (ODC) is an important oncogenic event in tumorigenesis. Although ODC was one of the first genes described whose product is inducible by 12-O-tetradecanoylphorbol-13-acetate (TPA), the mechanisms of ODC transcriptional regulation have remained elusive. In this study, we systematically analyzed the rat ODC core promoter region for novel TPA response elements. Analysis of linker scanning mutants of the ODC promoter from the TATA box to the transcription start site demonstrated that mutation of the TATA box reduced the TPA induction ratio by 40%, while the basal ODC promoter activity was not significantly changed. A novel region between nt - 20 to - 10 was shown to be critical for both basal promoter activity and induction by TPA. Random mutagenesis of this region showed that conversion of the GC-rich wild-type sequence into a T-rich sequence could either substantially increase the basal promoter activity and decrease the TPA induction ratio or dramatically reduce the basal promoter activity, depending on the T content. Mutant R5, containing an ATTT sequence at nt - 15 to - 12, caused a more than twofold increase of basal promoter activity and 80% reduction of TPA induction ratio. We suggest that this region interacts with components of the general transcription machinery and that the strength of this interaction is mediated by the T-content in this region.
Collapse
Affiliation(s)
- B Zhao
- The University of Texas M. D. Anderson Cancer Center, Science Park-Research Division, Smithville, Texas 78957, USA
| | | |
Collapse
|
25
|
Affiliation(s)
- P Cheung
- University of Virginia Health Sciences Center, Department of Biochemistry and Molecular Genetics, Charlottesville, Virginia 22908, USA
| | | | | |
Collapse
|
26
|
Abstract
TFIIH is a multiprotein complex required for both transcription and DNA repair. Single particles of human TFIIH were revealed by electron microscopy and image processing at a resolution of 3.8 nm. TFIIH is 16 x 12.5 x 7.5 nm in size and is organized into a ring-like structure from which a large protein domain protrudes out. A subcomplex assembled from five recombinant core subunits also forms a circular architecture that can be superimposed on the ring found in human TFIIH. Immunolabeling experiments localize several subunits: p44, within the ring structure, forms the base of the protruding protein density which includes the cdk7 kinase, cyclin H, and MAT1. Within the ring structure, p44 was flanked on either side by the XPB and XPD helicases. These observations provide us with a quartenary organizational model of TFIIH.
Collapse
Affiliation(s)
- P Schultz
- Institut de Génétique et de Biologie Moléclaire et Cellulaire, CNRS/INSERM/ULP, Illkirch, France.
| | | | | | | | | | | |
Collapse
|
27
|
Abstract
Phosphorylation appears to be one mechanism in the regulation of transcription. Indeed, a multitude of factors involved in distinct steps of transcription, including RNA polymerase II, the general transcription factors, pre-mRNA processing factors, and transcription activators/repressors are phosphoproteins and serve as substrates for multiple kinases. Among these substrates, most attention has been paid in recent years to the phosphorylation of the carboxyl-terminal domain (CTD) of RNA polymerase II and its role in transcription regulation. Kinases responsible for such CTD phosphorylation that are associated with RNA polymerase II at distinct steps of transcription, such as cdk7 and cdk8, also phosphorylate some other components of the transcription machinery in a regulatory manner. These observations enlighten the pivotal role of such kinases in an entangled regulation of transcription by phosphorylation. Summarizing the phosphorylation of various components of the transcription machinery, we point out the variety of steps in transcription that are regulated by such protein modifications, envisioning an interconnection of the several stages of mRNA synthesis by phosphorylation.
Collapse
Affiliation(s)
- Thilo Riedl
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, BP 163, 67404 Illkirch Cedex, France
| | - Jean-Marc Egly
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, BP 163, 67404 Illkirch Cedex, France
- Address correspondence to Jean Marc Egly, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, BP 163, 67404 ILLKIRCH Cedex, France. Tel: (33) 3 88 65 34 47; Fax: (33) 3 88 65 32 01; E-mail:
| |
Collapse
|