1
|
Lv D, Lin Z, Liao X, Peng R, Liu H, Wu T, Wu K, Sun Y, Zhang Z. Sfrp2 promotes renal dysfunction of diabetic kidney disease via modulating Fzd5-induced cytosolic calcium ion concentration and CaMKII/Mek/Erk pathway in mesangial cells. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166933. [PMID: 37951508 DOI: 10.1016/j.bbadis.2023.166933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 11/14/2023]
Abstract
OBJECTIVE Mesangial cells (MCs) in the kidney play central role in maintaining glomerular integrity, and their abnormal proliferation leads to major glomerular diseases including diabetic kidney disease (DKD). Although high blood glucose elicits MCs impairment, the underlying molecular mechanism is poorly understood. The present study aimed to investigate the effect of secreted frizzled-related protein 2 (Sfrp2) from single-nucleus RNA profiling on MC proliferation of DKD in vitro and in vivo and explored the specific mechanisms. RESULTS By snRNA-seq analysis of isolated renal cells from leptin receptor-deficient db/db mice and control db/m mice, we found that Sfrp2 was increased in the MCs of DKD in comparison to other intrinsic renal cells, which was further verified in vitro and in vivo. We also found that the expression of Sfrp2 was significantly upregulated in DKD patients and correlated with renal function, demonstrating that Sfrp2 might serve as an independent biomarker for DKD patients. Functionally, we showed the loss and acquisition of Sfrp2 affected cytosolic Ca2+ concentration, cell proliferation and fibrosis of MC, albuminuria and kidney injury in vitro and in vivo. Mechanistically, we identify c-Jun as a transcription factor of Sfrp2 promoting its transcription, and the Ca2+ signaling related protein frizzled receptor 5 (Fzd5) as the binding protein of Sfrp2. And we further found Sfrp2 promoted Fzd5-induced cytosolic Ca2+ concentration and the downstream CaMKII/Mek/Erk pathway activation, leading to MC proliferation and fibrosis in DKD. CONCLUSION Our study revealed a novel involvement for Sfrp2 in the regulation of MC function and the effect of Sfrp2 on cell proliferation and fibrosis of MC via the Fzd5/Ca2+/CaMKII/Mek/Erk pathway, implying that Sfrp2 may be a possible biomarker and therapeutic target for DKD.
Collapse
Affiliation(s)
- Dan Lv
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Ziyue Lin
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Xiaohui Liao
- Department of Nephrology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Rui Peng
- Department of Bioinformatics, Chongqing Medical University, Chongqing 400016, China
| | - Handeng Liu
- Laboratory of Tissue and Cell Biology, Experimental Teaching Center, Chongqing Medical University, Chongqing 400016, China
| | - Tianhui Wu
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Keqian Wu
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Yan Sun
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China.
| | - Zheng Zhang
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
2
|
Pan P, Geng T, Li Z, Ding X, Shi M, Li Y, Wang Y, Shi Y, Wu J, Zhong L, Ji D, Li Z, Meng X. Design, Synthesis, and Biological Evaluation of Proteolysis-Targeting Chimeras as Highly Selective and Efficient Degraders of Extracellular Signal-Regulated Kinase 5. J Med Chem 2023; 66:13568-13586. [PMID: 37751283 DOI: 10.1021/acs.jmedchem.3c00864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Extracellular signal-regulated kinase 5 (ERK5) is recognized as a key member of the mitogen-activated protein kinase family and is involved in tumor growth, migration, and angiogenesis. However, the results of ERK5 inhibition in multiple studies are controversial, and a highly specific ERK5-targeting agent is required to confirm physiological functions. Using proteolysis-targeting chimera technology, we designed the selective ERK5 degrader PPM-3 and examined its biological effect on cancer cells. Interestingly, the selective degradation of ERK5 with PPM-3 did not influence tumor cell growth directly. Based on proteomics analysis, the ERK5 deletion may be associated with tumor immunity. PPM-3 influences tumor development by affecting the differentiation of macrophages. Therefore, PPM-3 is an effective small-molecule tool for studying ERK5 and a promising immunotherapy drug candidate.
Collapse
Affiliation(s)
- Pengming Pan
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Tongtong Geng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Zhongtang Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xuyang Ding
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Mengyuan Shi
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery III, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Yang Li
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yashuai Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yuanyuan Shi
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Jiaojiao Wu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Liang Zhong
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Dengbo Ji
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery III, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Zhongjun Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xiangbao Meng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| |
Collapse
|
3
|
Le NT. The significance of ERK5 catalytic-independent functions in disease pathways. Front Cell Dev Biol 2023; 11:1235217. [PMID: 37601096 PMCID: PMC10436230 DOI: 10.3389/fcell.2023.1235217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 07/26/2023] [Indexed: 08/22/2023] Open
Abstract
Extracellular signal-regulated kinase 5 (ERK5), also known as BMK1 or MAPK7, represents a recent addition to the classical mitogen-activated protein kinase (MAPK) family. This family includes well-known members such as ERK1/2, c-Jun N-terminal kinase (JNK), and p38 mitogen-activated protein kinase (p38 MAPK), as well as atypical MAPKs such as ERK3, ERK4, ERK7 (ERK8), and Nemo-like kinase (NLK). Comprehensive reviews available elsewhere provide detailed insights into ERK5, which interested readers can refer to for in-depth knowledge (Nithianandarajah-Jones et al., 2012; Monti et al., Cancers (Basel), 2022, 14). The primary aim of this review is to emphasize the essential characteristics of ERK5 and shed light on the intricate nature of its activation, with particular attention to the catalytic-independent functions in disease pathways.
Collapse
Affiliation(s)
- Nhat-Tu Le
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
| |
Collapse
|
4
|
El-Deeb AM, Mohamed AF, El-Yamany MF, El-Tanbouly DM. Novel trajectories of the NK1R antagonist aprepitant in rotenone-induced Parkinsonism-like symptoms in rats: Involvement of ERK5/KLF4/p62/Nrf2 signaling axis. Chem Biol Interact 2023; 380:110562. [PMID: 37224993 DOI: 10.1016/j.cbi.2023.110562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/09/2023] [Accepted: 05/22/2023] [Indexed: 05/26/2023]
Abstract
Regulation of the interplay between autophagy and oxidative stress is vital in maintaining neuronal homeostasis during neurotoxicity. The interesting involvement of NK1 receptor (NK1R) in neurodegeneration has highlighted the value of investigating the neuroprotective effect of aprepitant (Aprep), an NK1R antagonist in Parkinson's disease (PD). This study was conducted to disclose Aprep's ability to modulate extracellular signal-regulated kinase 5/Krüppel-like factor 4 (ERK5/KLF4) cue as molecular signaling implicated in regulating autophagy and redox signaling in response to rotenone neurotoxicity. Rotenone (1.5 mg/kg) was administered on alternate days, and rats were given Aprep simultaneously with or without PD98059, an ERK inhibitor, for 21 days. Aprep ameliorated motor deficits as verified by restored histological features, and intact neurons count in SN and striata along with tyrosine hydroxylase immunoreactivity in SN. The molecular signaling of Aprep was illustrated by the expression of KLF4 following the phosphorylation of its upstream target, ERK5. Nuclear factor erythroid 2-related factor 2 (Nrf2) was up-regulated, shifting the oxidant/antioxidant balance towards the antioxidant side, as evidenced by elevated GSH and suppressed MDA levels. In parallel, Aprep noticeably reduced phosphorylated α-synuclein aggregates due to autophagy induction as emphasized by marked LC3II/LC3I elevation and p62 level reduction. These effects were diminished upon PD98059 pre-administration. In conclusion, Aprep showed neuroprotective effects against rotenone-induced PD, which may be partially attributed to the activation of the ERK5/KLF4 signaling pathway. It modulated p62-mediated autophagy and Nrf2 axis which act cooperatively to counter rotenone-associated neurotoxicity pointing to Aprep's prospect as a curious candidate in PD research.
Collapse
Affiliation(s)
- Asmaa M El-Deeb
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, 11562, Egypt
| | - Ahmed F Mohamed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, 11562, Egypt.
| | - Mohammed F El-Yamany
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, 11562, Egypt
| | - Dalia M El-Tanbouly
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, 11562, Egypt
| |
Collapse
|
5
|
Miller D, Harnor SJ, Martin MP, Noble RA, Wedge SR, Cano C. Modulation of ERK5 Activity as a Therapeutic Anti-Cancer Strategy. J Med Chem 2023; 66:4491-4502. [PMID: 37002872 PMCID: PMC10108346 DOI: 10.1021/acs.jmedchem.3c00072] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Indexed: 04/03/2023]
Abstract
The extracellular signal-regulated kinase 5 (ERK5) signaling pathway is one of four conventional mitogen-activated protein (MAP) kinase pathways. Genetic perturbation of ERK5 has suggested that modulation of ERK5 activity may have therapeutic potential in cancer chemotherapy. This Miniperspective examines the evidence for ERK5 as a drug target in cancer, the structure of ERK5, and the evolution of structurally distinct chemotypes of ERK5 kinase domain inhibitors. The emerging complexities of ERK5 pharmacology are discussed, including the confounding phenomenon of paradoxical ERK5 activation by small-molecule ERK5 inhibitors. The impact of the recent development and biological evaluation of potent and selective bifunctional degraders of ERK5 and future opportunities in ERK modulation are also explored.
Collapse
Affiliation(s)
- Duncan
C. Miller
- Cancer
Research Horizons Therapeutic Innovation, Newcastle Drug Discovery
Group, Newcastle University Centre for Cancer, School of Natural and
Environmental Sciences, Newcastle University, Bedson Building, Newcastle upon Tyne NE1 7RU, United Kingdom
| | - Suzannah J. Harnor
- Cancer
Research Horizons Therapeutic Innovation, Newcastle Drug Discovery
Group, Newcastle University Centre for Cancer, School of Natural and
Environmental Sciences, Newcastle University, Bedson Building, Newcastle upon Tyne NE1 7RU, United Kingdom
| | - Mathew P. Martin
- Cancer
Research Horizons Therapeutic Innovation, Newcastle Drug Discovery
Group, Translational and Clinical Research
Institute, Paul O’Gorman Building, Medical School, Framlington Place, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Richard A. Noble
- Cancer
Research Horizons Therapeutic Innovation, Newcastle Drug Discovery
Group, Translational and Clinical Research
Institute, Paul O’Gorman Building, Medical School, Framlington Place, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Stephen R. Wedge
- Cancer
Research Horizons Therapeutic Innovation, Newcastle Drug Discovery
Group, Translational and Clinical Research
Institute, Paul O’Gorman Building, Medical School, Framlington Place, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Celine Cano
- Cancer
Research Horizons Therapeutic Innovation, Newcastle Drug Discovery
Group, Newcastle University Centre for Cancer, School of Natural and
Environmental Sciences, Newcastle University, Bedson Building, Newcastle upon Tyne NE1 7RU, United Kingdom
| |
Collapse
|
6
|
Sladeček S, Radaszkiewicz KA, Bőhmová M, Gybeľ T, Radaszkiewicz TW, Pacherník J. Dual specificity phosphatase 7 drives the formation of cardiac mesoderm in mouse embryonic stem cells. PLoS One 2022; 17:e0275860. [PMID: 36227898 PMCID: PMC9560500 DOI: 10.1371/journal.pone.0275860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 09/23/2022] [Indexed: 11/18/2022] Open
Abstract
Dual specificity phosphatase 7 (DUSP7) is a protein belonging to a broad group of phosphatases that can dephosphorylate phosphoserine/phosphothreonine as well as phosphotyrosine residues within the same substrate. DUSP7 has been linked to the negative regulation of mitogen activated protein kinases (MAPK), and in particular to the regulation of extracellular signal-regulated kinases 1 and 2 (ERK1/2). MAPKs play an important role in embryonic development, where their duration, magnitude, and spatiotemporal activity must be strictly controlled by other proteins, among others by DUSPs. In this study, we focused on the effect of DUSP7 depletion on the in vitro differentiation of mouse embryonic stem (ES) cells. We showed that even though DUSP7 knock-out ES cells do retain some of their basic characteristics, when it comes to differentiation, they preferentially differentiate towards neural cells, while the formation of early cardiac mesoderm is repressed. Therefore, our data indicate that DUSP7 is necessary for the correct formation of neuroectoderm and cardiac mesoderm during the in vitro differentiation of ES cells.
Collapse
Affiliation(s)
- Stanislava Sladeček
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | | | - Martina Bőhmová
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Tomáš Gybeľ
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | | | - Jiří Pacherník
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
- * E-mail:
| |
Collapse
|
7
|
Tajbakhsh A, Gheibihayat SM, Askari H, Savardashtaki A, Pirro M, Johnston TP, Sahebkar A. Statin-regulated phagocytosis and efferocytosis in physiological and pathological conditions. Pharmacol Ther 2022; 238:108282. [DOI: 10.1016/j.pharmthera.2022.108282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/10/2022] [Accepted: 09/13/2022] [Indexed: 10/14/2022]
|
8
|
Munmun F, Mohiuddin OA, Hoang VT, Burow ME, Bunnell BA, Sola VM, Carpentieri AR, Witt-Enderby PA. The role of MEK1/2 and MEK5 in melatonin-mediated actions on osteoblastogenesis, osteoclastogenesis, bone microarchitecture, biomechanics, and bone formation. J Pineal Res 2022; 73:e12814. [PMID: 35674448 DOI: 10.1111/jpi.12814] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 04/30/2022] [Accepted: 05/11/2022] [Indexed: 12/11/2022]
Abstract
Melatonin, the primary hormone involved in circadian entrainment, plays a significant role in bone physiology. This study aimed to assess the role of MEK1/2 and MEK5 in melatonin-mediated actions in mouse and human mesenchymal stem cells (MSCs) and on bone using small-molecule inhibitors and CRISPR/Cas9 knockout approaches. Consistent with in vitro studies performed in mMSCs and hMSCs, nightly (25 mg/kg, i.p., 45 days) injections with PD184352 (MEK1/2 inhibitor) or Bix02189 (MEK5 inhibitor) or SC-1-151 (MEK1/2/5 inhibitor) demonstrated that MEK1/2 and MEK5 were the primary drivers underlying melatonin's actions on bone density, microarchitecture (i.e., trabecular number, separation, and connectivity density), and bone mechanical properties (i.e., ultimate stress) through increases in osteogenic (RUNX2, BMP-2, FRA-1, OPG) expression and decreases in PPARγ. Furthermore, CRISPR/Cas9 knockout of MEK1 or MEK5 in mMSCs seeded on PLGA scaffolds and placed into critical-size calvarial defects in Balb(c) mice (male and female) revealed that treatment with melatonin (15 mg/L; p.o., nightly, 90 days) mediates sex-specific actions of MEK1 and MEK5 in new bone formation. This study is the first to demonstrate a role for MEK1/2 and MEK5 in modulating melatonin-mediated actions on bone formation in vivo and in a sex-specific manner.
Collapse
Affiliation(s)
- Fahima Munmun
- Division of Pharmaceutical Sciences, Duquesne University School of Pharmacy, Pittsburgh, Pennsylvania, USA
| | - Omair A Mohiuddin
- Center for Stem Cell Research and Regenerative Medicine, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Van T Hoang
- Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Matthew E Burow
- Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Bruce A Bunnell
- Center for Stem Cell Research and Regenerative Medicine, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Veronica M Sola
- Department of Oral Biology, Faculty of Odontology, National University of Cordoba, Cordoba, Argentina
| | - Agata R Carpentieri
- Faculty of Odontology, National University of Cordoba and National Council for Scientific and Technical Research (CONICET); Institute for Health Sciences Research (INICSA), Cordoba, Argentina
| | - Paula A Witt-Enderby
- Division of Pharmaceutical Sciences, Duquesne University School of Pharmacy, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
9
|
Zhang X, Hu C, Huang C, Wei Y, Li X, Hu M, Li H, Wu J, Czajkowsky DM, Guo Y, Shao Z. Robust Acquisition of Spatial Transcriptional Programs in Tissues With Immunofluorescence-Guided Laser Capture Microdissection. Front Cell Dev Biol 2022; 10:853188. [PMID: 35399504 PMCID: PMC8990165 DOI: 10.3389/fcell.2022.853188] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 02/24/2022] [Indexed: 12/22/2022] Open
Abstract
The functioning of tissues is fundamentally dependent upon not only the phenotypes of the constituent cells but also their spatial organization in the tissue, as local interactions precipitate intra-cellular events that often lead to changes in expression. However, our understanding of these processes in tissues, whether healthy or diseased, is limited at present owing to the difficulty in acquiring comprehensive transcriptional programs of spatially- and phenotypically-defined cells in situ. Here we present a robust method based on immunofluorescence-guided laser capture microdissection (immuno-LCM-RNAseq) to acquire finely resolved transcriptional programs with as few as tens of cells from snap-frozen or RNAlater-treated clinical tissues sufficient to resolve even isoforms. The protocol is optimized to protect the RNA with a small molecule inhibitor, the ribonucleoside vanadyl complex (RVC), which thereby enables the typical time-consuming immunostaining and laser capture steps of this procedure during which RNA is usually severely degraded in existing approaches. The efficacy of this approach is exemplified by the characterization of differentially expressed genes between the mouse small intestine lacteal cells at the tip versus the main capillary body, including those that function in sensing and responding to local environmental cues to stimulate intra-cellular signalling. With the extensive repertoire of specific antibodies that are presently available, our method provides an unprecedented capability for the analysis of transcriptional networks and signalling pathways during development, pathogenesis, and aging of specific cell types within native tissues.
Collapse
Affiliation(s)
- Xiaodan Zhang
- State Key Laboratory of Oncogenes and Related Genes, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Chuansheng Hu
- State Key Laboratory of Oncogenes and Related Genes, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Chen Huang
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ying Wei
- State Key Laboratory of Oncogenes and Related Genes, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaowei Li
- State Key Laboratory of Oncogenes and Related Genes, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Miaomiao Hu
- State Key Laboratory of Oncogenes and Related Genes, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Hua Li
- State Key Laboratory of Oncogenes and Related Genes, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Ji Wu
- Bio-X Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Daniel M. Czajkowsky
- State Key Laboratory of Oncogenes and Related Genes, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Daniel M. Czajkowsky, ; Yan Guo, ; Zhifeng Shao,
| | - Yan Guo
- State Key Laboratory of Oncogenes and Related Genes, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Daniel M. Czajkowsky, ; Yan Guo, ; Zhifeng Shao,
| | - Zhifeng Shao
- State Key Laboratory of Oncogenes and Related Genes, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Daniel M. Czajkowsky, ; Yan Guo, ; Zhifeng Shao,
| |
Collapse
|
10
|
Zille M, Oses-Prieto JA, Savage SR, Karuppagounder SS, Chen Y, Kumar A, Morris JH, Scheidt KA, Burlingame AL, Ratan RR. Hemin-Induced Death Models Hemorrhagic Stroke and Is a Variant of Classical Neuronal Ferroptosis. J Neurosci 2022; 42:2065-2079. [PMID: 34987108 PMCID: PMC8916756 DOI: 10.1523/jneurosci.0923-20.2021] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 11/12/2021] [Accepted: 12/02/2021] [Indexed: 11/21/2022] Open
Abstract
Ferroptosis is a caspase-independent, iron-dependent form of regulated necrosis extant in traumatic brain injury, Huntington disease, and hemorrhagic stroke. It can be activated by cystine deprivation leading to glutathione depletion, the insufficiency of the antioxidant glutathione peroxidase-4, and the hemolysis products hemoglobin and hemin. A cardinal feature of ferroptosis is extracellular signal-regulated kinase (ERK)1/2 activation culminating in its translocation to the nucleus. We have previously confirmed that the mitogen-activated protein (MAP) kinase kinase (MEK) inhibitor U0126 inhibits persistent ERK1/2 phosphorylation and ferroptosis. Here, we show that hemin exposure, a model of secondary injury in brain hemorrhage and ferroptosis, activated ERK1/2 in mouse neurons. Accordingly, MEK inhibitor U0126 protected against hemin-induced ferroptosis. Unexpectedly, U0126 prevented hemin-induced ferroptosis independent of its ability to inhibit ERK1/2 signaling. In contrast to classical ferroptosis in neurons or cancer cells, chemically diverse inhibitors of MEK did not block hemin-induced ferroptosis, nor did the forced expression of the ERK-selective MAP kinase phosphatase (MKP)3. We conclude that hemin or hemoglobin-induced ferroptosis, unlike glutathione depletion, is ERK1/2-independent. Together with recent studies, our findings suggest the existence of a novel subtype of neuronal ferroptosis relevant to bleeding in the brain that is 5-lipoxygenase-dependent, ERK-independent, and transcription-independent. Remarkably, our unbiased phosphoproteome analysis revealed dramatic differences in phosphorylation induced by two ferroptosis subtypes. As U0126 also reduced cell death and improved functional recovery after hemorrhagic stroke in male mice, our analysis also provides a template on which to build a search for U0126's effects in a variant of neuronal ferroptosis.SIGNIFICANCE STATEMENT Ferroptosis is an iron-dependent mechanism of regulated necrosis that has been linked to hemorrhagic stroke. Common features of ferroptotic death induced by diverse stimuli are the depletion of the antioxidant glutathione, production of lipoxygenase-dependent reactive lipids, sensitivity to iron chelation, and persistent activation of extracellular signal-regulated kinase (ERK) signaling. Unlike classical ferroptosis induced in neurons or cancer cells, here we show that ferroptosis induced by hemin is ERK-independent. Paradoxically, the canonical MAP kinase kinase (MEK) inhibitor U0126 blocks brain hemorrhage-induced death. Altogether, these data suggest that a variant of ferroptosis is unleashed in hemorrhagic stroke. We present the first, unbiased phosphoproteomic analysis of ferroptosis as a template on which to understand distinct paths to cell death that meet the definition of ferroptosis.
Collapse
Affiliation(s)
- Marietta Zille
- Burke Neurological Institute, White Plains, New York 10605
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10065
- Department of Pharmaceutical Sciences, Division of Pharmacology and Toxicology, University of Vienna, Vienna 1090, Austria
| | - Juan A Oses-Prieto
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158
| | - Sara R Savage
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas 77030
| | - Saravanan S Karuppagounder
- Burke Neurological Institute, White Plains, New York 10605
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10065
| | - Yingxin Chen
- Burke Neurological Institute, White Plains, New York 10605
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10065
| | - Amit Kumar
- Burke Neurological Institute, White Plains, New York 10605
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10065
| | - John H Morris
- Resource on Biocomputing, Visualization, and Informatics, University of California, San Francisco, California 94158
| | - Karl A Scheidt
- Department of Chemistry, Center for Molecular Innovation and Drug Discovery, Northwestern University, Evanston, Illinois 60208
| | - Alma L Burlingame
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158
| | - Rajiv R Ratan
- Burke Neurological Institute, White Plains, New York 10605
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10065
| |
Collapse
|
11
|
Clinical Significance and Regulation of ERK5 Expression and Function in Cancer. Cancers (Basel) 2022; 14:cancers14020348. [PMID: 35053510 PMCID: PMC8773716 DOI: 10.3390/cancers14020348] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/08/2022] [Accepted: 01/08/2022] [Indexed: 02/06/2023] Open
Abstract
Extracellular signal-regulated kinase 5 (ERK5) is a unique kinase among MAPKs family members, given its large structure characterized by the presence of a unique C-terminal domain. Despite increasing data demonstrating the relevance of the ERK5 pathway in the growth, survival, and differentiation of normal cells, ERK5 has recently attracted the attention of several research groups given its relevance in inflammatory disorders and cancer. Accumulating evidence reported its role in tumor initiation and progression. In this review, we explore the gene expression profile of ERK5 among cancers correlated with its clinical impact, as well as the prognostic value of ERK5 and pERK5 expression levels in tumors. We also summarize the importance of ERK5 in the maintenance of a cancer stem-like phenotype and explore the major known contributions of ERK5 in the tumor-associated microenvironment. Moreover, although several questions are still open concerning ERK5 molecular regulation, different ERK5 isoforms derived from the alternative splicing process are also described, highlighting the potential clinical relevance of targeting ERK5 pathways.
Collapse
|
12
|
Devost D, Zingg HH, Hébert TE. The MAP kinase ERK5/MAPK7 is a downstream effector of oxytocin signaling in myometrial cells. Cell Signal 2021; 90:110211. [PMID: 34902542 DOI: 10.1016/j.cellsig.2021.110211] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/02/2021] [Accepted: 12/04/2021] [Indexed: 12/14/2022]
Abstract
The hormone oxytocin (OT) has pleiotropic activities both in the central nervous system as well as in peripheral tissues, including uterotonic effects on the myometrium during parturition. OT effects are mediated by a single transmembrane receptor, belonging to the GPCR (G protein-coupled receptor) superfamily and coupled primarily to Gq- and Gi-containing heterotrimeric G proteins. Upon receptor stimulation, one well-studied downstream effect is activation of the ERK1/2 MAP (mitogen-activated protein) kinase, and studies have shown that induction of COX-2 by OT in the myometrium required ERK1/2 activity. Many studies investigating the role of ERK1/2 in myometrial tissue were based on the use of chemical inhibitors that, to varying degrees, also inhibited ERK5/MAPK7. Here we report that OT activates ERK5 in a human myometrial cell line in a dose- and time-dependent manner through the activation of Gi/o heterotrimers. Using complementary approaches, we demonstrate that OT-induced COX-2 induction and the concomitant release of PGF2α into the media are primarily ERK5-dependent and to a much lesser extent ERK1/2-dependent. Moreover, in contrast to ERK1/2 activation, ERK5 activation is downstream of Gi/o activation. Here, we also found that ERK5 impacted both basal and to a lesser extent, OT-mediated myometrial cell contraction in vitro. Finally, tracking both ERK1/2 and ERK5 activity during different stages of gestation in rat myometrium, we showed that they followed distinct patterns starting at the onset of labor corresponding to the highest COX-2 expression levels. Overall, our results reveal an important, hitherto unrecognized role for ERK5 in myometrial cell contraction involving induction of COX-2. This novel pathway is likely to play an important role in supporting uterine contractions during parturition.
Collapse
Affiliation(s)
- Dominic Devost
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Québec H3G 1Y6, Canada.
| | - Hans H Zingg
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Québec H3G 1Y6, Canada
| | - Terence E Hébert
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Québec H3G 1Y6, Canada.
| |
Collapse
|
13
|
Engineering digitizer circuits for chemical and genetic screens in human cells. Nat Commun 2021; 12:6150. [PMID: 34686672 PMCID: PMC8536748 DOI: 10.1038/s41467-021-26359-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 09/30/2021] [Indexed: 12/26/2022] Open
Abstract
Cell-based transcriptional reporters are invaluable in high-throughput compound and CRISPR screens for identifying compounds or genes that can impact a pathway of interest. However, many transcriptional reporters have weak activities and transient responses. This can result in overlooking therapeutic targets and compounds that are difficult to detect, necessitating the resource-consuming process of running multiple screens at various timepoints. Here, we present RADAR, a digitizer circuit for amplifying reporter activity and retaining memory of pathway activation. Reporting on the AP-1 pathway, our circuit identifies compounds with known activity against PKC-related pathways and shows an enhanced dynamic range with improved sensitivity compared to a classical reporter in compound screens. In the first genome-wide pooled CRISPR screen for the AP-1 pathway, RADAR identifies canonical genes from the MAPK and PKC pathways, as well as non-canonical regulators. Thus, our scalable system highlights the benefit and versatility of using genetic circuits in large-scale cell-based screening.
Collapse
|
14
|
Park JS, Lee GH, Jin SW, Pham TH, Thai TN, Kim JY, Kim CY, Han EH, Hwang YP, Choi CY, Jeong HG. G protein-coupled estrogen receptor regulates the KLF2-dependent eNOS expression by activating of Ca 2+ and EGFR signaling pathway in human endothelial cells. Biochem Pharmacol 2021; 192:114721. [PMID: 34363795 DOI: 10.1016/j.bcp.2021.114721] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/30/2021] [Accepted: 08/02/2021] [Indexed: 12/26/2022]
Abstract
G protein-coupled estrogen receptor (GPER) is important for maintaining normal blood vessel function by preventing endothelial cell dysfunction. It has been reported that G-1, an agonist of GPER, increases nitric oxide (NO) production through the phosphorylation of endothelial nitric oxide synthase (eNOS). However, the effect of GPER activation on eNOS expression has not been studied. Our results show that G-1 significantly increased the expression of eNOS and Kruppel-like factor 2 (KLF2) in human endothelial EA.hy926 cells. The individual silences of KLF2 and GPER attenuated G-1-induced eNOS expression. In addition, inhibition of the Gαq and Gβγ suppressed G-1-induced the expression of eNOS and KLF2 in EA.hy926 cells. Interestingly, these effects were similar in HUVECs. Furthermore, we found that GPER-mediated Ca2+ signaling increased the phosphorylation of CaMKKβ, AMPK, and CaMKIIα in the cells. The phosphorylation of histone deacetylase 5 (HDAC5) by activation of AMPK and CaMKIIα increased the expression of eNOS via transcriptional activity of KLF2. We further demonstrate that GPER activation increased the phosphorylation of Src, EGFR, ERK5, and MEF2C and consequently induced the expression of eNOS and KLF2. Meanwhile, inhibition of ERK5 and HDAC5 suppressed the expression of eNOS and KLF2 induced by G-1 in the cells. These findings suggest that GPER provides a novel mechanism for understanding the regulation of eNOS expression and is an essential therapeutic target in preventing cardiovascular-related endothelial dysfunction.
Collapse
Affiliation(s)
- Jin Song Park
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Gi Ho Lee
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Sun Woo Jin
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Thi Hoa Pham
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Tuyet Ngan Thai
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Ji Yeon Kim
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Chae Yeon Kim
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Eun Hee Han
- Drug & Disease Target Research Team, Division of Bioconvergence Analysis, Korea Basic Science Institute (KBSI), Cheongju 28119, Republic of Korea
| | - Yong Pil Hwang
- Fisheries Promotion Division, Mokpo City, Mokpo 58613, Republic of Korea
| | - Chul Yung Choi
- Department of Biomedical Science, College of Natural Science, Chosun University, Gwangju 61452, Republic of Korea
| | - Hye Gwang Jeong
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea.
| |
Collapse
|
15
|
Paudel R, Fusi L, Schmidt M. The MEK5/ERK5 Pathway in Health and Disease. Int J Mol Sci 2021; 22:ijms22147594. [PMID: 34299213 PMCID: PMC8303459 DOI: 10.3390/ijms22147594] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 12/12/2022] Open
Abstract
The MEK5/ERK5 mitogen-activated protein kinases (MAPK) cascade is a unique signaling module activated by both mitogens and stress stimuli, including cytokines, fluid shear stress, high osmolarity, and oxidative stress. Physiologically, it is mainly known as a mechanoreceptive pathway in the endothelium, where it transduces the various vasoprotective effects of laminar blood flow. However, it also maintains integrity in other tissues exposed to mechanical stress, including bone, cartilage, and muscle, where it exerts a key function as a survival and differentiation pathway. Beyond its diverse physiological roles, the MEK5/ERK5 pathway has also been implicated in various diseases, including cancer, where it has recently emerged as a major escape route, sustaining tumor cell survival and proliferation under drug stress. In addition, MEK5/ERK5 dysfunction may foster cardiovascular diseases such as atherosclerosis. Here, we highlight the importance of the MEK5/ERK5 pathway in health and disease, focusing on its role as a protective cascade in mechanical stress-exposed healthy tissues and its function as a therapy resistance pathway in cancers. We discuss the perspective of targeting this cascade for cancer treatment and weigh its chances and potential risks when considering its emerging role as a protective stress response pathway.
Collapse
|
16
|
Matsuura F, Satoh Y, Itakura S, Morohashi T, Kawaguchi M, Takahashi T, Iwanaga K, Terashima H, Kobayashi Y, Wang X, Ishizuka T, Endo S, Ikeda T. Extracellular signal-regulated kinases 2 (Erk2) and Erk5 in the central nervous system differentially contribute to central sensitization in male mice. J Neurosci Res 2021; 99:1666-1688. [PMID: 33729593 DOI: 10.1002/jnr.24827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 02/27/2021] [Indexed: 11/12/2022]
Abstract
Nervous systems are designed to become extra sensitive to afferent nociceptive stimuli under certain circumstances such as inflammation and nerve injury. How pain hypersensitivity comes about is key issue in the field since it ultimately results in chronic pain. Central sensitization represents enhanced pain sensitivity due to increased neural signaling within the central nervous system (CNS). Particularly, much evidence indicates that underlying mechanism of central sensitization is associated with the change of spinal neurons. Extracellular signal-regulated kinases have received attention as key molecules in central sensitization. Previously, we revealed the isoform-specific function of extracellular signal-regulated kinase 2 (Erk2) in spinal neurons for central sensitization using mice with Cre-loxP-mediated deletion of Erk2 in the CNS. Still, how extracellular signal-regulated kinase 5 (Erk5) in spinal neurons contributes to central sensitization has not been directly tested, nor is the functional relevance of Erk5 and Erk2 known. Here, we show that Erk5 and Erk2 in the CNS play redundant and/or distinct roles in central sensitization, depending on the plasticity context (cell types, pain types, time, etc.). We used male mice with Erk5 deletion specifically in the CNS and found that Erk5 plays important roles in central sensitization in a formalin-induced inflammatory pain model. Deletion of both Erk2 and Erk5 leads to greater attenuation of central sensitization in this model, compared to deletion of either isoform alone. Conversely, Erk2 but not Erk5 plays important roles in central sensitization in neuropathic pain, a type of chronic pain caused by nerve damage. Our results suggest the elaborate mechanisms of Erk signaling in central sensitization.
Collapse
Affiliation(s)
- Fumihiro Matsuura
- Department of Anesthesiology, National Defense Medical College, Tokorozawa, Japan
| | - Yasushi Satoh
- Department of Anesthesiology, National Defense Medical College, Tokorozawa, Japan.,Department of Biochemistry, National Defense Medical College, Tokorozawa, Japan
| | - Sayako Itakura
- Department of Anesthesiology, National Defense Medical College, Tokorozawa, Japan
| | - Toru Morohashi
- Department of Anesthesiology, National Defense Medical College, Tokorozawa, Japan
| | - Masanori Kawaguchi
- Department of Anesthesiology, National Defense Medical College, Tokorozawa, Japan
| | - Tetsuya Takahashi
- Department of Anesthesiology, National Defense Medical College, Tokorozawa, Japan
| | - Koji Iwanaga
- Department of Anesthesiology, National Defense Medical College, Tokorozawa, Japan
| | - Hayato Terashima
- Department of Anesthesiology, National Defense Medical College, Tokorozawa, Japan
| | - Yasushi Kobayashi
- Department of Anatomy, National Defense Medical College, Tokorozawa, Japan
| | - Xin Wang
- Faculty of Lifesciences, The University of Manchester, Manchester, UK
| | - Toshiaki Ishizuka
- Department of Pharmacology, National Defense Medical College, Tokorozawa, Japan
| | - Shogo Endo
- Aging Neuroscience Research Team, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Takehiko Ikeda
- Department of Anesthesiology, National Defense Medical College, Tokorozawa, Japan
| |
Collapse
|
17
|
Chen ZF, Tian YS, Ma WH, Zhai JM. Gene expression changes in response to low temperatures in embryos of the kelp grouper, Epinephelus moara. Cryobiology 2020; 97:159-167. [PMID: 32628925 DOI: 10.1016/j.cryobiol.2020.05.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 05/27/2020] [Accepted: 05/27/2020] [Indexed: 01/06/2023]
Abstract
The kelp grouper Epinephelus moara has high economic value and is popular in fisheries and aquaculture in China. In the previous study, we treated the embryos at 16-22 somite stage at 4 °C, -25.7 °C, -140 °C and -196 °C, and successfully obtained surviving embryos in each group. To better understand the molecular changes affected by the low temperatures, we conducted a comparative transcriptome analysis among embryos exposed at 4 °C for 30 min, embryos exposed at -25.7 °C for 30 min and the control group. qPCR assays were conducted for the validation. Signal transduction pathways were highly enriched for the differentially expressed genes. c-Fos, c-Jun, JunD, GADD45, involved in MAPK signaling pathway, were upregulated when embryos were treated at low temperatures. As immediate early genes, Egr-1a and b, and IER2, that respond quickly to the environment stress, their expression increased as well. Hsp70 showed similar expression pattern as immediate early genes. Meanwhile, transcription factors Sox, HES, TFIID, muscle movement and protein synthesis-related genes were downregulated. Taken together, our findings suggest that cooling disrupts gene expression patterns in E. moara embryos. The differentially expressed genes may be involved in cellular resistance against low temperatures, possibly through neural activation, apoptosis, proliferation, differentiation, cellular recovery and heat shock regulation. This study also provides transcriptome dataset of E. moara embryos exposed to cold temperatures for future studies focusing on the molecular effects of cryopreservation.
Collapse
Affiliation(s)
- Zhang-Fan Chen
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266000, China
| | - Yong-Sheng Tian
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266000, China.
| | - Wen-Hui Ma
- Ming Bo Aquatic Co. Ltd., Laizhou, 261400, China
| | | |
Collapse
|
18
|
Patel P, Naik UP. Platelet MAPKs-a 20+ year history: What do we really know? J Thromb Haemost 2020; 18:2087-2102. [PMID: 32574399 DOI: 10.1111/jth.14967] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 01/01/2023]
Abstract
The existence of mitogen activated protein kinases (MAPKs) in platelets has been known for more than 20 years. Since that time hundreds of reports have been published describing the conditions that cause MAPK activation in platelets and their role in regulating diverse platelet functions from the molecular to physiological level. However, this cacophony of reports, with inconsistent and sometimes contradictory findings, has muddied the waters leading to great confusion. Since the last review of platelet MAPKs was published more than a decade ago, there have been more than 50 reports, including the description of novel knockout mouse models, that have furthered our knowledge. Therefore, we undertook an extensive literature review to delineate what is known about platelet MAPKs. We specifically discuss what is currently known about how MAPKs are activated and what signaling cascades they regulate in platelets incorporating recent findings from knockout mouse models. In addition, we will discuss the role each MAPK plays in regulating distinct platelet functions. In doing so, we hope to clarify the role for MAPKs and identify knowledge gaps in this field that await future researchers. In addition, we discuss the limitations of current studies with a particular focus on the off-target effects of commonly used MAPK inhibitors. We conclude with a look at the clinical utility of MAPK inhibitors as potential antithrombotic therapies with an analysis of current clinical trial data.
Collapse
Affiliation(s)
- Pravin Patel
- Department of Medicine, Cardeza Center for Hemostasis, Thrombosis, and Vascular Biology, Cardeza Foundation for Hematologic Research, Thomas Jefferson University, Philadelphia, PA, USA
| | - Ulhas P Naik
- Department of Medicine, Cardeza Center for Hemostasis, Thrombosis, and Vascular Biology, Cardeza Foundation for Hematologic Research, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
19
|
Arakaki K, Uehara A, Higa-Nakamine S, Kakinohana M, Yamamoto H. Increased expression of EGR1 and KLF4 by polysulfide via activation of the ERK1/2 and ERK5 pathways in cultured intestinal epithelial cells. Biomed Res 2020; 41:119-129. [PMID: 32522929 DOI: 10.2220/biomedres.41.119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Sodium trisulfide (Na2S3) releases hydrogen polysulfide (H2Sn) and is useful for the investigation of the effects of H2Sn on the cell functions. In the present study, we first examined the effects of Na2S3 on the gene expression of IEC-6 cells, a rat intestinal epithelial cell line. Microarray analysis and reverse transcription-polymerase chain reaction analysis revealed that Na2S3 increased the gene expression of early growth response 1 (EGR1) and Kruppel-like transcription factor 4 (KLF4). It was interesting that U0126, an inhibitor of the activation of extracellular signal-regulated kinase 1 (ERK1), ERK2, and ERK5, inhibited the Na2S3-induced gene expression of EGR1 and KLF4. Na2S3 activated ERK1 and ERK2 (ERK1/2) within 15 min. In addition to ERK1/2, Na2S3 activated ERK5. We noticed that the electrophoretic mobility of ERK5 was decreased after Na2S3 treatment. Phos-tag analysis and in vitro dephosphorylation of the cell extracts indicated that the gel-shift of ERK5 was due to its phosphorylation. The gel-shift of ERK5 was inhibited completely by both U0126 and ERK5-IN-1, a specific inhibitor of ERK5. From these results, we concluded that the gel-shift of ERK5 was induced through autophosphorylation by activated ERK5 after Na2S3 treatment. The present study suggested that H2Sn affected various functions of intestinal epithelial cells through the activation of the ERK1/2 and ERK5 pathways.
Collapse
Affiliation(s)
- Kaoru Arakaki
- Departments of Biochemistry, Graduate School of Medicine, University of the Ryukyus.,Departments of Anesthesiology, Graduate School of Medicine, University of the Ryukyus
| | - Ayako Uehara
- Departments of Biochemistry, Graduate School of Medicine, University of the Ryukyus.,Departments of Anesthesiology, Graduate School of Medicine, University of the Ryukyus
| | - Sayomi Higa-Nakamine
- Departments of Biochemistry, Graduate School of Medicine, University of the Ryukyus
| | - Manabu Kakinohana
- Departments of Anesthesiology, Graduate School of Medicine, University of the Ryukyus
| | - Hideyuki Yamamoto
- Departments of Biochemistry, Graduate School of Medicine, University of the Ryukyus
| |
Collapse
|
20
|
Erazo T, Espinosa-Gil S, Diéguez-Martínez N, Gómez N, Lizcano JM. SUMOylation Is Required for ERK5 Nuclear Translocation and ERK5-Mediated Cancer Cell Proliferation. Int J Mol Sci 2020; 21:ijms21062203. [PMID: 32209980 PMCID: PMC7139592 DOI: 10.3390/ijms21062203] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/16/2020] [Accepted: 03/21/2020] [Indexed: 01/09/2023] Open
Abstract
The MAP kinase ERK5 contains an N-terminal kinase domain and a unique C-terminal tail including a nuclear localization signal and a transcriptional activation domain. ERK5 is activated in response to growth factors and stresses and regulates transcription at the nucleus by either phosphorylation or interaction with transcription factors. MEK5-ERK5 pathway plays an important role regulating cancer cell proliferation and survival. Therefore, it is important to define the precise molecular mechanisms implicated in ERK5 nucleo-cytoplasmic shuttling. We previously described that the molecular chaperone Hsp90 stabilizes and anchors ERK5 at the cytosol and that ERK5 nuclear shuttling requires Hsp90 dissociation. Here, we show that MEK5 or overexpression of Cdc37—mechanisms that increase nuclear ERK5—induced ERK5 Small Ubiquitin-related Modifier (SUMO)-2 modification at residues Lys6/Lys22 in cancer cells. Furthermore, mutation of these SUMO sites abolished the ability of ERK5 to translocate to the nucleus and to promote prostatic cancer PC-3 cell proliferation. We also show that overexpression of the SUMO protease SENP2 completely abolished endogenous ERK5 nuclear localization in response to epidermal growth factor (EGF) stimulation. These results allow us to propose a more precise mechanism: in response to MEK5 activation, ERK5 SUMOylation favors the dissociation of Hsp90 from the complex, allowing ERK5 nuclear shuttling and activation of the transcription.
Collapse
|
21
|
Sjölander JJ, Tarczykowska A, Picazo C, Cossio I, Redwan IN, Gao C, Solano C, Toledano MB, Grøtli M, Molin M, Sunnerhagen P. A Redox-Sensitive Thiol in Wis1 Modulates the Fission Yeast Mitogen-Activated Protein Kinase Response to H 2O 2 and Is the Target of a Small Molecule. Mol Cell Biol 2020; 40:e00346-19. [PMID: 31932483 PMCID: PMC7076255 DOI: 10.1128/mcb.00346-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/23/2019] [Accepted: 01/03/2020] [Indexed: 12/17/2022] Open
Abstract
Oxidation of a highly conserved cysteine (Cys) residue located in the kinase activation loop of mitogen-activated protein kinase kinases (MAPKK) inactivates mammalian MKK6. This residue is conserved in the fission yeast Schizosaccharomyces pombe MAPKK Wis1, which belongs to the H2O2-responsive MAPK Sty1 pathway. Here, we show that H2O2 reversibly inactivates Wis1 through this residue (C458) in vitro We found that C458 is oxidized in vivo and that serine replacement of this residue significantly enhances Wis1 activation upon addition of H2O2 The allosteric MAPKK inhibitor INR119, which binds in a pocket next to the activation loop and C458, prevented the inhibition of Wis1 by H2O2in vitro and significantly increased Wis1 activation by low levels of H2O2in vivo We propose that oxidation of C458 inhibits Wis1 and that INR119 cancels out this inhibitory effect by binding close to this residue. Kinase inhibition through the oxidation of a conserved Cys residue in MKK6 (C196) is thus conserved in the S. pombe MAPKK Wis1.
Collapse
Affiliation(s)
- Johanna J Sjölander
- University of Gothenburg, Department of Chemistry and Molecular Biology, Gothenburg, Sweden
| | - Agata Tarczykowska
- University of Gothenburg, Department of Chemistry and Molecular Biology, Gothenburg, Sweden
| | - Cecilia Picazo
- University of Gothenburg, Department of Chemistry and Molecular Biology, Gothenburg, Sweden
- Chalmers University of Technology, Department of Biology and Biological Engineering, Gothenburg, Sweden
| | - Itziar Cossio
- University of Gothenburg, Department of Chemistry and Molecular Biology, Gothenburg, Sweden
| | - Itedale Namro Redwan
- University of Gothenburg, Department of Chemistry and Molecular Biology, Gothenburg, Sweden
| | - Chunxia Gao
- University of Gothenburg, Department of Chemistry and Molecular Biology, Gothenburg, Sweden
| | - Carlos Solano
- University of Gothenburg, Department of Chemistry and Molecular Biology, Gothenburg, Sweden
| | - Michel B Toledano
- Oxidative Stress and Cancer Laboratory, Integrative Biology and Molecular Genetics Unit, CEA Saclay, Gif-sur-Yvette, France
| | - Morten Grøtli
- University of Gothenburg, Department of Chemistry and Molecular Biology, Gothenburg, Sweden
| | - Mikael Molin
- University of Gothenburg, Department of Chemistry and Molecular Biology, Gothenburg, Sweden
- Chalmers University of Technology, Department of Biology and Biological Engineering, Gothenburg, Sweden
| | - Per Sunnerhagen
- University of Gothenburg, Department of Chemistry and Molecular Biology, Gothenburg, Sweden
| |
Collapse
|
22
|
Targeted Avenues for Cancer Treatment: The MEK5-ERK5 Signaling Pathway. Trends Mol Med 2020; 26:394-407. [PMID: 32277933 DOI: 10.1016/j.molmed.2020.01.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 11/20/2019] [Accepted: 01/21/2020] [Indexed: 12/13/2022]
Abstract
Twenty years have passed since extracellular signal-regulated kinase 5 (ERK5) and its upstream activator, mitogen-activated protein kinase 5 (MEK5), first emerged onto the cancer research scene. Although we have come a long way in defining the liaison between dysregulated MEK5-ERK5 signaling and the pathogenesis of epithelial and nonepithelial malignancies, selective targeting of this unique pathway remains elusive. Here, we provide an updated review of the existing evidence for a correlation between aberrant MEK5-ERK5 (phospho)proteomic/transcriptomic profiles, aggressive cancer states, and poor patient outcomes. We then focus on emerging insights from preclinical models regarding the relevance of upregulated ERK5 activity in promoting tumor growth, metastasis, therapy resistance, undifferentiated traits, and immunosuppression, highlighting the opportunities, prospects, and challenges of selectively blocking this cascade for antineoplastic treatment and chemosensitization.
Collapse
|
23
|
Wong RW, Balachandran A, Cheung PK, Cheng R, Pan Q, Stoilov P, Harrigan PR, Blencowe BJ, Branch DR, Cochrane A. An activator of G protein-coupled receptor and MEK1/2-ERK1/2 signaling inhibits HIV-1 replication by altering viral RNA processing. PLoS Pathog 2020; 16:e1008307. [PMID: 32069328 PMCID: PMC7048317 DOI: 10.1371/journal.ppat.1008307] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 02/28/2020] [Accepted: 01/06/2020] [Indexed: 12/17/2022] Open
Abstract
The ability of HIV-1 to evolve resistance to combined antiretroviral therapies (cARTs) has stimulated research into alternative means of controlling this infection. We assayed >60 modulators of RNA alternative splicing (AS) to identify new inhibitors of HIV-1 RNA processing-a segment of the viral lifecycle not targeted by current drugs-and discovered compound N-[4-chloro-3-(trifluoromethyl)phenyl]-7-nitro-2,1,3-benzoxadiazol-4-amine (5342191) as a potent inhibitor of both wild-type (Ba-L, NL4-3, LAI, IIIB, and N54) and drug-resistant strains of HIV-1 (IC50: ~700 nM) with no significant effect on cell viability at doses tested. 5342191 blocks expression of four essential HIV-1 structural and regulatory proteins (Gag, Env, Tat, and Rev) without affecting total protein synthesis of the cell. This response is associated with altered unspliced (US) and singly-spliced (SS) HIV-1 RNA accumulation (~60% reduction) and transport to the cytoplasm (loss of Rev) whereas parallel analysis of cellular RNAs revealed less than a 0.7% of host alternative splicing (AS) events (0.25-0.67% by ≥ 10-20%), gene expression (0.01-0.46% by ≥ 2-5 fold), and protein abundance (0.02-0.34% by ≥ 1.5-2 fold) being affected. Decreased expression of Tat, but not Gag/Env, upon 5342191 treatment was reversed by a proteasome inhibitor, suggesting that this compound alters the synthesis/degradation of this key viral factor. Consistent with an affect on HIV-1 RNA processing, 5342191 treatment of cells altered the abundance and phosphorylation of serine/arginine-rich splicing factor (SRSF) 1, 3, and 4. Despite the activation of several intracellular signaling pathways by 5342191 (Ras, MEK1/2-ERK1/2, and JNK1/2/3), inhibition of HIV-1 gene expression by this compound could be reversed by pre-treatment with either a G-protein α-subunit inhibitor or two different MEK1/2 inhibitors. These observations demonstrate enhanced sensitivity of HIV-1 gene expression to small changes in host RNA processing and highlights the potential of modulating host intracellular signaling as an alternative approach for controlling HIV-1 infection.
Collapse
Affiliation(s)
- Raymond W. Wong
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Ahalya Balachandran
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Peter K. Cheung
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada
| | - Ran Cheng
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Qun Pan
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Peter Stoilov
- Department of Biochemistry, West Virginia University, Morgantown, West Virginia, United States of America
| | - P. Richard Harrigan
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada
- Department of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Benjamin J. Blencowe
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Donald R. Branch
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Division of Advanced Diagnostics, Infection and Immunity Group, Toronto General Hospital Research Institute, Toronto, Ontario, Canada
- Centre for Innovation, Canadian Blood Services, Toronto, Ontario, Canada
| | - Alan Cochrane
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
24
|
Beyond Kinase Activity: ERK5 Nucleo-Cytoplasmic Shuttling as a Novel Target for Anticancer Therapy. Int J Mol Sci 2020; 21:ijms21030938. [PMID: 32023850 PMCID: PMC7038028 DOI: 10.3390/ijms21030938] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 01/28/2020] [Accepted: 01/29/2020] [Indexed: 01/18/2023] Open
Abstract
The importance of mitogen-activated protein kinases (MAPK) in human pathology is underlined by the relevance of abnormalities of MAPK-related signaling pathways to a number of different diseases, including inflammatory disorders and cancer. One of the key events in MAPK signaling, especially with respect to pro-proliferative effects that are crucial for the onset and progression of cancer, is MAPK nuclear translocation and its role in the regulation of gene expression. The extracellular signal-regulated kinase 5 (ERK5) is the most recently discovered classical MAPK and it is emerging as a possible target for cancer treatment. The bigger size of ERK5 when compared to other MAPK enables multiple levels of regulation of its expression and activity. In particular, the phosphorylation of kinase domain and C-terminus, as well as post-translational modifications and chaperone binding, are involved in ERK5 regulation. Likewise, different mechanisms control ERK5 nucleo-cytoplasmic shuttling, underscoring the key role of ERK5 in the nuclear compartment. In this review, we will focus on the mechanisms involved in ERK5 trafficking between cytoplasm and nucleus, and discuss how these processes might be exploited to design new strategies for cancer treatment.
Collapse
|
25
|
Kirk SG, Samavati L, Liu Y. MAP kinase phosphatase-1, a gatekeeper of the acute innate immune response. Life Sci 2020; 241:117157. [PMID: 31837332 PMCID: PMC7480273 DOI: 10.1016/j.lfs.2019.117157] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/05/2019] [Accepted: 12/09/2019] [Indexed: 02/08/2023]
Abstract
Mitogen-activated protein kinase (MAPK)§ cascades are crucial signaling pathways in the regulation of the host immune response to infection. MAPK phosphatase (MKP)-1, an archetypal member of the MKP family, plays a pivotal role in the down-regulation of p38 and JNK. Studies using cultured macrophages have demonstrated a pivotal role of MKP-1 in the restraint of the biosynthesis of both pro-inflammatory and anti-inflammatory cytokines as well as chemokines. Using MKP-1 knockout mice, several groups have not only confirmed the critical importance of MKP-1 in the regulation of the cytokine synthesis in vivo during the acute host response to bacterial infections, but also revealed novel functions of MKP-1 in maintaining bactericidal functions and host metabolic activities. RNA-seq analyses on livers of septic mice infected with E. coli have revealed that MKP-1 deficiency caused substantial perturbation in the expression of over 5000 genes, an impressive >20% of the entire murine genome. Among the genes whose expression are dramatically affected by MKP-1 deficiency are those encoding metabolic regulators and acute phase response proteins. These studies demonstrate that MKP-1 is an essential gate-keeper of the acute innate immune response, facilitating pathogen killing and regulating the metabolic response during pathogenic infection. In this review article, we will summarize the studies on the function of MKP-1 during acute innate immune response in the regulation of inflammation, metabolism, and acute phase response. We will also discuss the role of MKP-1 in the actions of numerous immunomodulatory agents.
Collapse
Affiliation(s)
- Sean G. Kirk
- Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43215, USA
| | - Lobelia Samavati
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Yusen Liu
- Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43215, USA,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43205, USA,Corresponding author at: Center for Perinatal Research The Abigail Wexner Research Institute at Nationwide Children’s Hospital, 575 Children’s Cross Road, Columbus, OH 43215, USA. (Y. Liu)
| |
Collapse
|
26
|
Roles of extra-cellular signal-regulated protein kinase 5 signaling pathway in the development of spinal cord injury. Chin Med J (Engl) 2019; 132:2601-2611. [PMID: 31373906 PMCID: PMC6846248 DOI: 10.1097/cm9.0000000000000362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Background: In consideration of characteristics and functions, extra-cellular signal-regulated protein kinase 5 (ERK5) signaling pathway could be a new target for spinal cord injury (SCI) treatment. Our study aimed to evaluate the roles of ERK5 signaling pathway in secondary damage of SCI. Methods: We randomly divided 70 healthy Wistar rats into five groups: ten in the blank group, 15 in the sham surgery + BIX02188 (sham + B) group, 15 in the sham surgery + dimethyl sulfoxide (DMSO; sham + D) group, 15 in the SCI + BIX02188 (SCI + B) group, and 15 in the SCI + DMSO (SCI + D) group. BIX02188 is a specific inhibitor of the ERK5 signaling pathway. SCI was induced by the application of vascular clips (with the force of 30 g) to the dura on T10 level, while rats in the sham surgery group underwent only T9-T11 laminectomy. BIX02188 or DMSO was intra-thecally injected at 1, 6, and 12 h after surgery or SCI. Spinal cord samples were taken for testing at 24 h after surgery or SCI. Results: Expression of phosphorylated-ERK5 (p-ERK5) significantly increased after SCI. Application of BIX02188 indeed inhibited ERK5 signaling pathway and reduced the degree of spinal cord tissue injury, neutrophil infiltration and proinflammatory cytokine expression, nuclear factor-κB (NF-κB) activation and apoptosis (measured by TdT-mediated 2′-deoxyuridine 5′-triphosphate nick-end labeling, expression of Fas-ligand, BCL2-associated X [Bax], and B-cell lymphoma-2 [Bcl-2]). Double immunofluorescence revealed activation of ERK5 in neurons and microglia after SCI. Conclusion: ERK5 signaling pathway was activated in spinal neurons and microglia, contributing to secondary injury of SCI. Moreover, inhibition of ERK5 signaling pathway could alleviate the degree of SCI, which might be related to its regulation of infiltration of inflammatory cells and release of inflammatory cytokines, expression of NF-κB and cell apoptosis.
Collapse
|
27
|
Han Y, Wang S, Wang Y, Zeng S. IGF-1 Inhibits Apoptosis of Porcine Primary Granulosa Cell by Targeting Degradation of Bim EL. Int J Mol Sci 2019; 20:ijms20215356. [PMID: 31661816 PMCID: PMC6861984 DOI: 10.3390/ijms20215356] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/01/2019] [Accepted: 09/04/2019] [Indexed: 01/02/2023] Open
Abstract
Insulin-like growth factor-1 (IGF-1) is an intra-ovarian growth factor that plays important endocrine or paracrine roles during ovarian development. IGF-1 affects ovarian function and female fertility through reducing apoptosis of granulosa cells, yet the underlying mechanism remains poorly characterized. Here, we aimed to address these knowledge gaps using porcine primary granulosa cells and examining the anti-apoptotic mechanisms of IGF-1. IGF-1 prevented the granulosa cell from apoptosis, as shown by TUNEL and Annexin V/PI detection, and gained the anti-apoptotic index, the ratio of Bcl-2/Bax. This process was partly mediated by reducing the pro-apoptotic BimEL (Bcl-2 Interacting Mediator of Cell Death-Extra Long) protein level. Western blotting showed that IGF-1 promoted BimEL phosphorylation through activating p-ERK1/2, and that the proteasome system was responsible for degradation of phosphorylated BimEL. Meanwhile, IGF-1 enhanced the Beclin1 level and the rate of LC3 II/LC3 I, indicating that autophagy was induced by IGF-1. By blocking the proteolysis processes of both proteasome and autophagy flux with MG132 and chloroquine, respectively, the BimEL did not reduce and the phosphorylated BimEL protein accumulated, thereby indicating that both proteasome and autophagy pathways were involved in the degradation of BimEL stimulated by IGF-1. In conclusion, IGF-1 inhibited porcine primary granulosa cell apoptosis via degradation of pro-apoptotic BimEL. This study is critical for us to further understand the mechanisms of follicular survival and atresia regulated by IGF-1. Moreover, it provides a direction for the treatment of infertility caused by ovarian dysplasia, such as polycystic ovary syndrome and the improvement of assisted reproductive technology.
Collapse
Affiliation(s)
- Ying Han
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding, and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Shumin Wang
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding, and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Yingzheng Wang
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding, and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Shenming Zeng
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding, and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
28
|
Pre-clinical effects of highly potent MEK1/2 inhibitors on rat cerebral vasculature after organ culture and subarachnoid haemorrhage. Clin Sci (Lond) 2019; 133:1797-1811. [DOI: 10.1042/cs20190636] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 08/02/2019] [Accepted: 08/05/2019] [Indexed: 11/17/2022]
Abstract
Abstract
Background: Aneurysmal subarachnoid haemorrhage (SAH) is a variant of haemorrhagic stroke with a striking 50% mortality rate. In addition to the initial insult, secondary delayed brain injury may occur days after the initial ischemic insult and is associated with vasospasms leading to delayed cerebral ischemia. We have previously shown that the MEK1/2 inhibitor U0126 improves neurological assessment after SAH in rats. Aim: The purpose of the present study was to analyse the impact of a broad selection of high potency MEK1/2 inhibitors in an organ culture model and use the IC50 values obtained from the organ culture to select highly potent inhibitors for pre-clinical in vivo studies. Results: Nine highly potent mitogen activated protein kinase kinase (MEK1/2) inhibitors were screened and the two most potent inhibitors from the organ culture screening, trametinib and PD0325901, were tested in an in vivo experimental rat SAH model with intrathecal injections. Subsequently, the successful inhibitor trametinib was administered intraperitoneally in a second in vivo study. In both regimens, trametinib treatment caused significant reductions in the endothelin-1 induced contractility after SAH, which is believed to be associated with endothelin B receptor up-regulation. Trametinib treated rats showed improved neurological scores, evaluated by the ability to traverse a rotating pole, after induced SAH. Conclusion: The PD0325901 treatment did not improve the neurological score after SAH, nor showed any beneficial therapeutic effect on the contractility, contrasting with the reduction in neurological deficits seen after trametinib treatment. These data show that trametinib might be a potential candidate for treatment of SAH.
Collapse
|
29
|
Liu J, Han X, Zhu G, Liu S, Lu Q, Tang Z. Analysis of potential functional significance of microRNA‑3613‑3p in human umbilical vein endothelial cells affected by heat stress. Mol Med Rep 2019; 20:1846-1856. [PMID: 31257536 PMCID: PMC6625459 DOI: 10.3892/mmr.2019.10376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 04/24/2019] [Indexed: 12/18/2022] Open
Abstract
Dysregulation of microRNA‑3613‑3p (miR‑3613‑3p) was previously reported in endothelial cells (ECs) during heat stress. The aim of the present study was to investigate the precise role of miR‑3613‑3p in heat stress. In the present study, potential gene targets of miR‑3613‑3p in heat‑treated ECs were assessed, and the potential effects of miR‑3613‑3p were determined using Gene Ontology enrichment analysis. Kyoto Encyclopedia of Genes and Genomes pathway analysis was used to identify signaling pathways that may be affected by miR‑3613‑3p in heat‑treated cells. Reverse transcription‑quantitative PCR, western blotting and annexin V‑FITC/propidium iodide staining were performed to detect miRNA expression, protein expression and apoptosis, respectively. Luciferase gene reporter assay was performed to evaluate the association between miR‑3613‑3p and mitogen‑activated protein kinase kinase kinase 2 (MAP3K2). Bioinformatics analysis revealed 865 potential gene targets for miR‑3613‑3p and a series of functions and pathways in heat‑treated ECs. 'Negative regulation of apoptotic process' was identified as a potential function of miR‑3613‑3p. In addition, functional analysis confirmed the downregulated expression levels of miR‑3613‑3p in ECs during heat stress, which was accompanied by an increase in apoptosis; restoration of miR‑3613‑3p expression inhibited apoptosis. MAP3K2 protein was demonstrated to be upregulated in heat‑treated ECs, and overexpression of miR‑3613‑3p reduced MAP3K2 expression levels. Additionally, MAP3K2 was targeted by miR‑3613‑3p. These results indicated that miR‑3613‑3p may have complicated roles in ECs under heat stress. miR‑3613‑3p may serve an important role in the apoptosis of heat‑treated ECs, and this effect may be partly achieved by targeting MAP3K2.
Collapse
Affiliation(s)
- Jie Liu
- Department of Emergency, Central Theater General Hospital of People's Liberation Army of China, Wuhan, Hubei 430070, P.R. China
- Department of Emergency, Hefei BOE Hospital Co., Ltd., Anhui, Hefei 230011, P.R. China
| | - Xuan Han
- Department of Emergency, Central Theater General Hospital of People's Liberation Army of China, Wuhan, Hubei 430070, P.R. China
| | - Guoguo Zhu
- Department of Emergency, Central Theater General Hospital of People's Liberation Army of China, Wuhan, Hubei 430070, P.R. China
| | - Shixin Liu
- Department of Emergency, Central Theater General Hospital of People's Liberation Army of China, Wuhan, Hubei 430070, P.R. China
| | - Qiping Lu
- Department of General Surgery, Central Theater General Hospital of People's Liberation Army of China, Wuhan, Hubei 430070, P.R. China
| | - Zhongzhi Tang
- Department of Emergency, Central Theater General Hospital of People's Liberation Army of China, Wuhan, Hubei 430070, P.R. China
| |
Collapse
|
30
|
Zhang P, Sun Y, Peng R, Chen W, Fu X, Zhang L, Peng H, Zhang Z. Long non-coding RNA Rpph1 promotes inflammation and proliferation of mesangial cells in diabetic nephropathy via an interaction with Gal-3. Cell Death Dis 2019; 10:526. [PMID: 31285427 PMCID: PMC6614467 DOI: 10.1038/s41419-019-1765-0] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 06/02/2019] [Accepted: 06/25/2019] [Indexed: 12/28/2022]
Abstract
Diabetic nephropathy (DN) is one of the most significant complications of diabetes and is the primary cause of end-stage kidney disease. Cumulating evidence has shown that renal inflammation plays a role in the development and progression of DN, but the exact cellular mechanisms are unclear. Irregular expression of long non-coding RNAs (lncRNAs) is present in many diseases, including DN. However, the relationship between lncRNAs and inflammation in DN is unclear. In this study, we identified differentially expressed lncRNAs in DN using RNA-sequencing. Among these lncRNAs, we identified seven DN-related lncRNAs in vivo and in vitro using quantitative real-time PCR. One lncRNA in particular, Rpph1 (ribonuclease P RNA component H1), exhibited significantly increased expression. Further, over-expression or knockdown of Rpph1 was found to regulate cell proliferation and the expression of inflammatory cytokines in mesangial cells (MCs). The results revealed that Rpph1 directly interacts with the DN-related factor galectin-3 (Gal-3). Further, over-expression of Rpph1 promoted inflammation and cell proliferation through the Gal-3/Mek/Erk signaling pathway in MCs under low glucose conditions, while knockdown of Rpph1 inhibited inflammation and cell proliferation through the Gal-3/Mek/Erk pathway in MCs under high glucose conditions. These results provide new insight into the association between Rpph1 and the Gal-3/Mek/Erk signaling pathway during DN progression.
Collapse
Affiliation(s)
- Panyang Zhang
- Molecular Medicine and Cancer Research Center, Chongqing Medical University, 400016, Chongqing, China
| | - Yan Sun
- Molecular Medicine and Cancer Research Center, Chongqing Medical University, 400016, Chongqing, China
| | - Rui Peng
- Department of Bioinformatics, Chongqing Medical University, 400016, Chongqing, China
| | - Wenyun Chen
- Molecular Medicine and Cancer Research Center, Chongqing Medical University, 400016, Chongqing, China
| | - Xia Fu
- People's Hospital of Fuling District, 408000, Chongqing, China
| | - Luyu Zhang
- Molecular Medicine and Cancer Research Center, Chongqing Medical University, 400016, Chongqing, China
| | - Huimin Peng
- Molecular Medicine and Cancer Research Center, Chongqing Medical University, 400016, Chongqing, China
| | - Zheng Zhang
- Molecular Medicine and Cancer Research Center, Chongqing Medical University, 400016, Chongqing, China.
| |
Collapse
|
31
|
Olea-Flores M, Zuñiga-Eulogio MD, Mendoza-Catalán MA, Rodríguez-Ruiz HA, Castañeda-Saucedo E, Ortuño-Pineda C, Padilla-Benavides T, Navarro-Tito N. Extracellular-Signal Regulated Kinase: A Central Molecule Driving Epithelial-Mesenchymal Transition in Cancer. Int J Mol Sci 2019; 20:E2885. [PMID: 31200510 PMCID: PMC6627365 DOI: 10.3390/ijms20122885] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 06/09/2019] [Accepted: 06/11/2019] [Indexed: 12/18/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a reversible cellular process, characterized by changes in gene expression and activation of proteins, favoring the trans-differentiation of the epithelial phenotype to a mesenchymal phenotype. This process increases cell migration and invasion of tumor cells, progression of the cell cycle, and resistance to apoptosis and chemotherapy, all of which support tumor progression. One of the signaling pathways involved in tumor progression is the MAPK pathway. Within this family, the ERK subfamily of proteins is known for its contributions to EMT. The ERK subfamily is divided into typical (ERK 1/2/5), and atypical (ERK 3/4/7/8) members. These kinases are overexpressed and hyperactive in various types of cancer. They regulate diverse cellular processes such as proliferation, migration, metastasis, resistance to chemotherapy, and EMT. In this context, in vitro and in vivo assays, as well as studies in human patients, have shown that ERK favors the expression, function, and subcellular relocalization of various proteins that regulate EMT, thus promoting tumor progression. In this review, we discuss the mechanistic roles of the ERK subfamily members in EMT and tumor progression in diverse biological systems.
Collapse
Affiliation(s)
- Monserrat Olea-Flores
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas s/n Chilpancingo, Gro. 39090, Mexico.
| | - Miriam Daniela Zuñiga-Eulogio
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas s/n Chilpancingo, Gro. 39090, Mexico.
| | - Miguel Angel Mendoza-Catalán
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas s/n Chilpancingo, Gro. 39090, Mexico.
| | - Hugo Alberto Rodríguez-Ruiz
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas s/n Chilpancingo, Gro. 39090, Mexico.
| | - Eduardo Castañeda-Saucedo
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas s/n Chilpancingo, Gro. 39090, Mexico.
| | - Carlos Ortuño-Pineda
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas s/n Chilpancingo, Gro. 39090, Mexico.
| | - Teresita Padilla-Benavides
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA.
| | - Napoleón Navarro-Tito
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas s/n Chilpancingo, Gro. 39090, Mexico.
| |
Collapse
|
32
|
Iñiguez SD, Parise LF, Lobo MK, Flores-Ramirez FJ, Garcia-Carachure I, Warren BL, Robison AJ. Upregulation of hippocampal extracellular signal-regulated kinase (ERK)-2 induces antidepressant-like behavior in the rat forced swim test. Behav Neurosci 2019; 133:225-231. [PMID: 30907619 PMCID: PMC6712563 DOI: 10.1037/bne0000303] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The hippocampus mediates responses to affect-related behavior in preclinical models of pharmacological antidepressant efficacy, such as the forced swim test. However, the molecular mechanisms that regulate escape-directed behavior in this preclinical model of despair are not well understood. Here, using viral-mediated gene transfer, we assessed how overexpression of extracellular signal-regulated protein kinase (ERK)-2 within the dorsal hippocampus influenced behavioral reactivity to inescapable swimming stress in adult male Sprague-Dawley rats. When compared to controls, rats overexpressing hippocampal ERK-2 displayed increases in the time to initially adopt a posture of immobility, along with decreases in total time spent immobile, without influencing general locomotor activity. Collectively, the results indicate that hippocampal upregulation of ERK-2 increases escape-directed behavior in the rat forced swim test, thus providing insight into the neurobiological mechanisms that mediate antidepressant efficacy. (PsycINFO Database Record (c) 2019 APA, all rights reserved).
Collapse
Affiliation(s)
- Sergio D. Iñiguez
- Department of Psychology, The University of Texas at El Paso, El Paso, TX
| | - Lyonna F. Parise
- Fishberg Department of Neuroscience, Mount Sinai School of Medicine, New York, NY
| | - Mary K. Lobo
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD
| | | | | | - Brandon L. Warren
- Department of Pharmacodynamics, University of Florida, Gainesville, FL
| | - Alfred J. Robison
- Department of Physiology, Michigan State University, East Lansing, MI
| |
Collapse
|
33
|
Benito-Jardón L, Díaz-Martínez M, Arellano-Sánchez N, Vaquero-Morales P, Esparís-Ogando A, Teixidó J. Resistance to MAPK Inhibitors in Melanoma Involves Activation of the IGF1R-MEK5-Erk5 Pathway. Cancer Res 2019; 79:2244-2256. [PMID: 30833419 DOI: 10.1158/0008-5472.can-18-2762] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 01/14/2019] [Accepted: 02/27/2019] [Indexed: 11/16/2022]
Abstract
Combined treatment of metastatic melanoma with BRAF and MEK inhibitors has improved survival, but the emergence of resistance represents an important clinical challenge. Targeting ERK is a suitable strategy currently being investigated in melanoma and other cancers. To anticipate possible resistance to ERK inhibitors (ERKi), we used SCH772984 (SCH) as a model ERKi to characterize resistance mechanisms in two BRAF V600E melanoma cell lines. The ERKi-resistant cells were also resistant to vemurafenib (VMF), trametinib (TMT), and combined treatment with either VMF and SCH or TMT and SCH. Resistance to SCH involved stimulation of the IGF1R-MEK5-Erk5 signaling pathway, which counteracted inhibition of Erk1/2 activation and cell growth. Inhibition of IGF1R with linsitinib blocked Erk5 activation in SCH-resistant cells and decreased their growth in 3D spheroid growth assays as well as in NOD scid gamma (NSG) mice. Cells doubly resistant to VMF and TMT or to VMF and SCH also exhibited downregulated Erk1/2 activation linked to stimulation of the IGF1R-MEK5-Erk5 pathway, which accounted for resistance. In addition, we found that the decreased Erk1/2 activation in SCH-resistant cells involved reduced expression and function of TGFα. These data reveal an escape signaling route that melanoma cells use to bypass Erk1/2 blockade during targeted melanoma treatment and offer several possible targets whose disruption may circumvent resistance. SIGNIFICANCE: Activation of the IGF1R-MEK5-Erk5 signaling pathway opposes pharmacologic inhibition of Erk1/2 in melanoma, leading to the reactivation of cell proliferation and acquired resistance.
Collapse
Affiliation(s)
- Lucía Benito-Jardón
- Department of Molecular Biomedicine, Centro de Investigaciones Biológicas (CSIC), Madrid, Spain
| | - Marta Díaz-Martínez
- Department of Molecular Biomedicine, Centro de Investigaciones Biológicas (CSIC), Madrid, Spain
| | - Nohemi Arellano-Sánchez
- Department of Molecular Biomedicine, Centro de Investigaciones Biológicas (CSIC), Madrid, Spain
| | - Paloma Vaquero-Morales
- Department of Molecular Biomedicine, Centro de Investigaciones Biológicas (CSIC), Madrid, Spain
| | - Azucena Esparís-Ogando
- Instituto de Biología Molecular y Celular del Cáncer, CSIC-University of Salamanca, IBSAL, and CIBERONC, Salamanca, Spain
| | - Joaquin Teixidó
- Department of Molecular Biomedicine, Centro de Investigaciones Biológicas (CSIC), Madrid, Spain.
| |
Collapse
|
34
|
Jiang W, Jin G, Cai F, Chen X, Cao N, Zhang X, Liu J, Chen F, Wang F, Dong W, Zhuang H, Hua ZC. Extracellular signal-regulated kinase 5 increases radioresistance of lung cancer cells by enhancing the DNA damage response. Exp Mol Med 2019; 51:1-20. [PMID: 30804322 PMCID: PMC6389946 DOI: 10.1038/s12276-019-0209-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 10/26/2018] [Accepted: 10/29/2018] [Indexed: 12/18/2022] Open
Abstract
Radiotherapy is a frequent mode of cancer treatment, although the development of radioresistance limits its effectiveness. Extensive investigations indicate the diversity of the mechanisms underlying radioresistance. Here, we aimed to explore the effects of extracellular signal-regulated kinase 5 (ERK5) on lung cancer radioresistance and the associated mechanisms. Our data showed that ERK5 is activated during solid lung cancer development, and ectopic expression of ERK5 promoted cell proliferation and G2/M cell cycle transition. In addition, we found that ERK5 is a potential regulator of radiosensitivity in lung cancer cells. Mechanistic investigations revealed that ERK5 could trigger IR-induced activation of Chk1, which has been implicated in DNA repair and cell cycle arrest in response to DNA double-strand breaks (DSBs). Subsequently, ERK5 knockdown or pharmacological inhibition selectively inhibited colony formation of lung cancer cells and enhanced IR-induced G2/M arrest and apoptosis. In vivo, ERK5 knockdown strongly radiosensitized A549 and LLC tumor xenografts to inhibition, with a higher apoptotic response and reduced tumor neovascularization. Taken together, our data indicate that ERK5 is a novel potential target for the treatment of lung cancer, and its expression might be used as a biomarker to predict radiosensitivity in NSCLC patients. Resistance to radiotherapy in patients with lung cancer may be countered by targeting a protein involved in promoting DNA repair. Radiotherapy causes DNA double-stranded breaks in lung cancer cells in order to kill them. However, cancer cells can show improved DNA repair and responses to damage, resulting in resistance to treatment. Zi-Chun Hua, Hongqin Zhuang at Nanjing University in China and co-workers examined the activity of the extracellular signal-related kinase 5 (ERK5) protein in response to the stress of ionizing radiation. They found that after radiation exposure ERK5 increased expression of another protein involved in DNA repair, facilitating cancer cell recovery. Knocking out ERK5 suppressed this resistance to radiotherapy. ERK5 could be a valuable target for treating lung cancer, and ERK5 expression level could be used as a biomarker for patient sensitivity to radiotherapy.
Collapse
Affiliation(s)
- Weiwei Jiang
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, PR China
| | - Guanghui Jin
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, PR China.,Department of Basic Medical Sciences, Medical College, Xiamen University, Xiamen, PR China
| | - Fangfang Cai
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, PR China
| | - Xiao Chen
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, PR China
| | - Nini Cao
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, PR China
| | - Xiangyu Zhang
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, PR China
| | - Jia Liu
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, PR China
| | - Fei Chen
- Department of Nuclear Medicine, The Affiliated Nanjing First Hospital, Nanjing Medical University, Nanjing, PR China
| | - Feng Wang
- Department of Nuclear Medicine, The Affiliated Nanjing First Hospital, Nanjing Medical University, Nanjing, PR China
| | - Wei Dong
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, PR China
| | - Hongqin Zhuang
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, PR China.
| | - Zi-Chun Hua
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, PR China. .,Changzhou High-Tech Research Institute of Nanjing University and Jiangsu Target Pharma Laboratories Inc., Changzhou, 213164, PR China.
| |
Collapse
|
35
|
Dinsmore CJ, Soriano P. MAPK and PI3K signaling: At the crossroads of neural crest development. Dev Biol 2018; 444 Suppl 1:S79-S97. [PMID: 29453943 PMCID: PMC6092260 DOI: 10.1016/j.ydbio.2018.02.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 02/06/2018] [Accepted: 02/06/2018] [Indexed: 02/08/2023]
Abstract
Receptor tyrosine kinase-mediated growth factor signaling is essential for proper formation and development of the neural crest. The many ligands and receptors implicated in these processes signal through relatively few downstream pathways, frequently converging on the MAPK and PI3K pathways. Despite decades of study, there is still considerable uncertainty about where and when these signaling pathways are required and how they elicit particular responses. This review summarizes our current understanding of growth factor-induced MAPK and PI3K signaling in the neural crest.
Collapse
Affiliation(s)
- Colin J Dinsmore
- Department of Cell, Developmental and Regenerative Biology, Tisch Cancer Institute, Icahn School of Medicine at Mt. Sinai, New York, NY 10029, USA
| | - Philippe Soriano
- Department of Cell, Developmental and Regenerative Biology, Tisch Cancer Institute, Icahn School of Medicine at Mt. Sinai, New York, NY 10029, USA.
| |
Collapse
|
36
|
Kang C, Kim JS, Kim CY, Kim EY, Chung HM. The Pharmacological Inhibition of ERK5 Enhances Apoptosis in Acute Myeloid Leukemia Cells. Int J Stem Cells 2018; 11:227-234. [PMID: 30343550 PMCID: PMC6285287 DOI: 10.15283/ijsc18053] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 08/13/2018] [Accepted: 08/14/2018] [Indexed: 12/26/2022] Open
Abstract
Acute myeloid leukemia (AML) is a fatal hematological malignancy which is resistant to a variety of chemotherapy drugs. Extracellular signal-regulated kinase 5 (ERK5) plays a novel role in chemoresistance in some cancer cells and this pathway is a central mediator of cell survival and apoptotic regulation. The aim of this study was to investigate the effect of ERK5 inhibitor, XMD8-92, on proliferation and apoptosis in AML cell lines. Findings showed that XMD8-92 inhibited the activation of ERK5 by G-CSF and decreased the expression of c-Myc and Cyclin D1. The treatment of XMD8-92 reduced the phosphorylation of ERK5 leading to a distinct inhibition of cell proliferation and increased apoptosis in Kasumi-1 and HL-60 cells. Taken together, our study suggests that the inhibition of ERK5 by XMD8-92 can trigger apoptosis and inhibit proliferation in AMLs. Therefore, the inhibition of ERK5 may be an effective adjuvant in AML chemotherapy.
Collapse
Affiliation(s)
- Changhee Kang
- Department of Stem Cell Biology, School of Medicine, Konkuk University, Seoul, Korea
| | - Jong Soo Kim
- Department of Stem Cell Biology, School of Medicine, Konkuk University, Seoul, Korea
| | - C-Yoon Kim
- Department of Stem Cell Biology, School of Medicine, Konkuk University, Seoul, Korea
| | - Eun-Young Kim
- Stem Cell Research Center, Jeju National University, Jeju, Korea.,Mirae Cell Bio Co. LTD, Seoul, Korea
| | - Hyung-Min Chung
- Department of Stem Cell Biology, School of Medicine, Konkuk University, Seoul, Korea
| |
Collapse
|
37
|
Wang Y, Zeng S. Melatonin Promotes Ubiquitination of Phosphorylated Pro-Apoptotic Protein Bcl-2-Interacting Mediator of Cell Death-Extra Long (Bim EL) in Porcine Granulosa Cells. Int J Mol Sci 2018; 19:ijms19113431. [PMID: 30388852 PMCID: PMC6274928 DOI: 10.3390/ijms19113431] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 10/27/2018] [Accepted: 10/27/2018] [Indexed: 12/31/2022] Open
Abstract
Melatonin (N-acetyl-5-methoxytryptamine) is found in ovarian follicular fluid, and its concentration is closely related to follicular health status. Nevertheless, the molecular mechanisms underlying melatonin function in follicles are uncertain. In this study, melatonin concentration was measured in porcine follicular fluid at different stages of health. The melatonin concentration decreased as the follicles underwent atresia, suggesting that melatonin may participate in the maintenance of follicular health. The molecular pathway through which melatonin may regulate follicular development was further investigated. The pro-apoptotic protein BimEL (Bcl-2-interacting mediator of cell death-Extra Long), a key protein controlling granulosa cell apoptosis during follicular atresia, was selected as the target molecule. BimEL was downregulated when porcine granulosa cells were cultured in medium containing 10−9 M melatonin and isolated cumulus oocyte complexes (COCs) or follicle stimulating hormone (FSH). Interestingly, ERK-mediated phosphorylation was a prerequisite for the melatonin-induced decline in BimEL, and melatonin only promoted the ubiquitination of phosphorylated BimEL, and did not affect the activities of the lysosome or the proteasome. Moreover, the melatonin-induced downregulation of BimEL was independent of its receptor and its antioxidant properties. In conclusion, melatonin may maintain follicular health by inducing BimEL ubiquitination to inhibit the apoptosis of granulosa cells.
Collapse
Affiliation(s)
- Yingzheng Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China.
| | - Shenming Zeng
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
38
|
Bohush A, Niewiadomska G, Filipek A. Role of Mitogen Activated Protein Kinase Signaling in Parkinson's Disease. Int J Mol Sci 2018; 19:ijms19102973. [PMID: 30274251 PMCID: PMC6213537 DOI: 10.3390/ijms19102973] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 09/25/2018] [Accepted: 09/26/2018] [Indexed: 12/31/2022] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder caused by insufficient dopamine production due to the loss of 50% to 70% of dopaminergic neurons. A shortage of dopamine, which is predominantly produced by the dopaminergic neurons within the substantia nigra, causes clinical symptoms such as reduction of muscle mass, impaired body balance, akinesia, bradykinesia, tremors, postural instability, etc. Lastly, this can lead to a total loss of physical movement and death. Since no cure for PD has been developed up to now, researchers using cell cultures and animal models focus their work on searching for potential therapeutic targets in order to develop effective treatments. In recent years, genetic studies have prominently advocated for the role of improper protein phosphorylation caused by a dysfunction in kinases and/or phosphatases as an important player in progression and pathogenesis of PD. Thus, in this review, we focus on the role of selected MAP kinases such as JNKs, ERK1/2, and p38 MAP kinases in PD pathology.
Collapse
Affiliation(s)
- Anastasiia Bohush
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland.
| | - Grazyna Niewiadomska
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland.
| | - Anna Filipek
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland.
| |
Collapse
|
39
|
Liu L, Levin DE. Intracellular mechanism by which genotoxic stress activates yeast SAPK Mpk1. Mol Biol Cell 2018; 29:2898-2909. [PMID: 30230955 PMCID: PMC6249863 DOI: 10.1091/mbc.e18-07-0441] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Stress-activated MAP kinases (SAPKs) respond to a wide variety of stressors. In most cases, the pathways through which specific stress signals are transmitted to the SAPKs are not known. The Saccharomyces cerevisiae SAPK Mpk1 (Slt2) is a well-characterized component of the cell-wall integrity (CWI) signaling pathway, which responds to physical and chemical challenges to the cell wall. However, Mpk1 is also activated in response to genotoxic stress through an unknown pathway. We show that, in contrast to cell-wall stress, the pathway for Mpk1 activation by genotoxic stress does not involve the stimulation of the MAP kinase kinases (MEKs) that function immediately upstream of Mpk1. Instead, DNA damage activates Mpk1 through induction of proteasomal degradation of Msg5, the dual-specificity protein phosphatase principally responsible for maintaining Mpk1 in a low-activity state in the absence of stress. Blocking Msg5 degradation in response to genotoxic stress prevented Mpk1 activation. This work raises the possibility that other Mpk1-activating stressors act intracellularly at different points along the canonical Mpk1 activation pathway.
Collapse
Affiliation(s)
- Li Liu
- Department of Molecular and Cell Biology, Boston University Goldman School of Dental Medicine, Boston, MA 02118
| | - David E Levin
- Department of Molecular and Cell Biology, Boston University Goldman School of Dental Medicine, Boston, MA 02118.,Department of Microbiology, Boston University School of Medicine, Boston, MA 02118
| |
Collapse
|
40
|
Structure activity relationships of anthranilic acid-based compounds on cellular and in vivo mitogen activated protein kinase-5 signaling pathways. Bioorg Med Chem Lett 2018; 28:2294-2301. [DOI: 10.1016/j.bmcl.2018.05.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 05/11/2018] [Accepted: 05/12/2018] [Indexed: 11/15/2022]
|
41
|
Mitochondrial Complex I activity signals antioxidant response through ERK5. Sci Rep 2018; 8:7420. [PMID: 29743487 PMCID: PMC5943249 DOI: 10.1038/s41598-018-23884-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 03/21/2018] [Indexed: 11/29/2022] Open
Abstract
Oxidative phosphorylation (OXPHOS) generates ROS as a byproduct of mitochondrial complex I activity. ROS-detoxifying enzymes are made available through the activation of their antioxidant response elements (ARE) in their gene promoters. NRF2 binds to AREs and induces this anti-oxidant response. We show that cells from multiple origins performing OXPHOS induced NRF2 expression and its transcriptional activity. The NRF2 promoter contains MEF2 binding sites and the MAPK ERK5 induced MEF2-dependent NRF2 expression. Blocking OXPHOS in a mouse model decreased Erk5 and Nrf2 expression. Furthermore, fibroblasts derived from patients with mitochondrial disorders also showed low expression of ERK5 and NRF2 mRNAs. Notably, in cells lacking functional mitochondrial complex I activity OXPHOS did not induce ERK5 expression and failed to generate this anti-oxidant response. Complex I activity induces ERK5 expression through fumarate accumulation. Eukaryotic cells have evolved a genetic program to prevent oxidative stress directly linked to OXPHOS and not requiring ROS.
Collapse
|
42
|
Pavan S, Meyer-Schaller N, Diepenbruck M, Kalathur RKR, Saxena M, Christofori G. A kinome-wide high-content siRNA screen identifies MEK5-ERK5 signaling as critical for breast cancer cell EMT and metastasis. Oncogene 2018; 37:4197-4213. [PMID: 29713055 DOI: 10.1038/s41388-018-0270-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 01/10/2018] [Accepted: 01/16/2018] [Indexed: 12/21/2022]
Abstract
An epithelial to mesenchymal transition (EMT) has been correlated to malignant tumor progression and metastasis by promoting cancer cell migration and invasion and chemoresistance. Hence, finding druggable EMT effectors is critical to efficiently interfere with metastasis formation and to overcome therapy resistance. We have employed a high-content microscopy screen in combination with a kinome and phosphatome-wide siRNA library to identify signaling pathways underlying an EMT of murine mammary epithelial cells and breast cancer cells. This screen identified the MEK5-ERK5 axis as a critical player in TGFβ-mediated EMT. Suppression of MEK5-ERK5 signaling completely prevented the morphological and molecular changes occurring during a TGFβ-induced EMT and, conversely, forced highly metastatic breast cancer cells into a differentiated epithelial state. Inhibition of MEK5-ERK5 signaling also repressed breast cancer cell migration and invasion and substantially reduced lung metastasis without affecting primary tumor growth. The results suggest that the MEK5-ERK5 signaling axis via activation of MEF2B and other transcription factors plays an important role in the induction and maintenance of breast cancer cell migration and invasion and thus represents an exploitable target for the pharmacological inhibition of cancer cell metastasis.
Collapse
Affiliation(s)
- Simona Pavan
- Department of Biomedicine, University of Basel, Basel, 4058, Switzerland.
| | | | - Maren Diepenbruck
- Department of Biomedicine, University of Basel, Basel, 4058, Switzerland
| | | | - Meera Saxena
- Department of Biomedicine, University of Basel, Basel, 4058, Switzerland
| | | |
Collapse
|
43
|
Ahmad MK, Abdollah NA, Shafie NH, Yusof NM, Razak SRA. Dual-specificity phosphatase 6 (DUSP6): a review of its molecular characteristics and clinical relevance in cancer. Cancer Biol Med 2018; 15:14-28. [PMID: 29545965 PMCID: PMC5842331 DOI: 10.20892/j.issn.2095-3941.2017.0107] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Mitogen-activated protein kinases (MAPKs) are the main regulators of cellular proliferation, growth, and survival in physiological or pathological conditions. Aberrant MAPK signaling plays a pivotal role in carcinogenesis, which leads to development and progression of human cancer. Dual-specificity phosphatase 6 (DUSP6), a member of the MAPK phosphatase family, interacts with specifically targeted extracellular signal-regulated kinase 1/2 via negative feedback regulation in the MAPK pathway of mammalian cells. This phosphatase functions in a dual manner, pro-oncogenic or tumor-suppressive, depending on the type of cancer. To date, the tumor-suppressive role of DUSP6 has been demonstrated in pancreatic cancer, non-small cell lung cancer, esophageal squamous cell and nasopharyngeal carcinoma, and ovarian cancer. Its pro-oncogenic role has been observed in human glioblastoma, thyroid carcinoma, breast cancer, and acute myeloid carcinoma. Both roles of DUSP6 have been documented in malignant melanoma depending on the histological subtype of the cancer. Loss- or gain-of-function effects of DUSP6 in these cancers highlights the significance of this phosphatase in carcinogenesis. Development of methods that use the DUSP6 gene as a therapeutic target for cancer treatment or as a prognostic factor for diagnosis and evaluation of cancer treatment outcome has great potential. This review focuses on molecular characteristics of the DUSP6 gene and its role in cancers in the purview of development, progression, and cancer treatment outcome.
Collapse
Affiliation(s)
- Muhammad Khairi Ahmad
- Oncological and Radiological Sciences Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Pulau Pinang 13200, Malaysia
| | - Nur Ainina Abdollah
- Oncological and Radiological Sciences Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Pulau Pinang 13200, Malaysia
| | - Nurul Husna Shafie
- Oncological and Radiological Sciences Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Pulau Pinang 13200, Malaysia
| | - Narazah Mohd Yusof
- Oncological and Radiological Sciences Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Pulau Pinang 13200, Malaysia
| | - Siti Razila Abdul Razak
- Oncological and Radiological Sciences Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Pulau Pinang 13200, Malaysia
| |
Collapse
|
44
|
Wang Y, Luo S, Zhang D, Qu X, Tan Y. Sika pilose antler type I collagen promotes BMSC differentiation via the ERK1/2 and p38-MAPK signal pathways. PHARMACEUTICAL BIOLOGY 2017; 55:2196-2204. [PMID: 29115171 PMCID: PMC6130603 DOI: 10.1080/13880209.2017.1397177] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 09/12/2017] [Accepted: 10/11/2017] [Indexed: 06/06/2023]
Abstract
CONTEXT Sika pilose antler type I collagen (SPC-I) have been reported to promote bone marrow mesenchymal stem cell (BMSC) proliferation and differentiation. However, the underlying mechanism is still unclear. OBJECTIVE This study investigates the molecular mechanisms of SPC-I on the BMSC proliferation and differentiation of osteoblast (OB) in vitro. MATERIAL AND METHODS The primary rat BMSC was cultured and exposed to SPC-I at different concentrations (2.5, 5.0 and 10.0 mg/mL) for 20 days. The effect of SPC-I on the differentiation of BMSCs was evaluated through detecting the activity of alkaline phosphatase (ALP), ALP staining, collagen I (Col-I) content, and calcified nodules. The markers of osteoblastic differentiation were evaluated using RT-PCR and Western-blot analysis. RESULTS SPC-I treatment (2.5 mg/mL) significantly increased the proliferation of BMSCs (p < 0.01), whereas, SPC-I (5.0 and 10.0 mg/mL) significantly inhibited the proliferation of BMSCs (p < 0.01). SPC-I (2.5 mg/mL) significantly increased ALP activity and Col-I content (p < 0.01), and increased positive cells in ALP staining and the formation of calcified nodules. Additionally, the gene expression of ALP, Col-I, Osteocalcin (OC), Runx2, Osterix (Osx), ERK1/2, BMP2 and p38-MAPK, along with the protein expression of ERK1/2, p-ERK1/2, p-p38 MAPK were markedly increased in the SPC-I (5.0 mg/mL) treatment group (p < 0.01) compared to the control group. DISCUSSION AND CONCLUSIONS SPC-I can induce BMSC differentiation into OBs and enhance the function of osteogenesis through ERK1/2 and p38-MAPK signal transduction pathways and regulating the gene expression of osteogenesis-specific transcription factors.
Collapse
Affiliation(s)
- Yanshuang Wang
- Center for New Medicine Research, Changchun University of Traditional Chinese Medicine, Changchun, China
- School of Basic Medicine, Beihua University, Jilin, China
| | - Su Luo
- School of Basic Medicine, Beihua University, Jilin, China
| | - Dafang Zhang
- Center for New Medicine Research, Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Xiaobo Qu
- Center for New Medicine Research, Changchun University of Traditional Chinese Medicine, Changchun, China
| | | |
Collapse
|
45
|
Berntsen HF, Bogen IL, Wigestrand MB, Fonnum F, Walaas SI, Moldes-Anaya A. The fungal neurotoxin penitrem A induces the production of reactive oxygen species in human neutrophils at submicromolar concentrations. Toxicology 2017; 392:64-70. [PMID: 29037868 DOI: 10.1016/j.tox.2017.10.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 10/05/2017] [Accepted: 10/12/2017] [Indexed: 11/24/2022]
Abstract
Penitrem A is a fungal neurotoxin that recurrently causes intoxication in animals, and occasionally also in humans. We have previously reported that penitrem A induced the production of reactive oxygen species (ROS) in rat cerebellar granule cells, opening for a new mechanism of action for the neurotoxin. The aim of this study was to examine the potential of penitrem A to induce ROS production in isolated human neutrophil granulocytes, and to study possible mechanisms involved. Penitrem A significantly increased the production of ROS in human neutrophils at concentrations as low as 0.25μM (40% increase over basal levels), as measured with the DCF fluorescence assay. The EC50 determined for the production of ROS by penitrem A was 3.8μM. The maximal increase in ROS production was approximately 330% over basal levels at a concentration of 12.5μM. ROS formation was significantly inhibited by the antioxidant vitamin E (50μM), the intracellular Ca+2 chelator BAPTA-AM (5μM), the mitogen activated protein kinase kinase (MEK) 1/2 and 5 inhibitor U0126 (1 and 10μM), the p38 mitogen activated protein kinase (MAPK) inhibitor SB203580 (1μM), the c-Jun amino-terminal kinase (JNK) inhibitor SP600125 (10μM), and the calcineurin inhibitors FK-506 and cyclosporine A (1.5 and 0.5μM, respectively). These finding suggest that penitrem A is able to induce an increase in ROS production in neutrophils via the activation of several MAPK-signalling pathways. We suggest that this increase may partly explain the pathophysiology generated by penitrem A neuromycotoxicosis in both humans and animals.
Collapse
Affiliation(s)
- H F Berntsen
- Department of Administration, Lab Animal Unit, National Institute of Occupational Health, P.O. Box 8149 Dep, 0033 Oslo, Norway
| | - I L Bogen
- Oslo University Hospital, Department of Forensic Sciences, Section of Drug Abuse Research, P.O. Box 4950 Nydalen, N-0424 Oslo, Norway
| | - M B Wigestrand
- Institute of Basic Medical Sciences, Department of Biochemistry, University of Oslo, P.O. Box 1112 Blindern, N-0317 Oslo, Norway
| | - F Fonnum
- Institute of Basic Medical Sciences, Department of Biochemistry, University of Oslo, P.O. Box 1112 Blindern, N-0317 Oslo, Norway
| | - S I Walaas
- Institute of Basic Medical Sciences, Department of Biochemistry, University of Oslo, P.O. Box 1112 Blindern, N-0317 Oslo, Norway
| | - A Moldes-Anaya
- Section of Chemistry and Toxicology, Norwegian Veterinary Institute, P.O. Box 750 Sentrum, N-0106 Oslo, Norway; R&D Section, PET-center, University Hospital of North Norway (UNN), P.O. Box 100 Langnes, N-9038 Tromsø, Norway.
| |
Collapse
|
46
|
Liu J, Zhu G, Xu S, Liu S, Lu Q, Tang Z. Analysis of miRNA expression profiling in human umbilical vein endothelial cells affected by heat stress. Int J Mol Med 2017; 40:1719-1730. [PMID: 29039486 PMCID: PMC5716433 DOI: 10.3892/ijmm.2017.3174] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 09/28/2017] [Indexed: 12/20/2022] Open
Abstract
To investigate the regulation of endothelial cell (EC) microRNAs (miRNAs) altered by heat stress, miRNA microarrays and bioinformatics methods were used to determine changes in miRNA profiles and the pathophysiological characteristics of differentially expressed miRNAs. A total of 31 differentially expressed miRNAs were identified, including 20 downregulated and 11 upregulated miRNAs. Gene Ontology (GO) enrichment analysis revealed that the validated targets of the differentially expressed miRNAs were significantly enriched in gene transcription regulation. The pathways were also significantly enriched in the Kyoto Encyclopedia of Genes and Genomes analysis, and most were cancer-related, including the mitogen-activated protein kinase signaling pathway, pathways involved in cancer, the Wnt signaling pathway, the Hippo signaling pathway, proteoglycans involved in cancer and axon guidance. The miRNA-gene and miRNA-GO network analyses revealed several hub miRNAs, genes and functions. Notably, miR-3613-3p played a dominant role in both networks. MAP3K2, MGAT4A, TGFBR1, UBE2R2 and SMAD4 were most likely to be controlled by the altered miRNAs in the miRNA-gene network. The miRNA-GO network analysis revealed significantly complicated associations between miRNAs and different functions, and that the significantly enriched functions targeted by the differentially expressed miRNAs were mostly involved in regulating gene transcription. The present study demonstrated that miRNAs are involved in the pathophysiology of heat-treated ECs. Understanding the functions of miRNAs may provide novel insights into the molecular mechanisms underlying the heat-induced pathophysiology of ECs.
Collapse
Affiliation(s)
- Jie Liu
- Department of Emergency, Wuhan General Hospital of People's Liberation Army of China, Wuhan, Hubei 430070, P.R. China
| | - Guoguo Zhu
- Department of Emergency, Wuhan General Hospital of People's Liberation Army of China, Wuhan, Hubei 430070, P.R. China
| | - Siya Xu
- Department of Emergency, Wuhan General Hospital of People's Liberation Army of China, Wuhan, Hubei 430070, P.R. China
| | - Shixin Liu
- Department of Emergency, Wuhan General Hospital of People's Liberation Army of China, Wuhan, Hubei 430070, P.R. China
| | - Qiping Lu
- Department of General Surgery, Wuhan General Hospital of People's Liberation Army of China, Wuhan, Hubei 430070, P.R. China
| | - Zhongzhi Tang
- Department of Emergency, Wuhan General Hospital of People's Liberation Army of China, Wuhan, Hubei 430070, P.R. China
| |
Collapse
|
47
|
Khan AUH, Allende-Vega N, Gitenay D, Gerbal-Chaloin S, Gondeau C, Vo DN, Belkahla S, Orecchioni S, Talarico G, Bertolini F, Bozic M, Valdivielso JM, Bejjani F, Jariel I, Lopez-Mejia IC, Fajas L, Lecellier CH, Hernandez J, Daujat M, Villalba M. The PDK1 Inhibitor Dichloroacetate Controls Cholesterol Homeostasis Through the ERK5/MEF2 Pathway. Sci Rep 2017; 7:10654. [PMID: 28878225 PMCID: PMC5587676 DOI: 10.1038/s41598-017-10339-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 08/08/2017] [Indexed: 12/17/2022] Open
Abstract
Controlling cholesterol levels is a major challenge in human health, since hypercholesterolemia can lead to serious cardiovascular disease. Drugs that target carbohydrate metabolism can also modify lipid metabolism and hence cholesterol plasma levels. In this sense, dichloroacetate (DCA), a pyruvate dehydrogenase kinase (PDK) inhibitor, augments usage of the glycolysis-produced pyruvate in the mitochondria increasing oxidative phosphorylation (OXPHOS). In several animal models, DCA decreases plasma cholesterol and triglycerides. Thus, DCA was used in the 70 s to treat diabetes mellitus, hyperlipoproteinemia and hypercholesterolemia with satisfactory results. However, the mechanism of action remained unknown and we describe it here. DCA increases LDLR mRNA and protein levels as well as LDL intake in several cell lines, primary human hepatocytes and two different mouse models. This effect is mediated by transcriptional activation as evidenced by H3 acetylation on lysine 27 on the LDLR promoter. DCA induces expression of the MAPK ERK5 that turns on the transcription factor MEF2. Inhibition of this ERK5/MEF2 pathway by genetic or pharmacological means decreases LDLR expression and LDL intake. In summary, our results indicate that DCA, by inducing OXPHOS, promotes ERK5/MEF2 activation leading to LDLR expression. The ERK5/MEF2 pathway offers an interesting pharmacological target for drug development.
Collapse
Affiliation(s)
- Abrar Ul Haq Khan
- INSERM, U1183; Université de Montpellier, UFR Medecine, 80, av. Augustin Fliche, 34295, Montpellier Cedex 5, France.,Institut de Médecine Régénératrice et Biothérapie (IRMB), CHU Montpellier, Montpellier, 34295, France
| | - Nerea Allende-Vega
- INSERM, U1183; Université de Montpellier, UFR Medecine, 80, av. Augustin Fliche, 34295, Montpellier Cedex 5, France.,Institut de Médecine Régénératrice et Biothérapie (IRMB), CHU Montpellier, Montpellier, 34295, France
| | - Delphine Gitenay
- INSERM, U1183; Université de Montpellier, UFR Medecine, 80, av. Augustin Fliche, 34295, Montpellier Cedex 5, France.,Institut de Médecine Régénératrice et Biothérapie (IRMB), CHU Montpellier, Montpellier, 34295, France
| | - Sabine Gerbal-Chaloin
- INSERM, U1183; Université de Montpellier, UFR Medecine, 80, av. Augustin Fliche, 34295, Montpellier Cedex 5, France.,Institut de Médecine Régénératrice et Biothérapie (IRMB), CHU Montpellier, Montpellier, 34295, France
| | - Claire Gondeau
- INSERM, U1183; Université de Montpellier, UFR Medecine, 80, av. Augustin Fliche, 34295, Montpellier Cedex 5, France.,Institut de Médecine Régénératrice et Biothérapie (IRMB), CHU Montpellier, Montpellier, 34295, France.,Département d'Hépato-gastroentérologie A, Hôpital Saint Eloi, CHU, Montpellier, France
| | - Dang-Nghiem Vo
- INSERM, U1183; Université de Montpellier, UFR Medecine, 80, av. Augustin Fliche, 34295, Montpellier Cedex 5, France
| | - Sana Belkahla
- INSERM, U1183; Université de Montpellier, UFR Medecine, 80, av. Augustin Fliche, 34295, Montpellier Cedex 5, France
| | - Stefania Orecchioni
- Laboratory of Hematology-Oncology, European Institute of Oncology, Milan, Italy
| | - Giovanna Talarico
- Laboratory of Hematology-Oncology, European Institute of Oncology, Milan, Italy
| | - Francesco Bertolini
- Laboratory of Hematology-Oncology, European Institute of Oncology, Milan, Italy
| | - Milica Bozic
- Vascular and Renal Translational Research Group. Institut de Recerca Biomedica de Lleida (IRBLLIDA), Lleida, Spain
| | - Jose M Valdivielso
- Vascular and Renal Translational Research Group. Institut de Recerca Biomedica de Lleida (IRBLLIDA), Lleida, Spain
| | | | | | | | - Lluis Fajas
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | | | - Javier Hernandez
- INSERM, U1183; Université de Montpellier, UFR Medecine, 80, av. Augustin Fliche, 34295, Montpellier Cedex 5, France
| | - Martine Daujat
- INSERM, U1183; Université de Montpellier, UFR Medecine, 80, av. Augustin Fliche, 34295, Montpellier Cedex 5, France.,Institut de Médecine Régénératrice et Biothérapie (IRMB), CHU Montpellier, Montpellier, 34295, France
| | - Martin Villalba
- INSERM, U1183; Université de Montpellier, UFR Medecine, 80, av. Augustin Fliche, 34295, Montpellier Cedex 5, France. .,Institut de Médecine Régénératrice et Biothérapie (IRMB), CHU Montpellier, Montpellier, 34295, France.
| |
Collapse
|
48
|
Ikedo T, Minami M, Kataoka H, Hayashi K, Nagata M, Fujikawa R, Higuchi S, Yasui M, Aoki T, Fukuda M, Yokode M, Miyamoto S. Dipeptidyl Peptidase-4 Inhibitor Anagliptin Prevents Intracranial Aneurysm Growth by Suppressing Macrophage Infiltration and Activation. J Am Heart Assoc 2017. [PMID: 28630262 PMCID: PMC5669147 DOI: 10.1161/jaha.116.004777] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background Chronic inflammation plays a key role in the pathogenesis of intracranial aneurysms (IAs). DPP‐4 (dipeptidyl peptidase‐4) inhibitors have anti‐inflammatory effects, including suppressing macrophage infiltration, in various inflammatory models. We examined whether a DPP‐4 inhibitor, anagliptin, could suppress the growth of IAs in a rodent aneurysm model. Methods and Results IAs were surgically induced in 7‐week‐old male Sprague Dawley rats, followed by oral administration of 300 mg/kg anagliptin. We measured the morphologic parameters of aneurysms over time and their local inflammatory responses. To investigate the molecular mechanisms, we used lipopolysaccharide‐treated RAW264.7 macrophages. In the anagliptin‐treated group, aneurysms were significantly smaller 2 to 4 weeks after IA induction. Anagliptin inhibited the accumulation of macrophages in IAs, reduced the expression of MCP‐1 (monocyte chemotactic protein 1), and suppressed the phosphorylation of p65. In lipopolysaccharide‐stimulated RAW264.7 cells, anagliptin treatment significantly reduced the production of tumor necrosis factor α, MCP‐1, and IL‐6 (interleukin 6) independent of GLP‐1 (glucagon‐like peptide 1), the key mediator in the antidiabetic effects of DPP‐4 inhibitors. Notably, anagliptin activated ERK5 (extracellular signal–regulated kinase 5), which mediates the anti‐inflammatory effects of statins, in RAW264.7 macrophages. Preadministration with an ERK5 inhibitor blocked the inhibitory effect of anagliptin on MCP‐1 and IL‐6 expression. Accordingly, the ERK5 inhibitor also counteracted the suppression of p65 phosphorylation in vitro. Conclusions A DPP‐4 inhibitor, anagliptin, prevents the growth of IAs via its anti‐inflammatory effects on macrophages.
Collapse
Affiliation(s)
- Taichi Ikedo
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Department of Clinical Innovative Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Manabu Minami
- Department of Clinical Innovative Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hiroharu Kataoka
- Department of Neurosurgery, National Cerebral and Cardiovascular Center, Suita Osaka, Japan
| | - Kosuke Hayashi
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Department of Clinical Innovative Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Manabu Nagata
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Department of Clinical Innovative Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Risako Fujikawa
- Department of Clinical Innovative Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Sei Higuchi
- Department of Clinical Innovative Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Mika Yasui
- Department of Clinical Innovative Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Tomohiro Aoki
- Center for Innovation in Immunoregulation Technology and Therapeutics, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Core Research for Evolutional Science and Technology, Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Miyuki Fukuda
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Center for Innovation in Immunoregulation Technology and Therapeutics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Masayuki Yokode
- Department of Clinical Innovative Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Susumu Miyamoto
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
49
|
Yu LN, Sun LH, Wang M, Yan M. Research progress of the role and mechanism of extracellular signal-regulated protein kinase 5 (ERK5) pathway in pathological pain. J Zhejiang Univ Sci B 2017; 17:733-741. [PMID: 27704743 DOI: 10.1631/jzus.b1600188] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Extracellular signal-regulated protein kinase 5 (ERK5), also known as big mitogen-activated protein kinase 1 (MAPK1), is an important member of ERK family, which is a subfamily of the large MAPK family. ERK5 is expressed in many tissues, including the dorsal root ganglion (DRG) neurons and the spinal cord. In this review, we focus on elaborating ERK5-associated pathway in pathological pain, in which the ERK5/CREB (cyclic adenosine monophosphate (cAMP)-response element-binding protein) pathway plays a crucial role in the transduction of pain signal and contributes to pain hypersensitivity. ERK5 activation in the spinal dorsal horn occurs mainly in microglia. The activation of ERK5 can be mediated by N-methyl-D-aspartate (NMDA) receptors. We also elaborate the relationship between ERK5 activation and nerve growth factor-tyrosine kinase A (NGF-TrkA), and the connection between ERK5 activation and brain-derived neurotrophic factor (BDNF) in pathological pain in detail.
Collapse
Affiliation(s)
- Li-Na Yu
- Department of Anesthesiology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Li-Hong Sun
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou 221000, China
| | - Min Wang
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou 221000, China
| | - Min Yan
- Department of Anesthesiology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China.,Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou 221000, China
| |
Collapse
|
50
|
Hoang VT, Yan TJ, Cavanaugh JE, Flaherty PT, Beckman BS, Burow ME. Oncogenic signaling of MEK5-ERK5. Cancer Lett 2017; 392:51-59. [PMID: 28153789 PMCID: PMC5901897 DOI: 10.1016/j.canlet.2017.01.034] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 01/17/2017] [Accepted: 01/23/2017] [Indexed: 12/17/2022]
Abstract
Mitogen-activated protein kinases (MAPKs) regulate diverse cellular processes including proliferation, cell survival, differentiation, and apoptosis. While conventional MAPK constituents have well-defined roles in oncogenesis, the MEK5 pathway has only recently emerged in cancer research. In this review, we consider the MEK5 signaling cascade, focusing specifically on its involvement in drug resistance and regulation of aggressive cancer phenotypes. Moreover, we explore the role of MEK5/ERK5 in tumorigenesis and metastatic progression, discussing the discrepancies in preclinical studies and assessing its viability as a therapeutic target for anti-cancer agents.
Collapse
Affiliation(s)
- Van T Hoang
- Department of Medicine-Section of Hematology and Medical Oncology, Tulane University, New Orleans, LA, USA
| | - Thomas J Yan
- Department of Medicine-Section of Hematology and Medical Oncology, Tulane University, New Orleans, LA, USA
| | - Jane E Cavanaugh
- Department of Pharmacological Sciences, Division of Medicinal Chemistry, Mylan School of Pharmacy, Duquesne University, Pittsburgh, PA, USA
| | - Patrick T Flaherty
- Department of Pharmacological Sciences, Division of Medicinal Chemistry, Mylan School of Pharmacy, Duquesne University, Pittsburgh, PA, USA
| | | | - Matthew E Burow
- Department of Medicine-Section of Hematology and Medical Oncology, Tulane University, New Orleans, LA, USA; Department of Pharmacology, Tulane University, New Orleans, LA, USA; Tulane Cancer Center, Tulane University, New Orleans, LA, USA.
| |
Collapse
|