1
|
Yao J, Zhang Y, Wang Z, Chen Y, Shi X. Maintenance of Cardiac Microenvironmental Homeostasis: A Joint Battle of Multiple Cells. J Cell Physiol 2025; 240:e31496. [PMID: 39632594 DOI: 10.1002/jcp.31496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/24/2024] [Accepted: 11/19/2024] [Indexed: 12/07/2024]
Abstract
Various cells such as cardiomyocytes, fibroblasts and endothelial cells constitute integral components of cardiac tissue. The health and stability of cardiac ecosystem are ensured by the action of a certain type of cell and the intricate interactions between multiple cell types. The dysfunctional cells exert a profound impact on the development of cardiovascular diseases by involving in the pathological process. In this paper, we introduce the dynamic activity, cell surface markers as well as biological function of the various cells in the heart. Besides, we discuss the multiple signaling pathways involved in the cardiac injury including Hippo/YAP, TGF-β/Smads, PI3K/Akt, and MAPK signaling. The complexity of different cell types poses a great challenge to the disease treatment. By characterizing the roles of various cell types in cardiovascular diseases, we sought to discuss the potential strategies for preventing and treating cardiovascular diseases.
Collapse
Affiliation(s)
- Jiayu Yao
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China
| | - Youtao Zhang
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China
| | - Ziwen Wang
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China
| | - Yuejun Chen
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China
| | - Xingjuan Shi
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China
| |
Collapse
|
2
|
Ting KKY. Revisiting the role of hypoxia-inducible factors and nuclear factor erythroid 2-related factor 2 in regulating macrophage inflammation and metabolism. Front Cell Infect Microbiol 2024; 14:1403915. [PMID: 39119289 PMCID: PMC11306205 DOI: 10.3389/fcimb.2024.1403915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 07/11/2024] [Indexed: 08/10/2024] Open
Abstract
The recent birth of the immunometabolism field has comprehensively demonstrated how the rewiring of intracellular metabolism is critical for supporting the effector functions of many immune cell types, such as myeloid cells. Among all, the transcriptional regulation mediated by Hypoxia-Inducible Factors (HIFs) and Nuclear factor erythroid 2-related factor 2 (NRF2) have been consistently shown to play critical roles in regulating the glycolytic metabolism, redox homeostasis and inflammatory responses of macrophages (Mφs). Although both of these transcription factors were first discovered back in the 1990s, new advances in understanding their function and regulations have been continuously made in the context of immunometabolism. Therefore, this review attempts to summarize the traditionally and newly identified functions of these transcription factors, including their roles in orchestrating the key events that take place during glycolytic reprogramming in activated myeloid cells, as well as their roles in mediating Mφ inflammatory responses in various bacterial infection models.
Collapse
Affiliation(s)
- Kenneth K. Y. Ting
- Department of Immunology, University of Toronto, Toronto, ON, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| |
Collapse
|
3
|
Wen J, Wang C, Song LY, Wang YY, Liang PT, Pang WL, Yin W, Zhang Q, Zhao WT, Sun XP, Yan JY, Yang ZS. Ferroptosis Mediates Pulmonary Fibrosis: Implications for the Effect of Astragalus and Panax notoginseng Decoction. Can Respir J 2024; 2024:5554886. [PMID: 38584671 PMCID: PMC10997418 DOI: 10.1155/2024/5554886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 01/25/2024] [Accepted: 02/14/2024] [Indexed: 04/09/2024] Open
Abstract
Objective To investigate the mechanism through which Astragalus and Panax notoginseng decoction (APD) facilitates the treatment of ferroptosis-mediated pulmonary fibrosis. Materials and Methods First, the electromedical measurement systems were used to measure respiratory function in mice; the lungs were then collected for histological staining. Potential pharmacologic targets were predicted via network pharmacology. Finally, tests including immunohistochemistry, reverse transcription-quantitative polymerase chain reaction, and western blotting were used to evaluate the relative expression levels of collagen, transforming growth factor β, α-smooth muscle actin, hydroxyproline, and ferroptosis-related genes (GPX4, SLC7A11, ACSL4, and PTGS2) and candidates involved in the mediation of pathways associated with ferroptosis (Hif-1α and EGFR). Results APD prevented the occurrence of restrictive ventilation dysfunction induced by ferroptosis. Extracellular matrix and collagen fiber deposition were significantly reduced when the APD group compared with the model group; furthermore, ferroptosis was attenuated, expression of PTGS2 and ACSL4 increased, and expression of GPX4 and SLC7A11 decreased. In the APD group, the candidates related to the mediation of ferroptosis (Hif-1α and EGFR) decreased compared with the model group. Discussion and Conclusions. APD may ameliorate restrictive ventilatory dysfunction through the inhibition of ferroptosis. This was achieved through the attenuation of collagen deposition and inflammatory recruitment in pulmonary fibrosis. The underlying mechanisms might involve Hif-1α and EGFR.
Collapse
Affiliation(s)
- Jing Wen
- Yunnan Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Cui Wang
- Yunnan Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Li-yun Song
- Yunnan Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Yin-ying Wang
- Yunnan Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Peng-tao Liang
- Yunnan Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Wen-lin Pang
- Yunnan Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Wen Yin
- Yunnan Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Qiang Zhang
- Yunnan Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Wei-tian Zhao
- Dali Prefectural Hospital of Traditional Chinese Medicine, Dali, Yunnan, China
| | - Xue-ping Sun
- Yunnan Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Jin-yuan Yan
- Central Laboratory, Kunming Medical University Second Hospital, Kunming, Yunnan, China
| | - Zhong-shan Yang
- Yunnan Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| |
Collapse
|
4
|
Oza HH, Gilkes DM. Multiplex Immunofluorescence Staining Protocol for the Dual Imaging of Hypoxia-Inducible Factors 1 and 2 on Formalin-Fixed Paraffin-Embedded Samples. Methods Mol Biol 2024; 2755:167-178. [PMID: 38319577 DOI: 10.1007/978-1-0716-3633-6_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Hypoxia is a common condition in rapidly proliferating tumors and occurs when oxygen delivery to the tissue is scarce. It is a prevalent feature in ~90% of solid tumors. The family of HIF (hypoxia-inducible factor) proteins-HIF1α and HIF2α-are the main transcription factors that regulate the response to hypoxia. These transcription factors regulate numerous downstream gene targets that promote the aggressiveness of tumors and therefore have been linked to worse prognosis in patients. This makes them a potential biomarker to be tested in the clinical setting to predict patient outcomes. However, HIFs have been notoriously challenging to immunolabel, in part due to their fast turnover under normal oxygen conditions. In this work, we developed a multiplexed immunofluorescence (mIF) staining protocol for the simultaneous detection of HIF1α and HIF2α in the same formalin-fixed paraffin-embedded (FFPE) tissue section.
Collapse
Affiliation(s)
- Harsh H Oza
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Daniele M Gilkes
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
5
|
Ting KK, Yu P, Dow R, Floro E, Ibrahim H, Scipione CA, Hyduk SJ, Polenz CK, Zaslaver O, Karmaus PW, Fessler MB, Rӧst HL, Ohh M, Tsai S, Winer DA, Woo M, Rocheleau J, Jongstra-Bilen J, Cybulsky MI. Oxidized Low-Density Lipoprotein Accumulation Suppresses Glycolysis and Attenuates the Macrophage Inflammatory Response by Diverting Transcription from the HIF-1α to the Nrf2 Pathway. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:1561-1577. [PMID: 37756544 PMCID: PMC10873122 DOI: 10.4049/jimmunol.2300293] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023]
Abstract
Lipid accumulation in macrophages (Mφs) is a hallmark of atherosclerosis, yet how lipid accumulation affects inflammatory responses through rewiring of Mφ metabolism is poorly understood. We modeled lipid accumulation in cultured wild-type mouse thioglycolate-elicited peritoneal Mφs and bone marrow-derived Mφs with conditional (Lyz2-Cre) or complete genetic deficiency of Vhl, Hif1a, Nos2, and Nfe2l2. Transfection studies employed RAW264.7 cells. Mφs were cultured for 24 h with oxidized low-density lipoprotein (oxLDL) or cholesterol and then were stimulated with LPS. Transcriptomics revealed that oxLDL accumulation in Mφs downregulated inflammatory, hypoxia, and cholesterol metabolism pathways, whereas the antioxidant pathway, fatty acid oxidation, and ABC family proteins were upregulated. Metabolomics and extracellular metabolic flux assays showed that oxLDL accumulation suppressed LPS-induced glycolysis. Intracellular lipid accumulation in Mφs impaired LPS-induced inflammation by reducing both hypoxia-inducible factor 1-α (HIF-1α) stability and transactivation capacity; thus, the phenotype was not rescued in Vhl-/- Mφs. Intracellular lipid accumulation in Mφs also enhanced LPS-induced NF erythroid 2-related factor 2 (Nrf2)-mediated antioxidative defense that destabilizes HIF-1α, and Nrf2-deficient Mφs resisted the inhibitory effects of lipid accumulation on glycolysis and inflammatory gene expression. Furthermore, oxLDL shifted NADPH consumption from HIF-1α- to Nrf2-regulated apoenzymes. Thus, we postulate that repurposing NADPH consumption from HIF-1α to Nrf2 transcriptional pathways is critical in modulating inflammatory responses in Mφs with accumulated intracellular lipid. The relevance of our in vitro models was established by comparative transcriptomic analyses, which revealed that Mφs cultured with oxLDL and stimulated with LPS shared similar inflammatory and metabolic profiles with foamy Mφs derived from the atherosclerotic mouse and human aorta.
Collapse
Affiliation(s)
- Kenneth K.Y. Ting
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Pei Yu
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Riley Dow
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Eric Floro
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Hisham Ibrahim
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Corey A. Scipione
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Sharon J. Hyduk
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Chanele K. Polenz
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Olga Zaslaver
- Terrence Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1
| | - Peer W.F. Karmaus
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA
| | - Michael B. Fessler
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA
| | - Hannes L. Rӧst
- Terrence Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1
| | - Michael Ohh
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Sue Tsai
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2RS, Canada
| | - Daniel A. Winer
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Minna Woo
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, University Health Network, University of Toronto, Toronto, ON M5S 1A8, Canada
- Banting and Best Diabetes Centre, University of Toronto, Toronto, ON M5G 2C4, Canada
| | - Jonathan Rocheleau
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Banting and Best Diabetes Centre, University of Toronto, Toronto, ON M5G 2C4, Canada
| | - Jenny Jongstra-Bilen
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Myron I. Cybulsky
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Peter Munk Cardiac Centre, University Health Network, Toronto, ON M5G 2N2, Canada
| |
Collapse
|
6
|
Flood D, Lee ES, Taylor CT. Intracellular energy production and distribution in hypoxia. J Biol Chem 2023; 299:105103. [PMID: 37507013 PMCID: PMC10480318 DOI: 10.1016/j.jbc.2023.105103] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
The hydrolysis of ATP is the primary source of metabolic energy for eukaryotic cells. Under physiological conditions, cells generally produce more than sufficient levels of ATP to fuel the active biological processes necessary to maintain homeostasis. However, mechanisms underpinning the distribution of ATP to subcellular microenvironments with high local demand remain poorly understood. Intracellular distribution of ATP in normal physiological conditions has been proposed to rely on passive diffusion across concentration gradients generated by ATP producing systems such as the mitochondria and the glycolytic pathway. However, subcellular microenvironments can develop with ATP deficiency due to increases in local ATP consumption. Alternatively, ATP production can be reduced during bioenergetic stress during hypoxia. Mammalian cells therefore need to have the capacity to alter their metabolism and energy distribution strategies to compensate for local ATP deficits while also controlling ATP production. It is highly likely that satisfying the bioenergetic requirements of the cell involves the regulated distribution of ATP producing systems to areas of high ATP demand within the cell. Recently, the distribution (both spatially and temporally) of ATP-producing systems has become an area of intense investigation. Here, we review what is known (and unknown) about intracellular energy production and distribution and explore potential mechanisms through which this targeted distribution can be altered in hypoxia, with the aim of stimulating investigation in this important, yet poorly understood field of research.
Collapse
Affiliation(s)
- Darragh Flood
- Conway Institute of Biomolecular and Biomedical Research and School of Medicine, University College Dublin, Dublin, Ireland
| | - Eun Sang Lee
- Conway Institute of Biomolecular and Biomedical Research and School of Medicine, University College Dublin, Dublin, Ireland
| | - Cormac T Taylor
- Conway Institute of Biomolecular and Biomedical Research and School of Medicine, University College Dublin, Dublin, Ireland.
| |
Collapse
|
7
|
Steinberger KJ, Eubank TD. The Underexplored Landscape of Hypoxia-Inducible Factor 2 Alpha and Potential Roles in Tumor Macrophages: A Review. OXYGEN (BASEL, SWITZERLAND) 2023; 3:45-76. [PMID: 37124241 PMCID: PMC10137047 DOI: 10.3390/oxygen3010005] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Low tissue oxygenation, termed hypoxia, is a characteristic of solid tumors with negative consequences. Tumor-associated macrophages (TAMs) accumulate in hypoxic tumor regions and correlate with worse outcomes in cancer patients across several tumor types. Thus, the molecular mechanism in which macrophages respond to low oxygen tension has been increasingly investigated in the last decade. Hypoxia stabilizes a group of hypoxia-inducible transcription factors (HIFs) reported to drive transcriptional programs involved in cell survival, metabolism, and angiogenesis. Though both tumor macrophage HIF-1α and HIF-2α correlate with unfavorable tumor microenvironments, most research focuses on HIF-1α as the master regulator of hypoxia signaling, because HIF-1α expression was originally identified in several cancer types and correlates with worse outcome in cancer patients. The relative contribution of each HIFα subunit to cell phenotypes is poorly understood especially in TAMs. Once thought to have overlapping roles, recent investigation of macrophage HIF-2α has demonstrated a diverse function from HIF-1α. Little work has been published on the differential role of hypoxia-dependent macrophage HIF-2α when compared to HIF-1α in the context of tumor biology. This review highlights cellular HIF-2α functions and emphasizes the gap in research investigating oxygen-dependent functions of tumor macrophage HIF-2α.
Collapse
Affiliation(s)
- Kayla J. Steinberger
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV 26505, USA
- In Vivo Multifunctional Magnetic Resonance Center, West Virginia University, Morgantown, WV 26505, USA
- West Virginia University Cancer Institute, Morgantown, WV 26505, USA
| | - Timothy D. Eubank
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV 26505, USA
- In Vivo Multifunctional Magnetic Resonance Center, West Virginia University, Morgantown, WV 26505, USA
- West Virginia University Cancer Institute, Morgantown, WV 26505, USA
| |
Collapse
|
8
|
Liu Y, Zhang Q, Yang L, Tian W, Yang Y, Xie Y, Li J, Yang L, Gao Y, Xu Y, Liu J, Wang Y, Yan J, Li G, Shen Y, Qi Z. Metformin Attenuates Cardiac Hypertrophy Via the HIF-1α/PPAR-γ Signaling Pathway in High-Fat Diet Rats. Front Pharmacol 2022; 13:919202. [PMID: 35833024 PMCID: PMC9271627 DOI: 10.3389/fphar.2022.919202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/11/2022] [Indexed: 12/19/2022] Open
Abstract
Coronary artery disease (CAD) and cardiac hypertrophy (CH) are two main causes of ischemic heart disease. Acute CAD may lead to left ventricular hypertrophy (LVH). Long-term and sustained CH is harmful and can gradually develop into cardiac insufficiency and heart failure. It is known that metformin (Met) can alleviate CH; however, the molecular mechanism is not fully understood. Herein, we used high-fat diet (HFD) rats and H9c2 cells to induce CH and clarify the potential mechanism of Met on CH. We found that Met treatment significantly decreased the cardiomyocyte size, reduced lactate dehydrogenase (LDH) release, and downregulated the expressions of hypertrophy markers ANP, VEGF-A, and GLUT1 either in vivo or in vitro. Meanwhile, the protein levels of HIF-1α and PPAR-γ were both decreased after Met treatment, and administrations of their agonists, deferoxamine (DFO) or rosiglitazone (Ros), markedly abolished the protective effect of Met on CH. In addition, DFO treatment upregulated the expression of PPAR-γ, whereas Ros treatment did not affect the expression of HIF-1α. In conclusion, Met attenuates CH via the HIF-1α/PPAR-γ signaling pathway.
Collapse
Affiliation(s)
- Yuansheng Liu
- Department of Molecular Pharmacology, School of Medicine, Nankai University, Tianjin, China
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, China
| | - Qian Zhang
- Department of Molecular Pharmacology, School of Medicine, Nankai University, Tianjin, China
| | - Lei Yang
- Department of Molecular Pharmacology, School of Medicine, Nankai University, Tianjin, China
- Tianjin Institute of Acute Abdominal Diseases of Integrated Traditional Chinese and Western Medicine, Tianjin Nankai Hospital, Tianjin, China
| | - Wencong Tian
- Department of Molecular Pharmacology, School of Medicine, Nankai University, Tianjin, China
| | - Yinan Yang
- Department of Molecular Pharmacology, School of Medicine, Nankai University, Tianjin, China
- Tianjin Central Hospital of Gynecology Obstetrics, Tianjin, China
| | - Yuhang Xie
- Department of Molecular Pharmacology, School of Medicine, Nankai University, Tianjin, China
| | - Jing Li
- Department of Molecular Pharmacology, School of Medicine, Nankai University, Tianjin, China
| | - Liang Yang
- Department of Molecular Pharmacology, School of Medicine, Nankai University, Tianjin, China
| | - Yang Gao
- Department of Molecular Pharmacology, School of Medicine, Nankai University, Tianjin, China
| | - Yang Xu
- Department of Molecular Pharmacology, School of Medicine, Nankai University, Tianjin, China
| | - Jie Liu
- Department of Molecular Pharmacology, School of Medicine, Nankai University, Tianjin, China
| | - Yachen Wang
- Department of Molecular Pharmacology, School of Medicine, Nankai University, Tianjin, China
| | - Jie Yan
- Department of Molecular Pharmacology, School of Medicine, Nankai University, Tianjin, China
| | - Guoxun Li
- Xinjiang Production and Construction Corps Hospital, Urumqi, China
- Tianjin Union Medical Center, Tianjin, China
- *Correspondence: Guoxun Li, ; Yanna Shen, ; Zhi Qi,
| | - Yanna Shen
- Department of Microbiology, School of Laboratory Medicine, Tianjin Medical University, Tianjin, China
- *Correspondence: Guoxun Li, ; Yanna Shen, ; Zhi Qi,
| | - Zhi Qi
- Department of Molecular Pharmacology, School of Medicine, Nankai University, Tianjin, China
- Xinjiang Production and Construction Corps Hospital, Urumqi, China
- Tianjin Key Laboratory of General Surgery in Construction, Tianjin Union Medical Center, Tianjin, China
- *Correspondence: Guoxun Li, ; Yanna Shen, ; Zhi Qi,
| |
Collapse
|
9
|
The Role of PKC and HIF-1 and the Effect of Traditional Chinese Medicinal Compounds on Cerebral Ischemia-Reperfusion Injury. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:1835898. [PMID: 35265143 PMCID: PMC8898791 DOI: 10.1155/2022/1835898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/26/2022] [Accepted: 02/07/2022] [Indexed: 11/25/2022]
Abstract
Neuronal death occurs during cerebral ischemia. However, when hemoperfusion and oxygen supply are resumed to the ischemic focus of the brain tissue, the brain tissue damage is further aggravated, resulting in cerebral ischemia-reperfusion injury (CIRI) to the patients. Protein kinase C (PKC) plays an important role in CIRI. Through the IP3/DAG/Ca2+ signaling pathway, it promotes the influx of calcium ions in neurons and causes calcium overload, which aggravates the damage. At the same time, when brain cells are hypoxic, hypoxia-inducible factor-1 (HIF-1) is expressed, which regulates the expression of Bcl-2 and Bax through the PI3K/Akt signaling pathway and reduces nerve cell injury. It also fights hypoxic-ischemic injury by increasing the production of vascular endothelial growth factor (VEGF) to promote blood vessel formation. The PKC and HIF-1 signaling pathways are also linked to CIRI. HIF-1 activates the PKC and ERK pathways via the upregulation of VEGF, leading to increased Cx43 phosphorylation and dysfunction and aggravating CIRI. Existing studies have shown that certain traditional Chinese medicine (TCM) compounds regulate the PKC and HIF-1 signaling pathways and alleviate CIRI. These compounds downregulate the PKC and the activity of the PKC-related signaling pathways to alleviate CIRI. They can also promote the expression of HIF-1, increase the content of VEGF in ischemic tissues to promote the generation of blood vessels, and improve microcirculation. TCM compounds can inhibit the cascade of reactions underlying disease occurrence and development by targeting multiple components using different herbal formulations to improve the structural and material changes in the brain cells, which alleviate CIRI and protect the brain tissue. This study briefly describes the role of PKC and HIF-1, their relationship in CIRI, and the effect of TCM on them.
Collapse
|
10
|
Lappano R, Todd LA, Stanic M, Cai Q, Maggiolini M, Marincola F, Pietrobon V. Multifaceted Interplay between Hormones, Growth Factors and Hypoxia in the Tumor Microenvironment. Cancers (Basel) 2022; 14:539. [PMID: 35158804 PMCID: PMC8833523 DOI: 10.3390/cancers14030539] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 02/07/2023] Open
Abstract
Hormones and growth factors (GFs) are signaling molecules implicated in the regulation of a variety of cellular processes. They play important roles in both healthy and tumor cells, where they function by binding to specific receptors on target cells and activating downstream signaling cascades. The stages of tumor progression are influenced by hormones and GF signaling. Hypoxia, a hallmark of cancer progression, contributes to tumor plasticity and heterogeneity. Most solid tumors contain a hypoxic core due to rapid cellular proliferation that outgrows the blood supply. In these circumstances, hypoxia-inducible factors (HIFs) play a central role in the adaptation of tumor cells to their new environment, dramatically reshaping their transcriptional profile. HIF signaling is modulated by a variety of factors including hormones and GFs, which activate signaling pathways that enhance tumor growth and metastatic potential and impair responses to therapy. In this review, we summarize the role of hormones and GFs during cancer onset and progression with a particular focus on hypoxia and the interplay with HIF proteins. We also discuss how hypoxia influences the efficacy of cancer immunotherapy, considering that a hypoxic environment may act as a determinant of the immune-excluded phenotype and a major hindrance to the success of adoptive cell therapies.
Collapse
Affiliation(s)
- Rosamaria Lappano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy;
| | - Lauren A. Todd
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada;
| | - Mia Stanic
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada;
| | - Qi Cai
- Kite Pharma Inc., Santa Monica, CA 90404, USA; (Q.C.); (F.M.)
| | - Marcello Maggiolini
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy;
| | | | | |
Collapse
|
11
|
Li F, Wei R, Huang M, Chen J, Li P, Ma Y, Chen X. Luteolin can ameliorate renal interstitial fibrosis-induced renal anaemia through the SIRT1/FOXO3 pathway. Food Funct 2022; 13:11896-11914. [DOI: 10.1039/d2fo02477b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Luteolin is a natural flavonoid exhibiting multiple pharmacological activities.
Collapse
Affiliation(s)
- Fei Li
- Nankai University School of Medicine, Nankai University, Tianjin 300073, China
- State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Department of Nephrology, The General Hospital of the People's Liberation Army, Beijing 100853, China
- Department of Surgical Intensive Critical Unit, Beijing Chao-yang Hospital, Capital Medical University, Beijing, China
| | - Ribao Wei
- Nankai University School of Medicine, Nankai University, Tianjin 300073, China
- State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Department of Nephrology, The General Hospital of the People's Liberation Army, Beijing 100853, China
| | - Mengjie Huang
- State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Department of Nephrology, The General Hospital of the People's Liberation Army, Beijing 100853, China
| | - Jianwen Chen
- State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Department of Nephrology, The General Hospital of the People's Liberation Army, Beijing 100853, China
| | - Ping Li
- State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Department of Nephrology, The General Hospital of the People's Liberation Army, Beijing 100853, China
| | - Yue Ma
- State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Department of Nephrology, The General Hospital of the People's Liberation Army, Beijing 100853, China
| | - Xiangmei Chen
- Nankai University School of Medicine, Nankai University, Tianjin 300073, China
- State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Department of Nephrology, The General Hospital of the People's Liberation Army, Beijing 100853, China
| |
Collapse
|
12
|
Ratcliffe PJ. Harveian Oration 2020: Elucidation of molecular oxygen sensing mechanisms in human cells: implications for medicine. Clin Med (Lond) 2022; 22:23-33. [PMID: 34921056 PMCID: PMC8813027 DOI: 10.7861/clinmed.ed.22.1.harv] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Peter J Ratcliffe
- Ludwig Institute for Cancer Research, University of Oxford, Oxford, UK, and director of clinical research, Francis Crick Institute, London, UK
| |
Collapse
|
13
|
Stone AV, Loeser RF, Callahan MF, McNulty MA, Long DL, Yammani RR, Bean S, Vanderman K, Chubinskaya S, Ferguson CM. Role of the Hypoxia-Inducible Factor Pathway in Normal and Osteoarthritic Meniscus and in Mice after Destabilization of the Medial Meniscus. Cartilage 2021; 13:1442S-1455S. [PMID: 32940061 PMCID: PMC8804812 DOI: 10.1177/1947603520958143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
OBJECTIVE Meniscus injury and the hypoxia-inducible factor (HIF) pathway are independently linked to osteoarthritis pathogenesis, but the role of the meniscus HIF pathway remains unclear. We sought to identify and evaluate HIF pathway response in normal and osteoarthritic meniscus and to examine the effects of Epas1 (HIF-2α) insufficiency in mice on early osteoarthritis development. METHODS Normal and osteoarthritic human meniscus specimens were obtained and used for immunohistochemical evaluation and cell culture studies for the HIF pathway. Meniscus cells were treated with pro-inflammatory stimuli, including interleukins (IL)-1β, IL-6, transforming growth factor (TGF)-α, and fibronectin fragments (FnF). Target genes were also evaluated with HIF-1α and HIF-2α (Epas1) overexpression and knockdown. Wild-type (n = 36) and Epas1+/- (n = 30) heterozygous mice underwent destabilization of the medial meniscus (DMM) surgery and were evaluated at 2 and 4 weeks postoperatively for osteoarthritis development using histology. RESULTS HIF-1α and HIF-2α immunostaining and gene expression did not differ between normal and osteoarthritic meniscus. While pro-inflammatory stimulation significantly increased both catabolic and anabolic gene expression in the meniscus, HIF-1α and Epas1 expression levels were not significantly altered. Epas1 overexpression significantly increased Col2a1 expression. Both wild-type and Epas1+/- mice developed osteoarthritis following DMM surgery. There were no significant differences between genotypes at either time point. CONCLUSION The HIF pathway is likely not responsible for osteoarthritic changes in the human meniscus. Additionally, Epas1 insufficiency does not protect against osteoarthritis development in the mouse at early time points after DMM surgery. The HIF pathway may be more important for protection against catabolic stress.
Collapse
Affiliation(s)
- Austin V Stone
- Division of Sports Medicine, Department of Orthopaedic Surgery & Sports Medicine, University of Kentucky, Lexington, KY, USA
| | - Richard F Loeser
- Division of Rheumatology, Allergy and Immunology and the Thurston Arthritis Research Center, University of North Carolina, Chapel Hill, NC, USA
| | - Michael F Callahan
- Division of Sports Medicine, Department of Orthopaedic Surgery, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Margaret A McNulty
- Department of Anatomy, Cell Biology, & Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - David L Long
- Division of Molecular Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Raghunatha R Yammani
- Division of Molecular Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Sara Bean
- University of Kentucky School of Medicine, Lexington, KY, USA
| | - Kadie Vanderman
- Division of Molecular Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Susan Chubinskaya
- Department of Pediatrics, Rush University Medical Center, Chicago, IL, USA
| | - Cristin M Ferguson
- Division of Sports Medicine, Department of Orthopaedic Surgery, Wake Forest School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
14
|
Gkotinakou IM, Befani C, Samiotaki M, Panayotou G, Liakos P. Novel HIF-2α interaction with Reptin52 impairs HIF-2 transcriptional activity and EPO secretion. Biochem Biophys Res Commun 2021; 557:143-150. [PMID: 33865222 DOI: 10.1016/j.bbrc.2021.03.176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 03/31/2021] [Indexed: 01/05/2023]
Abstract
Hypoxia-inducible factor 2 (HIF-2), is essential for cellular response to hypoxia and holds an important role in erythropoiesis, angiogenesis, tissue invasion and metastasis, thus, constituting an important therapeutic target. Maximal HIF-2 transcriptional activation requires HIF-2α phosphorylation by ERK1/2 that impairs its CRM1-mediated nuclear export. Herein, we reveal a novel interaction of HIF-2α with Reptin52, a multifunctional protein involved in cellular functions orchestrated both in the nucleus and the cytoplasm. HIF-2α and Reptin52 interact both in nuclear and cytoplasmic fractions, however, ERK1/2 pathway inactivation seems to favour their association in the cytoplasm. Notably, we demonstrate that Reptin52 reduces HIF-2 transcriptional activity, which results in decreased EPO secretion under hypoxia, by impairing HIF-2α stability via a non-canonical PHD-VHL-proteasome independent mechanism. This interaction represents a novel HIF-2 fine tuning mechanism that allows for distinct HIF1/2 isoforms regulation.
Collapse
Affiliation(s)
- Ioanna Maria Gkotinakou
- Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, Biopolis, 41500, Larissa, Greece
| | - Christina Befani
- Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, Biopolis, 41500, Larissa, Greece
| | - Martina Samiotaki
- Institute of Bioinnovation, BSRC "Alexander Fleming,", Vari, 16672, Greece
| | - George Panayotou
- Institute of Bioinnovation, BSRC "Alexander Fleming,", Vari, 16672, Greece
| | - Panagiotis Liakos
- Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, Biopolis, 41500, Larissa, Greece.
| |
Collapse
|
15
|
Abstract
Over the last few years, cancer immunotherapy experienced tremendous developments and it is nowadays considered a promising strategy against many types of cancer. However, the exclusion of lymphocytes from the tumor nest is a common phenomenon that limits the efficiency of immunotherapy in solid tumors. Despite several mechanisms proposed during the years to explain the immune excluded phenotype, at present, there is no integrated understanding about the role played by different models of immune exclusion in human cancers. Hypoxia is a hallmark of most solid tumors and, being a multifaceted and complex condition, shapes in a unique way the tumor microenvironment, affecting gene transcription and chromatin remodeling. In this review, we speculate about an upstream role for hypoxia as a common biological determinant of immune exclusion in solid tumors. We also discuss the current state of ex vivo and in vivo imaging of hypoxic determinants in relation to T cell distribution that could mechanisms of immune exclusion and discover functional-morphological tumor features that could support clinical monitoring.
Collapse
|
16
|
Elzakra N, Kim Y. HIF-1α Metabolic Pathways in Human Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1280:243-260. [PMID: 33791987 DOI: 10.1007/978-3-030-51652-9_17] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Oxygen is directly involved in many key pathophysiological processes. Oxygen deficiency, also known as hypoxia, could have adverse effects on mammalian cells, with ischemia in vital tissues being the most significant (Michiels C. Physiological and pathological responses to hypoxia. Am J Pathol 164(6): 1875-1882, 2004); therefore, timely adaptive responses to variations in oxygen availability are essential for cellular homeostasis and survival. The most critical molecular event in hypoxic response is the activation and stabilization of a transcriptional factor termed hypoxia-induced factor-1 (HIF-1) that is responsible for the upregulation of many downstream effector genes, collectively known as hypoxia-responsive genes. Multiple key biological pathways such as proliferation, energy metabolism, invasion, and metastasis are governed by these genes; thus, HIF-1-mediated pathways are equally pivotal in both physiology and pathology.As we gain knowledge on the molecular mechanisms underlying the regulation of HIF-1, a great focus has been placed on elucidating the cellular function of HIF-1, particularly the role of HIF-1 in cancer pathogenesis pathways such as proliferation, invasion, angiogenesis, and metastasis. In cancer, HIF-1 is directly involved in the shift of cancer tissues from oxidative phosphorylation to aerobic glycolysis, a phenomenon known as the Warburg effect. Although targeting HIF-1 as a cancer therapy seems like an extremely rational approach, owing to the complex network of its downstream effector genes, the development of specific HIF-1 inhibitors with fewer side effects and more specificity has not been achieved. Therefore, in this review, we provide a brief background about the function of HIF proteins in hypoxia response with a special emphasis on the unique role played by HIF-1α in cancer growth and invasiveness, in the hypoxia response context.
Collapse
Affiliation(s)
- Naseim Elzakra
- School of Dentistry, University of California Los Angeles, Los Angeles, CA, USA.
| | - Yong Kim
- School of Dentistry, University of California Los Angeles, Los Angeles, CA, USA. .,Laboratory of Stem Cell and Cancer Epigenetics, Center for Oral Oncology Research, UCLA School of Dentistry, Los Angeles, CA, USA. .,UCLA's Jonsson Comprehensive Cancer Center, Los Angeles, CA, USA. .,Broad Stem Cell Research Institute, Los Angeles, CA, USA.
| |
Collapse
|
17
|
Differential Contribution of N- and C-Terminal Regions of HIF1α and HIF2α to Their Target Gene Selectivity. Int J Mol Sci 2020; 21:ijms21249401. [PMID: 33321829 PMCID: PMC7764359 DOI: 10.3390/ijms21249401] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 12/12/2022] Open
Abstract
Cellular response to hypoxia is controlled by the hypoxia-inducible transcription factors HIF1α and HIF2α. Some genes are preferentially induced by HIF1α or HIF2α, as has been explored in some cell models and for particular sets of genes. Here we have extended this analysis to other HIF-dependent genes using in vitro WT8 renal carcinoma cells and in vivo conditional Vhl-deficient mice models. Moreover, we generated chimeric HIF1/2 transcription factors to study the contribution of the HIF1α and HIF2α DNA binding/heterodimerization and transactivation domains to HIF target specificity. We show that the induction of HIF1α-dependent genes in WT8 cells, such as CAIX (CAR9) and BNIP3, requires both halves of HIF, whereas the HIF2α transactivation domain is more relevant for the induction of HIF2 target genes like the amino acid carrier SLC7A5. The HIF selectivity for some genes in WT8 cells is conserved in Vhl-deficient lung and liver tissue, whereas other genes like Glut1 (Slc2a1) behave distinctly in these tissues. Therefore the relative contribution of the DNA binding/heterodimerization and transactivation domains for HIF target selectivity can be different when comparing HIF1α or HIF2α isoforms, and that HIF target gene specificity is conserved in human and mouse cells for some of the genes analyzed.
Collapse
|
18
|
Coalescing lessons from oxygen sensing, tumor metabolism, and epigenetics to target VHL loss in kidney cancer. Semin Cancer Biol 2020; 67:34-42. [DOI: 10.1016/j.semcancer.2020.03.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 03/12/2020] [Accepted: 03/19/2020] [Indexed: 01/14/2023]
|
19
|
Kling L, Schreiber A, Eckardt KU, Kettritz R. Hypoxia-inducible factors not only regulate but also are myeloid-cell treatment targets. J Leukoc Biol 2020; 110:61-75. [PMID: 33070368 DOI: 10.1002/jlb.4ri0820-535r] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/30/2020] [Accepted: 09/30/2020] [Indexed: 12/19/2022] Open
Abstract
Hypoxia describes limited oxygen availability at the cellular level. Myeloid cells are exposed to hypoxia at various bodily sites and even contribute to hypoxia by consuming large amounts of oxygen during respiratory burst. Hypoxia-inducible factors (HIFs) are ubiquitously expressed heterodimeric transcription factors, composed of an oxygen-dependent α and a constitutive β subunit. The stability of HIF-1α and HIF-2α is regulated by oxygen-sensing prolyl-hydroxylases (PHD). HIF-1α and HIF-2α modify the innate immune response and are context dependent. We provide a historic perspective of HIF discovery, discuss the molecular components of the HIF pathway, and how HIF-dependent mechanisms modify myeloid cell functions. HIFs enable myeloid-cell adaptation to hypoxia by up-regulating anaerobic glycolysis. In addition to effects on metabolism, HIFs control chemotaxis, phagocytosis, degranulation, oxidative burst, and apoptosis. HIF-1α enables efficient infection defense by myeloid cells. HIF-2α delays inflammation resolution and decreases antitumor effects by promoting tumor-associated myeloid-cell hibernation. PHDs not only control HIF degradation, but also regulate the crosstalk between innate and adaptive immune cells thereby suppressing autoimmunity. HIF-modifying pharmacologic compounds are entering clinical practice. Current indications include renal anemia and certain cancers. Beneficial and adverse effects on myeloid cells should be considered and could possibly lead to drug repurposing for inflammatory disorders.
Collapse
Affiliation(s)
- Lovis Kling
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Adrian Schreiber
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin and Max Delbrueck Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Kai-Uwe Eckardt
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Ralph Kettritz
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin and Max Delbrueck Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| |
Collapse
|
20
|
Kierans SJ, Taylor CT. Regulation of glycolysis by the hypoxia-inducible factor (HIF): implications for cellular physiology. J Physiol 2020; 599:23-37. [PMID: 33006160 DOI: 10.1113/jp280572] [Citation(s) in RCA: 506] [Impact Index Per Article: 101.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 09/25/2020] [Indexed: 12/22/2022] Open
Abstract
Under conditions of hypoxia, most eukaryotic cells can shift their primary metabolic strategy from predominantly mitochondrial respiration towards increased glycolysis to maintain ATP levels. This hypoxia-induced reprogramming of metabolism is key to satisfying cellular energetic requirements during acute hypoxic stress. At a transcriptional level, this metabolic switch can be regulated by several pathways including the hypoxia inducible factor-1α (HIF-1α) which induces an increased expression of glycolytic enzymes. While this increase in glycolytic flux is beneficial for maintaining bioenergetic homeostasis during hypoxia, the pathways mediating this increase can also be exploited by cancer cells to promote tumour survival and growth, an area which has been extensively studied. It has recently become appreciated that increased glycolytic metabolism in hypoxia may also have profound effects on cellular physiology in hypoxic immune and endothelial cells. Therefore, understanding the mechanisms central to mediating this reprogramming are of importance from both physiological and pathophysiological standpoints. In this review, we highlight the role of HIF-1α in the regulation of hypoxic glycolysis and its implications for physiological processes such as angiogenesis and immune cell effector function.
Collapse
Affiliation(s)
- S J Kierans
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin, Ireland.,School of Medicine, University College Dublin, Belfield, Dublin, Ireland
| | - C T Taylor
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin, Ireland.,School of Medicine, University College Dublin, Belfield, Dublin, Ireland
| |
Collapse
|
21
|
Zhang Y, Cao Y, Gao T, Kuang Y, An Z, Mao Z, He Y, Yan J, Lu Z, Pei R. Tumor Microenvironment-Responsive and Catalytic Cascade-Enhanced Nanocomposite for Tumor Thermal Ablation Synergizing with Chemodynamic and Chemotherapy. ACS APPLIED BIO MATERIALS 2020; 3:3880-3893. [DOI: 10.1021/acsabm.0c00042] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Ye Zhang
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Yi Cao
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Tian Gao
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Ye Kuang
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Fujian Medical University, Fuzhou 350004, China
| | - Zhen An
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Zheng Mao
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Yilin He
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Jincong Yan
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Zhongzhong Lu
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Renjun Pei
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| |
Collapse
|
22
|
Xiao Y, Wang T, Song X, Yang D, Chu Q, Kang YJ. Copper promotion of myocardial regeneration. Exp Biol Med (Maywood) 2020; 245:911-921. [PMID: 32148090 DOI: 10.1177/1535370220911604] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
IMPACT STATEMENT Copper promotes angiogenesis, but the mechanistic insights have not been fully elucidated until recently. In addition, the significance of copper promotion of angiogenesis in myocardial regeneration was increasingly revealed. Copper critically participates in the regulation of hypoxia-inducible factor 1 (HIF-1) of angiogenic gene expression. Interestingly, myocardial ischemia causes copper efflux from the heart, leading to suppression of angiogenesis, although HIF-1α, the critical subunit of HIF-1, remains accumulated in the ischemic myocardium. Strategies targeting copper specific delivery to the ischemic myocardium lead to selective activation of HIF-1-regulated angiogenic gene expression. Vascularization of the ischemic myocardium re-establishes the tissue injury microenvironment, and rebuilds the conduit for communication between the tissue injury signals and the remote regenerative responses including stem cells. This process promotes myocardial regeneration. Thus, a simple and effective copper supplementation to the ischemic myocardium would become a novel therapeutic approach to the treatment of patients with ischemic heart diseases.
Collapse
Affiliation(s)
- Ying Xiao
- Regenerative Medicine Research Center, Sichuan University West China Hospital, Chengdu, Sichuan 610041, China
| | - Tao Wang
- Regenerative Medicine Research Center, Sichuan University West China Hospital, Chengdu, Sichuan 610041, China
| | - Xin Song
- Regenerative Medicine Research Center, Sichuan University West China Hospital, Chengdu, Sichuan 610041, China
| | - Dan Yang
- Regenerative Medicine Research Center, Sichuan University West China Hospital, Chengdu, Sichuan 610041, China
| | - Qing Chu
- Regenerative Medicine Research Center, Sichuan University West China Hospital, Chengdu, Sichuan 610041, China
| | - Y James Kang
- Regenerative Medicine Research Center, Sichuan University West China Hospital, Chengdu, Sichuan 610041, China
- Memphis Institute of Regenerative Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
23
|
Gkotinakou IM, Befani C, Simos G, Liakos P. ERK1/2 phosphorylates HIF-2α and regulates its activity by controlling its CRM1-dependent nuclear shuttling. J Cell Sci 2019; 132:jcs225698. [PMID: 30962349 DOI: 10.1242/jcs.225698] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 01/31/2019] [Indexed: 12/11/2022] Open
Abstract
Hypoxia-inducible factor 2 (HIF-2) is a principal component of the cellular response to oxygen deprivation (hypoxia). Its inducible subunit, HIF-2α (also known as EPAS1), is controlled by oxygen-dependent as well as oxygen-independent mechanisms, such as phosphorylation. We show here that HIF-2α is phosphorylated under hypoxia (1% O2) by extracellular signal-regulated protein kinases 1 and 2 (ERK1/2; also known as MAPK3 and MAPK1, respectively) at serine residue 672, as identified by in vitro phosphorylation assays. Mutation of this site to an alanine residue or inhibition of the ERK1/2 pathway decreases HIF-2 transcriptional activity and causes HIF-2α to mislocalize to the cytoplasm without changing its protein expression levels. Localization, reporter gene and immunoprecipitation experiments further show that HIF-2α associates with the exportin chromosomal maintenance 1 (CRM1, also known as XPO1) in a phosphorylation-sensitive manner and identify two critical leucine residues as part of an atypical CRM1-dependent nuclear export signal (NES) neighboring serine 672. Inhibition of CRM1 or mutation of these residues restores nuclear accumulation and activity of HIF-2α lacking the ERK1/2-mediated modification. In summary, we reveal a novel regulatory mechanism of HIF-2, involving ERK1/2-dependent phosphorylation of HIF-2α, which controls its nucleocytoplasmic shuttling and the HIF-2 transcriptional activity.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Ioanna-Maria Gkotinakou
- Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, 41500, Biopolis, Larissa, Greece
| | - Christina Befani
- Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, 41500, Biopolis, Larissa, Greece
| | - George Simos
- Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, 41500, Biopolis, Larissa, Greece
- Gerald Bronfman Department of Oncology, Faculty of Medicine, McGill University, Montreal, Canada, H4A 3T2
| | - Panagiotis Liakos
- Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, 41500, Biopolis, Larissa, Greece
| |
Collapse
|
24
|
Camuzi D, de Amorim ÍSS, Ribeiro Pinto LF, Oliveira Trivilin L, Mencalha AL, Soares Lima SC. Regulation Is in the Air: The Relationship between Hypoxia and Epigenetics in Cancer. Cells 2019; 8:cells8040300. [PMID: 30939818 PMCID: PMC6523720 DOI: 10.3390/cells8040300] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 03/22/2019] [Accepted: 03/26/2019] [Indexed: 12/12/2022] Open
Abstract
Hypoxia is an inherent condition of tumors and contributes to cancer development and progression. Hypoxia-inducible factors (HIFs) are the major transcription factors involved in response to low O2 levels, orchestrating the expression of hundreds of genes involved in cancer hallmarks’ acquisition and modulation of epigenetic mechanisms. Epigenetics refers to inheritable mechanisms responsible for regulating gene expression, including genes involved in the hypoxia response, without altering the sequence of DNA bases. The main epigenetic mechanisms are DNA methylation, non-coding RNAs, and histone modifications. These mechanisms are highly influenced by cell microenvironment, such as O2 levels. The balance and interaction between these pathways is essential for homeostasis and is directly linked to cellular metabolism. Some of the major players in the regulation of HIFs, such as prolyl hydroxylases, DNA methylation regulators, and histone modifiers require oxygen as a substrate, or have metabolic intermediates as cofactors, whose levels are altered during hypoxia. Furthermore, during pathological hypoxia, HIFs’ targets as well as alterations in epigenetic patterns impact several pathways linked to tumorigenesis, such as proliferation and apoptosis, among other hallmarks. Therefore, this review aims to elucidate the intricate relationship between hypoxia and epigenetic mechanisms, and its crucial impact on the acquisition of cancer hallmarks.
Collapse
Affiliation(s)
- Diego Camuzi
- Programa de Carcinogênese Molecular, Instituto Nacional de Câncer, Rio de Janeiro CEP 20231-050, Brazil.
| | - Ísis Salviano Soares de Amorim
- Laboratório de Biologia do Câncer (LABICAN), Departamento de Biofisica e Biometria (DBB), Instituto de Biologia Roberto Alcântara Gomes (IBRAG), Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro CEP 20511-010, Brazil.
| | - Luis Felipe Ribeiro Pinto
- Programa de Carcinogênese Molecular, Instituto Nacional de Câncer, Rio de Janeiro CEP 20231-050, Brazil.
| | - Leonardo Oliveira Trivilin
- Programa de Pós-Graduação em Ciências Veterinárias, Universidade Federal do Espírito Santo (UFES), Espírito Santo CEP 29500-000, Brazil.
| | - André Luiz Mencalha
- Laboratório de Biologia do Câncer (LABICAN), Departamento de Biofisica e Biometria (DBB), Instituto de Biologia Roberto Alcântara Gomes (IBRAG), Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro CEP 20511-010, Brazil.
| | - Sheila Coelho Soares Lima
- Programa de Carcinogênese Molecular, Instituto Nacional de Câncer, Rio de Janeiro CEP 20231-050, Brazil.
| |
Collapse
|
25
|
Befani C, Liakos P. The role of hypoxia‐inducible factor‐2 alpha in angiogenesis. J Cell Physiol 2018; 233:9087-9098. [DOI: 10.1002/jcp.26805] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 04/30/2018] [Indexed: 12/30/2022]
Affiliation(s)
- Christina Befani
- Laboratory of Biochemistry Faculty of Medicine, University of Thessaly Larissa Greece
| | - Panagiotis Liakos
- Laboratory of Biochemistry Faculty of Medicine, University of Thessaly Larissa Greece
| |
Collapse
|
26
|
Abstract
Osteoarthritis (OA) is a multi-factorial and highly prevalent joint disorder worldwide. Since the establishment of murine surgical knee OA models in 2005, many of the key molecules and signalling pathways responsible for OA development have been identified. Here we review the roles of two multi-functional signalling pathways in OA development: Notch and nuclear factor kappa-light-chain-enhancer of activated B cells. Previous studies have identified various aspects of articular chondrocyte regulation by these pathways. However, comprehensive understanding of the molecular networks regulating articular cartilage homeostasis and OA pathogenesis is needed.
Collapse
Affiliation(s)
- Taku Saito
- Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan. .,Bone and Cartilage Regenerative Medicine, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan.
| | - Sakae Tanaka
- Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| |
Collapse
|
27
|
Devraj G, Beerlage C, Brüne B, Kempf VAJ. Hypoxia and HIF-1 activation in bacterial infections. Microbes Infect 2016; 19:144-156. [PMID: 27903434 DOI: 10.1016/j.micinf.2016.11.003] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 11/14/2016] [Accepted: 11/21/2016] [Indexed: 12/22/2022]
Abstract
For most of the living beings, oxygen is one of the essential elements required to sustain life. Deprivation of oxygen causes tissue hypoxia and this severely affects host cell and organ functions. Tissue hypoxia is a prominent microenvironmental condition occurring in infections and there is a body of evidence that hypoxia and inflammation are interconnected with each other. The primary key factor mediating the mammalian hypoxic response is hypoxia inducible factor (HIF)-1, which regulates oxygen homeostasis on cellular, tissue and organism level. Recent studies show that HIF-1 plays a central role in angiogenesis, cancer and cardiovascular disease but also in bacterial infections. Activation of HIF-1 depends on the nature of the pathogen and the characteristics of infections in certain hosts. Up to date, it is not completely clear whether the phenomenon of HIF-1 activation in infections has a protective or detrimental effect on the host. In this review, we give an overview of whether and how hypoxia and HIF-1 affect the course of infections.
Collapse
Affiliation(s)
- Gayatri Devraj
- Institute of Medical Microbiology and Infection Control, Goethe-University, Paul-Ehrlich-Str. 40, D-60596 Frankfurt am Main, Germany
| | - Christiane Beerlage
- Institute of Medical Microbiology and Infection Control, Goethe-University, Paul-Ehrlich-Str. 40, D-60596 Frankfurt am Main, Germany
| | - Bernhard Brüne
- Institute of Biochemistry I - Pathobiochemistry, Goethe-University, Theodor-Stern-Kai 7, D-60590 Frankfurt am Main, Germany
| | - Volkhard A J Kempf
- Institute of Medical Microbiology and Infection Control, Goethe-University, Paul-Ehrlich-Str. 40, D-60596 Frankfurt am Main, Germany.
| |
Collapse
|
28
|
Pangou E, Befani C, Mylonis I, Samiotaki M, Panayotou G, Simos G, Liakos P. HIF-2α phosphorylation by CK1δ promotes erythropoietin secretion in liver cancer cells under hypoxia. J Cell Sci 2016; 129:4213-4226. [PMID: 27686097 DOI: 10.1242/jcs.191395] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 09/27/2016] [Indexed: 12/30/2022] Open
Abstract
Hypoxia inducible factor 2 (HIF-2) is a transcriptional activator implicated in the cellular response to hypoxia. Regulation of its inducible subunit, HIF-2α (also known as EPAS1), involves post-translational modifications. Here, we demonstrate that casein kinase 1δ (CK1δ; also known as CSNK1D) phosphorylates HIF-2α at Ser383 and Thr528 in vitro We found that disruption of these phosphorylation sites, and silencing or chemical inhibition of CK1δ, reduced the expression of HIF-2 target genes and the secretion of erythropoietin (EPO) in two hepatic cancer cell lines, Huh7 and HepG2, without affecting the levels of HIF-2α protein expression. Furthermore, when CK1δ-dependent phosphorylation of HIF-2α was inhibited, we observed substantial cytoplasmic mislocalization of HIF-2α, which was reversed upon the addition of the nuclear protein export inhibitor leptomycin B. Taken together, these data suggest that CK1δ enhances EPO secretion from liver cancer cells under hypoxia by modifying HIF-2α and promoting its nuclear accumulation. This modification represents a new mechanism of HIF-2 regulation that might allow HIF isoforms to undertake differing functions.
Collapse
Affiliation(s)
- Evanthia Pangou
- Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, Biopolis, Larissa 41500, Greece
| | - Christina Befani
- Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, Biopolis, Larissa 41500, Greece
| | - Ilias Mylonis
- Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, Biopolis, Larissa 41500, Greece
| | - Martina Samiotaki
- Protein Chemistry Laboratory, Biomedical Sciences Research Center "Alexander Fleming", Vari 16672, Greece
| | - George Panayotou
- Protein Chemistry Laboratory, Biomedical Sciences Research Center "Alexander Fleming", Vari 16672, Greece
| | - George Simos
- Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, Biopolis, Larissa 41500, Greece
| | - Panagiotis Liakos
- Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, Biopolis, Larissa 41500, Greece
| |
Collapse
|
29
|
Association of Hypoxia-Inducible Factor-2 Alpha Gene Polymorphisms with the Risk of Hepatitis B Virus-Related Liver Disease in Guangxi Chinese: A Case-Control Study. PLoS One 2016; 11:e0158241. [PMID: 27384772 PMCID: PMC4934873 DOI: 10.1371/journal.pone.0158241] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 06/12/2016] [Indexed: 01/06/2023] Open
Abstract
OBJECTIVE Hypoxia-inducible factor-2 alpha (HIF-2a) plays a major role in the progression of disease, although the role of HIF-2α gene polymorphisms in hepatitis B virus (HBV)-related diseases remains elusive. The aim of this study is to determine whether HIF-2a rs13419896 and rs6715787 single-nucleotide polymorphisms (SNPs) are associated with susceptibility to chronic hepatitis B (CHB), liver cirrhosis (LC), or hepatocellular carcinoma (HCC). METHOD A case-control study of 107 patients with CHB, 83 patients with LC, 234 patients with HCC, and 224 healthy control subjects was carried out, and the HIF-2a rs13419896 and rs6715787 SNPs were genotyped by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). RESULTS No significant differences were observed in the genotype or allele frequency of two HIF-2a SNPs between the cases and controls (all p>0.05). However, in subgroup analysis by gender, the HIF-2a rs13419896 GA and AA genotypes were significantly associated with a risk of CHB (odds ratio [OR] = 3.565, 95% confidence interval [CI] = 1.123-11.314, p = 0.031 and OR = 12.506, 95% CI = 1.329-117.716, p = 0.027) in females, and the A allele of rs13419896 was associated with a risk of CHB (OR = 2.624, 95% CI = 1.244-5.537, p = 0.011) and LC (OR = 2.351, 95% CI = 1.002-5.518, p = 0.050) in females. The rs6715787 CG genotype polymorphism may contribute to a reduced risk of LC in the Guangxi Zhuang Chinese population (OR = 0.152, 95% CI = 0.028-0.807, p = 0.027), as determined via subgroup analysis by ethnicity. Moreover, binary logistic regression analyses that were adjusted by drinking status indicated that the AA genotype of rs13419896 may contribute to an increased risk of LC in the non-alcohol-drinking population (OR = 3.124, 95% CI = 1.091-8.947, p = 0.034). In haplotype analysis, GG haplotype was significantly associated with a reduced risk of LC (OR = 0.601, 95% CI = 0.419-0.862, p = 0.005). CONCLUSIONS The HIF-2a rs13419896 polymorphism is associated with an increased risk of CHB and LC in the Guangxi Chinese population, especially in females and in the non-alcohol-drinking population, while the HIF-2a gene rs6715787 polymorphism is associated with a decreased risk of LC in the Guangxi Zhuang population.
Collapse
|
30
|
Genome-wide analysis of HIF-2α chromatin binding sites under normoxia in human bronchial epithelial cells (BEAS-2B) suggests its diverse functions. Sci Rep 2016; 6:29311. [PMID: 27373565 PMCID: PMC4931692 DOI: 10.1038/srep29311] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 06/16/2016] [Indexed: 12/26/2022] Open
Abstract
Constitutive functional HIF-2α was recently identified in cancer and stem cell lines under normoxia. In this study, BEAS-2B, a bronchial epithelial cell line, was shown to constitutively express active HIF-2α under normoxia and exhibit markers of pluripotency including Oct-4, Nanog, and sphere formation. Oct-4 expression was reduced after knockdown of HIF-2α under normoxia. Global enrichment analysis of HIF-2α demonstrated the diverse functions of HIF-2α under normoxia. Bioinformatics analysis of the enriched loci revealed an enhancer role of HIF-2α binding sites, involvement of HIF-2α interacting proteins, and enriched de novo motifs which suggest the diverse role of HIF-2α in pseudohypoxia. The low ratio of the discovered loci overlapping with those revealed in cancer cell lines 786-O (16.1%) and MCF-7 (15.9%) under hypoxia indicated a prevailing non-canonical mechanism. Hypoxia had positive, marginal or adverse effects on the enrichment of the selected loci in ChIP-PCR assays. Deletion of the N-terminal activation domain (N-TAD) of HIF-2α disrupted the reporting activity of two of the loci annotated to ELN and ANKRD31. Hypoxia incurring abundance variation of HIF-2α may misrepresent the N-TAD functions as canonical hypoxia inducible features via C-TAD activation. Elucidation of the pseudohypoxia functions of constitutive HIF-2α is useful for resolving its role in malignancy and pluripotency.
Collapse
|
31
|
Abstract
Activation of hypoxia pathways is both associated with and contributes to an aggressive phenotype across multiple types of solid cancers. The regulation of gene transcription by hypoxia-inducible factor (HIF) is a key element in this response. HIF directly upregulates the expression of many hundreds of protein-coding genes, which act to both improve oxygen delivery and to reduce oxygen demand. However, it is now becoming apparent that many classes of noncoding RNAs are also regulated by hypoxia, with several (e.g. micro RNAs, long noncoding RNAs and antisense RNAs) under direct transcriptional regulation by HIF. These hypoxia-regulated, noncoding RNAs may act as effectors of the indirect response to HIF by acting on specific coding transcripts or by affecting generic RNA-processing pathways. In addition, noncoding RNAs may also act as modulators of the HIF pathway, either by integrating other physiological responses or, in the case of HIF-regulated, noncoding RNAs, by providing negative or positive feedback and feedforward loops that affect upstream or downstream components of the HIF cascade. These hypoxia-regulated, noncoding transcripts play important roles in the aggressive hypoxic phenotype observed in cancer.
Collapse
|
32
|
Lin J, Pang H, Guo X, Ding Y, Geng J, Zhang J, Min J. Lentivirus-Mediated RNAi Silencing of VEGF Inhibits Angiogenesis and Growth of Renal Cell Carcinoma in a Nude Mouse Xenograft Model. DNA Cell Biol 2015; 34:717-27. [PMID: 26465082 DOI: 10.1089/dna.2015.2918] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
To construct and screen short hairpin RNA (shRNA) targeting vascular endothelial growth factor (VEGF), and investigate potential values of VEGF-shRNA on angiogenesis and growth in renal cell carcinoma (RCC) in a xenograft tumor model. VEGF-shRNA fragment was designed to connect plasmid vector, and RCC cells were transfected with shRNA. Real-time fluorescent quantitative polymerase chain reaction (RTFQ-PCR) was used to detect interference efficiency of VEGF gene. The xenograft tumor model was established in nude mice, and mice were randomly divided into blank control (BC) group, negative control (NC) group, and experimental group. RNA interference (RNAi) effect was detected by immunohistochemistry, and tumor volume changes were observed. Tumor-bearing nude mice model was established and mice were randomly divided into BC group, NC group, and treatment group. The tumor volume changes and tumor inhibition rate were recorded, and angiogenesis status was observed. The apoptosis of tumor cells and genetic toxicity of VEGF-shRNA were detected. VEGF-shRNA can inhibit VEGF mRNA expression with an inhibition ratio of 72.3%. Compared with NC group and BC group, experimental group presents smaller tumor volume, weight, and poor growth (all p < 0.05). Positive VEGF rate in experimental group is significantly lower than that in NC group and BC group (all p < 0.05). Significantly lower tumor volume, less microvessel density (MVD) value, and higher apoptotic index (AI) are found in treatment group compared with BC group and NC group (all p < 0.05). There was no significant difference in AI between treatment group and BC group regarding adjacent normal tissues (p > 0.05). VEGF plays an important role in the occurrence and development of RCC, chemical synthesis of VEGF small interfering RNA (siRNA) can specifically inhibit VEGF expression, angiogenesis and growth in RCC, and can promote cell apoptosis without genetic toxicity to normal tissues.
Collapse
Affiliation(s)
- Jiahua Lin
- 1 Cadet Brigade, The Fourth Military Medical University , Xi'an, People's Republic of China
| | - Hailin Pang
- 2 Department of Oncology, Tangdu Hospital, The Fourth Military Medical University , Xi'an, People's Republic of China
| | - Xiaojian Guo
- 1 Cadet Brigade, The Fourth Military Medical University , Xi'an, People's Republic of China
| | - Yunfei Ding
- 1 Cadet Brigade, The Fourth Military Medical University , Xi'an, People's Republic of China
| | - Jiaxu Geng
- 1 Cadet Brigade, The Fourth Military Medical University , Xi'an, People's Republic of China
| | - Jingmeng Zhang
- 1 Cadet Brigade, The Fourth Military Medical University , Xi'an, People's Republic of China
| | - Jie Min
- 2 Department of Oncology, Tangdu Hospital, The Fourth Military Medical University , Xi'an, People's Republic of China
| |
Collapse
|
33
|
RHOBTB3 promotes proteasomal degradation of HIFα through facilitating hydroxylation and suppresses the Warburg effect. Cell Res 2015. [PMID: 26215701 PMCID: PMC4559813 DOI: 10.1038/cr.2015.90] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Hypoxia-inducible factors (HIFs) are master regulators of adaptive responses to low oxygen, and their α-subunits are rapidly degraded through the ubiquitination-dependent proteasomal pathway after hydroxylation. Aberrant accumulation or activation of HIFs is closely linked to many types of cancer. However, how hydroxylation of HIFα and its delivery to the ubiquitination machinery are regulated remains unclear. Here we show that Rho-related BTB domain-containing protein 3 (RHOBTB3) directly interacts with the hydroxylase PHD2 to promote HIFα hydroxylation. RHOBTB3 also directly interacts with the von Hippel-Lindau (VHL) protein, a component of the E3 ubiquitin ligase complex, facilitating ubiquitination of HIFα. Remarkably, RHOBTB3 dimerizes with LIMD1, and constructs a RHOBTB3/LIMD1-PHD2-VHL-HIFα complex to effect the maximal degradation of HIFα. Hypoxia reduces the RHOBTB3-centered complex formation, resulting in an accumulation of HIFα. Importantly, the expression level of RHOBTB3 is greatly reduced in human renal carcinomas, and RHOBTB3 deficiency significantly elevates the Warburg effect and accelerates xenograft growth. Our work thus reveals that RHOBTB3 serves as a scaffold to organize a multi-subunit complex that promotes the hydroxylation, ubiquitination and degradation of HIFα.
Collapse
|
34
|
Depping R, Jelkmann W, Kosyna FK. Nuclear-cytoplasmatic shuttling of proteins in control of cellular oxygen sensing. J Mol Med (Berl) 2015; 93:599-608. [PMID: 25809665 DOI: 10.1007/s00109-015-1276-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 03/04/2015] [Accepted: 03/11/2015] [Indexed: 12/11/2022]
Abstract
In order to pass through the nuclear pore complex, proteins larger than ∼40 kDa require specific nuclear transport receptors. Defects in nuclear-cytoplasmatic transport affect fundamental processes such as development, inflammation and oxygen sensing. The transcriptional response to O2 deficiency is controlled by hypoxia-inducible factors (HIFs). These are heterodimeric transcription factors of each ∼100-120 kDa proteins, consisting of one out of three different O2-labile α subunits (primarily HIF-1α) and a more constitutive 1β subunit. In the presence of O2, the α subunits are hydroxylated by specific prolyl-4-hydroxylase domain proteins (PHD1, PHD2, and PHD3) and an asparaginyl hydroxylase (factor inhibiting HIF-1, FIH-1). The prolyl hydroxylation causes recognition by von Hippel-Lindau tumor suppressor protein (pVHL), ubiquitination, and proteasomal degradation. The activity of the oxygen sensing machinery depends on dynamic intracellular trafficking. Nuclear import of HIF-1α and HIF-1β is mainly mediated by importins α and β (α/β). HIF-1α can shuttle between nucleus and cytoplasm, while HIF-1β is permanently inside the nucleus. pVHL is localized to both compartments. Nuclear import of PHD1 relies on a nuclear localization signal (NLS) and uses the classical import pathway involving importin α/β receptors. PHD2 shows an atypical NLS, and its nuclear import does not occur via the classical pathway. PHD2-mediated hydroxylation of HIF-1α occurs predominantly in the cell nucleus. Nuclear export of PHD2 involves a nuclear export signal (NES) in the N-terminus and depends on the export receptor chromosome region maintenance 1 (CRM1). Nuclear import of PHD3 is mediated by importin α/β receptors and depends on a non-classical NLS. Specific modification of the nuclear translocation of the three PHD isoforms could provide a promising strategy for the development of new therapeutic substances to tackle major diseases.
Collapse
Affiliation(s)
- Reinhard Depping
- Institute of Physiology, Centre for Structural and Cell Biology in Medicine, University of Lübeck, Lübeck, Germany,
| | | | | |
Collapse
|
35
|
Posttranscriptional adaptations of the vascular endothelium to hypoxia. Curr Opin Hematol 2015; 22:243-51. [PMID: 25767954 DOI: 10.1097/moh.0000000000000139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
PURPOSE OF REVIEW Remarkable new advances have been made in the field of posttranscriptional gene regulation over recent years. These include the revelation of noncoding RNAs, such as microRNAs, antisense transcripts and their interactions with RNA-binding proteins (RBPs) in the context of both health and disease settings, such as hypoxia. In particular, these discoveries bear much relevance to the field of vascular biology, which historically has focused upon transcriptional processes. Thus, the contributions of these posttranscriptional gene regulatory mechanisms to vascular and endothelial biology represent a newer concept that warrants discussion. RECENT FINDINGS Recent studies have revealed two emerging themes that are critical to endothelial/vascular biology and function. First is the functional integration between the microRNA pathway and the cellular hypoxic response, which, in addition to specific microRNAs, involves key components of the microRNA biogenesis machinery. A key concept here is the regulation of a master transcriptional programme through posttranscriptional mechanisms. The second major theme involves the dynamic interactions between RBPs, microRNAs and antisense RNAs. The condition-dependent collaborations and competitions between these different classes of posttranscriptional regulators reveal a critical layer of control for gene expression. SUMMARY Taken together, these findings bear significant diagnostic and therapeutic implications for vascular disease.
Collapse
|
36
|
Hashimoto T, Shibasaki F. Hypoxia-inducible factor as an angiogenic master switch. Front Pediatr 2015; 3:33. [PMID: 25964891 PMCID: PMC4408850 DOI: 10.3389/fped.2015.00033] [Citation(s) in RCA: 154] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 04/07/2015] [Indexed: 12/19/2022] Open
Abstract
Hypoxia-inducible factors (HIFs) regulate the transcription of genes that mediate the response to hypoxia. HIFs are constantly expressed and degraded under normoxia, but stabilized under hypoxia. HIFs have been widely studied in physiological and pathological conditions and have been shown to contribute to the pathogenesis of various vascular diseases. In clinical settings, the HIF pathway has been studied for its role in inhibiting carcinogenesis. HIFs might also play a protective role in the pathology of ischemic diseases. Clinical trials of therapeutic angiogenesis after the administration of a single growth factor have yielded unsatisfactory or controversial results, possibly because the coordinated activity of different HIF-induced factors is necessary to induce mature vessel formation. Thus, manipulation of HIF activity to simultaneously induce a spectrum of angiogenic factors offers a superior strategy for therapeutic angiogenesis. Because HIF-2α plays an essential role in vascular remodeling, manipulation of HIF-2α is a promising approach to the treatment of ischemic diseases caused by arterial obstruction, where insufficient development of collateral vessels impedes effective therapy. Eukaryotic initiation factor 3 subunit e (eIF3e)/INT6 interacts specifically with HIF-2α and induces the proteasome inhibitor-sensitive degradation of HIF-2α, independent of hypoxia and von Hippel-Lindau protein. Treatment with eIF3e/INT6 siRNA stabilizes HIF-2α activity even under normoxic conditions and induces the expression of several angiogenic factors, at levels sufficient to produce functional arteries and veins in vivo. We have demonstrated that administration of eIF3e/INT6 siRNA to ischemic limbs or cold-injured brains reduces ischemic damage in animal models. This review summarizes the current understanding of the relationship between HIFs and vascular diseases. We also discuss novel oxygen-independent regulatory proteins that bind HIF-α and the implications of a new method for therapeutic angiogenesis using HIF stabilizers.
Collapse
Affiliation(s)
- Takuya Hashimoto
- Department of Surgery, Yale University School of Medicine , New Haven, CT , USA ; Division of Vascular Surgery, Department of Surgery, Graduate School of Medicine, The University of Tokyo , Tokyo , Japan
| | - Futoshi Shibasaki
- Department of Molecular Medical Research, Tokyo Metropolitan Institute of Medical Science , Tokyo , Japan
| |
Collapse
|
37
|
Zheng L, Han P, Liu J, Li R, Yin W, Wang T, Zhang W, Kang YJ. Role of copper in regression of cardiac hypertrophy. Pharmacol Ther 2014; 148:66-84. [PMID: 25476109 DOI: 10.1016/j.pharmthera.2014.11.014] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 11/17/2014] [Indexed: 02/07/2023]
Abstract
Pressure overload causes an accumulation of homocysteine in the heart, which is accompanied by copper depletion through the formation of copper-homocysteine complexes and the excretion of the complexes. Copper supplementation recovers cytochrome c oxidase (CCO) activity and promotes myocardial angiogenesis, along with the regression of cardiac hypertrophy and the recovery of cardiac contractile function. Increased copper availability is responsible for the recovery of CCO activity. Copper promoted expression of angiogenesis factors including vascular endothelial growth factor (VEGF) in endothelial cells is responsible for angiogenesis. VEGF receptor-2 (VEGFR-2) is critical for hypertrophic growth of cardiomyocytes and VEGFR-1 is essential for the regression of cardiomyocyte hypertrophy. Copper, through promoting VEGF production and suppressing VEGFR-2, switches the VEGF signaling pathway from VEGFR-2-dependent to VEGFR-1-dependent, leading to the regression of cardiomyocyte hypertrophy. Copper is also required for hypoxia-inducible factor-1 (HIF-1) transcriptional activity, acting on the interaction between HIF-1 and the hypoxia responsible element and the formation of HIF-1 transcriptional complex by inhibiting the factor inhibiting HIF-1. Therefore, therapeutic targets for copper supplementation-induced regression of cardiac hypertrophy include: (1) the recovery of copper availability for CCO and other critical cellular events; (2) the activation of HIF-1 transcriptional complex leading to the promotion of angiogenesis in the endothelial cells by VEGF and other factors; (3) the activation of VEGFR-1-dependent regression signaling pathway in the cardiomyocytes; and (4) the inhibition of VEGFR-2 through post-translational regulation in the hypertrophic cardiomyocytes. Future studies should focus on target-specific delivery of copper for the development of clinical application.
Collapse
Affiliation(s)
- Lily Zheng
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Pengfei Han
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Jiaming Liu
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Rui Li
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Wen Yin
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Tao Wang
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Wenjing Zhang
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Y James Kang
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China; Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40292, USA.
| |
Collapse
|
38
|
Vetrovoy OV, Rybnikova EA, Glushchenko TS, Baranova KA, Samoilov MO. Mild hypobaric hypoxic postconditioning increases the expression of HIF-1α and erythropoietin in the CA1 field of the hippocampus of rats that survive after severe hypoxia. NEUROCHEM J+ 2014. [DOI: 10.1134/s1819712414020123] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
39
|
Mennerich D, Dimova EY, Kietzmann T. Direct phosphorylation events involved in HIF-α regulation: the role of GSK-3β. HYPOXIA 2014; 2:35-45. [PMID: 27774465 PMCID: PMC5045055 DOI: 10.2147/hp.s60703] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Hypoxia-inducible factors (HIFs), consisting of α- and β-subunits, are critical regulators of the transcriptional response to hypoxia under both physiological and pathological conditions. To a large extent, the protein stability and the recruitment of coactivators to the C-terminal transactivation domain of the HIF α-subunits determine overall HIF activity. The regulation of HIF α-subunit protein stability and coactivator recruitment is mainly achieved by oxygen-dependent posttranslational hydroxylation of conserved proline and asparagine residues, respectively. Under hypoxia, the hydroxylation events are inhibited and HIF α-subunits stabilize, translocate to the nucleus, dimerize with the β-subunits, and trigger a transcriptional response. However, under normal oxygen conditions, HIF α-subunits can be activated by various growth and coagulation factors, hormones, cytokines, or stress factors implicating the involvement of different kinase pathways in their regulation, thereby making HIF-α-regulating kinases attractive therapeutic targets. From the kinases known to regulate HIF α-subunits, only a few phosphorylate HIF-α directly. Here, we review the direct phosphorylation of HIF-α with an emphasis on the role of glycogen synthase kinase-3β and the consequences for HIF-1α function.
Collapse
Affiliation(s)
- Daniela Mennerich
- Faculty of Biochemistry and Molecular Medicine and Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Elitsa Y Dimova
- Faculty of Biochemistry and Molecular Medicine and Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Thomas Kietzmann
- Faculty of Biochemistry and Molecular Medicine and Biocenter Oulu, University of Oulu, Oulu, Finland
| |
Collapse
|
40
|
Makanji Y, Tagler D, Pahnke J, Shea LD, Woodruff TK. Hypoxia-mediated carbohydrate metabolism and transport promote early-stage murine follicle growth and survival. Am J Physiol Endocrinol Metab 2014; 306:E893-903. [PMID: 24569591 PMCID: PMC3989738 DOI: 10.1152/ajpendo.00484.2013] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Oxygen tension is critical for follicle growth and metabolism, especially for early-stage follicles, where vascularity is limited. Its role and underlying mechanism in the in vitro activation and maturation of immature to ovulatory follicles is largely unknown. In this study, early secondary (110 μm) murine follicles were isolated and encapsulated in alginate hydrogels to replicate the in vivo environment of the growing/maturing follicle. Encapsulated follicles were cultured for 8 days at either 2.5 or 20% O2. Survival (2.6-fold) and growth (1.2-fold) were significantly higher for follicles cultured at 2.5% compared with 20% O2. Using a mouse hypoxia-signaling pathway qRT-PCR array and GeneGo Metacore analysis, we found that direct target genes of the hypoxia-activated HIF1-complex were significantly upregulated in follicles cultured for 8 days at 2.5% compared with 20% O2, including the carbohydrate transport and metabolism genes Slc2a3, Vegfa, Slc2a1, Edn1, Pgk1, Ldha, and Hmox1. Other upregulated genes included carbohydrate transporters (Slc2a1, Slc2a3, and Slc16a3) and enzymes essential for glycolysis (Pgk1, Hmox1, Hk2, Gpi1, Pfkl, Pfkp, Aldoa, Gapdh, Pgam1, Eno1, Pkm2, and Ldha). For follicles cultured at 2.5% O2, a 7.2-fold upregulation of Vegfa correlated to an 18-fold increase in VEGFA levels, and a 3.2-fold upregulation of Ldha correlated to a 4.8-fold increase in lactate levels. Both VEGFA and lactate levels were significantly higher in follicles cultured at 2.5% compared with 20% O2. Therefore, enhanced hypoxia-mediated glycolysis is essential for growth and survival of early secondary follicles and provides vital insights into improving in vitro culture conditions.
Collapse
Affiliation(s)
- Yogeshwar Makanji
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, and
| | | | | | | | | |
Collapse
|
41
|
Brunt JJ, Shi SY, Schroer SA, Sivasubramaniyam T, Cai EP, Woo M. Overexpression of HIF-2α in pancreatic β cells does not alter glucose homeostasis. Islets 2014; 6:e1006075. [PMID: 25833250 PMCID: PMC4398283 DOI: 10.1080/19382014.2015.1006075] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Both type 1 and type 2 diabetes are associated with insufficient functional β-cell mass. Understanding intracellular signaling pathways associated with this decline is important in broadening our understanding of the disease and potential therapeutic strategies. The hypoxia inducible factor pathway (HIF) plays a critical role in cellular adaptation to hypoxic conditions. Activation of this pathway increases expression of numerous genes involved in multiple cellular processes and has been shown to impact the regulation of β-cell function. Previously, deletion of HIF-1α or HIF-1β in pancreatic β-cells, as well as constitutive activation of the HIF pathway in β-cells, was shown to result in glucose intolerance and impaired insulin secretion. The objective of this study was to delineate roles of HIF-2α overexpression in pancreatic β-cells in vivo. We overexpressed HIF-2α in pancreatic β-cells by employing the Cre-loxP system driven by the Pdx1 promoter to delete a stop codon. Our study revealed that pancreatic HIF-2α overexpression does not result in significant differences in glucose tolerance, insulin sensitivity or β-cell area compared to wild-type littermates under basal conditions or after high fat diet. Together, our study shows excess HIF-2α in the pancreatic β-cells does not play a significant role in β-cell function and glucose homeostasis.
Collapse
Key Words
- ARNT, aryl hydrocarbon receptor nuclear translocator
- EPAS1, endothelial PAS domain protein 1
- GLUT1 glucose transporter 1
- GTT, glucose tolerance test
- HFD, high fat diet
- HIF, hypoxia inducible factor
- HIF-1α, hypoxia inducible factor-1 α
- HIF-1β, hypoxia inducible factor-1 β
- HIF-2α, hypoxia inducible factor-2 α
- Hypoxia inducible factor β cell glucose homeostasis diabetes mellitus pancreas
- ITT, insulin tolerance test
- OE, overexpression
- VEGF, vascular endothelial growth factor
- VHL, von Hippel-Lindau
- WT, wild-type
- i.p., intraperitoneal
Collapse
Affiliation(s)
- Jara J Brunt
- Toronto General Research
Institute; Toronto, Canada
- Institute of Medical Science; University of
Toronto; Toronto, Canada
| | - Sally Yu Shi
- Toronto General Research
Institute; Toronto, Canada
- Institute of Medical Science; University of
Toronto; Toronto, Canada
| | | | - Tharini Sivasubramaniyam
- Toronto General Research
Institute; Toronto, Canada
- Institute of Medical Science; University of
Toronto; Toronto, Canada
| | - Erica P Cai
- Toronto General Research
Institute; Toronto, Canada
- Institute of Medical Science; University of
Toronto; Toronto, Canada
| | - Minna Woo
- Toronto General Research
Institute; Toronto, Canada
- Institute of Medical Science; University of
Toronto; Toronto, Canada
- Division of Endocrinology; Department of
Medicine; Toronto General Hospital; University Health Network; University of
Toronto; Toronto, Canada
- Correspondence to: Minna Woo;
| |
Collapse
|
42
|
Oosterwijk E. Carbonic anhydrase expression in kidney and renal cancer: implications for diagnosis and treatment. Subcell Biochem 2014; 75:181-98. [PMID: 24146380 DOI: 10.1007/978-94-007-7359-2_10] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Four different carbonic anhydrases are expressed in the human nephron, the functional unit of the kidney. These are specifically expressed in different nephron segments, emphasizing the critical role carbonic anhydrases play in maintaining the homeostasis of this crucial organ.Whereas the localization of carbonic anhydrases in the kidney has been long established, interest in carbonic anhydrases has increased dramatically for renal cancer, in particular for the clear cell variant of renal cell carcinoma (ccRCC) because carbonic anhydrase IX is specifically expressed in ccRCC. Therefore carbonic anhydrase IX is being studied as potential diagnostic and therapeutic target, despite carbonic anhydrase IX expression in non-renal tissues.
Collapse
Affiliation(s)
- Egbert Oosterwijk
- Department of Urology, University Medical Center St Radboud, Nijmegen, The Netherlands,
| |
Collapse
|
43
|
|
44
|
Hypoxia-induced signaling and its relevance in discovering biomarkers for cancer research. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.bgm.2013.07.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
45
|
Dengler VL, Galbraith M, Espinosa JM. Transcriptional regulation by hypoxia inducible factors. Crit Rev Biochem Mol Biol 2013; 49:1-15. [PMID: 24099156 DOI: 10.3109/10409238.2013.838205] [Citation(s) in RCA: 571] [Impact Index Per Article: 47.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The cellular response to oxygen deprivation is governed largely by a family of transcription factors known as Hypoxia Inducible Factors (HIFs). This review focuses on the molecular mechanisms by which HIFs regulate the transcriptional apparatus to enable the cellular and organismal response to hypoxia. We discuss here how the various HIF polypeptides, their posttranslational modifications, binding partners and transcriptional cofactors affect RNA polymerase II activity to drive context-dependent transcriptional programs during hypoxia.
Collapse
Affiliation(s)
- Veronica L Dengler
- Howard Hughes Medical Institute & Department of Molecular, Cellular and Developmental Biology, The University of Colorado at Boulder, Boulder, CO 80309-0347, U.S.A
| | - Matthew Galbraith
- Howard Hughes Medical Institute & Department of Molecular, Cellular and Developmental Biology, The University of Colorado at Boulder, Boulder, CO 80309-0347, U.S.A
| | - Joaquín M Espinosa
- Howard Hughes Medical Institute & Department of Molecular, Cellular and Developmental Biology, The University of Colorado at Boulder, Boulder, CO 80309-0347, U.S.A
| |
Collapse
|
46
|
Chi W, Gan X, Xiao W, Wang W, He S. Different evolutionary patterns of hypoxia-inducible factor α (HIF-α) isoforms in the basal branches of Actinopterygii and Sarcopterygii. FEBS Open Bio 2013; 3:479-83. [PMID: 24265980 PMCID: PMC3836196 DOI: 10.1016/j.fob.2013.09.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 09/16/2013] [Accepted: 09/17/2013] [Indexed: 01/23/2023] Open
Abstract
Hypoxia-inducible factor (HIF) is a crucial regulator of cellular and systemic responses to low oxygen levels. Here we firstly cloned three HIF-α isoforms from the basal branches of Osteichthyes and used computational tools to characterise the molecular change underlying the functional divergence of HIF-α isoforms in different lineages. Only the HIF-1α and HIF-2α in African lungfish and amphibians were found under positive selection. HIF-1α and -2α were less functionally divergent in basal ray-finned fish than in teleosts, and showed conserved but different transcriptional activity towards specific target genes. All three HIF-α isoforms are well preserved in basal ray-finned fish. The HIF-1α and -2α in amphibians and lungfish are positively selected. The HIF-1α and -2α are more functionally diverged in teleosts. The HIF-1α and -2α in different lineages exhibit different levels of activity.
Collapse
Affiliation(s)
- Wei Chi
- Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, 7# Donghu South Road, Wuhan, Hubei 430072, China
| | | | | | | | | |
Collapse
|
47
|
Pawlus MR, Hu CJ. Enhanceosomes as integrators of hypoxia inducible factor (HIF) and other transcription factors in the hypoxic transcriptional response. Cell Signal 2013; 25:1895-903. [PMID: 23707522 PMCID: PMC3700616 DOI: 10.1016/j.cellsig.2013.05.018] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 05/07/2013] [Indexed: 12/27/2022]
Abstract
Hypoxia is a prevalent attribute of the solid tumor microenvironment that promotes the expression of genes through posttranslational modifications and stabilization of alpha subunits (HIF1α and HIF2α) of hypoxia-inducible factors (HIFs). Despite significant similarities, HIF1 (HIF1α/ARNT) and HIF2 (HIF2α/ARNT) activate common as well as unique target genes and exhibit different functions in cancer biology. More surprisingly, accumulating data indicates that the HIF1- and/or HIF2-mediated hypoxia responses can be oncogenic as well as tumor suppressive. While the role of HIF in the hypoxia response is well established, recent data support the concept that HIF is necessary, but not sufficient for the hypoxic response. Other transcription factors that are activated by hypoxia are also required for the HIF-mediated hypoxia response. HIFs, other transcription factors, co-factors and RNA poll II recruited by HIF and other transcription factors form multifactorial enhanceosome complexes on the promoters of HIF target genes to activate hypoxia inducible genes. Importantly, HIF1 or HIF2 requires distinct partners in activating HIF1 or HIF2 target genes. Because HIF enhanceosome formation is required for the gene activation and distinct functions of HIF1 and HIF2 in tumor biology, disruption of the HIF1 or HIF2 specific enhanceosome complex may prove to be a beneficial strategy in tumor treatment in which tumor growth is specifically dependent upon HIF1 or HIF2 activity.
Collapse
Affiliation(s)
- Matthew R. Pawlus
- Molecular Biology Graduate Program University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Cheng-Jun Hu
- Molecular Biology Graduate Program University of Colorado Anschutz Medical Campus, Aurora, CO 80045
- Department of Craniofacial Biology University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| |
Collapse
|
48
|
Pawlus MR, Wang L, Murakami A, Dai G, Hu CJ. STAT3 or USF2 contributes to HIF target gene specificity. PLoS One 2013; 8:e72358. [PMID: 23991099 PMCID: PMC3749168 DOI: 10.1371/journal.pone.0072358] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 07/12/2013] [Indexed: 11/18/2022] Open
Abstract
The HIF1- and HIF2-mediated transcriptional responses play critical roles in solid tumor progression. Despite significant similarities, including their binding to promoters of both HIF1 and HIF2 target genes, HIF1 and HIF2 proteins activate unique subsets of target genes under hypoxia. The mechanism for HIF target gene specificity has remained unclear. Using siRNA or inhibitor, we previously reported that STAT3 or USF2 is specifically required for activation of endogenous HIF1 or HIF2 target genes. In this study, using reporter gene assays and chromatin immuno-precipitation, we find that STAT3 or USF2 exhibits specific binding to the promoters of HIF1 or HIF2 target genes respectively even when over-expressed. Functionally, HIF1α interacts with STAT3 to activate HIF1 target gene promoters in a HIF1α HLH/PAS and N-TAD dependent manner while HIF2α interacts with USF2 to activate HIF2 target gene promoters in a HIF2α N-TAD dependent manner. Physically, HIF1α HLH and PAS domains are required for its interaction with STAT3 while both N- and C-TADs of HIF2α are involved in physical interaction with USF2. Importantly, addition of functional USF2 binding sites into a HIF1 target gene promoter increases the basal activity of the promoter as well as its response to HIF2+USF2 activation while replacing HIF binding site with HBS from a HIF2 target gene does not change the specificity of the reporter gene. Importantly, RNA Pol II on HIF1 or HIF2 target genes is primarily associated with HIF1α or HIF2α in a STAT3 or USF2 dependent manner. Thus, we demonstrate here for the first time that HIF target gene specificity is achieved by HIF transcription partners that are required for HIF target gene activation, exhibit specific binding to the promoters of HIF1 or HIF2 target genes and selectively interact with HIF1α or HIF2α protein.
Collapse
Affiliation(s)
- Matthew R. Pawlus
- Molecular Biology Graduate Program, School of Dental Medicine University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Liyi Wang
- Department of Craniofacial Biology, School of Dental Medicine University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Aya Murakami
- Molecular Biology Graduate Program, School of Dental Medicine University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Guanhai Dai
- Institute of Basic Research, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, Zhejiang Province, China
| | - Cheng-Jun Hu
- Molecular Biology Graduate Program, School of Dental Medicine University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
- Department of Craniofacial Biology, School of Dental Medicine University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
- * E-mail:
| |
Collapse
|
49
|
Vortmeyer AO, Falke EA, Gläsker S, Li J, Oldfield EH. Nervous system involvement in von Hippel-Lindau disease: pathology and mechanisms. Acta Neuropathol 2013; 125:333-50. [PMID: 23400300 DOI: 10.1007/s00401-013-1091-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2012] [Revised: 01/25/2013] [Accepted: 01/26/2013] [Indexed: 02/06/2023]
Abstract
Patients with von Hippel-Lindau disease carry a germline mutation of the Von Hippel-Lindau (VHL) tumor-suppressor gene. We discuss the molecular consequences of loss of VHL gene function and their impact on the nervous system. Dysfunction of the VHL protein causes accumulation and activation of hypoxia inducible factor (HIF) which can be demonstrated in earliest stages of tumorigenesis and is followed by expression of VEGF, erythropoietin, nitric oxide synthase and glucose transporter 1 in VHL-deficient tumor cells. HIF-independent functions of VHL, epigenetic inactivation of VHL, pVHL proteostasis, and links between loss of VHL function and developmental arrest are also described. A most intriguing feature in VHL disease is the occurrence of primary hemangioblastic tumors in the nervous system, the origin of which has not yet been entirely clarified, and current hypotheses are discussed. Endolymphatic sac tumors may extend into the brain, but originally arise from proliferation of endolymphatic duct/sac epithelium; the exact nature of the proliferating epithelial cell, however, also has remained unclear, as well as the question why tumors almost consistently develop in the intraosseous portion of the endolymphatic sac/duct only. The epitheloid clear cell morphology of both advanced hemangioblastoma and renal clear cell carcinoma can make the differential diagnosis challenging, recent developments in immunohistochemical differentiation are discussed. Finally, metastasis to brain may not only be caused by renal carcinoma, but may derive from VHL disease-associated pheochromocytoma/paraganglioma, or pancreatic neuroendocrine tumor.
Collapse
Affiliation(s)
- Alexander O Vortmeyer
- Department of Pathology, Yale University School of Medicine, 416A Lauder Hall 310 Cedar Street, New Haven, CT 06520, USA.
| | | | | | | | | |
Collapse
|
50
|
Steunou AL, Ducoux-Petit M, Lazar I, Monsarrat B, Erard M, Muller C, Clottes E, Burlet-Schiltz O, Nieto L. Identification of the hypoxia-inducible factor 2α nuclear interactome in melanoma cells reveals master proteins involved in melanoma development. Mol Cell Proteomics 2012; 12:736-48. [PMID: 23275444 DOI: 10.1074/mcp.m112.020727] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Hypoxia-inducible factors (HIFs) are heterodimeric transcription factors that play a key role in cellular adaptation to hypoxia. HIF proteins are composed of an α subunit regulated by oxygen pressure (essentially HIF1α or HIF2α) and a constitutively expressed β subunit. These proteins are often overexpressed in cancer cells, and HIF overexpression frequently correlates with poor prognosis, making HIF proteins promising therapeutic targets. HIF proteins are involved in melanoma initiation and progression; however, the specific function of HIF2 in melanoma has not yet been studied comprehensively. Identifying protein complexes is a valuable way to uncover protein function, and affinity purification coupled with mass spectrometry and label-free quantification is a reliable method for this approach. We therefore applied quantitative interaction proteomics to identify exhaustively the nuclear complexes containing HIF2α in a human melanoma cell line, 501mel. We report, for the first time, a high-throughput analysis of the interactome of an HIF subunit. Seventy proteins were identified that interact with HIF2α, including some well-known HIF partners and some new interactors. The new HIF2α partners microphthalmia-associated transcription factor, SOX10, and AP2α, which are master actors of melanoma development, were confirmed via co-immunoprecipitation experiments. Their ability to bind to HIF1α was also tested: microphthalmia-associated transcription factor and SOX10 were confirmed as HIF1α partners, but the transcription factor AP2α was not. AP2α expression correlates with low invasive capacities. Interestingly, we demonstrated that when HIF2α was overexpressed, only cells expressing large amounts of AP2α exhibited decreased invasive capacities in hypoxia relative to normoxia. The simultaneous presence of both transcription factors therefore reduces cells' invasive properties. Knowledge of the HIF2α interactome is thus a useful resource for investigating the general mechanisms of HIF function and regulation, and here we reveal unexpected, distinct roles for the HIF1 and HIF2 isoforms in melanoma progression.
Collapse
|