1
|
Zhang Z, Mo X, Zhao H, Lu X, Fan S, Huang X, Mai H, Liao H, Zhang Y, Liang C, Tian J. Crystal structure and function of a phosphate starvation responsive protein phosphatase, GmHAD1-2 regulating soybean root development and flavonoid metabolism. THE NEW PHYTOLOGIST 2024; 244:2396-2412. [PMID: 39370627 DOI: 10.1111/nph.20174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 09/19/2024] [Indexed: 10/08/2024]
Abstract
Phosphate (Pi) availability is well known to regulate plant root growth. However, it remains largely unknown how flavonoid synthesis participates in affecting plant root growth in response to Pi starvation. In the study, the crystal structure of a plant protein phosphatase, GmHAD1-2, was dissected using X-ray crystallography for the first time. It was revealed that GmHAD1-2 contained a modified Rossmannoid class of α/β folds with three layered α/β sandwich. Transcripts of GmHAD1-2 were increased by Pi starvation in soybean roots, especially in lateral root tips. GmHAD1-2 suppression or overexpression significantly influenced soybean lateral root length and number, as well as phosphorus (P) content. Furthermore, GmHAD1-2 was found to interact with a chalcone reductase, GmCHR1. Suppression of GmHAD1-2 significantly changed the flavonoid biosynthesis pathway in soybean roots. Taken together, the results highlight that GmHAD1-2 can regulate soybean root growth by influencing flavonoid metabolism.
Collapse
Affiliation(s)
- Zeyu Zhang
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Xiaohui Mo
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Hongbo Zhao
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Xing Lu
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Shilong Fan
- School of Life Sciences, Tsinghua University, Haidian District, Beijing, 100084, China
| | - Xiaojia Huang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Huafu Mai
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Hong Liao
- Root Biology Center, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350000, China
| | - Yinghe Zhang
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Cuiyue Liang
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Jiang Tian
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
2
|
Stukey GJ, Han GS, Carman GM. Architecture and function of yeast phosphatidate phosphatase Pah1 domains/regions. Biochim Biophys Acta Mol Cell Biol Lipids 2024; 1869:159547. [PMID: 39103045 PMCID: PMC11586075 DOI: 10.1016/j.bbalip.2024.159547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/31/2024] [Accepted: 08/02/2024] [Indexed: 08/07/2024]
Abstract
Phosphatidate (PA) phosphatase, which catalyzes the Mg2+-dependent dephosphorylation of PA to produce diacylglycerol, provides a direct precursor for the synthesis of the storage lipid triacylglycerol and the membrane phospholipids phosphatidylcholine and phosphatidylethanolamine. The enzyme controlling the key phospholipid PA also plays a crucial role in diverse aspects of lipid metabolism and cell physiology. PA phosphatase is a peripheral membrane enzyme that is composed of multiple domains/regions required for its catalytic function and subcellular localization. In this review, we discuss the domains/regions of PA phosphatase from the yeast Saccharomyces cerevisiae with reference to the homologous enzyme from mammalian cells.
Collapse
Affiliation(s)
- Geordan J Stukey
- Department of Food Science and the Rutgers Center for Lipid Research, Rutgers University, New Brunswick, NJ 08901, USA
| | - Gil-Soo Han
- Department of Food Science and the Rutgers Center for Lipid Research, Rutgers University, New Brunswick, NJ 08901, USA
| | - George M Carman
- Department of Food Science and the Rutgers Center for Lipid Research, Rutgers University, New Brunswick, NJ 08901, USA.
| |
Collapse
|
3
|
Pollegioni L, Campanini B, Good JM, Motta Z, Murtas G, Buoli Comani V, Pavlidou DC, Mercier N, Mittaz-Crettol L, Sacchi S, Marchesani F. L-serine deficiency: on the properties of the Asn133Ser variant of human phosphoserine phosphatase. Sci Rep 2024; 14:12463. [PMID: 38816452 PMCID: PMC11139964 DOI: 10.1038/s41598-024-63164-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 05/26/2024] [Indexed: 06/01/2024] Open
Abstract
The non-essential amino acid L-serine is involved in a number of metabolic pathways and in the brain its level is largely due to the biosynthesis from the glycolytic intermediate D-3-phosphoglycerate by the phosphorylated pathway (PP). This cytosolic pathway is made by three enzymes proposed to generate a reversible metabolon named the "serinosome". Phosphoserine phosphatase (PSP) catalyses the last and irreversible step, representing the driving force pushing L-serine synthesis. Genetic defects of the PP enzymes result in strong neurological phenotypes. Recently, we identified the homozygous missense variant [NM_004577.4: c.398A > G p.(Asn133Ser)] in the PSPH, the PSP encoding gene, in two siblings with a neurodevelopmental syndrome and a myelopathy. The recombinant Asn133Ser enzyme does not show significant alterations in protein conformation and dimeric oligomerization state, as well as in enzymatic activity and functionality of the reconstructed PP. However, the Asn133Ser variant is less stable than wild-type PSP, a feature also apparent at cellular level. Studies on patients' fibroblasts also highlight a strong decrease in the level of the enzymes of the PP, a partial nuclear and perinuclear localization of variant PSP and a stronger perinuclear aggregates formation. We propose that these alterations contribute to the formation of a dysfunctional serinosome and thus to the observed reduction of L-serine, glycine and D-serine levels (the latter playing a crucial role in modulating NMDA receptors). The characterization of patients harbouring the Asn133Ser PSP substitution allows to go deep into the molecular mechanisms related to L-serine deficit and to suggest treatments to cope with the observed amino acids alterations.
Collapse
Affiliation(s)
- Loredano Pollegioni
- Department of Biotechnology and Life Sciences, University of Insubria, via J.H. Dunant 3, 21100, Varese, Italy.
| | - Barbara Campanini
- Department of Food and Drug, University of Parma, 43124, Parma, Italy
| | - Jean-Marc Good
- Division of Genetic Medicine, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| | - Zoraide Motta
- Department of Biotechnology and Life Sciences, University of Insubria, via J.H. Dunant 3, 21100, Varese, Italy
| | - Giulia Murtas
- Department of Biotechnology and Life Sciences, University of Insubria, via J.H. Dunant 3, 21100, Varese, Italy
| | | | - Despina-Christina Pavlidou
- Division of Genetic Medicine, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| | - Noëlle Mercier
- Department of Epileptology, Institution of Lavigny, Lavigny, Switzerland
| | - Laureane Mittaz-Crettol
- Division of Genetic Medicine, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| | - Silvia Sacchi
- Department of Biotechnology and Life Sciences, University of Insubria, via J.H. Dunant 3, 21100, Varese, Italy
| | | |
Collapse
|
4
|
Bang J, Park J, Lee SH, Jang J, Hwang J, Kamarov O, Park HJ, Lee SJ, Seo MD, Won HS, Seok SH, Kim JH. Nontraditional Roles of Magnesium Ions in Modulating Sav2152: Insight from a Haloacid Dehalogenase-like Superfamily Phosphatase from Staphylococcus aureus. Int J Mol Sci 2024; 25:5021. [PMID: 38732240 PMCID: PMC11084212 DOI: 10.3390/ijms25095021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/30/2024] [Accepted: 05/02/2024] [Indexed: 05/13/2024] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) infection has rapidly spread through various routes. A genomic analysis of clinical MRSA samples revealed an unknown protein, Sav2152, predicted to be a haloacid dehalogenase (HAD)-like hydrolase, making it a potential candidate for a novel drug target. In this study, we determined the crystal structure of Sav2152, which consists of a C2-type cap domain and a core domain. The core domain contains four motifs involved in phosphatase activity that depend on the presence of Mg2+ ions. Specifically, residues D10, D12, and D233, which closely correspond to key residues in structurally homolog proteins, are responsible for binding to the metal ion and are known to play critical roles in phosphatase activity. Our findings indicate that the Mg2+ ion known to stabilize local regions surrounding it, however, paradoxically, destabilizes the local region. Through mutant screening, we identified D10 and D12 as crucial residues for metal binding and maintaining structural stability via various uncharacterized intra-protein interactions, respectively. Substituting D10 with Ala effectively prevents the interaction with Mg2+ ions. The mutation of D12 disrupts important structural associations mediated by D12, leading to a decrease in the stability of Sav2152 and an enhancement in binding affinity to Mg2+ ions. Additionally, our study revealed that D237 can replace D12 and retain phosphatase activity. In summary, our work uncovers the novel role of metal ions in HAD-like phosphatase activity.
Collapse
Affiliation(s)
- Jaeseok Bang
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Republic of Korea; (J.B.); (J.P.); (S.-H.L.); (J.J.); (J.H.); (O.K.); (H.-J.P.); (S.-J.L.)
| | - Jaehui Park
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Republic of Korea; (J.B.); (J.P.); (S.-H.L.); (J.J.); (J.H.); (O.K.); (H.-J.P.); (S.-J.L.)
| | - Sung-Hee Lee
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Republic of Korea; (J.B.); (J.P.); (S.-H.L.); (J.J.); (J.H.); (O.K.); (H.-J.P.); (S.-J.L.)
| | - Jinhwa Jang
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Republic of Korea; (J.B.); (J.P.); (S.-H.L.); (J.J.); (J.H.); (O.K.); (H.-J.P.); (S.-J.L.)
| | - Junwoo Hwang
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Republic of Korea; (J.B.); (J.P.); (S.-H.L.); (J.J.); (J.H.); (O.K.); (H.-J.P.); (S.-J.L.)
| | - Otabek Kamarov
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Republic of Korea; (J.B.); (J.P.); (S.-H.L.); (J.J.); (J.H.); (O.K.); (H.-J.P.); (S.-J.L.)
| | - Hae-Joon Park
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Republic of Korea; (J.B.); (J.P.); (S.-H.L.); (J.J.); (J.H.); (O.K.); (H.-J.P.); (S.-J.L.)
| | - Soo-Jae Lee
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Republic of Korea; (J.B.); (J.P.); (S.-H.L.); (J.J.); (J.H.); (O.K.); (H.-J.P.); (S.-J.L.)
| | - Min-Duk Seo
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea;
- College of Pharmacy, Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou University, Suwon 16499, Republic of Korea
| | - Hyung-Sik Won
- Department of Biotechnology, Research Institute (RIBHS), College of Biomedical and Health Science, Konkuk University, Chungju 27478, Republic of Korea;
- BK21 Project Team, Department of Applied Life Science, Graduate School, Konkuk University, Chungju 27478, Republic of Korea
| | - Seung-Hyeon Seok
- College of Pharmacy, Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju 632433, Republic of Korea
| | - Ji-Hun Kim
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Republic of Korea; (J.B.); (J.P.); (S.-H.L.); (J.J.); (J.H.); (O.K.); (H.-J.P.); (S.-J.L.)
| |
Collapse
|
5
|
Marchesani F, Comani VB, Bruno S, Mozzarelli A, Carcelli M, Pollegioni L, Caldinelli L, Peracchi A, Campanini B. Effect of l-serine and magnesium ions on the functional properties of human phosphoserine phosphatase and its pathogenetic variants. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167034. [PMID: 38278334 DOI: 10.1016/j.bbadis.2024.167034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/13/2024] [Accepted: 01/18/2024] [Indexed: 01/28/2024]
Abstract
L-Ser supply in the central nervous system of mammals mostly relies on its endogenous biosynthesis by the phosphorylated pathway (PP). Defects in any of the three enzymes operating in the pathway result in a group of neurometabolic diseases collectively known as serine deficiency disorders (SDDs). Phosphoserine phosphatase (PSP) catalyzes the last, irreversible step of the PP. Here we investigated in detail the role of physiological modulators of human PSP activity and the properties of three natural PSP variants (A35T, D32N and M52T) associated with SDDs. Our results, partially contradicting previous reports, indicate that: i. PSP is almost fully saturated with Mg2+ under physiological conditions and fluctuations in Mg2+ and Ca2+ concentrations are unlikely to play a modulatory role on PSP activity; ii. Inhibition by L-Ser, albeit at play on the isolated PSP, does not exert any effect on the flux through the PP unless the enzyme activity is severely impaired by inactivating substitutions; iii. The so-far poorly investigated A35T substitution was the most detrimental, with a 50-fold reduction in catalytic efficiency, and a reduction in thermal stability (as well as an increase in the IC50 for L-Ser). The M52T substitution had similar, but milder effects, while the D32N variant behaved like the wild-type enzyme. iv. Predictions of the structural effects of the A35T and M52T substitutions with ColabFold suggest that they might affect the structure of the flexible helix-loop region.
Collapse
Affiliation(s)
| | | | - Stefano Bruno
- Department of Food and Drug, University of Parma, 43124 Parma, Italy; Biopharmanet-TEC, University of Parma, 43124 Parma, Italy
| | | | - Mauro Carcelli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy
| | - Loredano Pollegioni
- The Protein Factory 2.0, Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy
| | - Laura Caldinelli
- The Protein Factory 2.0, Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy
| | - Alessio Peracchi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy.
| | - Barbara Campanini
- Department of Food and Drug, University of Parma, 43124 Parma, Italy; Biopharmanet-TEC, University of Parma, 43124 Parma, Italy.
| |
Collapse
|
6
|
Russell ND, Jorde LB, Chow CY. Characterizing genetic variation in the regulation of the ER stress response through computational and cis-eQTL analyses. G3 (BETHESDA, MD.) 2023; 13:jkad229. [PMID: 37792690 PMCID: PMC10700025 DOI: 10.1093/g3journal/jkad229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 08/17/2023] [Accepted: 09/27/2023] [Indexed: 10/06/2023]
Abstract
Misfolded proteins in the endoplasmic reticulum (ER) elicit the ER stress response, a large transcriptional response driven by 3 well-characterized transcription factors (TFs). This transcriptional response is variable across different genetic backgrounds. One mechanism in which genetic variation can lead to transcriptional variability in the ER stress response is through altered binding and activity of the 3 main TFs: XBP1, ATF6, and ATF4. This work attempts to better understand this mechanism by first creating a computational pipeline to identify potential binding sites throughout the human genome. We utilized GTEx data sets to identify cis-eQTLs that fall within predicted TF binding sites (TFBSs). We also utilized the ClinVar database to compare the number of pathogenic vs benign variants at different positions of the binding motifs. Finally, we performed a cis-eQTL analysis on human cell lines experiencing ER stress to identify cis-eQTLs that regulate the variable ER stress response. The majority of these cis-eQTLs are unique to a given condition: control or ER stress. Some of these stress-specific cis-eQTLs fall within putative binding sites of the 3 main ER stress response TFs, providing a potential mechanism by which these cis-eQTLs might be impacting gene expression under ER stress conditions through altered TF binding. This study represents the first cis-eQTL analysis on human samples experiencing ER stress and is a vital step toward identifying the genetic components responsible for the variable ER stress response.
Collapse
Affiliation(s)
- Nikki D Russell
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Lynn B Jorde
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Clement Y Chow
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| |
Collapse
|
7
|
Zan X, Zhou Z, Wan J, Chen H, Zhu J, Xu H, Zhang J, Li X, Gao X, Chen R, Huang Z, Xu Z, Li L. Overexpression of OsHAD3, a Member of HAD Superfamily, Decreases Drought Tolerance of Rice. RICE (NEW YORK, N.Y.) 2023; 16:31. [PMID: 37468664 DOI: 10.1186/s12284-023-00647-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 07/07/2023] [Indexed: 07/21/2023]
Abstract
Haloacid dehalogenase-like hydrolase (HAD) superfamily have been shown to get involved in plant growth and abiotic stress response. Although the various functions and regulatory mechanism of HAD superfamily have been well demonstrated, we know little about the function of this family in conferring abiotic stress tolerance to rice. Here, we report OsHAD3, a HAD superfamily member, could affect drought tolerance of rice. Under drought stress, overexpression of OsHAD3 increases the accumulation of reactive oxygen species and malondialdehyde than wild type. OsHAD3-overexpression lines decreased but antisense-expression lines increased the roots length under drought stress and the transcription levels of many well-known stress-related genes were also changed in plants with different genotypes. Furthermore, overexpression of OsHAD3 also decreases the oxidative tolerance. Our results suggest that overexpression of OsHAD3 could decrease the drought tolerance of rice and provide a new strategy for improving drought tolerance in rice.
Collapse
Affiliation(s)
- Xiaofei Zan
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China
| | - Zhanmei Zhou
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China
| | - Jiale Wan
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China
| | - Hao Chen
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China
| | - Jiali Zhu
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China
| | - Haoran Xu
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China
| | - Jia Zhang
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China
| | - Xiaohong Li
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China
| | - Xiaoling Gao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Chengdu, 611130, People's Republic of China
| | - Rongjun Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Chengdu, 611130, People's Republic of China
| | - Zhengjian Huang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Chengdu, 611130, People's Republic of China
| | - Zhengjun Xu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China.
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China.
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Chengdu, 611130, People's Republic of China.
| | - Lihua Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China.
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China.
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Chengdu, 611130, People's Republic of China.
| |
Collapse
|
8
|
Ahmad S, Zhang J, Wang H, Zhu H, Dong Q, Zong S, Wang T, Chen Y, Ge L. The Phosphoserine Phosphatase Alters the Free Amino Acid Compositions and Fecundity in Cyrtorhinus lividipennis Reuter. Int J Mol Sci 2022; 23:ijms232315283. [PMID: 36499611 PMCID: PMC9740327 DOI: 10.3390/ijms232315283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
The mirid bug Cyrtorhinus lividipennis (Reuter) is an important predator that consumes eggs and young nymphs of the brown planthopper Nilaparvata lugens as a primary food source and thus becomes an important member of the rice ecosystem. We identified and characterized the ClPSP gene in C. lividipennis encoding the phosphoserine phosphatase enzyme. The ClPSP has an open reading frame (ORF) of 957 bp encoding a protein with a length of 294bp and it possesses a haloacid dehalogenase-like (HAD) hydrolase, phosphoserine phosphatase, eukaryotic-like (HAD_PSP_eu) conserved domain. Furthermore, the in silico analysis of the ClPSP gene unveiled its distinct characteristics and it serves as a key player in the modulation of amino acids. The ClPSP showed expression in all developmental stages, with higher expression observed in the ovary and fat body. Silencing the ClPSP by RNA interference (RNAi) significantly decreased PSP enzyme activity and expression compared to dsGFP at two days after emergence (2DAE). The dsPSP treatment altered free hemolymph amino acid compositions, resulting in a significant reduction of serine (Ser) and Arginine (Arg) proportions and a significant increase of Threonine (Thr), Cystine (Cys), and Tyrosine (Tyr) in the C. lividipennis female at 2 DAE. Additionally, a hindered total protein concentration in the ovary and fat body, and reduced vitellogenin (Vg) expression, body weight, and number of laid eggs, were also observed. The same treatment also prolonged the preoviposition period and hindered ovarian development. Our data, for the first time, demonstrated the influential role of the PSP gene in modulating the fecundity of C. lividipennis and provide a platform for future insect pest control programs using the PSP gene in modulating fecundity.
Collapse
|
9
|
Riegert AS, Narindoshvili T, Platzer NE, Raushel FM. Functional Characterization of a HAD Phosphatase Involved in Capsular Polysaccharide Biosynthesis in Campylobacter jejuni. Biochemistry 2022; 61:2431-2440. [PMID: 36214481 PMCID: PMC9633586 DOI: 10.1021/acs.biochem.2c00484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Campylobacter jejuni is a Gram-negative, pathogenic bacterium found in the intestinal tracts of chickens and many other farm animals. C. jejuni infection results in campylobacteriosis, which can cause nausea, diarrhea, fever, cramps, and death. The surface of the bacterium is coated with a thick layer of sugar known as the capsular polysaccharide. This highly modified polysaccharide contains an unusual d-glucuronamide moiety in serotypes HS:2 and HS:19. Previously, we have demonstrated that a phosphorylated glucuronamide intermediate is synthesized in C. jejuni NCTC 11168 (serotype HS:2) by cumulative reactions of three enzymes: Cj1441, Cj1436/Cj1437, and Cj1438. Cj1441 functions as a UDP-d-glucose dehydrogenase to make UDP-d-glucuronate; then Cj1436 or Cj1437 catalyzes the formation of ethanolamine phosphate or S-serinol phosphate, respectively, and finally Cj1438 catalyzes amide bond formation using d-glucuronate and either ethanolamine phosphate or S-serinol phosphate. Here, we investigated the final d-glucuronamide-modifying enzyme, Cj1435. Cj1435 was shown to catalyze the hydrolysis of the phosphate esters from either the d-glucuronamide of ethanolamine phosphate or S-serinol phosphate. Kinetic constants for a range of substrates were determined, and the stereoselectivity of the enzyme for the hydrolysis of glucuronamide of S-serinol phosphate was established using 31P nuclear magnetic resonance spectroscopy. A bioinformatic analysis of Cj1435 reveals it to be a member of the HAD phosphatase superfamily with a unique DXXE catalytic motif.
Collapse
Affiliation(s)
- Alexander S. Riegert
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX 77843, United States
| | - Tamari Narindoshvili
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, United States
| | - Nicole E. Platzer
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, United States
| | - Frank M. Raushel
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX 77843, United States
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, United States
| |
Collapse
|
10
|
Hsieh WY, Wang HM, Chung YH, Lee KT, Liao HS, Hsieh MH. THIAMIN REQUIRING2 is involved in thiamin diphosphate biosynthesis and homeostasis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:1383-1396. [PMID: 35791282 DOI: 10.1111/tpj.15895] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/28/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
The THIAMIN REQUIRING2 (TH2) protein comprising a mitochondrial targeting peptide followed by a transcription enhancement A and a haloacid dehalogenase domain is a thiamin monophosphate (TMP) phosphatase in the vitamin B1 biosynthetic pathway. The Arabidopsis th2-3 T-DNA insertion mutant was chlorotic and deficient in thiamin diphosphate (TDP). Complementation assays confirmed that haloacid dehalogenase domain alone was sufficient to rescue the th2-3 mutant. In pTH2:TH2-GFP/th2-3 complemented plants, the TH2-GFP was localized to the cytosol, mitochondrion, and nucleus, indicating that the vitamin B1 biosynthetic pathway extended across multi-subcellular compartments. Engineered TH2-GFP localized to the cytosol, mitochondrion, nucleus, and chloroplast, could complement the th2 mutant. Together, these results highlight the importance of intracellular TMP and thiamin trafficking in vitamin B1 biosynthesis. In an attempt to enhance the production of thiamin, we created various constructs to overexpress TH2-GFP in the cytosol, mitochondrion, chloroplast, and nucleus. Unexpectedly, overexpressing TH2-GFP resulted in an increase rather than a decrease in TMP. While studies on th2 mutants support TH2 as a TMP phosphatase, analyses of TH2-GFP overexpression lines implicating TH2 may also function as a TDP phosphatase in planta. We propose a working model that the TMP/TDP phosphatase activity of TH2 connects TMP, thiamin, and TDP into a metabolic cycle. The TMP phosphatase activity of TH2 is required for TDP biosynthesis, and the TDP phosphatase activity of TH2 may modulate TDP homeostasis in Arabidopsis.
Collapse
Affiliation(s)
- Wei-Yu Hsieh
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Hsin-Mei Wang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Yi-Hsin Chung
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Kim-Teng Lee
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
- Molecular and Biological Agricultural Sciences, Taiwan International Graduate Program, Academia Sinica, Taipei, 11529, Taiwan
| | - Hong-Sheng Liao
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Ming-Hsiun Hsieh
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
- Molecular and Biological Agricultural Sciences, Taiwan International Graduate Program, Academia Sinica, Taipei, 11529, Taiwan
- Department of Life Sciences, National Central University, Taoyuan, 32001, Taiwan
- Biotechnology Center, National Chung-Hsing University, Taichung, 40227, Taiwan
| |
Collapse
|
11
|
Geeraerts SL, Heylen E, De Keersmaecker K, Kampen KR. The ins and outs of serine and glycine metabolism in cancer. Nat Metab 2021; 3:131-141. [PMID: 33510397 DOI: 10.1038/s42255-020-00329-9] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 12/04/2020] [Indexed: 01/30/2023]
Abstract
Cancer cells reprogramme their metabolism to support unrestrained proliferation and survival in nutrient-poor conditions. Whereas non-transformed cells often have lower demands for serine and glycine, several cancer subtypes hyperactivate intracellular serine and glycine synthesis and become addicted to de novo production. Copy-number amplifications of serine- and glycine-synthesis genes and genetic alterations in common oncogenes and tumour-suppressor genes enhance serine and glycine synthesis, resulting in high production and secretion of these oncogenesis-supportive metabolites. In this Review, we discuss the contribution of serine and glycine synthesis to cancer progression. By relying on de novo synthesis pathways, cancer cells are able to enhance macromolecule synthesis, neutralize high levels of oxidative stress and regulate methylation and tRNA formylation. Furthermore, we discuss the immunosuppressive potential of serine and glycine, and the essentiality of both amino acids to promoting survival of non-transformed neighbouring cells. Finally, we point to the emerging data proposing moonlighting functions of serine- and glycine-synthesis enzymes and examine promising small molecules targeting serine and glycine synthesis.
Collapse
Affiliation(s)
- Shauni L Geeraerts
- Laboratory for Disease Mechanisms in Cancer, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Elien Heylen
- Laboratory for Disease Mechanisms in Cancer, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Kim De Keersmaecker
- Laboratory for Disease Mechanisms in Cancer, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium.
| | - Kim R Kampen
- Laboratory for Disease Mechanisms in Cancer, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium.
- Maastricht University Medical Centre, Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Developmental Biology, Maastricht, The Netherlands.
| |
Collapse
|
12
|
Genome-wide analysis of haloacid dehalogenase genes reveals their function in phosphate starvation responses in rice. PLoS One 2021; 16:e0245600. [PMID: 33481906 PMCID: PMC7822558 DOI: 10.1371/journal.pone.0245600] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 01/05/2021] [Indexed: 01/22/2023] Open
Abstract
The HAD superfamily is named after the halogenated acid dehalogenase found in bacteria, which hydrolyses a diverse range of organic phosphate substrates. Although certain studies have shown the involvement of HAD genes in Pi starvation responses, systematic classification and bioinformatics analysis of the HAD superfamily in plants is lacking. In this study, 41 and 40 HAD genes were identified by genomic searching in rice and Arabidopsis, respectively. According to sequence similarity, these proteins are divided into three major groups and seven subgroups. Conserved motif analysis indicates that the majority of the identified HAD proteins contain phosphatase domains. A further structural analysis showed that HAD proteins have four conserved motifs and specified cap domains. Fewer HAD genes show collinearity relationships in both rice and Arabidopsis, which is consistent with the large variations in the HAD genes. Among the 41 HAD genes of rice, the promoters of 28 genes contain Pi-responsive cis-elements. Mining of transcriptome data and qRT-PCR results showed that at least the expression of 17 HAD genes was induced by Pi starvation in shoots or roots. These HAD proteins are predicted to be involved in intracellular or extracellular Po recycling under Pi stress conditions in plants.
Collapse
|
13
|
Murtas G, Marcone GL, Sacchi S, Pollegioni L. L-serine synthesis via the phosphorylated pathway in humans. Cell Mol Life Sci 2020; 77:5131-5148. [PMID: 32594192 PMCID: PMC11105101 DOI: 10.1007/s00018-020-03574-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 06/03/2020] [Accepted: 06/12/2020] [Indexed: 12/12/2022]
Abstract
L-serine is a nonessential amino acid in eukaryotic cells, used for protein synthesis and in producing phosphoglycerides, glycerides, sphingolipids, phosphatidylserine, and methylenetetrahydrofolate. Moreover, L-serine is the precursor of two relevant coagonists of NMDA receptors: glycine (through the enzyme serine hydroxymethyltransferase), which preferentially acts on extrasynaptic receptors and D-serine (through the enzyme serine racemase), dominant at synaptic receptors. The cytosolic "phosphorylated pathway" regulates de novo biosynthesis of L-serine, employing 3-phosphoglycerate generated by glycolysis and the enzymes 3-phosphoglycerate dehydrogenase, phosphoserine aminotransferase, and phosphoserine phosphatase (the latter representing the irreversible step). In the human brain, L-serine is primarily found in glial cells and is supplied to neurons for D-serine synthesis. Serine-deficient patients show severe neurological symptoms, including congenital microcephaly, psychomotor retardation, and intractable seizures, thus highlighting the relevance of de novo production of this amino acid in brain development and morphogenesis. Indeed, the phosphorylated pathway is strictly linked to cancer. Moreover, L-serine has been suggested as a ready-to-use treatment, as also recently proposed for Alzheimer's disease. Here, we present our current state of knowledge concerning the three mammalian enzymes of the phosphorylated pathway and known mutations related to pathological conditions: although the structure of these enzymes has been solved, how enzyme activity is regulated remains largely unknown. We believe that an in-depth investigation of these enzymes is crucial to identify the molecular mechanisms involved in modulating concentrations of the serine enantiomers and for studying the interplay between glial and neuronal cells and also to determine the most suitable therapeutic approach for various diseases.
Collapse
Affiliation(s)
- Giulia Murtas
- Department of Biotechnology and Life Sciences, University of Insubria, Via J. H. Dunant 3, 21100, Varese, Italy
| | - Giorgia Letizia Marcone
- Department of Biotechnology and Life Sciences, University of Insubria, Via J. H. Dunant 3, 21100, Varese, Italy
| | - Silvia Sacchi
- Department of Biotechnology and Life Sciences, University of Insubria, Via J. H. Dunant 3, 21100, Varese, Italy
| | - Loredano Pollegioni
- Department of Biotechnology and Life Sciences, University of Insubria, Via J. H. Dunant 3, 21100, Varese, Italy.
| |
Collapse
|
14
|
Tang X, Liu H, Shi Z, Chen Q, Kang X, Wang Y, Zhao P. Enhanced silk yield in transgenic silkworm (Bombyx mori) via ectopic expression of BmGT1-L in the posterior silk gland. INSECT MOLECULAR BIOLOGY 2020; 29:452-465. [PMID: 32654295 DOI: 10.1111/imb.12655] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 03/11/2020] [Accepted: 06/30/2020] [Indexed: 06/11/2023]
Abstract
The silkworm is an economically important insect producing plentiful silk fibre in the silk gland. In this study, we reported a cross-talk between the fat body, silk gland and midgut through a glycine-serine biosynthetic pathway in the silkworm. Amino acid sequence and functional domains of glycine transporter gene BmGT1-L were mapped. Our results indicated that BmGT1-L was specifically expressed in the midgut microvilli and persistently expressed during the feeding stages. RNA interference of BmGT1-L activated glycine biosynthesis, and BmGT1-L overexpression facilitated serine biosynthesis in the BmN4-SID1 cell. In addition, silkworms after FibH gene knock-out or silk gland extirpation showed markedly decreased BmGT1-L transcripts in the midgut and disturbed glycine-serine biosynthesis as silk yield decreased. Finally, BmGT1-L ectopic expression in the posterior silk gland promoted glycine biosynthesis, and enhanced silk yield via increasing fibroin synthesis. These results suggested that cross-talk between tissues can be used for enhancing silk yield in the silkworm.
Collapse
Affiliation(s)
- X Tang
- Biological Science Research Center, Southwest University, Chongqing, China
| | - H Liu
- Biological Science Research Center, Southwest University, Chongqing, China
| | - Z Shi
- Biological Science Research Center, Southwest University, Chongqing, China
| | - Q Chen
- Department of Biochemistry and Molecular Biology, Chongqing Medical University, Chongqing, China
| | - X Kang
- College of Biotechnology, Southwest University, Chongqing, China
| | - Y Wang
- College of Biotechnology, Southwest University, Chongqing, China
| | - P Zhao
- Biological Science Research Center, Southwest University, Chongqing, China
| |
Collapse
|
15
|
Leherte L, Haufroid M, Mirgaux M, Wouters J. Investigation of bound and unbound phosphoserine phosphatase conformations through elastic network models and molecular dynamics simulations. J Biomol Struct Dyn 2020; 39:3958-3974. [PMID: 32448044 DOI: 10.1080/07391102.2020.1772883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The human phosphoserine phosphatase (hPSP) catalyses the last step in the biosynthesis of L-serine. It involves conformational changes of the enzyme lid once the substrate, phosphoserine (PSer), is bound in the active site. Here, Elastic Network Model (ENM) is applied to the crystal structure of hPSP to probe the transition between open and closed conformations of hPSP. Molecular Dynamics (MD) simulations are carried out on several PSer-hPSP systems to characterise the intermolecular interactions and their effect on the dynamics of the enzyme lid. Systems involving either Ca++ or Mg++ are considered. The first ENM normal mode shows that an open-closed transition can be explained from a simple description of the enzyme in terms of harmonic potentials. Principal Component Analyses applied to the MD trajectories also highlight a trend for a closing/opening motion. Different PSer orientations inside the enzyme cavity are identified, i.e. either the carboxylate, the phosphate group of PSer, or both, are oriented towards the cation. The interaction patterns are analysed in terms of hydrogen bonds, electrostatics, and bond critical points of the electron density distributions. The latter approach yields a global description of the bonding intermolecular interactions. The PSer orientation determines the content of the cation coordination shell and the mobility of the substrate, while Lys158 and Thr182, involved in the reaction mechanism, are always in interaction with the substrate. Closed enzyme conformations involve Met52-Gln204, Arg49-Glu29, and Arg50-Glu29 interactions. Met52, as well as Arg49 and Arg50, also stabilize PSer inside the cavity. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Laurence Leherte
- Laboratoire de Chimie Biologique Structurale, Unité de Chimie Physique Théorique et Structurale, Department of Chemistry, NAmur Research Institute for LIfe Sciences (NARILIS), NAmur MEdicine & Drug Innovation Center (NAMEDIC), Namur Institute of Structured Matter (NISM), University of Namur, Namur, Belgium
| | - Marie Haufroid
- Laboratoire de Chimie Biologique Structurale, Unité de Chimie Physique Théorique et Structurale, Department of Chemistry, NAmur Research Institute for LIfe Sciences (NARILIS), NAmur MEdicine & Drug Innovation Center (NAMEDIC), Namur Institute of Structured Matter (NISM), University of Namur, Namur, Belgium
| | - Manon Mirgaux
- Laboratoire de Chimie Biologique Structurale, Unité de Chimie Physique Théorique et Structurale, Department of Chemistry, NAmur Research Institute for LIfe Sciences (NARILIS), NAmur MEdicine & Drug Innovation Center (NAMEDIC), Namur Institute of Structured Matter (NISM), University of Namur, Namur, Belgium
| | - Johan Wouters
- Laboratoire de Chimie Biologique Structurale, Unité de Chimie Physique Théorique et Structurale, Department of Chemistry, NAmur Research Institute for LIfe Sciences (NARILIS), NAmur MEdicine & Drug Innovation Center (NAMEDIC), Namur Institute of Structured Matter (NISM), University of Namur, Namur, Belgium
| |
Collapse
|
16
|
Haque MR, Hirowatari A, Saruta F, Furuya S, Yamamoto K. Molecular survey of the phosphoserine phosphatase involved in L-serine synthesis by silkworms (Bombyx mori). INSECT MOLECULAR BIOLOGY 2020; 29:48-55. [PMID: 31294881 DOI: 10.1111/imb.12609] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/16/2019] [Accepted: 07/04/2019] [Indexed: 06/09/2023]
Abstract
Phosphoserine phosphatase (PSP) catalyses the synthesis of l-serine via the phosphorylated pathway by facilitating the dephosphorylation of phosphoserine. A cDNA encoding PSP from the silkworm Bombyx mori (bmPSP) was isolated using reverse transcription-PCR and then sequenced. The resulting clone encoded 236 amino acids with a molecular weight of 26 150, exhibiting 14-60% sequence identity with other PSPs. The recombinant PSP was overexpressed in Escherichia coli and purified. Kinetic studies showed that bmPSP possessed activity toward l-phosphoserine, and Asp20, Asp22 and Asp204 in bmPSP were found to be critical for modulating bmPSP activity. Real-time PCR analysis provided evidence that the amount of bmpsp transcript was reduced in middle silk glands of a sericin-deficient silkworm strain. These findings revealed that bmPSP may play important roles in synthesizing one-carbon donors of l-serine, which is abundant in silk, as well as other cell metabolites in B. mori.
Collapse
Affiliation(s)
- M R Haque
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University Graduate School, Fukuoka, Japan
| | - A Hirowatari
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University Graduate School, Fukuoka, Japan
| | - F Saruta
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University Graduate School, Fukuoka, Japan
| | - S Furuya
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University Graduate School, Fukuoka, Japan
| | - K Yamamoto
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University Graduate School, Fukuoka, Japan
| |
Collapse
|
17
|
Park SM, Seo EH, Bae DH, Kim SS, Kim J, Lin W, Kim KH, Park JB, Kim YS, Yin J, Kim SY. Phosphoserine Phosphatase Promotes Lung Cancer Progression through the Dephosphorylation of IRS-1 and a Noncanonical L-Serine-Independent Pathway. Mol Cells 2019; 42:604-616. [PMID: 31446747 PMCID: PMC6715339 DOI: 10.14348/molcells.2019.0160] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 07/29/2019] [Indexed: 12/31/2022] Open
Abstract
Phosphoserine phosphatase (PSPH) is one of the key enzymes of the L-serine synthesis pathway. PSPH is reported to affect the progression and survival of several cancers in an L-serine synthesis-independent manner, but the mechanism remains elusive. We demonstrate that PSPH promotes lung cancer progression through a noncanonical L-serine-independent pathway. PSPH was significantly associated with the prognosis of lung cancer patients and regulated the invasion and colony formation of lung cancer cells. Interestingly, L-serine had no effect on the altered invasion and colony formation by PSPH. Upon measuring the phosphatase activity of PSPH on a serine-phosphorylated peptide, we found that PSPH dephosphorylated phospho-serine in peptide sequences. To identify the target proteins of PSPH, we analyzed the protein phosphorylation profile and the PSPH-interacting protein profile using proteomic analyses and found one putative target protein, IRS-1. Immunoprecipitation and immunoblot assays validated a specific interaction between PSPH and IRS1 and the dephosphorylation of phospho-IRS-1 by PSPH in lung cancer cells. We suggest that the specific interaction and dephosphorylation activity of PSPH have novel therapeutic potential for lung cancer treatment, while the metabolic activity of PSPH, as a therapeutic target, is controversial.
Collapse
Affiliation(s)
- Seong-Min Park
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon 34141,
Korea
- Research Institute, National Cancer Center, Goyang 10408,
Korea
| | - Eun-Hye Seo
- Genome Editing Research Center, KRIBB, Daejeon 34141,
Korea
- Department of Bioscience, University of Science and Technology, Daejeon 34113,
Korea
| | - Dong-Hyuck Bae
- Genome Editing Research Center, KRIBB, Daejeon 34141,
Korea
- Department of Bioscience, University of Science and Technology, Daejeon 34113,
Korea
| | - Sung Soo Kim
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang 10408,
Korea
- Research Institute, National Cancer Center, Goyang 10408,
Korea
| | - Jina Kim
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon 34141,
Korea
- Genome Editing Research Center, KRIBB, Daejeon 34141,
Korea
| | - Weiwei Lin
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang 10408,
Korea
- Research Institute, National Cancer Center, Goyang 10408,
Korea
| | - Kyung-Hee Kim
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang 10408,
Korea
- Research Institute, National Cancer Center, Goyang 10408,
Korea
| | - Jong Bae Park
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang 10408,
Korea
- Research Institute, National Cancer Center, Goyang 10408,
Korea
| | - Yong Sung Kim
- Genome Editing Research Center, KRIBB, Daejeon 34141,
Korea
- Department of Bioscience, University of Science and Technology, Daejeon 34113,
Korea
| | - Jinlong Yin
- Henan and Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng 475004,
China
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang 10408,
Korea
- Research Institute, National Cancer Center, Goyang 10408,
Korea
| | - Seon-Young Kim
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon 34141,
Korea
- Department of Bioscience, University of Science and Technology, Daejeon 34113,
Korea
| |
Collapse
|
18
|
Haufroid M, Mirgaux M, Leherte L, Wouters J. Crystal structures and snapshots along the reaction pathway of human phosphoserine phosphatase. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2019; 75:592-604. [DOI: 10.1107/s2059798319006867] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 05/13/2019] [Indexed: 11/10/2022]
Abstract
The equilibrium between phosphorylation and dephosphorylation is one of the most important processes that takes place in living cells. Human phosphoserine phosphatase (hPSP) is a key enzyme in the production of serine by the dephosphorylation of phospho-L-serine. It is directly involved in the biosynthesis of other important metabolites such as glycine and D-serine (a neuromodulator). hPSP is involved in the survival mechanism of cancer cells and has recently been found to be an essential biomarker. Here, three new high-resolution crystal structures of hPSP (1.5–2.0 Å) in complexes with phosphoserine and with serine, which are the substrate and the product of the reaction, respectively, and in complex with a noncleavable substrate analogue (homocysteic acid) are presented. New types of interactions take place between the enzyme and its ligands. Moreover, the loop involved in the open/closed state of the enzyme is fully refined in a totally unfolded conformation. This loop is further studied through molecular-dynamics simulations. Finally, all of these analyses allow a more complete reaction mechanism for this enzyme to be proposed which is consistent with previous publications on the subject.
Collapse
|
19
|
Effects of triethylamine on the expression patterns of two G3PDHs and lipid accumulation in Dunaliella tertiolecta. Enzyme Microb Technol 2019; 127:17-21. [PMID: 31088612 DOI: 10.1016/j.enzmictec.2019.04.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 03/20/2019] [Accepted: 04/04/2019] [Indexed: 12/17/2022]
Abstract
Glycerol-3-phosphate (G3P) is the important precursors for triacylglycerol synthesis, while glycerol-3-phosphate dehydrogenase (GPDH) determines the formation of G3P. In this study, two GDPH genes, Dtgdp1 and Dtgdp2 were isolated and identified from Dunaliella tertiolecta. The full-length Dtgdp1 and Dtgdp2 CDS were 2016 bp and 2094 bp, which encoded two putative protein sequences of 671 and 697 amino acids with predicted molecular weights of 73.64 kDa and 76.73 kDa, respectively. DtGDP1 and DtGDP2 both had a close relationship with those of algal and higher plants. DtGDP1 shared two conserved superfamily (A1 and A2) and four signature motifs (I-IV), and the DtGDP2 showed six signature domains (from motif I to VI) and DAO_C conserved family. Our previous work showed that the triethylamine intervention could greatly increase the triacylglycerol content (up to 80%) of D. tertiolecta. This study aims to investigate the effect of triethylamine on GPDH expression. Results showed that, when treated by triethylamine at 100 ppm and 150 ppm, the expression levels of Dtgdp1 and Dtgpd2 were increased to 5.121- and 56.964-fold compared with the control, respectively. Triethylamine seemed to enhance lipid metabolic flow by inducing the expressions of Dtgdp1 and Dtgdp2 to increase the lipid content, which provides a new insight into the desired pathway of lipid synthesis in algae through genetic engineering.
Collapse
|
20
|
Hennessy M, Granade ME, Hassaninasab A, Wang D, Kwiatek JM, Han GS, Harris TE, Carman GM. Casein kinase II-mediated phosphorylation of lipin 1β phosphatidate phosphatase at Ser-285 and Ser-287 regulates its interaction with 14-3-3β protein. J Biol Chem 2019; 294:2365-2374. [PMID: 30617183 DOI: 10.1074/jbc.ra118.007246] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/04/2019] [Indexed: 12/20/2022] Open
Abstract
The mammalian lipin 1 phosphatidate phosphatase is a key regulatory enzyme in lipid metabolism. By catalyzing phosphatidate dephosphorylation, which produces diacylglycerol, the enzyme plays a major role in the synthesis of triacylglycerol and membrane phospholipids. The importance of lipin 1 to lipid metabolism is exemplified by cellular defects and lipid-based diseases associated with its loss or overexpression. Phosphorylation of lipin 1 governs whether it is associated with the cytoplasm apart from its substrate or with the endoplasmic reticulum membrane where its enzyme reaction occurs. Lipin 1β is phosphorylated on multiple sites, but less than 10% of them are ascribed to a specific protein kinase. Here, we demonstrate that lipin 1β is a bona fide substrate for casein kinase II (CKII), a protein kinase that is essential to viability and cell cycle progression. Phosphoamino acid analysis and phosphopeptide mapping revealed that lipin 1β is phosphorylated by CKII on multiple serine and threonine residues, with the former being major sites. Mutational analysis of lipin 1β and its peptides indicated that Ser-285 and Ser-287 are both phosphorylated by CKII. Substitutions of Ser-285 and Ser-287 with nonphosphorylatable alanine attenuated the interaction of lipin 1β with 14-3-3β protein, a regulatory hub that facilitates the cytoplasmic localization of phosphorylated lipin 1. These findings advance our understanding of how phosphorylation of lipin 1β phosphatidate phosphatase regulates its interaction with 14-3-3β protein and intracellular localization and uncover a mechanism by which CKII regulates cellular physiology.
Collapse
Affiliation(s)
- Meagan Hennessy
- From the Department of Food Science and the Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, New Jersey 08901 and
| | - Mitchell E Granade
- the Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908
| | - Azam Hassaninasab
- From the Department of Food Science and the Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, New Jersey 08901 and
| | - Dana Wang
- the Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908
| | - Joanna M Kwiatek
- From the Department of Food Science and the Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, New Jersey 08901 and
| | - Gil-Soo Han
- From the Department of Food Science and the Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, New Jersey 08901 and
| | - Thurl E Harris
- the Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908
| | - George M Carman
- From the Department of Food Science and the Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, New Jersey 08901 and
| |
Collapse
|
21
|
Krachtus D, Smith JC, Imhof P. Quantum Mechanical/Molecular Mechanical Analysis of the Catalytic Mechanism of Phosphoserine Phosphatase. Molecules 2018; 23:E3342. [PMID: 30563005 PMCID: PMC6321591 DOI: 10.3390/molecules23123342] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 12/11/2018] [Accepted: 12/13/2018] [Indexed: 11/25/2022] Open
Abstract
Phosphoserine phosphatase (PSP), a member of the haloacid dehalogenase (HAD) superfamily that comprises the vast majority of phosphotransferases, is likely a steady-state regulator of the level of d-serine in the brain. The proposed catalytic cycle of PSP consists of a two-step mechanism: formation of a phospho-enzyme intermediate by phosphate transfer to Asp11 and its subsequent hydrolysis. Our combined quantum mechanical/molecular mechanical (QM/MM) calculations of the reaction pathways favour a dissociative mechanism of nucleophilic substitution via a trigonal-planar metaphosphate-like configuration for both steps, associated with proton transfer to the leaving group or from the nucleophile. This proton transfer is facilitated by active site residue Asp13 that acts as both a general base and a general acid. Free energy calculation on the reaction pathways further support the structural role of the enzymatic environment and the active site architecture. The choice of a proper reaction coordinate along which to bias the free energy calculations can be guided by a projection of the canonical reaction coordinate obtained from a chain-of-state optimisation onto important internal coordinates.
Collapse
Affiliation(s)
- Dieter Krachtus
- Computational Molecular Biophysics Group, Interdisciplinary Center for Scientific Computing (IWR), Im Neuenheimer Feld 368, 69120 Heidelberg, Germany.
| | - Jeremy C Smith
- Computational Molecular Biophysics Group, Interdisciplinary Center for Scientific Computing (IWR), Im Neuenheimer Feld 368, 69120 Heidelberg, Germany.
- University of Tennessee/Oak Ridge National Laboratory, Center for Molecular Biophysics, One Bethel Valley Road, P.O. Box 2008, Oak Ridge, TN 37831-6255, USA.
| | - Petra Imhof
- Freie Universität Berlin, Institute for Theoretical Physics, Arnimallee 14, 14195 Berlin, Germany.
| |
Collapse
|
22
|
The 38K-Mediated Specific Dephosphorylation of the Viral Core Protein P6.9 Plays an Important Role in the Nucleocapsid Assembly of Autographa californica Multiple Nucleopolyhedrovirus. J Virol 2018; 92:JVI.01989-17. [PMID: 29444944 PMCID: PMC5899202 DOI: 10.1128/jvi.01989-17] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 02/07/2018] [Indexed: 02/02/2023] Open
Abstract
Encapsidation of the viral genomes, leading to the assembly of the nucleocapsids to form infectious progeny virions, is a key step in many virus life cycles. Baculovirus nucleocapsid assembly is a complex process that involves many proteins. Our previous studies showed that the deletion of the core gene 38K (ac98) interrupted the nucleocapsid assembly by producing capsid sheaths devoid of viral genomes by an unknown mechanism. All homologs of 38K contain conserved motifs of the haloacid dehalogenase superfamily, which are involved in phosphoryl transfer. The requirements of these motifs for nucleocapsid assembly, confirmed in the present study, suggest that 38K may be a functioning haloacid dehalogenase. P6.9 is also encoded by a core gene (ac100) and is required for viral genome encapsidation. It has been reported that multiple phosphorylated species of P6.9 are present in virus-infected cells, while only an unphosphorylated species is detected in the budded virus. Therefore, whether 38K mediates the dephosphorylation of P6.9 was investigated. An additional phosphorylated species of P6.9 in 38K-deleted or -mutated virus-transfected cells was detected, and the dephosphorylated sites mediated by 38K were determined by mass spectrometry. To assess the effects of dephosphorylation of P6.9 mediated by 38K on virus replication, these sites were mutated to glutamic acids (phosphorylation-mimic mutant) or to alanines (phosphorylation-deficient mutant). Studies showed that the nucleocapsid assembly was interrupted in phosphorylation-mimic mutant virus-transfected cells. Taken together, our findings demonstrate that 38K mediates the dephosphorylation of specific sites at the C terminus of P6.9, which is essential for viral genome encapsidation.IMPORTANCE Genome packaging is a fundamental process in the virus life cycle, and viruses have different strategies to perform this step. For several double-stranded DNA (dsDNA) viruses, the procapsid is formed before genome encapsidation, which may require basic proteins that help to neutralize the nucleic acid charge repulsion to facilitate the compaction of the genome within the confined capsid space. Baculovirus encodes a small basic protein, P6.9, which is required for a variety of processes in the virus infection cycle. The phosphorylation of P6.9 is thought to result in nucleocapsid uncoating, while the dephosphorylation of P6.9 is involved in viral DNA encapsidation during nucleocapsid assembly. Here, we demonstrate that a haloacid dehalogenase homolog encoded by baculovirus core gene 38K is involved in nucleocapsid assembly by mediating the dephosphorylation of 5 specific sites at the C terminus of P6.9. This finding contributes to the understanding of the mechanisms of virus nucleocapsid assembly.
Collapse
|
23
|
Almeida-Dalmet S, Litchfield CD, Gillevet P, Baxter BK. Differential Gene Expression in Response to Salinity and Temperature in a Haloarcula Strain from Great Salt Lake, Utah. Genes (Basel) 2018; 9:genes9010052. [PMID: 29361787 PMCID: PMC5793203 DOI: 10.3390/genes9010052] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 01/11/2018] [Accepted: 01/16/2018] [Indexed: 01/01/2023] Open
Abstract
Haloarchaea that inhabit Great Salt Lake (GSL), a thalassohaline terminal lake, must respond to the fluctuating climate conditions of the elevated desert of Utah. We investigated how shifting environmental factors, specifically salinity and temperature, affected gene expression in the GSL haloarchaea, NA6-27, which we isolated from the hypersaline north arm of the lake. Combined data from cultivation, microscopy, lipid analysis, antibiotic sensitivity, and 16S rRNA gene alignment, suggest that NA6-27 is a member of the Haloarcula genus. Our prior study demonstrated that archaea in the Haloarcula genus were stable in the GSL microbial community over seasons and years. In this study, RNA arbitrarily primed PCR (RAP-PCR) was used to determine the transcriptional responses of NA6-27 grown under suboptimal salinity and temperature conditions. We observed alteration of the expression of genes related to general stress responses, such as transcription, translation, replication, signal transduction, and energy metabolism. Of the ten genes that were expressed differentially under stress, eight of these genes responded in both conditions, highlighting this general response. We also noted gene regulation specific to salinity and temperature conditions, such as osmoregulation and transport. Taken together, these data indicate that the GSL Haloarcula strain, NA6-27, demonstrates both general and specific responses to salinity and/or temperature stress, and suggest a mechanistic model for homeostasis that may explain the stable presence of this genus in the community as environmental conditions shift.
Collapse
Affiliation(s)
- Swati Almeida-Dalmet
- Department of Environmental Science and Policy, George Mason University, 10900 University Blvd, Manassas, VA 20110, USA.
| | - Carol D Litchfield
- Department of Environmental Science and Policy, George Mason University, 10900 University Blvd, Manassas, VA 20110, USA.
| | - Patrick Gillevet
- Department of Biology, George Mason University, 10900 University Blvd, Manassas, VA 20110, USA.
| | - Bonnie K Baxter
- Great Salt Lake Institute, Westminster College, 1840 South 1300 East, Salt Lake City, UT 84105, USA.
| |
Collapse
|
24
|
Grant GA. Regulatory Mechanism of Mycobacterium tuberculosis Phosphoserine Phosphatase SerB2. Biochemistry 2017; 56:6481-6490. [PMID: 29140686 DOI: 10.1021/acs.biochem.7b01082] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Almost all organisms contain the same biosynthetic pathway for the synthesis of l-serine from the glycolytic intermediate, d-3-phosphoglycerate. However, regulation of this pathway varies from organism to organism. Many organisms control the activity of the first enzyme in the pathway, d-3-phosphoglycerate dehydrogenase (PGDH), by feedback inhibition through the interaction of l-serine with the ACT domains within the enzyme. The last enzyme in the pathway, phosphoserine phosphatase (PSP), has also been reported to be inhibited by l-serine. The high degree of sequence homology between Mycobacterium tuberculosis PSP (mtPSP) and Mycobacterium avium PSP (maPSP), which has recently been shown to contain ACT domains, suggested that the mtPSP also contained ACT domains. This raised the question of whether the ACT domains in mtPSP played a functional role similar to that of the ACT domains in PGDH. This investigation reveals that l-serine allosterically inhibits mtPSP by a mechanism of partial competitive inhibition by binding to the ACT domains. Therefore, in mtPSP, l-serine is an allosteric feedback inhibitor that acts by decreasing the affinity of the substrate for the enzyme. mtPGDH is also feedback inhibited by l-serine, but only in the presence of millimolar concentrations of phosphate. Therefore, the inhibition of mtPSP by l-serine would act as a secondary control point for the regulation of the l-serine biosynthetic pathway under physiological conditions where the level of phosphate would be below that needed for l-serine feedback inhibition of mtPGDH.
Collapse
Affiliation(s)
- Gregory A Grant
- Departments of Developmental Biology and Medicine, Washington University School of Medicine , 660 South Euclid Avenue, Box 8103, St. Louis, Missouri 63110, United States
| |
Collapse
|
25
|
Narayan DS, Chidlow G, Wood JP, Casson RJ. Glucose metabolism in mammalian photoreceptor inner and outer segments. Clin Exp Ophthalmol 2017; 45:730-741. [PMID: 28334493 DOI: 10.1111/ceo.12952] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 02/25/2017] [Accepted: 03/20/2017] [Indexed: 12/22/2022]
Abstract
Photoreceptors are the first-order neurons of the visual pathway, converting light into electrical signals. Rods and cones are the two main types of photoreceptors in the mammalian retina. Rods are specialized for sensitivity at the expense of resolution and are responsible for vision in dimly lit conditions. Cones are responsible for high acuity central vision and colour vision. Many human retinal diseases are characterized by a progressive loss of photoreceptors. Photoreceptors consist of four primary regions: outer segments, inner segments, cell bodies and synaptic terminals. Photoreceptors consume large amounts of energy, and therefore, energy metabolism may be a critical juncture that links photoreceptor function and survival. Cones require more energy than rods, and cone degeneration is the main cause of clinically significant vision loss in retinal diseases. Photoreceptor segments are capable of utilizing various energy substrates, including glucose, to meet their large energy demands. The pathways by which photoreceptor segments meet their energy demands remain incompletely understood. Improvements in the understanding of glucose metabolism in photoreceptor segments may provide insight into the reasons why photoreceptors degenerate due to energy failure. This may, in turn, assist in developing bio-energetic therapies aimed at protecting photoreceptors.
Collapse
Affiliation(s)
- Daniel S Narayan
- Ophthalmic Research Laboratories, Hanson Institute Centre for Neurological Diseases, Adelaide, South Austalia, Australia.,South Australian Institute of Ophthalmology, University of Adelaide, Adelaide, South Austalia, Australia
| | - Glyn Chidlow
- Ophthalmic Research Laboratories, Hanson Institute Centre for Neurological Diseases, Adelaide, South Austalia, Australia.,South Australian Institute of Ophthalmology, University of Adelaide, Adelaide, South Austalia, Australia
| | - John Pm Wood
- Ophthalmic Research Laboratories, Hanson Institute Centre for Neurological Diseases, Adelaide, South Austalia, Australia.,South Australian Institute of Ophthalmology, University of Adelaide, Adelaide, South Austalia, Australia
| | - Robert J Casson
- Ophthalmic Research Laboratories, Hanson Institute Centre for Neurological Diseases, Adelaide, South Austalia, Australia.,South Australian Institute of Ophthalmology, University of Adelaide, Adelaide, South Austalia, Australia
| |
Collapse
|
26
|
Sa N, Rawat R, Thornburg C, Walker KD, Roje S. Identification and characterization of the missing phosphatase on the riboflavin biosynthesis pathway in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 88:705-716. [PMID: 27490826 DOI: 10.1111/tpj.13291] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 07/22/2016] [Accepted: 07/25/2016] [Indexed: 06/06/2023]
Abstract
Despite the importance of riboflavin as the direct precursor of the cofactors flavin adenine dinucleotide (FAD) and flavin mononucleotide (FMN), the physiologically relevant catalyst dephosphorylating the riboflavin biosynthesis pathway intermediate 5-amino-6-ribitylamino-2,4(1H,3H) pyrimidinedione 5'-phosphate (ARPP) has not been characterized from any organism. By using as the query sequence a previously identified plastidial FMN hydrolase AtcpFHy1 (At1g79790), belonging to the haloacid dehalogenase (HAD) superfamily, seven candidates for the missing ARPP phosphatase were found, cloned, recombinantly expressed, and purified. Activity screening showed that the enzymes encoded by AtcpFHy1, At4g11570, and At4g25840 catalyze dephosphorylation of ARPP. AtcpFHy1 was renamed AtcpFHy/PyrP1, At4g11570 and At4g25840 were named AtPyrP2 and AtGpp1/PyrP3, respectively. Subcellular localization in planta indicated that AtPyrP2 was localized in plastids and AtGpp1/PyrP3 in mitochondria. Biochemical characterization of AtcpFHy/PyrP1 and AtPyrP2 showed that they have similar Km values for the substrate ARPP, with AtcpFHy/PyrP1 having higher catalytic efficiency. Screening of 21 phosphorylated substrates showed that AtPyrP2 is specific for ARPP. Molecular weights of AtcpFHy/PyrP1 and AtPyrP2 were estimated at 46 and 72 kDa, suggesting dimers. pH and temperature optima for AtcpFHy/PyrP1 and AtPyrP2 were ~7.0-8.5 and 40-50°C. T-DNA knockout of AtcpFHy/PyrP1 did not affect the flavin profile of the transgenic plants, whereas silencing of AtPyrP2 decreased accumulation of riboflavin, FMN, and FAD. Our results strongly support AtPyrP2 as the missing phosphatase on the riboflavin biosynthesis pathway in Arabidopsis thaliana. The identification of this enzyme closes a long-standing gap in understanding of the riboflavin biosynthesis in plants.
Collapse
Affiliation(s)
- Na Sa
- Institute of Biological Chemistry, Washington State University, Pullman, WA, 99164, USA
| | - Renu Rawat
- Institute of Biological Chemistry, Washington State University, Pullman, WA, 99164, USA
| | - Chelsea Thornburg
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Kevin D Walker
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Sanja Roje
- Institute of Biological Chemistry, Washington State University, Pullman, WA, 99164, USA
| |
Collapse
|
27
|
Engelberg K, Ivey FD, Lin A, Kono M, Lorestani A, Faugno-Fusci D, Gilberger TW, White M, Gubbels MJ. A MORN1-associated HAD phosphatase in the basal complex is essential for Toxoplasma gondii daughter budding. Cell Microbiol 2016; 18:1153-71. [PMID: 26840427 DOI: 10.1111/cmi.12574] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 12/24/2015] [Accepted: 01/19/2016] [Indexed: 12/30/2022]
Abstract
Apicomplexan parasites replicate by several budding mechanisms with two well-characterized examples being Toxoplasma endodyogeny and Plasmodium schizogony. Completion of budding requires the tapering of the nascent daughter buds toward the basal end, driven by contraction of the basal complex. This contraction is not executed by any of the known cell division associated contractile mechanisms and in order to reveal new components of the unusual basal complex we performed a yeast two-hybrid screen with its major scaffolding protein, TgMORN1. Here we report on a conserved protein with a haloacid dehalogenase (HAD) phosphatase domain, hereafter named HAD2a, identified by yeast two-hybrid. HAD2a has demonstrated enzyme-activity in vitro, localizes to the nascent daughter buds, and co-localizes with MORN1 to the basal complex during its contraction. Conditional knockout of HAD2a in Toxoplasma interferes with basal complex assembly, which leads to incomplete cytokinesis and conjoined daughters that ultimately results in disrupted proliferation. In Plasmodium, we further confirmed localization of the HAD2a ortholog to the basal complex toward the end of schizogony. In conclusion, our work highlights an essential role for this HAD phosphatase across apicomplexan budding and suggests a regulatory mechanism of differential phosphorylation on the structure and/or contractile function of the basal complex.
Collapse
Affiliation(s)
- Klemens Engelberg
- Department of Biology, Boston College, Chestnut Hill, MA, 02467, USA
| | - F Douglas Ivey
- Department of Biology, Boston College, Chestnut Hill, MA, 02467, USA
| | - Angela Lin
- Department of Biology, Boston College, Chestnut Hill, MA, 02467, USA
| | - Maya Kono
- Bernhard-Nocht-Institute for Tropical Medicine, Hamburg, Germany
| | | | - Dave Faugno-Fusci
- Department of Biology, Boston College, Chestnut Hill, MA, 02467, USA
| | - Tim-Wolf Gilberger
- Bernhard-Nocht-Institute for Tropical Medicine, Hamburg, Germany.,M.G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada.,Center for Structural Systems Biology, Hamburg, Germany
| | - Michael White
- Departments of Molecular Medicine & Global Health, Florida Center for Drug Discovery and Innovation, Colleges of Medicine and Public Health, University of South Florida, Tampa, FL, 33612, USA
| | - Marc-Jan Gubbels
- Department of Biology, Boston College, Chestnut Hill, MA, 02467, USA
| |
Collapse
|
28
|
Immormino RM, Starbird CA, Silversmith RE, Bourret RB. Probing Mechanistic Similarities between Response Regulator Signaling Proteins and Haloacid Dehalogenase Phosphatases. Biochemistry 2015; 54:3514-27. [PMID: 25928369 DOI: 10.1021/acs.biochem.5b00286] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Response regulator signaling proteins and phosphatases of the haloacid dehalogenase (HAD) superfamily share strikingly similar folds, active site geometries, and reaction chemistry. Proteins from both families catalyze the transfer of a phosphoryl group from a substrate to one of their own aspartyl residues, and subsequent hydrolysis of the phosphoprotein. Notable differences include an additional Asp that functions as an acid/base catalyst and an active site well-structured prior to phosphorylation in HAD phosphatases. Both features contribute to reactions substantially faster than those for response regulators. To investigate mechanisms underlying the functional differences between response regulators and HAD phosphatases, we characterized five double mutants of the response regulator CheY designed to mimic HAD phosphatases. Each mutant contained the extra Asp paired with a phosphatase-inspired substitution to potentially position the Asp properly. Only CheY DR (Arg as the anchor) exhibited enhanced rates of both autophosphorylation with phosphoramidate and autodephosphorylation compared to those of wild-type CheY. Crystal structures of CheY DR complexed with MoO4(2-) or WO4(2-) revealed active site hydrogen bonding networks similar to those in HAD·substrate complexes, with the extra Asp positioned for direct interaction with the leaving group (phosphorylation) or nucleophile (dephosphorylation). However, CheY DR reaction kinetics did not exhibit the pH sensitivities expected for acid/base catalysis. Biochemical analysis indicated CheY DR had an enhanced propensity to adopt the active conformation without phosphorylation, but a crystal structure revealed unphosphorylated CheY DR was not locked in the active conformation. Thus, the enhanced reactivity of CheY DR reflected partial acquisition of catalytic and structural features of HAD phosphatases.
Collapse
Affiliation(s)
- Robert M Immormino
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina 27599-7290, United States
| | - Chrystal A Starbird
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina 27599-7290, United States
| | - Ruth E Silversmith
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina 27599-7290, United States
| | - Robert B Bourret
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina 27599-7290, United States
| |
Collapse
|
29
|
Characterization of M. tuberculosis SerB2, an essential HAD-family phosphatase, reveals novel properties. PLoS One 2014; 9:e115409. [PMID: 25521849 PMCID: PMC4270767 DOI: 10.1371/journal.pone.0115409] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 11/22/2014] [Indexed: 01/09/2023] Open
Abstract
M. tuberculosis harbors an essential phosphoserine phosphatase (MtSerB2, Rv3042c) that contains two small- molecule binding ACT-domains (Pfam 01842) at the N-terminus followed by the phosphoserine phosphatase (PSP) domain. We found that exogenously added MtSerB2 elicits microtubule rearrangements in THP-1 cells. Mutational analysis demonstrates that phosphatase activity is co-related to the elicited rearrangements, while addition of the ACT-domains alone elicits no rearrangements. The enzyme is dimeric, exhibits divalent metal- ion dependency, and is more specific for l- phosphoserine unlike other classical PSPases. Binding of a variety of amino acids to the ACT-domains influences MtSerB2 activity by either acting as activators/inhibitors/have no effects. Additionally, reduced activity of the PSP domain can be enhanced by equimolar addition of the ACT domains. Further, we identified that G18 and G108 of the respective ACT-domains are necessary for ligand-binding and their mutations to G18A and G108A abolish the binding of ligands like l- serine. A specific transition to higher order oligomers is observed upon the addition of l- serine at ∼0.8 molar ratio as supported by Isothermal calorimetry and Size exclusion chromatography experiments. Mutational analysis shows that the transition is dependent on binding of l- serine to the ACT-domains. Furthermore, the higher-order oligomeric form of MtSerB2 is inactive, suggesting that its formation is a mechanism for feedback control of enzyme activity. Inhibition studies involving over eight inhibitors, MtSerB2, and the PSP domain respectively, suggests that targeting the ACT-domains can be an effective strategy for the development of inhibitors.
Collapse
|
30
|
Ng SK, Wood JPM, Chidlow G, Han G, Kittipassorn T, Peet DJ, Casson RJ. Cancer-like metabolism of the mammalian retina. Clin Exp Ophthalmol 2014; 43:367-76. [DOI: 10.1111/ceo.12462] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Accepted: 10/07/2014] [Indexed: 02/02/2023]
Affiliation(s)
- Soo Khai Ng
- South Australian Institute of Ophthalmology; University of Adelaide; Adelaide South Australia Australia
| | - John PM Wood
- South Australian Institute of Ophthalmology; University of Adelaide; Adelaide South Australia Australia
| | - Glyn Chidlow
- South Australian Institute of Ophthalmology; University of Adelaide; Adelaide South Australia Australia
| | - Guoge Han
- South Australian Institute of Ophthalmology; University of Adelaide; Adelaide South Australia Australia
| | - Thaksaon Kittipassorn
- School of Molecular and Biomedical Science (Biochemistry); University of Adelaide; Adelaide South Australia Australia
- Department of Physiology; Faculty of Medicine Siriraj Hospital; Mahidol University; Bangkok Thailand
| | - Daniel J Peet
- School of Molecular and Biomedical Science (Biochemistry); University of Adelaide; Adelaide South Australia Australia
| | - Robert J Casson
- South Australian Institute of Ophthalmology; University of Adelaide; Adelaide South Australia Australia
| |
Collapse
|
31
|
Kim S, Kedan A, Marom M, Gavert N, Keinan O, Selitrennik M, Laufman O, Lev S. The phosphatidylinositol-transfer protein Nir2 binds phosphatidic acid and positively regulates phosphoinositide signalling. EMBO Rep 2013; 14:891-9. [PMID: 23897088 DOI: 10.1038/embor.2013.113] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 07/11/2013] [Accepted: 07/11/2013] [Indexed: 11/09/2022] Open
Abstract
Phosphatidic acid (PA) and phosphoinositides are metabolically interconverted lipid second messengers that have central roles in many growth factor (GF)-stimulated signalling pathways. Yet, little is known about the mechanisms that coordinate their production and downstream signalling. Here we show that the phosphatidylinositol (PI)-transfer protein Nir2 translocates from the Golgi complex to the plasma membrane in response to GF stimulation. This translocation is triggered by PA formation and is mediated by its C-terminal region that binds PA in vitro. We further show that depletion of Nir2 substantially reduces the PI(4,5)P2 levels at the plasma membrane and concomitantly GF-stimulated PI(3,4,5)P3 production. Finally, we show that Nir2 positively regulates the MAPK and PI3K/AKT pathways. We propose that Nir2 through its PA-binding capability and PI-transfer activity can couple PA to phosphoinositide signalling, and possibly coordinates their local lipid metabolism and downstream signalling.
Collapse
Affiliation(s)
- SoHui Kim
- Molecular Cell Biology Department, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Yip SHC, Matsumura I. Substrate ambiguous enzymes within the Escherichia coli proteome offer different evolutionary solutions to the same problem. Mol Biol Evol 2013; 30:2001-12. [PMID: 23728795 DOI: 10.1093/molbev/mst105] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Many enzymes exhibit some catalytic promiscuity or substrate ambiguity. These weak activities do not affect the fitness of the organism under ordinary circumstances, but can serve as potential evolutionary precursors of new catalytic functions. We wondered whether different proteins with the same substrate ambiguous activity evolve differently under identical selection conditions. Patrick et al. (Patrick WM, Quandt EM, Swartzlander DB, Matsumura I. 2007. Multicopy suppression underpins metabolic evolvability. Mol Biol Evol. 24:2716-2722.) previously showed that three multicopy suppressors, gph, hisB, and ytjC, rescue ΔserB Escherichia coli cells from starvation on minimal media. We directed the evolution of variants of Gph, histidinol phosphatase (HisB), and YtjC that complemented ΔserB more efficiently, and characterized the effects of the amino acid changes, alone and in combination, upon the evolved phosphoserine phosphatase (PSP) activity. Gph and HisB are members of the HAD superfamily of hydrolases, but they adapted through different, kinetically distinguishable, biochemical mechanisms. All of the selected mutations, except N102T in YtjC, proved to be beneficial in isolation. They exhibited a pattern of antagonistic epistasis, as their effects in combination upon the kinetic parameters of the three proteins in reactions with phosphoserine were nonmultiplicative. The N102T mutation exhibited sign epistasis, as it was deleterious in isolation but beneficial in the context of other mutations. We also showed that the D57N mutation in the chromosomal copy of hisB is sufficient to suppress the ΔserB deletion. These results in combination show that proteomes can offer multiple mechanistic solutions to a molecular recognition problem.
Collapse
Affiliation(s)
- Sylvia Hsu-Chen Yip
- Department of Biochemistry, Center for Fundamental and Applied Molecular Evolution, Rollins Research Center, Emory University School of Medicine, USA
| | | |
Collapse
|
33
|
Jung TY, Kim YS, Oh BH, Woo E. Identification of a novel ligand binding site in phosphoserine phosphatase from the hyperthermophilic archaeon Thermococcus onnurineus. Proteins 2013; 81:819-29. [DOI: 10.1002/prot.24238] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Revised: 11/07/2012] [Accepted: 11/20/2012] [Indexed: 12/13/2022]
|
34
|
Yang L, Liao RZ, Ding WJ, Liu K, Yu JG, Liu RZ. Why calcium inhibits magnesium-dependent enzyme phosphoserine phosphatase? A theoretical study. Theor Chem Acc 2012. [DOI: 10.1007/s00214-012-1275-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
35
|
Pascual F, Carman GM. Phosphatidate phosphatase, a key regulator of lipid homeostasis. Biochim Biophys Acta Mol Cell Biol Lipids 2012; 1831:514-22. [PMID: 22910056 DOI: 10.1016/j.bbalip.2012.08.006] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Revised: 08/03/2012] [Accepted: 08/06/2012] [Indexed: 10/28/2022]
Abstract
Yeast Pah1p phosphatidate phosphatase (PAP) catalyzes the penultimate step in the synthesis of triacylglycerol. PAP plays a crucial role in lipid homeostasis by controlling the relative proportions of its substrate phosphatidate and its product diacylglycerol. The cellular amounts of these lipid intermediates influence the synthesis of triacylglycerol and the pathways by which membrane phospholipids are synthesized. Physiological functions affected by PAP activity include phospholipid synthesis gene expression, nuclear/endoplasmic reticulum membrane growth, lipid droplet formation, and vacuole homeostasis and fusion. Yeast lacking Pah1p PAP activity are acutely sensitive to fatty acid-induced toxicity and exhibit respiratory deficiency. PAP is distinguished in its cellular location, catalytic mechanism, and physiological functions from Dpp1p and Lpp1p lipid phosphate phosphatases that utilize a variety of substrates that include phosphatidate. Phosphorylation/dephosphorylation is a major mechanism by which Pah1p PAP activity is regulated. Pah1p is phosphorylated by cytosolic-associated Pho85p-Pho80p, Cdc28p-cyclin B, and protein kinase A and is dephosphorylated by the endoplasmic reticulum-associated Nem1p-Spo7p phosphatase. The dephosphorylation of Pah1p stimulates PAP activity and facilitates the association with the membrane/phosphatidate allowing for its reaction and triacylglycerol synthesis. This article is part of a Special Issue entitled Phospholipids and Phospholipid Metabolism.
Collapse
Affiliation(s)
- Florencia Pascual
- Department of Food Science and Rutgers Center for Lipid Research, Rutgers University, New Brunswick, NJ 08901, USA.
| | | |
Collapse
|
36
|
Seifried A, Schultz J, Gohla A. Human HAD phosphatases: structure, mechanism, and roles in health and disease. FEBS J 2012; 280:549-71. [PMID: 22607316 DOI: 10.1111/j.1742-4658.2012.08633.x] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Phosphatases of the haloacid dehalogenase (HAD) superfamily of hydrolases are an ancient and very large class of enzymes that have evolved to dephosphorylate a wide range of low- and high molecular weight substrates with often exquisite specificities. HAD phosphatases constitute approximately one-fifth of all human phosphatase catalytic subunits. While the overall sequence similarity between HAD phosphatases is generally very low, family members can be identified based on the presence of a characteristic Rossmann-like fold and the active site sequence DxDx(V/T). HAD phosphatases employ an aspartate residue as a nucleophile in a magnesium-dependent phosphoaspartyl transferase reaction. Although there is genetic evidence demonstrating a causal involvement of some HAD phosphatases in diseases such as cancer, cardiovascular, metabolic and neurological disorders, the physiological roles of many of these enzymes are still poorly understood. In this review, we discuss the structure and evolution of human HAD phosphatases, and summarize their known functions in health and disease.
Collapse
Affiliation(s)
- Annegrit Seifried
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany
| | | | | |
Collapse
|
37
|
Kalhan SC, Hanson RW. Resurgence of serine: an often neglected but indispensable amino Acid. J Biol Chem 2012; 287:19786-91. [PMID: 22566694 DOI: 10.1074/jbc.r112.357194] [Citation(s) in RCA: 202] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Serine is generally classified as a nutritionally nonessential (dispensable) amino acid, but metabolically, serine is indispensible and plays an essential role in several cellular processes. Serine is the major source of one-carbon units for methylation reactions that occur via the generation of S-adenosylmethionine. The regulation of serine metabolism in mammalian tissues is thus of critical importance for the control of methyl group transfer. In addition to the well known role of d-serine in the brain, l-serine has recently been implicated in breast cancer and other tumors due in part to the genomic copy number gain for 3-phosphoglycerate dehydrogenase, the enzyme that controls the entry of glycolytic intermediates into the pathway of serine synthesis. Here, we review recent information regarding the synthesis of serine and the regulation of its metabolism and discuss the role played by phosphoenolpyruvate carboxykinase in this process.
Collapse
Affiliation(s)
- Satish C Kalhan
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio 44195, USA.
| | | |
Collapse
|
38
|
Re S, Sugita Y. [Modeling the transition state of enzyme-catalyzed phosphoryl transfer reaction using QM/MM method]. YAKUGAKU ZASSHI 2011; 131:1171-82. [PMID: 21804320 DOI: 10.1248/yakushi.131.1171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Reversible phosphorylation of proteins is a post-translational modification that regulates diverse biological processes. The molecular mechanism underlying phosphoryl transfer catalyzed by enzymes, in particular the nature of transition state (TS), remains a subject of active debate. Structural evidence supports an associative TS, whereas physical organic studies point to a dissociative character. In this article, we briefly introduce our recent effort using the hybrid quantum mechanics/molecular mechanics (QM/MM) simulations to resolve the controversy. We perform QM/MM simulations for the reversible phosphorylation of phosphoserine phosphatase (PSP), which belongs to one of the largest phosphotransferase families characterized to data. Both phosphorylation and dephosphorylation reactions are investigated based on the two-dimensional energy surfaces along phosphoryl and proton transfer coordinates. The resultant structures of the active site at TS in both reactions have compact geometries but a less electron density of the phosphoryl group. This suggests that the TS of PSP has a geometrically associative yet electronically dissociative character and strongly depends on proton transfer being coupled with phosphoryl transfer. Structure and literature database searches on phosphotransferases suggest that such a hybrid TS is consistent with many structures and physical organic studies and likely holds for most enzymes catalyzing phosphoryl transfer.
Collapse
Affiliation(s)
- Suyong Re
- RIKEN Advanced Science Institute, Saitama, Japan
| | | |
Collapse
|
39
|
Bachelor MA, Lu Y, Owens DM. L-3-Phosphoserine phosphatase (PSPH) regulates cutaneous squamous cell carcinoma proliferation independent of L-serine biosynthesis. J Dermatol Sci 2011; 63:164-72. [PMID: 21726982 DOI: 10.1016/j.jdermsci.2011.06.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Revised: 05/19/2011] [Accepted: 06/02/2011] [Indexed: 11/17/2022]
Abstract
BACKGROUND L-3-Phosphoserine phosphatase (PSPH) is a highly conserved and widely expressed member of the haloacid dehalogenase superfamily and the rate-limiting enzyme in l-serine biosynthesis. We previously found Psph expression to be uniquely upregulated in a α6β4 integrin transgenic mouse model that is predisposed to epidermal hyperproliferation and squamous cell carcinoma (SCC) formation implicating a role for Psph in epidermal homeostasis. OBJECTIVE We examined the status of PSPH in normal skin epidermis and skin tumors along with its sub-cellular localization in epidermal keratinocytes and its requirement for squamous cell carcinoma (SCC) proliferation. METHODS First, an immunohistochemical study was performed for PSPH in normal skin and skin cancer specimens and in cultured keratinocytes. Next, biochemical analyses were performed to confirm localization of PSPH and to identify candidate binding proteins. Finally, proliferation and apoptosis studies were performed in human SCC and normal keratinocytes, respectively, transduced with vectors encoding small hairpin RNAs targeting PSPH or overexpressing a phosphatase-deficient PSPH mutant. RESULTS PSPH is expressed throughout the proliferative layer of the epidermis and hair follicles in rodent and human skin and is highly induced in SCC. In keratinocytes, PSPH is a cytoplasmic protein that primarily localizes to endosomes and is present primarily as a homodimer. Knock down of PSPH dramatically diminished SCC cell proliferation and cyclin D1 levels in the presence of exogenous of l-serine production suggesting a non-canonical role for PSPH in epithelial carcinogenesis. CONCLUSIONS Psph is highly induced in proliferative normal keratinocytes and in skin tumors. PSPH appears to be critical for the proliferation of SCC cells; however, this phenomenon may not involve the phosphoserine metabolic pathway.
Collapse
Affiliation(s)
- Michael A Bachelor
- Department of Dermatology, Columbia University, College of Physicians and Surgeons, New York, NY 10032, USA
| | | | | |
Collapse
|
40
|
Gimenez MS, Oliveros LB, Gomez NN. Nutritional deficiencies and phospholipid metabolism. Int J Mol Sci 2011; 12:2408-33. [PMID: 21731449 PMCID: PMC3127125 DOI: 10.3390/ijms12042408] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Revised: 02/11/2011] [Accepted: 03/14/2011] [Indexed: 12/12/2022] Open
Abstract
Phospholipids are important components of the cell membranes of all living species. They contribute to the physicochemical properties of the membrane and thus influence the conformation and function of membrane-bound proteins, such as receptors, ion channels, and transporters and also influence cell function by serving as precursors for prostaglandins and other signaling molecules and modulating gene expression through the transcription activation. The components of the diet are determinant for cell functionality. In this review, the effects of macro and micronutrients deficiency on the quality, quantity and metabolism of different phospholipids and their distribution in cells of different organs is presented. Alterations in the amount of both saturated and polyunsaturated fatty acids, vitamins A, E and folate, and other micronutrients, such as zinc and magnesium, are discussed. In all cases we observe alterations in the pattern of phospholipids, the more affected ones being phosphatidylcholine, phosphatidylethanolamine and sphingomyelin. The deficiency of certain nutrients, such as essential fatty acids, fat-soluble vitamins and some metals may contribute to a variety of diseases that can be irreversible even after replacement with normal amount of the nutrients. Usually, the sequelae are more important when the deficiency is present at an early age.
Collapse
Affiliation(s)
- María S. Gimenez
- Authors to whom correspondence should be addressed; E-Mails: (M.S.G.); (L.B.O.); Tel.: 54-2652-423789; Fax: 54-2652-431301
| | - Liliana B. Oliveros
- Authors to whom correspondence should be addressed; E-Mails: (M.S.G.); (L.B.O.); Tel.: 54-2652-423789; Fax: 54-2652-431301
| | | |
Collapse
|
41
|
Walldén K, Nordlund P. Structural basis for the allosteric regulation and substrate recognition of human cytosolic 5'-nucleotidase II. J Mol Biol 2011; 408:684-96. [PMID: 21396942 DOI: 10.1016/j.jmb.2011.02.059] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Revised: 02/18/2011] [Accepted: 02/25/2011] [Indexed: 10/18/2022]
Abstract
Cytosolic 5'-nucleotidase II (cN-II) catalyzes the dephosphorylation of 6-hydroxypurine nucleoside 5'-monophosphates and participates in the regulation of purine nucleotide pools within the cell. It interferes with the phosphorylation-dependent activation of nucleoside analogues used in the treatment of cancer and viral diseases. It is allosterically activated by a number of phosphate-containing cellular metabolites such as ATP, diadenosine polyphosphates, and 2,3-bisphosphoglycerate, which couple its activity with the metabolic state of the cell. We present seven high-resolution structures of human cN-II, including a ligand-free form and complexes with various substrates and effectors. These structures reveal the structural basis for the allosteric activation of cN-II, uncovering a mechanism where an effector-induced disorder-to-order transition generates rearrangements within the catalytic site and the subsequent coordination of the catalytically essential magnesium. Central to the activation is the large transition of the catalytically essential Asp356. This study also provides the structural basis for the substrate specificity of cN-II, where Arg202, Asp206, and Phe157 seem to be important residues for purine/pyrimidine selectivity. These structures provide a comprehensive structural basis for the design of cN-II inhibitors. They also contribute to the understanding of how the nucleotide salvage pathway is regulated at a molecular level.
Collapse
Affiliation(s)
- Karin Walldén
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177 Stockholm, Sweden
| | | |
Collapse
|
42
|
Re S, Imai T, Jung J, Ten-No S, Sugita Y. Geometrically associative yet electronically dissociative character in the transition state of enzymatic reversible phosphorylation. J Comput Chem 2010; 32:260-70. [DOI: 10.1002/jcc.21615] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
43
|
May A, Berger S, Hertel T, Köck M. The Arabidopsis thaliana phosphate starvation responsive gene AtPPsPase1 encodes a novel type of inorganic pyrophosphatase. Biochim Biophys Acta Gen Subj 2010; 1810:178-85. [PMID: 21122813 DOI: 10.1016/j.bbagen.2010.11.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Revised: 11/03/2010] [Accepted: 11/17/2010] [Indexed: 11/30/2022]
Abstract
BACKGROUND Low inorganic phosphate (Pi) availability triggers metabolic responses to maintain the intracellular phosphate homeostasis in plants. One crucial adaptive mechanism is the immediate cleavage of Pi from phosphorylated substrates; however, phosphohydrolases that function in the cytosol and putative substrates have not been characterized yet. One candidate gene is Arabidopsis thaliana At1g73010 encoding an uncharacterized enzyme with homology to the haloacid dehalogenase (HAD) superfamily. METHODS AND RESULTS This work reports the molecular cloning of At1g73010, its expression in Escherichia coli, and the enzymatic characterisation of the recombinant protein (33.5 kD). The Mg²(+)-dependent enzyme named AtPPsPase1 catalyzes the specific cleavage of pyrophosphate (K(m) 38.8 μM) with an alkaline catalytic pH optimum. Gel filtration revealed a tetrameric structure of the soluble cytoplasmic protein. Modelling of the active site and assay of the recombinant protein variant D19A demonstrated that the enzyme shares the catalytic mechanism of the HAD superfamily including a phosphorylated enzyme intermediate. CONCLUSIONS The tight control of AtPPsPase1 gene expression underlines its important role in the Pi starvation response and suggests that cleavage of pyrophosphate is an immediate metabolic adaptation reaction. GENERAL SIGNIFICANCE The novel enzyme, the first pyrophosphatase in the HAD superfamily, differs from classical pyrophosphatases with respect to structure and catalytic mechanism. The enzyme function could be used to discover unknown aspects of pyrophosphate metabolism in general.
Collapse
Affiliation(s)
- Anett May
- Biocenter of the University, Martin Luther University Halle-Wittenberg, D-06099 Halle (Saale), Germany
| | | | | | | |
Collapse
|
44
|
Focus on phosphoaspartate and phosphoglutamate. Amino Acids 2010; 40:1035-51. [DOI: 10.1007/s00726-010-0738-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Accepted: 08/27/2010] [Indexed: 11/26/2022]
|
45
|
A distinct type of glycerol-3-phosphate acyltransferase with sn-2 preference and phosphatase activity producing 2-monoacylglycerol. Proc Natl Acad Sci U S A 2010; 107:12040-5. [PMID: 20551224 DOI: 10.1073/pnas.0914149107] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The first step in assembly of membrane and storage glycerolipids is acylation of glycerol-3-phosphate (G3P). All previously characterized membrane-bound, eukaryotic G3P acyltransferases (GPATs) acylate the sn-1 position to produce lysophosphatidic acid (1-acyl-LPA). Cutin is a glycerolipid with omega-oxidized fatty acids and glycerol as integral components. It occurs as an extracellular polyester on the aerial surface of all plants, provides a barrier to pathogens and resistance to stress, and maintains organ identity. We have determined that Arabidopsis acyltransferases GPAT4 and GPAT6 required for cutin biosynthesis esterify acyl groups predominantly to the sn-2 position of G3P. In addition, these acyltransferases possess a phosphatase domain that results in sn-2 monoacylglycerol (2-MAG) rather than LPA as the major product. Such bifunctional activity has not been previously described in any organism. The possible roles of 2-MAGs as intermediates in cutin synthesis are discussed. GPAT5, which is essential for the accumulation of suberin aliphatics, also exhibits a strong preference for sn-2 acylation. However, phosphatase activity is absent and 2-acyl-LPA is the major product. Clearly, plant GPATs can catalyze more reactions than the sn-1 acylation by which they are currently categorized. Close homologs of GPAT4-6 are present in all land plants, but not in animals, fungi or microorganisms (including algae). Thus, these distinctive acyltransferases may have been important for evolution of extracellular glycerolipid polymers and adaptation of plants to a terrestrial environment. These results provide insight into the biosynthetic assembly of cutin and suberin, the two most abundant glycerolipid polymers in nature.
Collapse
|
46
|
Nakamura T, Yamaguchi A, Kondo H, Watanabe H, Kurihara T, Esaki N, Hirono S, Tanaka S. Roles of K151 and D180 in L-2-haloacid dehalogenase fromPseudomonassp. YL: Analysis by molecular dynamics andab initiofragment molecular orbital calculations. J Comput Chem 2009; 30:2625-34. [DOI: 10.1002/jcc.21273] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
47
|
Antflick JE, Baker GB, Hampson DR. The effects of a low protein diet on amino acids and enzymes in the serine synthesis pathway in mice. Amino Acids 2009; 39:145-53. [PMID: 19921396 DOI: 10.1007/s00726-009-0387-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2009] [Accepted: 10/30/2009] [Indexed: 11/30/2022]
Abstract
L-serine is required for cellular and tissue growth and is particularly important in the immature brain where it acts as a crucial neurotrophic factor. In this study, the levels of amino acids and enzymes in the L-serine biosynthetic pathway were examined in the forebrain, cerebellum, liver, and kidney after the exposure of mice to protein-restricted diets. The levels of L-serine, D-serine, and L-serine-O-phosphate were quantified by HPLC and quantitative Western blotting was used to measure changes in protein levels of five enzymes in the pathway. The L-serine biosynthetic enzyme phosphoserine phosphatase was strongly upregulated, while the serine degradative enzymes serine racemase and serine dehydratase were downregulated in the livers and kidneys of mice fed low (6%) or very low (2%) protein diets for 2 weeks compared with mice fed a normal diet (18% protein). No changes in these enzymes were seen in the brain. The levels of L-serine increased in the livers of mice fed 2% protein; in contrast, D-serine levels were reduced below the limit of detection in the livers of mice given either the 6 or 2% diets. D-Serine is a co-agonist at the NMDA class of glutamate receptors; no alterations in NMDA-R1 subunit expression were observed in liver or brain after protein restriction. These findings demonstrate that the expression of L-serine synthetic and degradative enzymes display reciprocal changes in the liver and kidney to increase L-serine and decrease D-serine levels under conditions of protein restriction, and that the brain is insulated from such changes.
Collapse
Affiliation(s)
- Jordan E Antflick
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College St., Toronto, ON, M5S 3M2, Canada
| | | | | |
Collapse
|
48
|
Antflick JE, Vetiska S, Baizer JS, Yao Y, Baker GB, Hampson DR. l-Serine-O-phosphate in the central nervous system. Brain Res 2009; 1300:1-13. [DOI: 10.1016/j.brainres.2009.08.087] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2009] [Revised: 08/25/2009] [Accepted: 08/30/2009] [Indexed: 12/11/2022]
|
49
|
Re S, Jung J, Ten-no S, Sugita Y. A two-dimensional energy surface of the phosphoryl transfer reaction catalyzed by phosphoserine phosphatase. Chem Phys Lett 2009. [DOI: 10.1016/j.cplett.2009.08.068] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
50
|
Beassoni PR, Otero LH, Lisa AT, Domenech CE. Using a molecular model and kinetic experiments in the presence of divalent cations to study the active site and catalysis of Pseudomonas aeruginosa phosphorylcholine phosphatase. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2008; 1784:2038-44. [DOI: 10.1016/j.bbapap.2008.08.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2008] [Revised: 07/26/2008] [Accepted: 08/06/2008] [Indexed: 10/21/2022]
|