1
|
Vaskan IS, Prikhodko AT, Petoukhov MV, Shtykova EV, Bovin NV, Tuzikov AB, Oleinikov VA, Zalygin AV. Assessment of core-shell nanoparticles surface structure heterogeneity by SAXS contrast variation and ab initio modeling. Colloids Surf B Biointerfaces 2023; 224:113183. [PMID: 36764203 DOI: 10.1016/j.colsurfb.2023.113183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 01/21/2023] [Accepted: 01/27/2023] [Indexed: 02/05/2023]
Abstract
For the biomedical applications of nanoparticles, the study of their structure is a major step towards understanding the mechanisms of their interaction with biological environment. Detailed structural analysis of particles' surface is vital for rational design of drug delivery systems. In particular, for core-shell or surface-modified nanoparticles surface structure can be described in terms of shell coating uniformity and shell thickness uniformity around the nanoparticle core. Taken together, these terms can be used to indicate degree of heterogeneity of nanoparticle surface structure. However, characterization of nanoparticle surface structure under physiological conditions is challenging due to limitations of experimental techniques. In this paper, we apply SAXS contrast variation combined with ab initio bead modeling for this purpose. Approach is based on the fact that nanoparticles under study are produced by self-assembly of phospholipid-conjugated molecules that possess moieties with significantly different electron densities enabling SAXS technique to be used to distinguish nanoparticle shell and study its structure. Ab initio single phase and ab initio multiphase modeling based on SAXS curve of nanoparticles in phosphate buffer solution allowed to reconstruct nanoparticle shell coating and assess its uniformity, while serial nanoparticle reconstructions from solutions with gradually increased solvent electron densities revealed relative shell coating thickness around nanoparticle core. Nanoparticle shell structure representation was verified by molecular dynamics simulation and derived full-atom nanoparticle shell structure showed good agreement with SAXS-derived representation. Obtained data indicate that studied nanoparticles exhibit highly heterogeneous surface structure.
Collapse
Affiliation(s)
- I S Vaskan
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - A T Prikhodko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia; National Research Nuclear University Moscow Engineering Physics Institute, Moscow 115409, Russia
| | - M V Petoukhov
- A.V. Shubnikov Institute of Crystallography of Federal Scientific Research Centre "Crystallography and Photonics" of the Russian Academy of Sciences, Moscow 119333, Russia; A.N. Frumkin Institute of Physical Chemistry and Electrochemistry of Russian Academy of Sciences, Moscow 119071, Russia
| | - E V Shtykova
- A.V. Shubnikov Institute of Crystallography of Federal Scientific Research Centre "Crystallography and Photonics" of the Russian Academy of Sciences, Moscow 119333, Russia
| | - N V Bovin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - A B Tuzikov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - V A Oleinikov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia; National Research Nuclear University Moscow Engineering Physics Institute, Moscow 115409, Russia
| | - A V Zalygin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia; National Research Nuclear University Moscow Engineering Physics Institute, Moscow 115409, Russia.
| |
Collapse
|
2
|
Krzyzanowski N, Porcar L, Perez-Salas U. A Small-Angle Neutron Scattering, Calorimetry and Densitometry Study to Detect Phase Boundaries and Nanoscale Domain Structure in a Binary Lipid Mixture. MEMBRANES 2023; 13:323. [PMID: 36984710 PMCID: PMC10051979 DOI: 10.3390/membranes13030323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 06/18/2023]
Abstract
Techniques that can probe nanometer length scales, such as small-angle neutron scattering (SANS), have become increasingly popular to detect phase separation in membranes. But to extract the phase composition and domain structure from the SANS traces, complementary information is needed. Here, we present a SANS, calorimetry and densitometry study of a mixture of two saturated lipids that exhibits solidus-liquidus phase coexistence: 1,2-dipalmitoyl-d62-sn-glycero-3-phosphocholine (dDPPC, tail-deuterated DPPC) and 1,2-dilauroyl-sn-glycero-3-phosphocholine (DLPC). With calorimetry, we investigated the phase diagram for this system and found that the boundary traces for both multilamellar vesicles (MLVs) as well as 50 nm unilamellar vesicles overlap. Because the solidus boundary was mostly inaccessible by calorimetry, we investigated it by both SANS and molecular volume measurements for a 1:1 dDPPC:DLPC lipid mixture. From the temperature behavior of the molecular volume for the 1:1 dDPPC:DLPC mixture, as well as the individual molecular volume of each lipid species, we inferred that the liquidus phase consists of only fluid-state lipids while the solidus phase consists of lipids that are in gel-like states. Using this solidus-liquidus phase model, the SANS data were analyzed with an unrestricted shape model analysis software: MONSA. The resulting fits show irregular domains with dendrite-like features as those previously observed on giant unilamellar vesicles (GUVs). The surface pair correlation function describes a characteristic domain size for the minority phase that decreases with temperature, a behavior found to be consistent with a concomitant decrease in membrane mismatch between the liquidus and solidus phases.
Collapse
Affiliation(s)
- Natalie Krzyzanowski
- Department of Physics, University of Illinois at Chicago, Chicago, IL 60608, USA
| | - Lionel Porcar
- Large Scale Structures Group, Institut Laue-Langevin, CEDEX 9, 38042 Grenoble, France
| | - Ursula Perez-Salas
- Department of Physics, University of Illinois at Chicago, Chicago, IL 60608, USA
| |
Collapse
|
3
|
Whitten AE, Jeffries CM. Data analysis and modeling of small-angle neutron scattering data with contrast variation from bio-macromolecular complexes. Methods Enzymol 2022; 678:55-96. [PMID: 36641217 DOI: 10.1016/bs.mie.2022.09.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Small-angle neutron scattering (SANS) with contrast variation (CV) is a valuable technique in the structural biology toolchest. Accurate structural parameters-e.g., radii of gyration, volumes, dimensions, and distance distribution(s)-can be derived from the SANS-CV data to yield the shape and disposition of the individual components within stable complexes. Contrast variation is achieved through the substitution of hydrogen isotopes (1H for 2H) in molecules and solvents to alter the neutron scattering properties of each component of a complex. While SANS-CV can be used a stand-alone technique for interrogating the overall structure of biomacromolecules in solution, it also complements other methods such as small-angle X-ray scattering, crystallography, nuclear magnetic resonance, and cryo-electron microscopy. Undertaking a SANS-CV experiment is challenging, due in part to the preparation of significant quantities of monodisperse samples that may require deuterium (2H) labeling. Nevertheless, SANS-CV can be used to study a diverse range biomacromolecular complexes including protein-protein and protein-nucleic acid systems, membrane proteins, and flexible systems resistant to crystallization. This chapter describes how to approach the data analysis and modeling of SANS data, including: (1) Analysis of the forward scattering (I(0)) and calculation of theoretical estimates of contrast; (2) Analysis of the contrast dependence of the radius of gyration using the Stuhrmann plot and parallel axis theorem; (3) Calculation of composite scattering functions to evaluate the size, shape, and dispositions of individual components within a complex, and; (4) Development of real-space models to fit the SANS-CV data using volume-element bead modeling or atomistic rigid body modeling.
Collapse
Affiliation(s)
- Andrew E Whitten
- Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW, Australia.
| | - Cy M Jeffries
- European Molecular Biology Laboratory (EMBL), Hamburg Unit, c/o Deutsches Elektronen-Synchrotron, Hamburg, Germany.
| |
Collapse
|
4
|
Mertens HDT. Computational methods for the analysis of solution small-angle X-ray scattering of biomolecules: ATSAS. Methods Enzymol 2022; 678:193-236. [PMID: 36641208 DOI: 10.1016/bs.mie.2022.09.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The ATSAS software suite provides a comprehensive set of programs for the processing, analysis and modeling of small-angle scattering data, tailored for but not limited to data acquired on biological macromolecules. In this review the major components and developments in the ATSAS package are described, with a focus on user driven application. Data reduction, analysis and modeling approaches and strategies will be introduced and discussed. At the time of writing the latest package, ATSAS 3.1, is freely available for academic users at: https://www.embl-hamburg.de/biosaxs/software.html.
Collapse
|
5
|
San Emeterio J, Pabit SA, Pollack L. Contrast variation SAXS: Sample preparation protocols, experimental procedures, and data analysis. Methods Enzymol 2022; 677:41-83. [PMID: 36410957 PMCID: PMC10015503 DOI: 10.1016/bs.mie.2022.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Proteins and nucleic acids, alone and in complex are among the essential building blocks of living organisms. Obtaining a molecular level understanding of their structures, and the changes that occur as they interact, is critical for expanding our knowledge of life processes or disease progression. Here, we motivate and describe an application of solution small angle X-ray scattering (SAXS) which provides valuable information about the structures, ensembles, compositions and dynamics of protein-nucleic acid complexes in solution, in equilibrium and time-resolved studies. Contrast variation (CV-) SAXS permits the visualization of the distinct molecular constituents (protein and/or nucleic acid) within a complex. CV-SAXS can be implemented in two modes. In the simplest, the protein within the complex is effectively rendered invisible by the addition of an inert contrast agent at an appropriate concentration. Under these conditions, the structure, or structural changes of only the nucleic acid component of the complex can be studied in detail. The second mode permits observation of both components of the complex: the protein and the nucleic acid. This approach requires the acquisition of SAXS profiles on the complex at different concentrations of a contrast agent. Here, we review CV-SAXS as applied to protein-nucleic acid complexes in both modes. We provide some theoretical framework for CV-SAXS but focus primarily on providing the necessary information required to implement a successful experiment including experimental design, sample quality assessment, and data analysis.
Collapse
Affiliation(s)
- Josue San Emeterio
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, United States
| | - Suzette A Pabit
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, United States
| | - Lois Pollack
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, United States.
| |
Collapse
|
6
|
Limitations of the iterative electron density reconstruction algorithm from solution scattering data. Nat Methods 2021; 18:244-245. [PMID: 33649589 PMCID: PMC7612988 DOI: 10.1038/s41592-021-01082-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 01/29/2021] [Indexed: 01/30/2023]
|
7
|
Manalastas-Cantos K, Konarev PV, Hajizadeh NR, Kikhney AG, Petoukhov MV, Molodenskiy DS, Panjkovich A, Mertens HDT, Gruzinov A, Borges C, Jeffries CM, Svergun DI, Franke D. ATSAS 3.0: expanded functionality and new tools for small-angle scattering data analysis. J Appl Crystallogr 2021; 54:343-355. [PMID: 33833657 PMCID: PMC7941305 DOI: 10.1107/s1600576720013412] [Citation(s) in RCA: 535] [Impact Index Per Article: 133.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 10/06/2020] [Indexed: 11/11/2022] Open
Abstract
The ATSAS software suite encompasses a number of programs for the processing, visualization, analysis and modelling of small-angle scattering data, with a focus on the data measured from biological macromolecules. Here, new developments in the ATSAS 3.0 package are described. They include IMSIM, for simulating isotropic 2D scattering patterns; IMOP, to perform operations on 2D images and masks; DATRESAMPLE, a method for variance estimation of structural invariants through parametric resampling; DATFT, which computes the pair distance distribution function by a direct Fourier transform of the scattering data; PDDFFIT, to compute the scattering data from a pair distance distribution function, allowing comparison with the experimental data; a new module in DATMW for Bayesian consensus-based concentration-independent molecular weight estimation; DATMIF, an ab initio shape analysis method that optimizes the search model directly against the scattering data; DAMEMB, an application to set up the initial search volume for multiphase modelling of membrane proteins; ELLLIP, to perform quasi-atomistic modelling of liposomes with elliptical shapes; NMATOR, which models conformational changes in nucleic acid structures through normal mode analysis in torsion angle space; DAMMIX, which reconstructs the shape of an unknown intermediate in an evolving system; and LIPMIX and BILMIX, for modelling multilamellar and asymmetric lipid vesicles, respectively. In addition, technical updates were deployed to facilitate maintainability of the package, which include porting the PRIMUS graphical interface to Qt5, updating SASpy - a PyMOL plugin to run a subset of ATSAS tools - to be both Python 2 and 3 compatible, and adding utilities to facilitate mmCIF compatibility in future ATSAS releases. All these features are implemented in ATSAS 3.0, freely available for academic users at https://www.embl-hamburg.de/biosaxs/software.html.
Collapse
Affiliation(s)
- Karen Manalastas-Cantos
- European Molecular Biology Laboratory, Hamburg Site, Notkestrasse 85, Building 25 A, Hamburg, 22607, Germany
| | - Petr V. Konarev
- A.V. Shubnikov Institute of Crystallography, Federal Scientific Research Centre ‘Crystallography and Photonics’ of Russian Academy of Sciences, Leninsky prospekt 59, Moscow, 119333, Russian Federation
| | - Nelly R. Hajizadeh
- European Molecular Biology Laboratory, Hamburg Site, Notkestrasse 85, Building 25 A, Hamburg, 22607, Germany
| | - Alexey G. Kikhney
- European Molecular Biology Laboratory, Hamburg Site, Notkestrasse 85, Building 25 A, Hamburg, 22607, Germany
| | - Maxim V. Petoukhov
- A.V. Shubnikov Institute of Crystallography, Federal Scientific Research Centre ‘Crystallography and Photonics’ of Russian Academy of Sciences, Leninsky prospekt 59, Moscow, 119333, Russian Federation
| | - Dmitry S. Molodenskiy
- European Molecular Biology Laboratory, Hamburg Site, Notkestrasse 85, Building 25 A, Hamburg, 22607, Germany
| | - Alejandro Panjkovich
- European Molecular Biology Laboratory, Hamburg Site, Notkestrasse 85, Building 25 A, Hamburg, 22607, Germany
| | - Haydyn D. T. Mertens
- European Molecular Biology Laboratory, Hamburg Site, Notkestrasse 85, Building 25 A, Hamburg, 22607, Germany
| | - Andrey Gruzinov
- European Molecular Biology Laboratory, Hamburg Site, Notkestrasse 85, Building 25 A, Hamburg, 22607, Germany
| | - Clemente Borges
- European Molecular Biology Laboratory, Hamburg Site, Notkestrasse 85, Building 25 A, Hamburg, 22607, Germany
| | - Cy M. Jeffries
- European Molecular Biology Laboratory, Hamburg Site, Notkestrasse 85, Building 25 A, Hamburg, 22607, Germany
| | - Dmitri I. Svergun
- European Molecular Biology Laboratory, Hamburg Site, Notkestrasse 85, Building 25 A, Hamburg, 22607, Germany
| | - Daniel Franke
- European Molecular Biology Laboratory, Hamburg Site, Notkestrasse 85, Building 25 A, Hamburg, 22607, Germany
| |
Collapse
|
8
|
The protealysin operon encodes emfourin, a prototype of a novel family of protein metalloprotease inhibitors. Int J Biol Macromol 2020; 169:583-596. [PMID: 33385454 DOI: 10.1016/j.ijbiomac.2020.12.170] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 01/02/2023]
Abstract
Protealysin is a Serratia proteamaculans metalloproteinase of the M4 peptidase family and the prototype of a large group of protealysin-like proteases (PLPs). PLPs are likely involved in bacterial interaction with plants and animals as well as in bacterial pathogenesis. We demonstrated that the PLP genes in bacteria colocalize with the genes of putative conserved proteins. In S. proteamaculans, these two genes form a bicistronic operon. The putative S. proteamaculans protein that we called emfourin (M4in) was expressed in Escherichia coli and characterized. M4in forms a complex with protealysin with a 1:1 stoichiometry and is a potent slow-binding competitive inhibitor of protealysin (Ki = 52 ± 14 pM); besides, M4in is not secreted from S. proteamaculans constitutively. A comparison of amino acid sequences of M4in and its homologs with those of known inhibitors suggests that M4in is the prototype of a new family of protein inhibitors of proteases.
Collapse
|
9
|
Custódio TF, Das H, Sheward DJ, Hanke L, Pazicky S, Pieprzyk J, Sorgenfrei M, Schroer MA, Gruzinov AY, Jeffries CM, Graewert MA, Svergun DI, Dobrev N, Remans K, Seeger MA, McInerney GM, Murrell B, Hällberg BM, Löw C. Selection, biophysical and structural analysis of synthetic nanobodies that effectively neutralize SARS-CoV-2. Nat Commun 2020; 11:5588. [PMID: 33149112 PMCID: PMC7642358 DOI: 10.1038/s41467-020-19204-y] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 10/01/2020] [Indexed: 12/26/2022] Open
Abstract
The coronavirus SARS-CoV-2 is the cause of the ongoing COVID-19 pandemic. Therapeutic neutralizing antibodies constitute a key short-to-medium term approach to tackle COVID-19. However, traditional antibody production is hampered by long development times and costly production. Here, we report the rapid isolation and characterization of nanobodies from a synthetic library, known as sybodies (Sb), that target the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein. Several binders with low nanomolar affinities and efficient neutralization activity were identified of which Sb23 displayed high affinity and neutralized pseudovirus with an IC50 of 0.6 µg/ml. A cryo-EM structure of the spike bound to Sb23 showed that Sb23 binds competitively in the ACE2 binding site. Furthermore, the cryo-EM reconstruction revealed an unusual conformation of the spike where two RBDs are in the 'up' ACE2-binding conformation. The combined approach represents an alternative, fast workflow to select binders with neutralizing activity against newly emerging viruses.
Collapse
Affiliation(s)
- Tânia F Custódio
- Centre for Structural Systems Biology (CSSB), DESY and European Molecular Biology Laboratory Hamburg, Notkestrasse 85, D-22607, Hamburg, Germany
| | - Hrishikesh Das
- Centre for Structural Systems Biology (CSSB) and Karolinska Institutet VR-RÅC, Notkestrasse 85, D-22607, Hamburg, Germany
| | - Daniel J Sheward
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, 17177, Sweden
- Division of Virology, Institute of Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Leo Hanke
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, 17177, Sweden
| | - Samuel Pazicky
- Centre for Structural Systems Biology (CSSB), DESY and European Molecular Biology Laboratory Hamburg, Notkestrasse 85, D-22607, Hamburg, Germany
| | - Joanna Pieprzyk
- Centre for Structural Systems Biology (CSSB), DESY and European Molecular Biology Laboratory Hamburg, Notkestrasse 85, D-22607, Hamburg, Germany
| | - Michèle Sorgenfrei
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Martin A Schroer
- European Molecular Biology Laboratory (EMBL), Hamburg Outstation c/o Deutsches Elektronen Synchrotron (DESY), Notkestrasse 85, D-22607, Hamburg, Germany
| | - Andrey Yu Gruzinov
- European Molecular Biology Laboratory (EMBL), Hamburg Outstation c/o Deutsches Elektronen Synchrotron (DESY), Notkestrasse 85, D-22607, Hamburg, Germany
| | - Cy M Jeffries
- European Molecular Biology Laboratory (EMBL), Hamburg Outstation c/o Deutsches Elektronen Synchrotron (DESY), Notkestrasse 85, D-22607, Hamburg, Germany
| | - Melissa A Graewert
- European Molecular Biology Laboratory (EMBL), Hamburg Outstation c/o Deutsches Elektronen Synchrotron (DESY), Notkestrasse 85, D-22607, Hamburg, Germany
| | - Dmitri I Svergun
- European Molecular Biology Laboratory (EMBL), Hamburg Outstation c/o Deutsches Elektronen Synchrotron (DESY), Notkestrasse 85, D-22607, Hamburg, Germany
| | - Nikolay Dobrev
- European Molecular Biology Laboratory (EMBL) Heidelberg, Protein Expression and Purification Core Facility, 69117, Heidelberg, Germany
| | - Kim Remans
- European Molecular Biology Laboratory (EMBL) Heidelberg, Protein Expression and Purification Core Facility, 69117, Heidelberg, Germany
| | - Markus A Seeger
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Gerald M McInerney
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, 17177, Sweden
| | - Ben Murrell
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, 17177, Sweden.
| | - B Martin Hällberg
- Centre for Structural Systems Biology (CSSB) and Karolinska Institutet VR-RÅC, Notkestrasse 85, D-22607, Hamburg, Germany.
- Department of Cell and Molecular Biology, Karolinska Institutet, 17177, Stockholm, Sweden.
| | - Christian Löw
- Centre for Structural Systems Biology (CSSB), DESY and European Molecular Biology Laboratory Hamburg, Notkestrasse 85, D-22607, Hamburg, Germany.
| |
Collapse
|
10
|
Jeffries CM, Pietras Z, Svergun DI. The basics of small-angle neutron scattering (SANS for new users of structural biology). EPJ WEB OF CONFERENCES 2020. [DOI: 10.1051/epjconf/202023603001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Small-angle neutron scattering (SANS) provides a means to probe the time-preserved structural state(s) of bio-macromolecules in solution. As such, SANS affords the opportunity to assess the redistribution of mass, i.e., changes in conformation, which occur when macromolecules interact to form higher-order assemblies and to evaluate the structure and disposition of components within such systems. As a technique, SANS offers scope for ‘out of the box thinking’, from simply investigating the structures of macromolecules and their complexes through to where structural biology interfaces with soft-matter and nanotechnology. All of this simply rests on the way neutrons interact and scatter from atoms (largely hydrogens) and how this interaction differs from the scattering of neutrons from the nuclei of other ‘biological isotopes’. The following chapter describes the basics of neutron scattering for new users of structural biology in context of the neutron/hydrogen interaction and how this can be exploited to interrogate the structures of macromolecules, their complexes and nano-conjugates in solution.
Collapse
|
11
|
Metwalli E, Götz K, Lages S, Bär C, Zech T, Noll DM, Schuldes I, Schindler T, Prihoda A, Lang H, Grasser J, Jacques M, Didier L, Cyril A, Martel A, Porcar L, Unruh T. A novel experimental approach for nanostructure analysis: simultaneous small-angle X-ray and neutron scattering. J Appl Crystallogr 2020; 53:722-733. [PMID: 32684887 PMCID: PMC7312133 DOI: 10.1107/s1600576720005208] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 04/13/2020] [Indexed: 12/31/2022] Open
Abstract
Exploiting small-angle X-ray and neutron scattering (SAXS/SANS) on the same sample volume at the same time provides complementary nanoscale structural information in two different contrast situations. Unlike an independent experimental approach, the truly combined SAXS/SANS experimental approach ensures the exactness of the probed samples, particularly for in situ studies. Here, an advanced portable SAXS system that is dimensionally suitable for installation in the D22 zone of ILL is introduced. The SAXS apparatus is based on a Rigaku switchable copper/molybdenum microfocus rotating-anode X-ray generator and a DECTRIS detector with a changeable sample-to-detector distance of up to 1.6 m in a vacuum chamber. A case study is presented to demonstrate the uniqueness of the newly established method. Temporal structural rearrangements of both the organic stabilizing agent and organically capped gold colloidal particles during gold nanoparticle growth are simultaneously probed, enabling the immediate acquisition of correlated structural information. The new nano-analytical method will open the way for real-time investigations of a wide range of innovative nanomaterials and will enable comprehensive in situ studies on biological systems. The potential development of a fully automated SAXS/SANS system with a common control environment and additional sample environments, permitting a continual and efficient operation of the system by ILL users, is also introduced.
Collapse
Affiliation(s)
- Ezzeldin Metwalli
- Institute for Crystallography and Structural Physics, Friedrich-Alexander-Universität Erlangen–Nürnberg, Staudtstrasse 3, Erlangen, 91058, Germany
| | - Klaus Götz
- Institute for Crystallography and Structural Physics, Friedrich-Alexander-Universität Erlangen–Nürnberg, Staudtstrasse 3, Erlangen, 91058, Germany
- Center for Nanoanalysis and Electron Microscopy (CENEM) and Interdisciplinary Center for Nanostructured Films (IZNF), Friedrich-Alexander-Universität Erlangen–Nürnberg (FAU), Cauerstrasse 3, Erlangen, 91058, Germany
| | - Sebastian Lages
- Institute for Crystallography and Structural Physics, Friedrich-Alexander-Universität Erlangen–Nürnberg, Staudtstrasse 3, Erlangen, 91058, Germany
| | - Christian Bär
- Institute for Crystallography and Structural Physics, Friedrich-Alexander-Universität Erlangen–Nürnberg, Staudtstrasse 3, Erlangen, 91058, Germany
| | - Tobias Zech
- Institute for Crystallography and Structural Physics, Friedrich-Alexander-Universität Erlangen–Nürnberg, Staudtstrasse 3, Erlangen, 91058, Germany
- Center for Nanoanalysis and Electron Microscopy (CENEM) and Interdisciplinary Center for Nanostructured Films (IZNF), Friedrich-Alexander-Universität Erlangen–Nürnberg (FAU), Cauerstrasse 3, Erlangen, 91058, Germany
| | - Dennis M. Noll
- Institute for Crystallography and Structural Physics, Friedrich-Alexander-Universität Erlangen–Nürnberg, Staudtstrasse 3, Erlangen, 91058, Germany
| | - Isabel Schuldes
- Institute for Crystallography and Structural Physics, Friedrich-Alexander-Universität Erlangen–Nürnberg, Staudtstrasse 3, Erlangen, 91058, Germany
| | - Torben Schindler
- Institute for Crystallography and Structural Physics, Friedrich-Alexander-Universität Erlangen–Nürnberg, Staudtstrasse 3, Erlangen, 91058, Germany
| | - Annemarie Prihoda
- Institute for Crystallography and Structural Physics, Friedrich-Alexander-Universität Erlangen–Nürnberg, Staudtstrasse 3, Erlangen, 91058, Germany
- Center for Nanoanalysis and Electron Microscopy (CENEM) and Interdisciplinary Center for Nanostructured Films (IZNF), Friedrich-Alexander-Universität Erlangen–Nürnberg (FAU), Cauerstrasse 3, Erlangen, 91058, Germany
| | - Herbert Lang
- Institute for Crystallography and Structural Physics, Friedrich-Alexander-Universität Erlangen–Nürnberg, Staudtstrasse 3, Erlangen, 91058, Germany
| | - Jürgen Grasser
- Institute for Crystallography and Structural Physics, Friedrich-Alexander-Universität Erlangen–Nürnberg, Staudtstrasse 3, Erlangen, 91058, Germany
| | - Mark Jacques
- Institut Laue–Langevin, 71 Avenue des Martyrs, Grenoble, 38042, France
| | - Luc Didier
- Institut Laue–Langevin, 71 Avenue des Martyrs, Grenoble, 38042, France
| | - Amrouni Cyril
- Institut Laue–Langevin, 71 Avenue des Martyrs, Grenoble, 38042, France
| | - Anne Martel
- Institut Laue–Langevin, 71 Avenue des Martyrs, Grenoble, 38042, France
| | - Lionel Porcar
- Institut Laue–Langevin, 71 Avenue des Martyrs, Grenoble, 38042, France
| | - Tobias Unruh
- Institute for Crystallography and Structural Physics, Friedrich-Alexander-Universität Erlangen–Nürnberg, Staudtstrasse 3, Erlangen, 91058, Germany
- Center for Nanoanalysis and Electron Microscopy (CENEM) and Interdisciplinary Center for Nanostructured Films (IZNF), Friedrich-Alexander-Universität Erlangen–Nürnberg (FAU), Cauerstrasse 3, Erlangen, 91058, Germany
| |
Collapse
|
12
|
Théobald-Dietrich A, de Wijn R, Rollet K, Bluhm A, Rudinger-Thirion J, Paulus C, Lorber B, Thureau A, Frugier M, Sauter C. Structural Analysis of RNA by Small-Angle X-ray Scattering. Methods Mol Biol 2020; 2113:189-215. [PMID: 32006316 DOI: 10.1007/978-1-0716-0278-2_14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Over the past two decades small-angle X-ray scattering (SAXS) has become a popular method to characterize solutions of biomolecules including ribonucleic acid (RNA). In an integrative structural approach, SAXS is complementary to crystallography, NMR, and electron microscopy and provides information about RNA architecture and dynamics. This chapter highlights the practical advantages of combining size-exclusion chromatography and SAXS at synchrotron facilities. It is illustrated by practical case studies of samples ranging from single hairpins and tRNA to a large IRES. The emphasis is also put on sample preparation which is a critical step of SAXS analysis and on optimized protocols for in vitro RNA synthesis ensuring the production of mg amount of pure and homogeneous molecules.
Collapse
Affiliation(s)
- Anne Théobald-Dietrich
- Architecture et Réactivité de l'ARN, UPR 9002, IBMC, CNRS, Université de Strasbourg, Strasbourg, France
| | - Raphaël de Wijn
- Architecture et Réactivité de l'ARN - CNRS UPR 9002, Institut de Biologie Moléculaire et Cellulaire, Université de Strasbourg, Strasbourg, France
| | - Kévin Rollet
- Architecture et Réactivité de l'ARN - CNRS UPR 9002, Institut de Biologie Moléculaire et Cellulaire, Université de Strasbourg, Strasbourg, France
| | - Alexandra Bluhm
- Architecture et Réactivité de l'ARN, UPR 9002, IBMC, CNRS, Université de Strasbourg, Strasbourg, France
| | - Joëlle Rudinger-Thirion
- Architecture et Réactivité de l'ARN - CNRS UPR 9002, Institut de Biologie Moléculaire et Cellulaire, Université de Strasbourg, Strasbourg, France
| | - Caroline Paulus
- Architecture et Réactivité de l'ARN - CNRS UPR 9002, Institut de Biologie Moléculaire et Cellulaire, Université de Strasbourg, Strasbourg, France
| | - Bernard Lorber
- Architecture et Réactivité de l'ARN - CNRS UPR 9002, Institut de Biologie Moléculaire et Cellulaire, Université de Strasbourg, Strasbourg, France
| | | | - Magali Frugier
- Architecture et Réactivité de l'ARN - CNRS UPR 9002, Institut de Biologie Moléculaire et Cellulaire, Université de Strasbourg, Strasbourg, France
| | - Claude Sauter
- Architecture et Réactivité de l'ARN - CNRS UPR 9002, Institut de Biologie Moléculaire et Cellulaire, Université de Strasbourg, Strasbourg, France.
| |
Collapse
|
13
|
Lapinaite A, Carlomagno T, Gabel F. Small-Angle Neutron Scattering of RNA-Protein Complexes. Methods Mol Biol 2020; 2113:165-188. [PMID: 32006315 DOI: 10.1007/978-1-0716-0278-2_13] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Small-angle neutron scattering (SANS) provides structural information on biomacromolecules and their complexes in dilute solutions at the nanometer length scale. The overall dimensions, shapes, and interactions can be probed and compared to information obtained by complementary structural biology techniques such as crystallography, NMR, and EM. SANS, in combination with solvent H2O/D2O exchange and/or deuteration, is particularly well suited to probe the internal structure of RNA-protein (RNP) complexes since neutrons are more sensitive than X-rays to the difference in scattering length densities of proteins and RNA, with respect to an aqueous solvent. In this book chapter we provide a practical guide on how to carry out SANS experiments on RNP complexes, as well as possibilities of data analysis and interpretation.
Collapse
Affiliation(s)
- Audrone Lapinaite
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Teresa Carlomagno
- Centre for Biomolecular Drug Research, Leibniz University Hannover, Hannover, Germany.,Helmholtz Centre for Infection Research, Group of Structural Chemistry, Braunschweig, Germany
| | - Frank Gabel
- Univ. Grenoble Alpes, CEA, CNRS, IBS, Grenoble, France.
| |
Collapse
|
14
|
Structural analysis of the complex between influenza B nucleoprotein and human importin-α. Sci Rep 2017; 7:17164. [PMID: 29215074 PMCID: PMC5719345 DOI: 10.1038/s41598-017-17458-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 11/27/2017] [Indexed: 12/29/2022] Open
Abstract
Influenza viruses are negative strand RNA viruses that replicate in the nucleus of the cell. The viral nucleoprotein (NP) is the major component of the viral ribonucleoprotein. In this paper we show that the NP of influenza B has a long N-terminal tail of 70 residues with intrinsic flexibility. This tail contains the Nuclear Location Signal (NLS). The nuclear trafficking of the viral components mobilizes cellular import factors at different stages, making these host-pathogen interactions promising targets for new therapeutics. NP is imported into the nucleus by the importin-α/β pathway, through a direct interaction with importin-α isoforms. Here we provide a combined nuclear magnetic resonance and small-angle X-ray scattering (NMR/SAXS) analysis to describe the dynamics of the interaction between influenza B NP and the human importin-α. The NP of influenza B does not have a single NLS nor a bipartite NLS but our results suggest that the tail harbors several adjacent NLS sequences, located between residues 30 and 71.
Collapse
|
15
|
Tuukkanen AT, Spilotros A, Svergun DI. Progress in small-angle scattering from biological solutions at high-brilliance synchrotrons. IUCRJ 2017; 4:518-528. [PMID: 28989709 PMCID: PMC5619845 DOI: 10.1107/s2052252517008740] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 06/12/2017] [Indexed: 05/26/2023]
Abstract
Small-angle X-ray scattering (SAXS) is an established technique that provides low-resolution structural information on macromolecular solutions. Recent decades have witnessed significant progress in both experimental facilities and in novel data-analysis approaches, making SAXS a mainstream method for structural biology. The technique is routinely applied to directly reconstruct low-resolution shapes of proteins and to generate atomistic models of macromolecular assemblies using hybrid approaches. Very importantly, SAXS is capable of yielding structural information on systems with size and conformational polydispersity, including highly flexible objects. In addition, utilizing high-flux synchrotron facilities, time-resolved SAXS allows analysis of kinetic processes over time ranges from microseconds to hours. Dedicated bioSAXS beamlines now offer fully automated data-collection and analysis pipelines, where analysis and modelling is conducted on the fly. This enables SAXS to be employed as a high-throughput method to rapidly screen various sample conditions and additives. The growing SAXS user community is supported by developments in data and model archiving and quality criteria. This review illustrates the latest developments in SAXS, in particular highlighting time-resolved applications aimed at flexible and evolving systems.
Collapse
Affiliation(s)
- Anne T. Tuukkanen
- European Molecular Biology Laboratory, EMBL Hamburg c/o DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Alessandro Spilotros
- European Molecular Biology Laboratory, EMBL Hamburg c/o DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Dmitri I. Svergun
- European Molecular Biology Laboratory, EMBL Hamburg c/o DESY, Notkestrasse 85, 22607 Hamburg, Germany
| |
Collapse
|
16
|
Combining NMR and small angle X-ray scattering for the study of biomolecular structure and dynamics. Arch Biochem Biophys 2017; 628:33-41. [PMID: 28501583 PMCID: PMC5553349 DOI: 10.1016/j.abb.2017.05.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 05/05/2017] [Accepted: 05/08/2017] [Indexed: 01/25/2023]
Abstract
Small-angle X-ray scattering (SAXS) and Nuclear Magnetic Resonance (NMR) are established methods to analyze the structure and structural transitions of biological macromolecules in solution. Both methods are directly applicable to near-native macromolecular solutions and allow one to study structural responses to physical and chemical changes or ligand additions. Whereas SAXS is applied to elucidate overall structure, interactions and flexibility over a wide range of particle sizes, NMR yields atomic resolution detail for moderately sized macromolecules. NMR is arguably the most powerful technique for the experimental analysis of dynamics. The joint application of these two highly complementary techniques provides an extremely useful approach that facilitates comprehensive characterization of biomacromolecular solutions. SAXS and NMR are effective and highly complementary techniques in structural biology. Constraints from SAXS can be readily incorporated in NMR structure calculations. High resolution NMR models of domains can serve as building blocks for SAXS-based rigid body modeling. Flexible systems can be well described using ensemble approaches combining SAXS and NMR. Dynamics studies can be enhanced by combining SAXS and NMR.
Collapse
|
17
|
Cantara WA, Olson ED, Musier-Forsyth K. Analysis of RNA structure using small-angle X-ray scattering. Methods 2017; 113:46-55. [PMID: 27777026 PMCID: PMC5253320 DOI: 10.1016/j.ymeth.2016.10.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 10/10/2016] [Accepted: 10/20/2016] [Indexed: 11/22/2022] Open
Abstract
In addition to their role in correctly attaching specific amino acids to cognate tRNAs, aminoacyl-tRNA synthetases (aaRS) have been found to possess many alternative functions and often bind to and act on other nucleic acids. In contrast to the well-defined 3D structure of tRNA, the structures of many of the other RNAs recognized by aaRSs have not been solved. Despite advances in the use of X-ray crystallography (XRC), nuclear magnetic resonance (NMR) spectroscopy and cryo-electron microscopy (cryo-EM) for structural characterization of biomolecules, significant challenges to solving RNA structures still exist. Recently, small-angle X-ray scattering (SAXS) has been increasingly employed to characterize the 3D structures of RNAs and RNA-protein complexes. SAXS is capable of providing low-resolution tertiary structure information under physiological conditions and with less intensive sample preparation and data analysis requirements than XRC, NMR and cryo-EM. In this article, we describe best practices involved in the process of RNA and RNA-protein sample preparation, SAXS data collection, data analysis, and structural model building.
Collapse
Affiliation(s)
- William A Cantara
- Department of Chemistry and Biochemistry, Center for Retrovirus Research, and Center for RNA Biology, The Ohio State University, Columbus, OH 43210, United States
| | - Erik D Olson
- Department of Chemistry and Biochemistry, Center for Retrovirus Research, and Center for RNA Biology, The Ohio State University, Columbus, OH 43210, United States
| | - Karin Musier-Forsyth
- Department of Chemistry and Biochemistry, Center for Retrovirus Research, and Center for RNA Biology, The Ohio State University, Columbus, OH 43210, United States.
| |
Collapse
|
18
|
Petoukhov MV, Tuukkanen A. SAS-Based Structural Modelling and Model Validation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1009:87-105. [PMID: 29218555 DOI: 10.1007/978-981-10-6038-0_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Small angle scattering of X-rays (SAXS) and neutrons (SANS) is a structural technique to study disordered systems with chaotic orientations of scattering inhomogeneities at low resolution. An important example of such systems are solutions of biological macromolecules. Rapid development in the methodology for solution scattering data interpretation and model building during the last two decades brought the analysis far beyond the determination of just few overall structural parameters (which was the only possibility in the past) and ensured SAS a firm position in the methods palette of the modern life sciences. The advances in the methodology include ab initio approaches for shape and domain structure restoration from scattering curves without a priori structural knowledge, classification and validation of the models, evaluation of potential ambiguity associated with the reconstruction. In rigid body and hybrid modelling approaches, solution scattering is synergistically used with other structural techniques utilizing the complementary information such as atomic models of the components, intramolecular contacts, subunits orientations etc. for the reconstruction of complex systems. The usual requirement of the sample monodispersity has been loosed recently and the technique can now address such systems as weakly bound oligomers and transient complexes. These state-of-the-art methods are described together with the examples of their applications and the possible ways of post-processing of the models.
Collapse
Affiliation(s)
- Maxim V Petoukhov
- Hamburg Unit, European Molecular Biology Laboratory, EMBL c/o DESY, Notkestrasse 85, 22607, Hamburg, Germany. .,Federal Scientific Research Centre "Crystallography and Photonics", RAS, Leninsky prospect 59, 119333, Moscow, Russia. .,A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, RAS, Leninsky prospect 31, 119071, Moscow, Russia.
| | - Anne Tuukkanen
- Hamburg Unit, European Molecular Biology Laboratory, EMBL c/o DESY, Notkestrasse 85, 22607, Hamburg, Germany
| |
Collapse
|
19
|
Jeffries CM, Graewert MA, Blanchet CE, Langley DB, Whitten AE, Svergun DI. Preparing monodisperse macromolecular samples for successful biological small-angle X-ray and neutron-scattering experiments. Nat Protoc 2016; 11:2122-2153. [PMID: 27711050 PMCID: PMC5402874 DOI: 10.1038/nprot.2016.113] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Small-angle X-ray scattering (SAXS) and small-angle neutron scattering (SANS) are techniques used to extract structural parameters and determine the overall structures and shapes of biological macromolecules, complexes and assemblies in solution. The scattering intensities measured from a sample contain contributions from all atoms within the illuminated sample volume, including the solvent and buffer components, as well as the macromolecules of interest. To obtain structural information, it is essential to prepare an exactly matched solvent blank so that background scattering contributions can be accurately subtracted from the sample scattering to obtain the net scattering from the macromolecules in the sample. In addition, sample heterogeneity caused by contaminants, aggregates, mismatched solvents, radiation damage or other factors can severely influence and complicate data analysis, so it is essential that the samples be pure and monodisperse for the duration of the experiment. This protocol outlines the basic physics of SAXS and SANS, and it reveals how the underlying conceptual principles of the techniques ultimately 'translate' into practical laboratory guidance for the production of samples of sufficiently high quality for scattering experiments. The procedure describes how to prepare and characterize protein and nucleic acid samples for both SAXS and SANS using gel electrophoresis, size-exclusion chromatography (SEC) and light scattering. Also included are procedures that are specific to X-rays (in-line SEC-SAXS) and neutrons, specifically preparing samples for contrast matching or variation experiments and deuterium labeling of proteins.
Collapse
Affiliation(s)
- Cy M. Jeffries
- European Molecular Biology Laboratory (EMBL) Hamburg Outstation, c/o
DESY. Hamburg, 22603, Germany
| | - Melissa A. Graewert
- European Molecular Biology Laboratory (EMBL) Hamburg Outstation, c/o
DESY. Hamburg, 22603, Germany
| | - Clément E. Blanchet
- European Molecular Biology Laboratory (EMBL) Hamburg Outstation, c/o
DESY. Hamburg, 22603, Germany
| | - David B. Langley
- Victor Chang Cardiac Research and Garvan Institutes, Darlinghurst,
NSW, Australia
| | - Andrew E. Whitten
- Australian Nuclear Science and Technology Organisation, Lucas
Heights, NSW, Australia
| | - Dmitri I Svergun
- European Molecular Biology Laboratory (EMBL) Hamburg Outstation, c/o
DESY. Hamburg, 22603, Germany
| |
Collapse
|
20
|
Ingr M, Kutálková E, Hrnčiřík J, Lange R. Equilibria of oligomeric proteins under high pressure - A theoretical description. J Theor Biol 2016; 411:16-26. [PMID: 27717844 DOI: 10.1016/j.jtbi.2016.10.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 09/14/2016] [Accepted: 10/03/2016] [Indexed: 01/18/2023]
Abstract
High pressure methods have become a useful tool for studying protein structure and stability. Using them, various physico-chemical processes including protein unfolding, aggregation, oligomer dissociation or enzyme-activity decrease were studied on many different proteins. Oligomeric protein dissociation is a process that can perfectly utilize the potential of high-pressure techniques, as the high pressure shifts the equilibria to higher concentrations making them better observable by spectroscopic methods. This can be especially useful when the oligomeric form is highly stable at atmospheric pressure. These applications may be, however, hindered by less intensive experimental response as well as interference of the oligomerization equilibria with unfolding or aggregation of the subunits, but also by more complex theoretical description. In this study we develop mathematical models describing different kinds of oligomerization equilibria, both closed (equilibrium of monomer and the highest possible oligomer without any intermediates) and consecutive. Closed homooligomer equilibria are discussed for any oligomerization degree, while the more complex heterooligomer equilibria and the consecutive equilibria in both homo- and heterooligomers are taken into account only for dimers and trimers. In all the cases, fractions of all the relevant forms are evaluated as functions of pressure and concentration. Significant points (inflection points and extremes) of the resulting transition curves, that can be determined experimentally, are evaluated as functions of pressure and/or concentration. These functions can be further used in order to evaluate the thermodynamic parameters of the system, i.e. atmospheric-pressure equilibrium constants and volume changes of the individual steps of the oligomer-dissociation processes.
Collapse
Affiliation(s)
- Marek Ingr
- Tomas Bata University in Zlín, Faculty of Technology, Department of Physics and Materials Engineering, nám. T. G. Masaryka 5555, 76001 Zlín, Czechia; Charles University in Prague, Faculty of Science, Department of Biochemistry, Hlavova 2030, 12843 Prague 2, Czechia.
| | - Eva Kutálková
- Tomas Bata University in Zlín, Faculty of Technology, Department of Physics and Materials Engineering, nám. T. G. Masaryka 5555, 76001 Zlín, Czechia
| | - Josef Hrnčiřík
- Tomas Bata University in Zlín, Faculty of Technology, Department of Physics and Materials Engineering, nám. T. G. Masaryka 5555, 76001 Zlín, Czechia
| | - Reinhard Lange
- Université Montpellier, INRA UMR IATE, Biochimie et Technologie Alimentaires, cc023, Place Eugene Bataillon, 34095 Montpellier Cedex 05, France
| |
Collapse
|
21
|
Konarev PV, Petoukhov MV, Svergun DI. Rapid automated superposition of shapes and macromolecular models using spherical harmonics. J Appl Crystallogr 2016; 49:953-960. [PMID: 27275142 PMCID: PMC4886985 DOI: 10.1107/s1600576716005793] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Accepted: 04/07/2016] [Indexed: 01/20/2023] Open
Abstract
A rapid algorithm to superimpose macromolecular models in Fourier space is proposed and implemented (SUPALM). The method uses a normalized integrated cross-term of the scattering amplitudes as a proximity measure between two three-dimensional objects. The reciprocal-space algorithm allows for direct matching of heterogeneous objects including high- and low-resolution models represented by atomic coordinates, beads or dummy residue chains as well as electron microscopy density maps and inhomogeneous multi-phase models (e.g. of protein-nucleic acid complexes). Using spherical harmonics for the computation of the amplitudes, the method is up to an order of magnitude faster than the real-space algorithm implemented in SUPCOMB by Kozin & Svergun [J. Appl. Cryst. (2001 ▸), 34, 33-41]. The utility of the new method is demonstrated in a number of test cases and compared with the results of SUPCOMB. The spherical harmonics algorithm is best suited for low-resolution shape models, e.g. those provided by solution scattering experiments, but also facilitates a rapid cross-validation against structural models obtained by other methods.
Collapse
Affiliation(s)
- Petr V. Konarev
- Laboratory of Reflectometry and Small-Angle Scattering, A.V. Shubnikov Institute of Crystallography of Federal Scientific Research Centre ‘Crystallography and Photonics’, Russian Academy of Sciences, Leninsky prospekt 59, Moscow, 119333, Russian Federation
| | - Maxim V. Petoukhov
- Hamburg Outstation, European Molecular Biology Laboratory, Notkestrasse 85, Hamburg, 22607, Germany
| | - Dmitri I. Svergun
- Hamburg Outstation, European Molecular Biology Laboratory, Notkestrasse 85, Hamburg, 22607, Germany
| |
Collapse
|
22
|
The crystal structure and small-angle X-ray analysis of CsdL/TcdA reveal a new tRNA binding motif in the MoeB/E1 superfamily. PLoS One 2015; 10:e0118606. [PMID: 25897750 PMCID: PMC4405576 DOI: 10.1371/journal.pone.0118606] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 01/21/2015] [Indexed: 11/19/2022] Open
Abstract
Cyclic N6-threonylcarbamoyladenosine ('cyclic t6A', ct(6)A) is a non-thiolated hypermodification found in transfer RNAs (tRNAs) in bacteria, protists, fungi and plants. In bacteria and yeast cells ct(6)A has been shown to enhance translation fidelity and efficiency of ANN codons by improving the faithful discrimination of aminoacylated tRNAs by the ribosome. To further the understanding of ct(6)A biology we have determined the high-resolution crystal structures of CsdL/TcdA in complex with AMP and ATP, an E1-like activating enzyme from Escherichia coli, which catalyzes the ATP-dependent dehydration of t6A to form ct(6)A. CsdL/TcdA is a dimer whose structural integrity and dimer interface depend critically on strongly bound K+ and Na+ cations. By using biochemical assays and small-angle X-ray scattering we show that CsdL/TcdA can associate with tRNA with a 1:1 stoichiometry and with the proper position and orientation for the cyclization of t6A. Furthermore, we show by nuclear magnetic resonance that CsdL/TcdA engages in transient interactions with CsdA and CsdE, which, in the latter case, involve catalytically important residues. These short-lived interactions may underpin the precise channeling of sulfur atoms from cysteine to CsdL/TcdA as previously characterized. In summary, the combination of structural, biophysical and biochemical methods applied to CsdL/TcdA has afforded a more thorough understanding of how the structure of this E1-like enzyme has been fine tuned to accomplish ct(6)A synthesis on tRNAs while providing support for the notion that CsdA and CsdE are able to functionally interact with CsdL/TcdA.
Collapse
|
23
|
Chaudhuri BN. Emerging applications of small angle solution scattering in structural biology. Protein Sci 2015; 24:267-76. [PMID: 25516491 PMCID: PMC4353354 DOI: 10.1002/pro.2624] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 12/05/2014] [Indexed: 12/12/2022]
Abstract
Small angle solution X-ray and neutron scattering recently resurfaced as powerful tools to address an array of biological problems including folding, intrinsic disorder, conformational transitions, macromolecular crowding, and self or hetero-assembling of biomacromolecules. In addition, small angle solution scattering complements crystallography, nuclear magnetic resonance spectroscopy, and other structural methods to aid in the structure determinations of multidomain or multicomponent proteins or nucleoprotein assemblies. Neutron scattering with hydrogen/deuterium contrast variation, or X-ray scattering with sucrose contrast variation to a certain extent, is a convenient tool for characterizing the organizations of two-component systems such as a nucleoprotein or a lipid-protein assembly. Time-resolved small and wide-angle solution scattering to study biological processes in real time, and the use of localized heavy-atom labeling and anomalous solution scattering for applications as FRET-like molecular rulers, are amongst promising newer developments. Despite the challenges in data analysis and interpretation, these X-ray/neutron solution scattering based approaches hold great promise for understanding a wide variety of complex processes prevalent in the biological milieu.
Collapse
Affiliation(s)
- Barnali N Chaudhuri
- Faculty of Life Sciences and Biotechnology, South Asian UniversityAkbar Bhawan, Chanakyapuri, New Delhi, India
| |
Collapse
|
24
|
Gabel F. Small-Angle Neutron Scattering for Structural Biology of Protein–RNA Complexes. Methods Enzymol 2015; 558:391-415. [DOI: 10.1016/bs.mie.2015.02.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
25
|
Resolving Individual Components in Protein–RNA Complexes Using Small-Angle X-ray Scattering Experiments. Methods Enzymol 2015; 558:363-390. [DOI: 10.1016/bs.mie.2015.02.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
26
|
Valentini E, Kikhney AG, Previtali G, Jeffries CM, Svergun DI. SASBDB, a repository for biological small-angle scattering data. Nucleic Acids Res 2014; 43:D357-63. [PMID: 25352555 PMCID: PMC4383894 DOI: 10.1093/nar/gku1047] [Citation(s) in RCA: 246] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Small-angle X-ray and neutron scattering (SAXS and SANS) are fundamental tools used to study the global shapes of proteins, nucleic acids, macromolecular complexes and assemblies in solution. Due to recent advances in instrumentation and computational methods, the quantity of experimental scattering data and subsequent publications is increasing dramatically. The need for a global repository allowing investigators to locate and access experimental scattering data and associated models was recently emphasized by the wwPDB small-angle scattering task force (SAStf). The small-angle scattering biological data bank (SASBDB) www.sasbdb.org has been designed in accordance with the plans of the SAStf as part of a future federated system of databases for biological SAXS and SANS. SASBDB is a comprehensive repository of freely accessible and fully searchable SAS experimental data and models that are deposited together with the relevant experimental conditions, sample details and instrument characteristics. At present the quality of deposited experimental data and the accuracy of models are manually curated, with future plans to integrate automated systems as the database expands.
Collapse
Affiliation(s)
- Erica Valentini
- European Molecular Biology Laboratory, Hamburg Outstation, Notkestr. 85, Geb. 25a, 22603 Hamburg, Germany
| | - Alexey G Kikhney
- European Molecular Biology Laboratory, Hamburg Outstation, Notkestr. 85, Geb. 25a, 22603 Hamburg, Germany
| | - Gianpietro Previtali
- European Molecular Biology Laboratory, Hamburg Outstation, Notkestr. 85, Geb. 25a, 22603 Hamburg, Germany
| | - Cy M Jeffries
- European Molecular Biology Laboratory, Hamburg Outstation, Notkestr. 85, Geb. 25a, 22603 Hamburg, Germany
| | - Dmitri I Svergun
- European Molecular Biology Laboratory, Hamburg Outstation, Notkestr. 85, Geb. 25a, 22603 Hamburg, Germany
| |
Collapse
|
27
|
Petoukhov MV, Weissenhorn W, Svergun DI. Endophilin-A1 BAR domain interaction with arachidonyl CoA. Front Mol Biosci 2014; 1:20. [PMID: 25988161 PMCID: PMC4428356 DOI: 10.3389/fmolb.2014.00020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 10/08/2014] [Indexed: 11/13/2022] Open
Abstract
Endophilin-A1 belongs to the family of BAR domain containing proteins that catalyze membrane remodeling processes via sensing, inducing and stabilizing membrane curvature. We show that the BAR domain of endophilin-A1 binds arachidonic acid and molds its coenzyme A (CoA) activated form, arachidonyl-CoA into a defined structure. We studied low resolution structures of endophilin-A1-BAR and its complex with arachidonyl-CoA in solution using synchrotron small-angle X-ray scattering (SAXS). The free endophilin-A1-BAR domain is shown to be dimeric at lower concentrations but builds tetramers and higher order complexes with increasing concentrations. Extensive titration SAXS studies revealed that the BAR domain produces a homogenous complex with the lipid micelles. The structural model of the complexes revealed two arachidonyl-CoA micelles bound to the distal arms of an endophilin-A1-BAR dimer. Intriguingly, the radius of the bound micelles significantly decreases compared to that of the free micelles, and this structural result may provide hints on the potential biological relevance of the endophilin-A1-BAR interaction with arachidonyl CoA.
Collapse
Affiliation(s)
- Maxim V. Petoukhov
- Hamburg Unit, European Molecular Biology Laboratory c/o DESYHamburg, Germany
| | - Winfried Weissenhorn
- Unit of Virus Host Cell Interactions, University Grenoble AlpesGrenoble, France
- Unit of Virus Host Cell Interactions, Centre National de la Recherche ScientifiqueGrenoble, France
| | - Dmitri I. Svergun
- Hamburg Unit, European Molecular Biology Laboratory c/o DESYHamburg, Germany
| |
Collapse
|
28
|
Taube M, Pieńkowska JR, Jarmołowski A, Kozak M. Low-resolution structure of the full-length barley (Hordeum vulgare) SGT1 protein in solution, obtained using small-angle X-ray scattering. PLoS One 2014; 9:e93313. [PMID: 24714665 PMCID: PMC3979677 DOI: 10.1371/journal.pone.0093313] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2013] [Accepted: 03/04/2014] [Indexed: 11/18/2022] Open
Abstract
SGT1 is an evolutionarily conserved eukaryotic protein involved in many important cellular processes. In plants, SGT1 is involved in resistance to disease. In a low ionic strength environment, the SGT1 protein tends to form dimers. The protein consists of three structurally independent domains (the tetratricopeptide repeats domain (TPR), the CHORD- and SGT1-containing domain (CS), and the SGT1-specific domain (SGS)), and two less conserved variable regions (VR1 and VR2). In the present study, we provide the low-resolution structure of the barley (Hordeum vulgare) SGT1 protein in solution and its dimer/monomer equilibrium using small-angle scattering of synchrotron radiation, ab-initio modeling and circular dichroism spectroscopy. The multivariate curve resolution least-square method (MCR-ALS) was applied to separate the scattering data of the monomeric and dimeric species from a complex mixture. The models of the barley SGT1 dimer and monomer were formulated using rigid body modeling with ab-initio structure prediction. Both oligomeric forms of barley SGT1 have elongated shapes with unfolded inter-domain regions. Circular dichroism spectroscopy confirmed that the barley SGT1 protein had a modular architecture, with an α-helical TPR domain, a β-sheet sandwich CS domain, and a disordered SGS domain separated by VR1 and VR2 regions. Using molecular docking and ab-initio protein structure prediction, a model of dimerization of the TPR domains was proposed.
Collapse
Affiliation(s)
- Michał Taube
- Department of Macromolecular Physics, Faculty of Physics, Adam Mickiewicz University, Poznań, Poland
| | - Joanna R. Pieńkowska
- Department of Cell Biology, Institute of Experimental BiFology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Artur Jarmołowski
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Maciej Kozak
- Department of Macromolecular Physics, Faculty of Physics, Adam Mickiewicz University, Poznań, Poland
| |
Collapse
|
29
|
Groocock LM, Nie M, Prudden J, Moiani D, Wang T, Cheltsov A, Rambo RP, Arvai AS, Hitomi C, Tainer JA, Luger K, Perry JJP, Lazzerini-Denchi E, Boddy MN. RNF4 interacts with both SUMO and nucleosomes to promote the DNA damage response. EMBO Rep 2014; 15:601-8. [PMID: 24714598 DOI: 10.1002/embr.201338369] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The post-translational modification of DNA repair and checkpoint proteins by ubiquitin and small ubiquitin-like modifier (SUMO) critically orchestrates the DNA damage response (DDR). The ubiquitin ligase RNF4 integrates signaling by SUMO and ubiquitin, through its selective recognition and ubiquitination of SUMO-modified proteins. Here, we define a key new determinant for target discrimination by RNF4, in addition to interaction with SUMO. We identify a nucleosome-targeting motif within the RNF4 RING domain that can bind DNA and thereby enables RNF4 to selectively ubiquitinate nucleosomal histones. Furthermore, RNF4 nucleosome-targeting is crucially required for the repair of TRF2-depleted dysfunctional telomeres by 53BP1-mediated non-homologous end joining.
Collapse
Affiliation(s)
- Lynda M Groocock
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, CA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Konarev PV, Kachalova GS, Ryazanova AY, Kubareva EA, Karyagina AS, Bartunik HD, Svergun DI. Flexibility of the linker between the domains of DNA methyltransferase SsoII revealed by small-angle X-ray scattering: implications for transcription regulation in SsoII restriction-modification system. PLoS One 2014; 9:e93453. [PMID: 24710319 PMCID: PMC3978073 DOI: 10.1371/journal.pone.0093453] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 03/03/2014] [Indexed: 11/18/2022] Open
Abstract
(Cytosine-5)-DNA methyltransferase SsoII (M.SsoII) consists of a methyltransferase domain (residues 72-379) and an N-terminal region (residues 1-71) which regulates transcription in SsoII restriction-modification system. Small-angle X-ray scattering (SAXS) is employed here to study the low resolution structure of M.SsoII and its complex with DNA containing the methylation site. The shapes reconstructed ab initio from the SAXS data reveal two distinct protein domains of unequal size. The larger domain matches the crystallographic structure of a homologous DNA methyltransferase HhaI (M.HhaI), and the cleft in this domain is occupied by DNA in the model of the complex reconstructed from the SAXS data. This larger domain can thus be identified as the methyltransferase domain whereas the other domain represents the N-terminal region. Homology modeling of the M.SsoII structure is performed by using the model of M.HhaI for the methyltransferase domain and representing the N-terminal region either as a flexible chain of dummy residues or as a rigid structure of a homologous protein (phage 434 repressor) connected to the methyltransferase domain by a short flexible linker. Both models are compatible with the SAXS data and demonstrate high mobility of the N-terminal region. The linker flexibility might play an important role in the function of M.SsoII as a transcription factor.
Collapse
Affiliation(s)
- Petr V. Konarev
- European Molecular Biology Laboratory, Hamburg Outstation, Hamburg, Germany
| | | | - Alexandra Yu Ryazanova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Elena A. Kubareva
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Anna S. Karyagina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
- Gamaleya Institute of Epidemiology and Microbiology, Moscow, Russia
- Institute of Agricultural Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Hans D. Bartunik
- Bach Institute of Biochemistry, Russian Academy of Sciences, Moscow, Russia
| | - Dmitri I. Svergun
- European Molecular Biology Laboratory, Hamburg Outstation, Hamburg, Germany
| |
Collapse
|
31
|
Carlomagno T. Present and future of NMR for RNA-protein complexes: a perspective of integrated structural biology. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2014; 241:126-136. [PMID: 24656085 DOI: 10.1016/j.jmr.2013.10.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 10/14/2013] [Accepted: 10/16/2013] [Indexed: 06/03/2023]
Abstract
Nucleic acids are gaining enormous importance as key molecules in almost all biological processes. Most nucleic acids do not act in isolation but are generally associated with proteins to form high-molecular-weight nucleoprotein complexes. In this perspective article I focus on the structural studies of supra-molecular ribonucleoprotein (RNP) assemblies in solution by a combination of state-of-the-art TROSY-based NMR experiments and other structural biology techniques. I discuss ways how to combine sparse NMR data with low-resolution structural information from small-angle scattering, fluorescence and electron paramagnetic resonance spectroscopy to obtain the structure of large RNP particles by an integrated structural biology approach. In the last section I give a perspective for the study of RNP complexes by solid-state NMR.
Collapse
Affiliation(s)
- Teresa Carlomagno
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Meyerhofstrasse 1, D-69117 Heidelberg, Germany.
| |
Collapse
|
32
|
Moglianetti M, Ong QK, Reguera J, Harkness KM, Mameli M, Radulescu A, Kohlbrecher J, Jud C, Svergun DI, Stellacci F. Scanning tunneling microscopy and small angle neutron scattering study of mixed monolayer protected gold nanoparticles in organic solvents. Chem Sci 2014. [DOI: 10.1039/c3sc52595c] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
33
|
Methods for Using New Conceptual Tools and Parameters to Assess RNA Structure by Small-Angle X-Ray Scattering. Methods Enzymol 2014; 549:235-63. [DOI: 10.1016/b978-0-12-801122-5.00011-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
34
|
Koutsioubas A, Berthaud A, Mangenot S, Pérez J. Ab Initio and All-Atom Modeling of Detergent Organization around Aquaporin-0 Based on SAXS Data. J Phys Chem B 2013; 117:13588-94. [DOI: 10.1021/jp407688x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Alexandros Koutsioubas
- Synchrotron Soleil,
Beamline SWING, Saint Aubin BP48, F-91192 Gif sur Yvette Cedex, France
- Jülich
Centre for Neutron Science JCNS, Forschungszentrum Jülich GmbH, Outstation
at MLZ, Lichtenbergstrasse 1, 85747 Garching, Germany
| | - Alice Berthaud
- Synchrotron Soleil,
Beamline SWING, Saint Aubin BP48, F-91192 Gif sur Yvette Cedex, France
- Institut Curie,
Centre de Recherche, CNRS UMR168, Université Pierre et Marie Curie, F-75248 Paris Cedex, France
| | - Stéphanie Mangenot
- Institut Curie,
Centre de Recherche, CNRS UMR168, Université Pierre et Marie Curie, F-75248 Paris Cedex, France
| | - Javier Pérez
- Synchrotron Soleil,
Beamline SWING, Saint Aubin BP48, F-91192 Gif sur Yvette Cedex, France
| |
Collapse
|
35
|
Giganti D, Alegre-Cebollada J, Urresti S, Albesa-Jové D, Rodrigo-Unzueta A, Comino N, Kachala M, López-Fernández S, Svergun DI, Fernández JM, Guerin ME. Conformational plasticity of the essential membrane-associated mannosyltransferase PimA from mycobacteria. J Biol Chem 2013; 288:29797-808. [PMID: 23963451 DOI: 10.1074/jbc.m113.462705] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phosphatidyl-myo-inositol mannosyltransferase A (PimA) is an essential glycosyltransferase (GT) that initiates the biosynthetic pathway of phosphatidyl-myo-inositol mannosides, lipomannan, and lipoarabinomannan, which are key glycolipids/lipoglycans of the mycobacterial cell envelope. PimA belongs to a large family of peripheral membrane-associated GTs for which the understanding of the molecular mechanism and conformational changes that govern substrate/membrane recognition and catalysis remains a major challenge. Here we used single molecule force spectroscopy techniques to study the mechanical and conformational properties of PimA. In our studies, we engineered a polyprotein containing PimA flanked by four copies of the well characterized I27 protein, which provides an unambiguous mechanical fingerprint. We found that PimA exhibits weak mechanical stability albeit displaying β-sheet topology expected to unfold at much higher forces. Notably, PimA unfolds following heterogeneous multiple step mechanical unfolding pathways at low force akin to molten globule states. Interestingly, the ab initio low resolution envelopes obtained from small angle x-ray scattering of the unliganded PimA and the PimA·GDP complexed forms clearly demonstrate that not only the "open" and "closed" conformations of the GT-B enzyme are largely present in solution, but in addition, PimA experiences remarkable flexibility that undoubtedly corresponds to the N-terminal "Rossmann fold" domain, which has been proved to participate in protein-membrane interactions. Based on these results and on our previous experimental data, we propose a model wherein the conformational transitions are important for the mannosyltransferase to interact with the donor and acceptor substrates/membrane.
Collapse
Affiliation(s)
- David Giganti
- From the Unidad de Biofísica, Consejo Superior de Investigaciones Científicas-Universidad del País Vasco/Euskal Herriko Unibertsitatea, Barrio Sarriena s/n, Leioa, Bizkaia 48940, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Structural elucidation of full-length nidogen and the laminin-nidogen complex in solution. Matrix Biol 2013; 33:60-7. [PMID: 23948589 DOI: 10.1016/j.matbio.2013.07.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 07/30/2013] [Indexed: 11/21/2022]
Abstract
Nidogen-1 is a key basement membrane protein that is required for many biological activities. It is one of the central elements in organizing basal laminae including those in the skin, muscle, and the nervous system. The self-assembling extracellular matrix that also incorporates fibulins, fibronectin and integrins is clamped together by networks formed between nidogen, perlecan, laminin and collagen IV. To date, the full-length version of nidogen-1 has not been studied in detail in terms of its solution conformation and shape because of its susceptibility to proteolysis. In the current study, we have expressed and purified full-length nidogen-1 and have investigated its solution behavior using size-exclusion chromatography (SEC), dynamic light scattering (DLS) and small angle X-ray scattering (SAXS). The ab initio shape reconstruction of the complex between nidogen-1 and the laminin γ-1 short arm confirms that the interaction is mediated solely by the C-terminal domains: the rest of the domains of both proteins do not participate in complex formation.
Collapse
|
37
|
Henderson CA, Vincent HA, Casamento A, Stone CM, Phillips JO, Cary PD, Sobott F, Gowers DM, Taylor JE, Callaghan AJ. Hfq binding changes the structure of Escherichia coli small noncoding RNAs OxyS and RprA, which are involved in the riboregulation of rpoS. RNA (NEW YORK, N.Y.) 2013; 19:1089-104. [PMID: 23804244 PMCID: PMC3708529 DOI: 10.1261/rna.034595.112] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Accepted: 05/15/2013] [Indexed: 05/26/2023]
Abstract
OxyS and RprA are two small noncoding RNAs (sRNAs) that modulate the expression of rpoS, encoding an alternative sigma factor that activates transcription of multiple Escherichia coli stress-response genes. While RprA activates rpoS for translation, OxyS down-regulates the transcript. Crucially, the RNA binding protein Hfq is required for both sRNAs to function, although the specific role played by Hfq remains unclear. We have investigated RprA and OxyS interactions with Hfq using biochemical and biophysical approaches. In particular, we have obtained the molecular envelopes of the Hfq-sRNA complexes using small-angle scattering methods, which reveal key molecular details. These data indicate that Hfq does not substantially change shape upon complex formation, whereas the sRNAs do. We link the impact of Hfq binding, and the sRNA structural changes induced, to transcript stability with respect to RNase E degradation. In light of these findings, we discuss the role of Hfq in the opposing regulatory functions played by RprA and OxyS in rpoS regulation.
Collapse
MESH Headings
- Bacterial Proteins/genetics
- Bacterial Proteins/metabolism
- Base Sequence
- Binding Sites
- Biophysical Phenomena
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Escherichia coli Proteins/chemistry
- Escherichia coli Proteins/genetics
- Escherichia coli Proteins/metabolism
- Gene Expression Regulation, Bacterial
- Host Factor 1 Protein/chemistry
- Host Factor 1 Protein/genetics
- Host Factor 1 Protein/metabolism
- Models, Molecular
- Molecular Sequence Data
- Nucleic Acid Conformation
- Protein Structure, Quaternary
- RNA Stability
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Small Untranslated/chemistry
- RNA, Small Untranslated/genetics
- RNA, Small Untranslated/metabolism
- Repressor Proteins/genetics
- Repressor Proteins/metabolism
- Scattering, Small Angle
- Sigma Factor/genetics
- Sigma Factor/metabolism
Collapse
Affiliation(s)
- Charlotte A. Henderson
- Biophysics Laboratories, School of Biological Sciences, Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, Portsmouth, PO1 2DT, United Kingdom
| | - Helen A. Vincent
- Biophysics Laboratories, School of Biological Sciences, Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, Portsmouth, PO1 2DT, United Kingdom
| | - Alessandra Casamento
- Biophysics Laboratories, School of Biological Sciences, Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, Portsmouth, PO1 2DT, United Kingdom
| | - Carlanne M. Stone
- Biophysics Laboratories, School of Biological Sciences, Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, Portsmouth, PO1 2DT, United Kingdom
| | - Jack O. Phillips
- Biophysics Laboratories, School of Biological Sciences, Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, Portsmouth, PO1 2DT, United Kingdom
| | - Peter D. Cary
- Biophysics Laboratories, School of Biological Sciences, Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, Portsmouth, PO1 2DT, United Kingdom
| | - Frank Sobott
- Biochemistry Department, University of Oxford, Oxford, OX1 3QU, United Kingdom
| | - Darren M. Gowers
- Biophysics Laboratories, School of Biological Sciences, Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, Portsmouth, PO1 2DT, United Kingdom
| | - James E.N. Taylor
- Biophysics Laboratories, School of Biological Sciences, Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, Portsmouth, PO1 2DT, United Kingdom
| | - Anastasia J. Callaghan
- Biophysics Laboratories, School of Biological Sciences, Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, Portsmouth, PO1 2DT, United Kingdom
| |
Collapse
|
38
|
Ankner JF, Heller WT, Herwig KW, Meilleur F, Myles DAA. Neutron scattering techniques and applications in structural biology. ACTA ACUST UNITED AC 2013; Chapter 17:Unit17.16. [PMID: 23546619 DOI: 10.1002/0471140864.ps1716s72] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Neutron scattering is exquisitely sensitive to the position, concentration, and dynamics of hydrogen atoms in materials and is a powerful tool for the characterization of structure-function and interfacial relationships in biological systems. Modern neutron scattering facilities offer access to a sophisticated, nondestructive suite of instruments for biophysical characterization that provides spatial and dynamic information spanning from Ångstroms to microns and from picoseconds to microseconds, respectively. Applications in structural biology range from the atomic-resolution analysis of individual hydrogen atoms in enzymes through to meso- and macro-scale analysis of complex biological structures, membranes, and assemblies. The large difference in neutron scattering length between hydrogen and deuterium allows contrast variation experiments to be performed and enables H/D isotopic labeling to be used for selective and systematic analysis of the local structure, dynamics, and interactions of multi-component systems. This overview describes the available techniques and summarizes their practical application to the study of biomolecular systems.
Collapse
Affiliation(s)
- John F Ankner
- Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | | | | | | | | |
Collapse
|
39
|
Breyton C, Gabel F, Lethier M, Flayhan A, Durand G, Jault JM, Juillan-Binard C, Imbert L, Moulin M, Ravaud S, Härtlein M, Ebel C. Small angle neutron scattering for the study of solubilised membrane proteins. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2013; 36:71. [PMID: 23852580 DOI: 10.1140/epje/i2013-13071-6] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 04/22/2013] [Accepted: 05/16/2013] [Indexed: 06/02/2023]
Abstract
Small angle neutron scattering (SANS) is a powerful technique for investigating association states and conformational changes of biological macromolecules in solution. SANS is of particular interest for the study of the multi-component systems, as membrane protein complexes, for which in vitro characterisation and structure determination are often difficult. This article details the important physical properties of surfactants in view of small angle neutron scattering studies and the interest to deuterate membrane proteins for contrast variation studies. We present strategies for the production of deuterated membrane proteins and methods for quality control. We then review some studies on membrane proteins, and focus on the strategies to overcome the intrinsic difficulty to eliminate homogeneously the detergent or surfactant signal for solubilised membrane proteins, or that of lipids for membrane proteins inserted in liposomes.
Collapse
Affiliation(s)
- Cécile Breyton
- Univ. Grenoble Alpes, Institut de Biologie Structurale (IBS), F-38027, Grenoble, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Blanchet CE, Svergun DI. Small-Angle X-Ray Scattering on Biological Macromolecules and Nanocomposites in Solution. Annu Rev Phys Chem 2013; 64:37-54. [DOI: 10.1146/annurev-physchem-040412-110132] [Citation(s) in RCA: 152] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Clement E. Blanchet
- European Molecular Biology Laboratory (EMBL) Hamburg, 22603 Hamburg, Germany;
| | - Dmitri I. Svergun
- European Molecular Biology Laboratory (EMBL) Hamburg, 22603 Hamburg, Germany;
| |
Collapse
|
41
|
Koehler C, Round A, Simader H, Suck D, Svergun D. Quaternary structure of the yeast Arc1p-aminoacyl-tRNA synthetase complex in solution and its compaction upon binding of tRNAs. Nucleic Acids Res 2013; 41:667-76. [PMID: 23161686 PMCID: PMC3592460 DOI: 10.1093/nar/gks1072] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 10/08/2012] [Accepted: 10/13/2012] [Indexed: 11/16/2022] Open
Abstract
In the yeast Saccharomyces cerevisiae, the aminoacyl-tRNA synthetases (aaRS) GluRS and MetRS form a complex with the auxiliary protein cofactor Arc1p. The latter binds the N-terminal domains of both synthetases increasing their affinity for the transfer-RNA (tRNA) substrates tRNA(Met) and tRNA(Glu). Until now, structural information was available only on the enzymatic domains of the individual aaRSs but not on their complexes with associated cofactors. We have analysed the yeast Arc1p-complexes in solution by small-angle X-ray scattering (SAXS). The ternary complex of MetRS and GluRS with Arc1p, displays a peculiar extended star-like shape, implying possible flexibility of the complex. We reconstituted in vitro a pentameric complex and demonstrated by electrophoretic mobility shift assay that the complex is active and contains tRNA(Met) and tRNA(Glu), in addition to the three protein partners. SAXS reveals that binding of the tRNAs leads to a dramatic compaction of the pentameric complex compared to the ternary one. A hybrid low-resolution model of the pentameric complex is constructed rationalizing the compaction effect by the interactions of negatively charged tRNA backbones with the positively charged tRNA-binding domains of the synthetases.
Collapse
MESH Headings
- Electrophoretic Mobility Shift Assay
- Glutamate-tRNA Ligase/chemistry
- Glutamate-tRNA Ligase/metabolism
- Methionine-tRNA Ligase/chemistry
- Methionine-tRNA Ligase/metabolism
- Models, Molecular
- Protein Structure, Tertiary
- RNA, Transfer, Glu/chemistry
- RNA, Transfer, Glu/metabolism
- RNA, Transfer, Met/chemistry
- RNA, Transfer, Met/metabolism
- RNA-Binding Proteins/chemistry
- RNA-Binding Proteins/metabolism
- Saccharomyces cerevisiae/enzymology
- Saccharomyces cerevisiae Proteins/chemistry
- Saccharomyces cerevisiae Proteins/metabolism
- Scattering, Small Angle
- X-Ray Diffraction
Collapse
Affiliation(s)
- Christine Koehler
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, 69117, Germany, EMBL UVHCI, Grenoble, Cedex 9, 38042, France, Proteros Biostructure, Martinsried-München, 82152 and EMBL Outstation Hamburg, c/o/DESY, European Molecular Biology Laboratory, Hamburg, 22603, Germany
| | - Adam Round
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, 69117, Germany, EMBL UVHCI, Grenoble, Cedex 9, 38042, France, Proteros Biostructure, Martinsried-München, 82152 and EMBL Outstation Hamburg, c/o/DESY, European Molecular Biology Laboratory, Hamburg, 22603, Germany
| | - Hannes Simader
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, 69117, Germany, EMBL UVHCI, Grenoble, Cedex 9, 38042, France, Proteros Biostructure, Martinsried-München, 82152 and EMBL Outstation Hamburg, c/o/DESY, European Molecular Biology Laboratory, Hamburg, 22603, Germany
| | - Dietrich Suck
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, 69117, Germany, EMBL UVHCI, Grenoble, Cedex 9, 38042, France, Proteros Biostructure, Martinsried-München, 82152 and EMBL Outstation Hamburg, c/o/DESY, European Molecular Biology Laboratory, Hamburg, 22603, Germany
| | - Dmitri Svergun
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, 69117, Germany, EMBL UVHCI, Grenoble, Cedex 9, 38042, France, Proteros Biostructure, Martinsried-München, 82152 and EMBL Outstation Hamburg, c/o/DESY, European Molecular Biology Laboratory, Hamburg, 22603, Germany
| |
Collapse
|
42
|
Petoukhov MV, Svergun DI. Applications of small-angle X-ray scattering to biomacromolecular solutions. Int J Biochem Cell Biol 2012; 45:429-37. [PMID: 23142499 DOI: 10.1016/j.biocel.2012.10.017] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Revised: 10/25/2012] [Accepted: 10/30/2012] [Indexed: 01/10/2023]
Abstract
Small-angle scattering of X-rays (SAXS) is an established method for low-resolution structural characterization of biological macromolecules in solution. Being complementary to the high resolution methods (X-ray crystallography and NMR), SAXS is often used in combination with them. The technique provides overall three-dimensional structures using ab initio reconstructions and hybrid modeling, and allows one to quantitatively characterize equilibrium mixtures as well as flexible systems. Recent progress in SAXS instrumentation, most notably, high brilliance synchrotron sources, has paved the way for high throughput automated SAXS studies allowing screening of external conditions (pH, temperature, ligand binding etc.). The modern approaches for SAXS data analysis are presented in this review including rapid characterization of macromolecular solutions in terms of low-resolution shapes, validation of high-resolution models in close-to-native conditions, quaternary structure analysis of complexes and quantitative description of the oligomeric composition in mixtures. Practical aspects of SAXS as a standalone tool and its combinations with other structural, biophysical or bioinformatics methods are reviewed. The capabilities of the technique are illustrated by a selection of recent applications for the studies of biological molecules. Future perspectives on SAXS and its potential impact to structural molecular biology are discussed.
Collapse
Affiliation(s)
- Maxim V Petoukhov
- European Molecular Biology Laboratory, Hamburg Outstation, Notkestrasse 85, 22607 Hamburg, Germany
| | | |
Collapse
|
43
|
Pérez J, Nishino Y. Advances in X-ray scattering: from solution SAXS to achievements with coherent beams. Curr Opin Struct Biol 2012; 22:670-8. [DOI: 10.1016/j.sbi.2012.07.014] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Revised: 07/24/2012] [Accepted: 07/27/2012] [Indexed: 11/15/2022]
|
44
|
Vincent HA, Henderson CA, Stone CM, Cary PD, Gowers DM, Sobott F, Taylor JEN, Callaghan AJ. The low-resolution solution structure of Vibrio cholerae Hfq in complex with Qrr1 sRNA. Nucleic Acids Res 2012; 40:8698-710. [PMID: 22730296 PMCID: PMC3458539 DOI: 10.1093/nar/gks582] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Revised: 05/10/2012] [Accepted: 05/23/2012] [Indexed: 11/22/2022] Open
Abstract
In Vibrio cholerae, the RNA binding protein and chaperone Hfq (VcHfq) facilitates the pairing of the quorum regulatory RNA (Qrr) small regulatory RNAs (sRNAs) to the 5' untranslated regions of the mRNAs for a number of global regulators that modulate the expression of virulence genes. This Qrr-mediated sRNA circuit is an attractive antimicrobial target, but characterization at the molecular level is required for this to be realized. Here, we investigate the interactions between VcHfq and the Qrr sRNAs using a variety of biochemical and biophysical techniques. We show that the ring-shaped VcHfq hexamer binds the Qrrs with 1:1 stoichiometry through its proximal face, and the molecular envelope of the VcHfq-Qrr complex is experimentally determined from small angle scattering data to present the first structural glimpse of a Hfq-sRNA complex. This structure reveals that the VcHfq protein does not change shape on complex formation but the RNA does, suggesting that a chaperone role for VcHfq is a critical part of the VcHfq-Qrr interaction. Overall, these studies enhance our understanding of VcHfq-Qrr interactions.
Collapse
Affiliation(s)
- Helen A. Vincent
- Biophysics Laboratories, School of Biological
Sciences, Institute of Biomedical and Biomolecular Sciences, University of
Portsmouth, Portsmouth, PO1 2DT, UK and Department of Biochemistry,
University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Charlotte A. Henderson
- Biophysics Laboratories, School of Biological
Sciences, Institute of Biomedical and Biomolecular Sciences, University of
Portsmouth, Portsmouth, PO1 2DT, UK and Department of Biochemistry,
University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Carlanne M. Stone
- Biophysics Laboratories, School of Biological
Sciences, Institute of Biomedical and Biomolecular Sciences, University of
Portsmouth, Portsmouth, PO1 2DT, UK and Department of Biochemistry,
University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Peter D. Cary
- Biophysics Laboratories, School of Biological
Sciences, Institute of Biomedical and Biomolecular Sciences, University of
Portsmouth, Portsmouth, PO1 2DT, UK and Department of Biochemistry,
University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Darren M. Gowers
- Biophysics Laboratories, School of Biological
Sciences, Institute of Biomedical and Biomolecular Sciences, University of
Portsmouth, Portsmouth, PO1 2DT, UK and Department of Biochemistry,
University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Frank Sobott
- Biophysics Laboratories, School of Biological
Sciences, Institute of Biomedical and Biomolecular Sciences, University of
Portsmouth, Portsmouth, PO1 2DT, UK and Department of Biochemistry,
University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - James E. N. Taylor
- Biophysics Laboratories, School of Biological
Sciences, Institute of Biomedical and Biomolecular Sciences, University of
Portsmouth, Portsmouth, PO1 2DT, UK and Department of Biochemistry,
University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Anastasia J. Callaghan
- Biophysics Laboratories, School of Biological
Sciences, Institute of Biomedical and Biomolecular Sciences, University of
Portsmouth, Portsmouth, PO1 2DT, UK and Department of Biochemistry,
University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| |
Collapse
|
45
|
Taylor JE, Swiderska A, Artero JB, Callow P, Kneale G. Structural and functional analysis of the symmetrical Type I restriction endonuclease R.EcoR124I NT. PLoS One 2012; 7:e35263. [PMID: 22493743 PMCID: PMC3320862 DOI: 10.1371/journal.pone.0035263] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Accepted: 03/14/2012] [Indexed: 11/25/2022] Open
Abstract
Type I restriction-modification (RM) systems are comprised of two multi-subunit enzymes, the methyltransferase (∼160 kDa), responsible for methylation of DNA, and the restriction endonuclease (∼400 kDa), responsible for DNA cleavage. Both enzymes share a number of subunits. An engineered RM system, EcoR124INT, based on the N-terminal domain of the specificity subunit of EcoR124I was constructed that recognises the symmetrical sequence GAAN7TTC and is active as a methyltransferase. Here, we investigate the restriction endonuclease activity of R.EcoR124INT in vitro and the subunit assembly of the multi-subunit enzyme. Finally, using small-angle neutron scattering and selective deuteration, we present a low-resolution structural model of the endonuclease and locate the motor subunits within the multi-subunit enzyme. We show that the covalent linkage between the two target recognition domains of the specificity subunit is not required for subunit assembly or enzyme activity, and discuss the implications for the evolution of Type I enzymes.
Collapse
Affiliation(s)
- James E. Taylor
- Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, Portsmouth, United Kingdom
| | - Anna Swiderska
- Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, Portsmouth, United Kingdom
| | - Jean-Baptiste Artero
- Partnership for Structural Biology, Institut Laue-Langevin, Grenoble, France
- Macromolecular Structure Research Group, Keele University, Keele, Staffordshire, United Kingdom
| | - Philip Callow
- Partnership for Structural Biology, Institut Laue-Langevin, Grenoble, France
| | - Geoff Kneale
- Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, Portsmouth, United Kingdom
| |
Collapse
|
46
|
Petoukhov MV, Franke D, Shkumatov AV, Tria G, Kikhney AG, Gajda M, Gorba C, Mertens HDT, Konarev PV, Svergun DI. New developments in the ATSAS program package for small-angle scattering data analysis. J Appl Crystallogr 2012; 45:342-350. [PMID: 25484842 PMCID: PMC4233345 DOI: 10.1107/s0021889812007662] [Citation(s) in RCA: 1395] [Impact Index Per Article: 107.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Accepted: 02/20/2012] [Indexed: 11/26/2022] Open
Abstract
New developments in the program package ATSAS (version 2.4) for the processing and analysis of isotropic small-angle X-ray and neutron scattering data are described. They include (i) multiplatform data manipulation and display tools, (ii) programs for automated data processing and calculation of overall parameters, (iii) improved usage of high- and low-resolution models from other structural methods, (iv) new algorithms to build three-dimensional models from weakly interacting oligomeric systems and complexes, and (v) enhanced tools to analyse data from mixtures and flexible systems. The new ATSAS release includes installers for current major platforms (Windows, Linux and Mac OSX) and provides improved indexed user documentation. The web-related developments, including a user discussion forum and a widened online access to run ATSAS programs, are also presented.
Collapse
Affiliation(s)
- Maxim V. Petoukhov
- European Molecular Biology Laboratory, Hamburg Unit, EMBL c/o DESY, Notkestrasse 85, Hamburg 22607, Germany
| | - Daniel Franke
- European Molecular Biology Laboratory, Hamburg Unit, EMBL c/o DESY, Notkestrasse 85, Hamburg 22607, Germany
| | - Alexander V. Shkumatov
- European Molecular Biology Laboratory, Hamburg Unit, EMBL c/o DESY, Notkestrasse 85, Hamburg 22607, Germany
| | - Giancarlo Tria
- European Molecular Biology Laboratory, Hamburg Unit, EMBL c/o DESY, Notkestrasse 85, Hamburg 22607, Germany
| | - Alexey G. Kikhney
- European Molecular Biology Laboratory, Hamburg Unit, EMBL c/o DESY, Notkestrasse 85, Hamburg 22607, Germany
| | - Michal Gajda
- European Molecular Biology Laboratory, Hamburg Unit, EMBL c/o DESY, Notkestrasse 85, Hamburg 22607, Germany
| | - Christian Gorba
- European Molecular Biology Laboratory, Hamburg Unit, EMBL c/o DESY, Notkestrasse 85, Hamburg 22607, Germany
| | - Haydyn D. T. Mertens
- European Molecular Biology Laboratory, Hamburg Unit, EMBL c/o DESY, Notkestrasse 85, Hamburg 22607, Germany
| | - Petr V. Konarev
- European Molecular Biology Laboratory, Hamburg Unit, EMBL c/o DESY, Notkestrasse 85, Hamburg 22607, Germany
| | - Dmitri I. Svergun
- European Molecular Biology Laboratory, Hamburg Unit, EMBL c/o DESY, Notkestrasse 85, Hamburg 22607, Germany
| |
Collapse
|
47
|
Kennaway CK, Taylor JE, Song CF, Potrzebowski W, Nicholson W, White JH, Swiderska A, Obarska-Kosinska A, Callow P, Cooper LP, Roberts GA, Artero JB, Bujnicki JM, Trinick J, Kneale GG, Dryden DT. Structure and operation of the DNA-translocating type I DNA restriction enzymes. Genes Dev 2012; 26:92-104. [PMID: 22215814 PMCID: PMC3258970 DOI: 10.1101/gad.179085.111] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Accepted: 11/14/2011] [Indexed: 11/24/2022]
Abstract
Type I DNA restriction/modification (RM) enzymes are molecular machines found in the majority of bacterial species. Their early discovery paved the way for the development of genetic engineering. They control (restrict) the influx of foreign DNA via horizontal gene transfer into the bacterium while maintaining sequence-specific methylation (modification) of host DNA. The endonuclease reaction of these enzymes on unmethylated DNA is preceded by bidirectional translocation of thousands of base pairs of DNA toward the enzyme. We present the structures of two type I RM enzymes, EcoKI and EcoR124I, derived using electron microscopy (EM), small-angle scattering (neutron and X-ray), and detailed molecular modeling. DNA binding triggers a large contraction of the open form of the enzyme to a compact form. The path followed by DNA through the complexes is revealed by using a DNA mimic anti-restriction protein. The structures reveal an evolutionary link between type I RM enzymes and type II RM enzymes.
Collapse
Affiliation(s)
- Christopher K. Kennaway
- Astbury Centre, Institute of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - James E. Taylor
- Biophysics Laboratories, Institute of Biomedical and Biomolecular Sciences, School of Biological Sciences, University of Portsmouth, Portsmouth PO1 2DY, United Kingdom
| | - Chun Feng Song
- Astbury Centre, Institute of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Wojciech Potrzebowski
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, PL-02-109 Warsaw, Poland
| | - William Nicholson
- Astbury Centre, Institute of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - John H. White
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh EH9 3JJ, United Kingdom
| | - Anna Swiderska
- Biophysics Laboratories, Institute of Biomedical and Biomolecular Sciences, School of Biological Sciences, University of Portsmouth, Portsmouth PO1 2DY, United Kingdom
| | - Agnieszka Obarska-Kosinska
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, PL-02-109 Warsaw, Poland
| | - Philip Callow
- Partnership for Structural Biology, Institut Laue-Langevin, Grenoble, Cedex 9, France
| | - Laurie P. Cooper
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh EH9 3JJ, United Kingdom
| | - Gareth A. Roberts
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh EH9 3JJ, United Kingdom
| | - Jean-Baptiste Artero
- Partnership for Structural Biology, Institut Laue-Langevin, Grenoble, Cedex 9, France
- EPSAM and ISTM, Keele University, Keele, Staffordshire ST5 5BG, United Kingdom
| | - Janusz M. Bujnicki
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, PL-02-109 Warsaw, Poland
- Bioinformatics Laboratory, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, PL-61-614 Poznan, Poland
| | - John Trinick
- Astbury Centre, Institute of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - G. Geoff Kneale
- Biophysics Laboratories, Institute of Biomedical and Biomolecular Sciences, School of Biological Sciences, University of Portsmouth, Portsmouth PO1 2DY, United Kingdom
| | - David T.F. Dryden
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh EH9 3JJ, United Kingdom
| |
Collapse
|
48
|
Devarakonda S, Gupta K, Chalmers MJ, Hunt JF, Griffin PR, Van Duyne GD, Spiegelman BM. Disorder-to-order transition underlies the structural basis for the assembly of a transcriptionally active PGC-1α/ERRγ complex. Proc Natl Acad Sci U S A 2011; 108:18678-83. [PMID: 22049338 PMCID: PMC3219099 DOI: 10.1073/pnas.1113813108] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Peroxisome proliferator activated receptor (PPAR) γ coactivator-1α (PGC-1α) is a potent transcriptional coactivator of oxidative metabolism and is induced in response to a variety of environmental cues. It regulates a broad array of target genes by coactivating a whole host of transcription factors. The estrogen-related receptor (ERR) family of nuclear receptors are key PGC-1α partners in the regulation of mitochondrial and tissue-specific oxidative metabolic pathways; these receptors also demonstrate strong physical and functional interactions with this coactivator. Here we perform comprehensive biochemical, biophysical, and structural analyses of the complex formed between PGC-1α and ERRγ. PGC-1α activation domain (PGC-1α(2-220)) is intrinsically disordered with limited secondary and no defined tertiary structure. Complex formation with ERRγ induces significant changes in the conformational mobility of both partners, highlighted by significant stabilization of the ligand binding domain (ERRγLBD) as determined by HDX (hydrogen/deuterium exchange) and an observed disorder-to-order transition in PGC-1α(2-220). Small-angle X-ray scattering studies allow for modeling of the solution structure of the activation domain in the absence and presence of ERRγLBD, revealing a stable and compact binary complex. These data show that PGC-1α(2-220) undergoes a large-scale conformational change when binding to the ERRγLBD, leading to substantial compaction of the activation domain. This change results in stable positioning of the N-terminal part of the activation domain of PGC-1α, favorable for assembly of an active transcriptional complex. These data also provide structural insight into the versatile coactivation profile of PGC-1α and can readily be extended to understand other transcriptional coregulators.
Collapse
Affiliation(s)
- Srikripa Devarakonda
- Dana-Farber Cancer Institute and Department of Cell Biology, Harvard Medical School, Boston, MA 02115
| | - Kushol Gupta
- Department of Biochemistry and Biophysics and Howard Hughes Medical Institute, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| | - Michael J. Chalmers
- Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter, FL 33458; and
| | - John F. Hunt
- Department of Biological Sciences and Northeast Structural Genomics Consortium, Columbia University, New York, NY 10027
| | - Patrick R. Griffin
- Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter, FL 33458; and
| | - Gregory D. Van Duyne
- Department of Biochemistry and Biophysics and Howard Hughes Medical Institute, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| | - Bruce M. Spiegelman
- Dana-Farber Cancer Institute and Department of Cell Biology, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
49
|
Clifton LA, Johnson CL, Solovyova AS, Callow P, Weiss KL, Ridley H, Le Brun AP, Kinane CJ, Webster JRP, Holt SA, Lakey JH. Low resolution structure and dynamics of a colicin-receptor complex determined by neutron scattering. J Biol Chem 2011; 287:337-346. [PMID: 22081604 PMCID: PMC3249085 DOI: 10.1074/jbc.m111.302901] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Proteins that translocate across cell membranes need to overcome a significant hydrophobic barrier. This is usually accomplished via specialized protein complexes, which provide a polar transmembrane pore. Exceptions to this include bacterial toxins, which insert into and cross the lipid bilayer itself. We are studying the mechanism by which large antibacterial proteins enter Escherichia coli via specific outer membrane proteins. Here we describe the use of neutron scattering to investigate the interaction of colicin N with its outer membrane receptor protein OmpF. The positions of lipids, colicin N, and OmpF were separately resolved within complex structures by the use of selective deuteration. Neutron reflectivity showed, in real time, that OmpF mediates the insertion of colicin N into lipid monolayers. This data were complemented by Brewster Angle Microscopy images, which showed a lateral association of OmpF in the presence of colicin N. Small angle neutron scattering experiments then defined the three-dimensional structure of the colicin N-OmpF complex. This revealed that colicin N unfolds and binds to the OmpF-lipid interface. The implications of this unfolding step for colicin translocation across membranes are discussed.
Collapse
Affiliation(s)
- Luke A Clifton
- ISIS Spallation Neutron Source, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0QX, United Kingdom
| | - Christopher L Johnson
- Institute for Cell and Molecular Biosciences, The Medical School, University of Newcastle, Framlington Place, Newcastle-upon-Tyne NE2 4HH, United Kingdom
| | - Alexandra S Solovyova
- Institute for Cell and Molecular Biosciences, The Medical School, University of Newcastle, Framlington Place, Newcastle-upon-Tyne NE2 4HH, United Kingdom
| | - Phil Callow
- Partnership for Structural Biology, Institut Laue Langevin, 6 Rue Jules Horowitz, 38042 Grenoble, France
| | - Kevin L Weiss
- Center for Structural Molecular Biology, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
| | - Helen Ridley
- Institute for Cell and Molecular Biosciences, The Medical School, University of Newcastle, Framlington Place, Newcastle-upon-Tyne NE2 4HH, United Kingdom
| | - Anton P Le Brun
- Institute for Cell and Molecular Biosciences, The Medical School, University of Newcastle, Framlington Place, Newcastle-upon-Tyne NE2 4HH, United Kingdom
| | - Christian J Kinane
- ISIS Spallation Neutron Source, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0QX, United Kingdom
| | - John R P Webster
- ISIS Spallation Neutron Source, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0QX, United Kingdom
| | - Stephen A Holt
- ISIS Spallation Neutron Source, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0QX, United Kingdom
| | - Jeremy H Lakey
- Institute for Cell and Molecular Biosciences, The Medical School, University of Newcastle, Framlington Place, Newcastle-upon-Tyne NE2 4HH, United Kingdom.
| |
Collapse
|
50
|
Solution structures of DEAD-box RNA chaperones reveal conformational changes and nucleic acid tethering by a basic tail. Proc Natl Acad Sci U S A 2011; 108:12254-9. [PMID: 21746911 DOI: 10.1073/pnas.1109566108] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The mitochondrial DEAD-box proteins Mss116p of Saccharomyces cerevisiae and CYT-19 of Neurospora crassa are ATP-dependent helicases that function as general RNA chaperones. The helicase core of each protein precedes a C-terminal extension and a basic tail, whose structural role is unclear. Here we used small-angle X-ray scattering to obtain solution structures of the full-length proteins and a series of deletion mutants. We find that the two core domains have a preferred relative orientation in the open state without substrates, and we visualize the transition to a compact closed state upon binding RNA and adenosine nucleotide. An analysis of complexes with large chimeric oligonucleotides shows that the basic tails of both proteins are attached flexibly, enabling them to bind rigid duplex DNA segments extending from the core in different directions. Our results indicate that the basic tails of DEAD-box proteins contribute to RNA-chaperone activity by binding nonspecifically to large RNA substrates and flexibly tethering the core for the unwinding of neighboring duplexes.
Collapse
|