1
|
Chouhan BPS, Gade M, Martinez D, Toledo‐Patino S, Laurino P. Implications of divergence of methionine adenosyltransferase in archaea. FEBS Open Bio 2022; 12:130-145. [PMID: 34655277 PMCID: PMC8727953 DOI: 10.1002/2211-5463.13312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/28/2021] [Accepted: 10/05/2021] [Indexed: 11/12/2022] Open
Abstract
Methionine adenosyltransferase (MAT) catalyzes the biosynthesis of S-adenosyl methionine from l-methionine and ATP. MAT enzymes are ancient, believed to share a common ancestor, and are highly conserved in all three domains of life. However, the sequences of archaeal MATs show considerable divergence compared with their bacterial and eukaryotic counterparts. Furthermore, the structural significance and functional significance of this sequence divergence are not well understood. In the present study, we employed structural analysis and ancestral sequence reconstruction to investigate archaeal MAT divergence. We observed that the dimer interface containing the active site (which is usually well conserved) diverged considerably between the bacterial/eukaryotic MATs and archaeal MAT. A detailed investigation of the available structures supports the sequence analysis outcome: The protein domains and subdomains of bacterial and eukaryotic MAT are more similar than those of archaea. Finally, we resurrected archaeal MAT ancestors. Interestingly, archaeal MAT ancestors show substrate specificity, which is lost during evolution. This observation supports the hypothesis of a common MAT ancestor for the three domains of life. In conclusion, we have demonstrated that archaeal MAT is an ideal system for studying an enzyme family that evolved differently in one domain compared with others while maintaining the same catalytic activity.
Collapse
Affiliation(s)
- Bhanu Pratap Singh Chouhan
- Protein Engineering and Evolution UnitOkinawa Institute of Science and Technology Graduate UniversityOnnaJapan
| | - Madhuri Gade
- Protein Engineering and Evolution UnitOkinawa Institute of Science and Technology Graduate UniversityOnnaJapan
| | - Desirae Martinez
- Protein Engineering and Evolution UnitOkinawa Institute of Science and Technology Graduate UniversityOnnaJapan
| | - Saacnicteh Toledo‐Patino
- Protein Engineering and Evolution UnitOkinawa Institute of Science and Technology Graduate UniversityOnnaJapan
| | - Paola Laurino
- Protein Engineering and Evolution UnitOkinawa Institute of Science and Technology Graduate UniversityOnnaJapan
| |
Collapse
|
2
|
Characterization of the Gene Encoding S-adenosyl-L-methionine (AdoMet) Synthetase in Penicillium chrysogenum; Role in Secondary Metabolism and Penicillin Production. Microorganisms 2021; 10:microorganisms10010078. [PMID: 35056527 PMCID: PMC8779809 DOI: 10.3390/microorganisms10010078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 12/24/2021] [Accepted: 12/27/2021] [Indexed: 11/17/2022] Open
Abstract
The filamentous fungus Penicillium chrysogenum (recently reidentified as Penicillium rubens) is used in the industrial production of the β-lactam antibiotic penicillin. There are several mechanisms regulating the production of this antibiotic, acting both at the genetic and epigenetic levels, the latter including the modification of chromatin by methyltransferases. S-adenosyl-L-methionine (AdoMet) is the main donor of methyl groups for methyltransferases. In addition, it also acts as a donor of aminopropyl groups during the biosynthesis of polyamines. AdoMet is synthesized from L-methionine and ATP by AdoMet-synthetase. In silico analysis of the P. chrysogenum genome revealed the presence of a single gene (Pc16g04380) encoding a putative protein with high similarity to well-known AdoMet-synthetases. Due to the essential nature of this gene, functional analysis was carried out using RNAi-mediated silencing techniques. Knock-down transformants exhibited a decrease in AdoMet, S-adenosyl-L-homocysteine (AdoHcy), spermidine and benzylpenicillin levels, whereas they accumulated a yellow-orange pigment in submerged cultures. On the other hand, overexpression led to reduced levels of benzylpenicillin, thereby suggesting that the AdoMet synthetase, in addition to participate in primary metabolism, also controls secondary metabolism in P. chrysogenum.
Collapse
|
3
|
Ren S, Cheng X, Ma L. Identification of methionine adenosyltransferase with high diastereoselectivity for biocatalytic synthesis of (S)-S-adenosyl-l-methionine and exploring its relationship with fluorinated biosynthetic pathway. Enzyme Microb Technol 2021; 150:109881. [PMID: 34489034 DOI: 10.1016/j.enzmictec.2021.109881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/03/2021] [Accepted: 07/27/2021] [Indexed: 11/15/2022]
Abstract
Natural fluorinated products are rare and attract great attention. The de novo fluorometabolites biosynthetic pathway in microbes has been studied. It is revealed that the carbon-fluorine (C-F) bond is formed by an exotic enzyme called fluorinase (FLA) when using fluorine ions and S-adenosyl-l-methionine (SAM) as substrates. However, the resource of the precursor SAM is still elusive. To solve this, a novel methionine adenosyltransferase from Streptomyces xinghaiensis (SxMAT) was identified and characterized. We proved that SAM was enzymatically synthesized by SxMAT, an enzyme that mediated the reaction between adenosine triphosphate (ATP) and l-methionine (l-Met) with 99% diastereoisomeric excess (d.e.) and 80% yield. Such high diastereoselectivity had never been reported before. SxMAT was a Co2+-dependent metalloenzyme. The results showed that the metal cobalt ion contributes to the activity and selectivity of SxMAT. Molecular docking was performed to reveal its catalytic mechanism. The optimal temperature and pH were 55 °C and 8.5, respectively. Lastly, a two-step tandem enzymatic reaction using SxMAT and FLA both from S. xinghaiensis to generate 5'-fluoro-deoxyadenosine (5'-FDA) was performed. This implied that SxMAT may be present in this fluorometabolites biosynthetic route. These results suggested that SxMAT could be a useful biocatalyst for the synthesis of optically pure (S)-S-adenosyl-l-methionine, an important nutraceutical. In addition, SxMAT will probably play an important role in the biosynthetic pathway of fluorinated natural products in bacteria.
Collapse
Affiliation(s)
- Siyu Ren
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Laboratory of Metabolic Control Fermentation Technology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| | - Xinkuan Cheng
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Laboratory of Metabolic Control Fermentation Technology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China.
| | - Long Ma
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Laboratory of Metabolic Control Fermentation Technology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China.
| |
Collapse
|
4
|
Deng J, Walther A. ATP-Responsive and ATP-Fueled Self-Assembling Systems and Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2002629. [PMID: 32881127 DOI: 10.1002/adma.202002629] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/21/2020] [Indexed: 06/11/2023]
Abstract
Adenosine triphosphate (ATP) is a central metabolite that plays an indispensable role in various cellular processes, from energy supply to cell-to-cell signaling. Nature has developed sophisticated strategies to use the energy stored in ATP for many metabolic and non-equilibrium processes, and to sense and bind ATP for biological signaling. The variations in the ATP concentrations from one organelle to another, from extracellular to intracellular environments, and from normal cells to cancer cells are one motivation for designing ATP-triggered and ATP-fueled systems and materials, because they show great potential for applications in biological systems by using ATP as a trigger or chemical fuel. Over the last decade, ATP has been emerging as an attractive co-assembling component for man-made stimuli-responsive as well as for fuel-driven active systems and materials. Herein, current advances and emerging concepts for ATP-triggered and ATP-fueled self-assemblies and materials are discussed, shedding light on applications and highlighting future developments. By bringing together concepts of different domains, that is from supramolecular chemistry to DNA nanoscience, from equilibrium to non-equilibrium self-assembly, and from fundamental sciences to applications, the aim is to cross-fertilize current approaches with the ultimate aim to bring synthetic ATP-dependent systems closer to living systems.
Collapse
Affiliation(s)
- Jie Deng
- A3BMS Lab - Active, Adaptive and Autonomous Bioinspired Materials, Institute for Macromolecular Chemistry, University of Freiburg, Stefan-Meier-Straße 31, Freiburg, 79104, Germany
- Freiburg Materials Research Center (FMF), University of Freiburg, Stefan-Meier-Str. 21, Freiburg, 79104, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), University of Freiburg, Georges-Köhler-Allee 105, Freiburg, 79110, Germany
| | - Andreas Walther
- A3BMS Lab - Active, Adaptive and Autonomous Bioinspired Materials, Institute for Macromolecular Chemistry, University of Freiburg, Stefan-Meier-Straße 31, Freiburg, 79104, Germany
- Freiburg Materials Research Center (FMF), University of Freiburg, Stefan-Meier-Str. 21, Freiburg, 79104, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), University of Freiburg, Georges-Köhler-Allee 105, Freiburg, 79110, Germany
- Cluster of Excellence livMatS @ FIT - Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, Freiburg, D-79110, Germany
| |
Collapse
|
5
|
Hu Y, Zhao K, Qu Y, Song X, Zhao J, Qin Y. Penicillium oxalicum S-adenosylmethionine synthetase is essential for the viability of fungal cells and the expression of genes encoding cellulolytic enzymes. Fungal Biol 2020; 125:1-11. [PMID: 33317771 DOI: 10.1016/j.funbio.2020.09.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 09/03/2020] [Accepted: 09/15/2020] [Indexed: 01/20/2023]
Abstract
As the universal methyl donor for methylation reactions, S-adenosylmethionine (AdoMet) plays an indispensable role in most cellular metabolic processes. AdoMet is synthesized by AdoMet synthetase. We identified the only one AdoMet synthetase (PoSasA) in filamentous fungus Penicillium oxalicum. PoSasA was widely distributed in mycelium at different growth stages. The absence of PoSasA was lethal for P. oxalicum. The misregulation of the PoSasA encoding gene affected the synthesis of extracellular cellulolytic enzymes. The expression levels of cellobiohydrolase encoding gene cbh1/cel7A, β-1-4 endoglucanase eg1/cel7B, and xylanase encoding gene xyn10A were remarkably downregulated as a result of decreased PosasA gene expression. The production of extracellular cellulases and hemicellulases was also reduced. By contrast, the overexpression of PosasA improved the production of extracellular cellulases and hemicellulases. A total of 133 putative interacting proteins with PoSasA were identified using tandem affinity purification and mass spectrometry. The results of functional enrichment on these proteins showed that they were mainly related to ATP binding, magnesium ion binding, and ATP synthetase activity. Several methyltransferases were also observed among these proteins. These results were consistent with the intrinsic feature of AdoMet synthetase. This work reveals the indispensable role of PoSasA in various biological processes.
Collapse
Affiliation(s)
- Yueyan Hu
- National Glycoengineering Research Center, Shandong University, No. 72 Binhai Road, Qingdao, 266237, China; State Key Lab of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, 266237, China.
| | - Kaili Zhao
- National Glycoengineering Research Center, Shandong University, No. 72 Binhai Road, Qingdao, 266237, China; State Key Lab of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, 266237, China.
| | - Yinbo Qu
- National Glycoengineering Research Center, Shandong University, No. 72 Binhai Road, Qingdao, 266237, China; State Key Lab of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, 266237, China.
| | - Xin Song
- National Glycoengineering Research Center, Shandong University, No. 72 Binhai Road, Qingdao, 266237, China; State Key Lab of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, 266237, China.
| | - Jian Zhao
- National Glycoengineering Research Center, Shandong University, No. 72 Binhai Road, Qingdao, 266237, China.
| | - Yuqi Qin
- National Glycoengineering Research Center, Shandong University, No. 72 Binhai Road, Qingdao, 266237, China; State Key Lab of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, 266237, China.
| |
Collapse
|
6
|
Mordhorst S, Andexer JN. Round, round we go - strategies for enzymatic cofactor regeneration. Nat Prod Rep 2020; 37:1316-1333. [PMID: 32582886 DOI: 10.1039/d0np00004c] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Covering: up to the beginning of 2020Enzymes depending on cofactors are essential in many biosynthetic pathways of natural products. They are often involved in key steps: catalytic conversions that are difficult to achieve purely with synthetic organic chemistry. Hence, cofactor-dependent enzymes have great potential for biocatalysis, on the condition that a corresponding cofactor regeneration system is available. For some cofactors, these regeneration systems require multiple steps; such complex enzyme cascades/multi-enzyme systems are (still) challenging for in vitro biocatalysis. Further, artificial cofactor analogues have been synthesised that are more stable, show an altered reaction range, or act as inhibitors. The development of bio-orthogonal systems that can be used for the production of modified natural products in vivo is an ongoing challenge. In light of the recent progress in this field, this review aims to provide an overview of general strategies involving enzyme cofactors, cofactor analogues, and regeneration systems; highlighting the current possibilities for application of enzymes using some of the most common cofactors.
Collapse
Affiliation(s)
- Silja Mordhorst
- Institute of Microbiology, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, 8093 Zürich, Switzerland
| | | |
Collapse
|
7
|
Minici C, Mosca L, Ilisso CP, Cacciapuoti G, Porcelli M, Degano M. Structures of catalytic cycle intermediates of the Pyrococcus furiosus methionine adenosyltransferase demonstrate negative cooperativity in the archaeal orthologues. J Struct Biol 2020; 210:107462. [PMID: 31962159 DOI: 10.1016/j.jsb.2020.107462] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 01/13/2020] [Accepted: 01/14/2020] [Indexed: 01/21/2023]
Abstract
Methionine adenosyltransferases catalyse the biosynthesis of S-adenosylmethionine, the primary methyl group donor in biochemical reactions, through the condensation of methionine and ATP. Here, we report the structural analysis of the Pyrococcus furiosus methionine adenosyltransferase (PfMAT) captured in the unliganded, substrate- and product-bound states. The conformational changes taking place during the enzymatic catalytic cycle are allosterically propagated by amino acid residues conserved in the archaeal orthologues to induce an asymmetric dimer structure. The distinct occupancy of the active sites within a PfMAT dimer is consistent with a half-site reactivity that is mediated by a product-induced negative cooperativity. The structures of intermediate states of PfMAT reported here suggest a distinct molecular mechanism for S-adenosylmethionine synthesis in Archaea, likely consequence of the evolutionary pressure to achieve protein stability under extreme conditions.
Collapse
Affiliation(s)
- Claudia Minici
- Biocrystallography Unit, Division of Immunology, Transplantation, and Infectious Diseases, IRCCS Scientific Institute San Raffaele, 20132 Milan, Italy
| | - Laura Mosca
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Concetta Paola Ilisso
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Giovanna Cacciapuoti
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Marina Porcelli
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Massimo Degano
- Biocrystallography Unit, Division of Immunology, Transplantation, and Infectious Diseases, IRCCS Scientific Institute San Raffaele, 20132 Milan, Italy.
| |
Collapse
|
8
|
Liu Y, Chen B, Wang Z, Liu L, Tan T. Functional characterization of a thermostable methionine adenosyltransferase from Thermus thermophilus HB27. Front Chem Sci Eng 2016. [DOI: 10.1007/s11705-016-1566-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Qu W, Catcott KC, Zhang K, Liu S, Guo JJ, Ma J, Pablo M, Glick J, Xiu Y, Kenton N, Ma X, Duclos RI, Zhou ZS. Capturing Unknown Substrates via in Situ Formation of Tightly Bound Bisubstrate Adducts: S-Adenosyl-vinthionine as a Functional Probe for AdoMet-Dependent Methyltransferases. J Am Chem Soc 2016; 138:2877-80. [DOI: 10.1021/jacs.5b05950] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
| | | | - Kun Zhang
- School
of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | | | | | - Jisheng Ma
- School
of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325035, China
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Siegrist J, Aschwanden S, Mordhorst S, Thöny-Meyer L, Richter M, Andexer JN. Regiocomplementary O-Methylation of Catechols by Using Three-Enzyme Cascades. Chembiochem 2015; 16:2576-9. [PMID: 26437744 DOI: 10.1002/cbic.201500410] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Indexed: 11/10/2022]
Abstract
S-Adenosylmethionine (SAM)-dependent enzymes have great potential for selective alkylation processes. In this study we investigated the regiocomplementary O-methylation of catechols. Enzymatic methylation is often hampered by the need for a stoichiometric supply of SAM and the inhibitory effect of the SAM-derived byproduct on most methyltransferases. To counteract these issues we set up an enzyme cascade. Firstly, SAM was generated from l-methionine and ATP by use of an archaeal methionine adenosyltransferase. Secondly, 4-O-methylation of the substrates dopamine and dihydrocaffeic acid was achieved by use of SafC from the saframycin biosynthesis pathway in 40-70 % yield and high selectivity. The regiocomplementary 3-O-methylation was catalysed by catechol O-methyltransferase from rat. Thirdly, the beneficial influence of a nucleosidase on the overall conversion was demonstrated. The results of this study are important milestones on the pathway to catalytic SAM-dependent alkylation processes.
Collapse
Affiliation(s)
- Jutta Siegrist
- Institute of Pharmaceutical Sciences, University of Freiburg, Albertstrasse 25, 79104, Freiburg, Germany
| | - Simon Aschwanden
- Laboratory for Biointerfaces, Empa. Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014, St. Gallen, Switzerland
| | - Silja Mordhorst
- Institute of Pharmaceutical Sciences, University of Freiburg, Albertstrasse 25, 79104, Freiburg, Germany
| | - Linda Thöny-Meyer
- Laboratory for Biointerfaces, Empa. Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014, St. Gallen, Switzerland.,AVSV, Blarerstrasse 2, 9001, St. Gallen, Switzerland
| | - Michael Richter
- Laboratory for Biointerfaces, Empa. Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014, St. Gallen, Switzerland. .,Fraunhofer Institute for Interfacial Engineering and Biotechnology (IGB), Branch BioCat, Schulgasse 11a, 94315, Straubing, Germany.
| | - Jennifer N Andexer
- Institute of Pharmaceutical Sciences, University of Freiburg, Albertstrasse 25, 79104, Freiburg, Germany.
| |
Collapse
|
11
|
S-Inosyl-L-Homocysteine Hydrolase, a Novel Enzyme Involved in S-Adenosyl-L-Methionine Recycling. J Bacteriol 2015; 197:2284-91. [PMID: 25917907 DOI: 10.1128/jb.00080-15] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 04/22/2015] [Indexed: 01/18/2023] Open
Abstract
UNLABELLED S-Adenosyl-L-homocysteine, the product of S-adenosyl-L-methionine (SAM) methyltransferases, is known to be a strong feedback inhibitor of these enzymes. A hydrolase specific for S-adenosyl-L-homocysteine produces L-homocysteine, which is remethylated to methionine and can be used to regenerate SAM. Here, we show that the annotated S-adenosyl-L-homocysteine hydrolase in Methanocaldococcus jannaschii is specific for the hydrolysis and synthesis of S-inosyl-L-homocysteine, not S-adenosyl-L-homocysteine. This is the first report of an enzyme specific for S-inosyl-L-homocysteine. As with S-adenosyl-L-homocysteine hydrolase, which shares greater than 45% sequence identity with the M. jannaschii homologue, the M. jannaschii enzyme was found to copurify with bound NAD(+) and has Km values of 0.64 ± 0.4 mM, 0.0054 ± 0.006 mM, and 0.22 ± 0.11 mM for inosine, L-homocysteine, and S-inosyl-L-homocysteine, respectively. No enzymatic activity was detected with S-adenosyl-L-homocysteine as the substrate in either the synthesis or hydrolysis direction. These results prompted us to redesignate the M. jannaschii enzyme an S-inosyl-L-homocysteine hydrolase (SIHH). Identification of SIHH demonstrates a modified pathway in this methanogen for the regeneration of SAM from S-adenosyl-L-homocysteine that uses the deamination of S-adenosyl-L-homocysteine to form S-inosyl-L-homocysteine. IMPORTANCE In strictly anaerobic methanogenic archaea, such as Methanocaldococcus jannaschii, canonical metabolic pathways are often not present, and instead, unique pathways that are deeply rooted on the phylogenetic tree are utilized by the organisms. Here, we discuss the recycling pathway for S-adenosyl-L-homocysteine, produced from S-adenosyl-L-methionine (SAM)-dependent methylation reactions, which uses a hydrolase specific for S-inosyl-L-homocysteine, an uncommon metabolite. Identification of the pathways and the enzymes involved in the unique pathways in the methanogens will provide insight into the biochemical reactions that were occurring when life originated.
Collapse
|
12
|
Andexer JN, Richter M. Emerging enzymes for ATP regeneration in biocatalytic processes. Chembiochem 2015; 16:380-6. [PMID: 25619338 DOI: 10.1002/cbic.201402550] [Citation(s) in RCA: 136] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Indexed: 12/15/2022]
Abstract
Adenosine-5'-triphosphate-dependent enzyme catalysed reactions are widespread in nature. Consequently, the enzymes involved have an intrinsic potential for use in syntheses of high value products. Although regeneration systems for ATP starting from adenosine-5'-diphosphate are available, certain limitations exist for both in vitro and in vivo applications requiring ATP regeneration from adenosine-5'-monophosphate, or adenosine. Following a short overview of the chemical and thermodynamic background, this Minireview focuses on emerging enzymes and methodologies for ATP regeneration. A large range of as yet unexploited reactions will be accessible with new, powerful, multistep ATP regeneration systems that use cheap phosphate donors and provide high longevity, compatibility, and robustness under process conditions. Their potential might go far beyond the direct use of ATP in enzymatic reactions; enzyme discovery, and engineering, as well as immobilisation strategies, will help to realise such systems.
Collapse
Affiliation(s)
- Jennifer N Andexer
- Institute of Pharmaceutical Sciences, University of Freiburg, Albertstrasse 25, 79104 Freiburg (Germany).
| | | |
Collapse
|
13
|
Porcelli M, Ilisso CP, De Leo E, Cacciapuoti G. Biochemical characterization of a thermostable adenosylmethionine synthetase from the archaeon Pyrococcus furiosus with high catalytic power. Appl Biochem Biotechnol 2015; 175:2916-33. [PMID: 25577347 DOI: 10.1007/s12010-015-1476-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 01/01/2015] [Indexed: 11/25/2022]
Abstract
Adenosylmethionine synthetase plays a key role in the biogenesis of the sulfonium compound S-adenosylmethionine, the principal widely used methyl donor in the biological methylations. We report here, for the first time, the characterization of adenosylmethionine synthetase from the hyperthermophilic archaeon Pyrococcus furiosus (PfMAT). The gene PF1866 encoding PfMAT was cloned and expressed, and the recombinant protein was purified to homogeneity. PfMAT shares 51, 63, and 82% sequence identity with the homologous enzymes from Sulfolobus solfataricus, Methanococcus jannaschii, and Thermococcus kodakarensis, respectively. PfMAT is a homodimer of 90 kDa highly thermophilic with an optimum temperature of 90 °C and is characterized by remarkable thermodynamic stability (Tm, 99 °C), kinetic stability, and resistance to guanidine hydrochloride-induced unfolding. The latter process is reversible as demonstrated by the analysis of the refolding process by activity assays and fluorescence measurements. Limited proteolysis experiments indicated that the proteolytic cleavage site is localized at Lys148 and that the C-terminal peptide is necessary for the integrity of the active site. PfMAT shows kinetic features that make it the most efficient catalyst for S-adenosylmethionine synthesis among the characterized MAT from Bacteria and Archaea. Molecular and structural characterization of PfMAT could be useful to improve MAT enzyme engineering for biotechnological applications.
Collapse
Affiliation(s)
- Marina Porcelli
- Dipartimento di Biochimica, Biofisica e Patologia Generale, Seconda Università di Napoli, Via Costantinopoli 16, 80138, Naples, Italy,
| | | | | | | |
Collapse
|
14
|
Wang F, Singh S, Zhang J, Huber TD, Helmich KE, Sunkara M, Hurley KA, Goff RD, Bingman CA, Morris AJ, Thorson JS, Phillips GN. Understanding molecular recognition of promiscuity of thermophilic methionine adenosyltransferase sMAT from Sulfolobus solfataricus. FEBS J 2014; 281:4224-39. [PMID: 24649856 DOI: 10.1111/febs.12784] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 03/06/2014] [Accepted: 03/12/2014] [Indexed: 12/28/2022]
Abstract
UNLABELLED Methionine adenosyltransferase (MAT) is a family of enzymes that utilizes ATP and methionine to produce S-adenosylmethionine (AdoMet), the most crucial methyl donor in the biological methylation of biomolecules and bioactive natural products. Here, we report that the MAT from Sulfolobus solfataricus (sMAT), an enzyme from a poorly explored class of the MAT family, has the ability to produce a range of differentially alkylated AdoMet analogs in the presence of non-native methionine analogs and ATP. To investigate the molecular basis for AdoMet analog production, we have crystallized the sMAT in the AdoMet bound, S-adenosylethionine (AdoEth) bound and unbound forms. Notably, among these structures, the AdoEth bound form offers the first MAT structure containing a non-native product, and cumulatively these structures add new structural insight into the MAT family and allow for detailed active site comparison with its homologs in Escherichia coli and human. As a thermostable MAT structure from archaea, the structures herein also provide a basis for future engineering to potentially broaden AdoMet analog production as reagents for methyltransferase-catalyzed 'alkylrandomization' and/or the study of methylation in the context of biological processes. DATABASES PDB IDs: 4HPV, 4L7I, 4K0B and 4L2Z. EC 2.5.1.6 STRUCTURED DIGITAL ABSTRACT: • sMAT and sMAT bind by x-ray crystallography (View interaction).
Collapse
Affiliation(s)
- Fengbin Wang
- Department of Biochemistry and Cell Biology, Rice University, Houston, TX, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Szabová J, Yubuki N, Leander BS, Triemer RE, Hampl V. The evolution of paralogous enzymes MAT and MATX within the Euglenida and beyond. BMC Evol Biol 2014; 14:25. [PMID: 24517416 PMCID: PMC3923989 DOI: 10.1186/1471-2148-14-25] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 12/30/2013] [Indexed: 11/10/2022] Open
Abstract
Background Methionine adenosyltransferase (MAT) is a ubiquitous essential enzyme that, in eukaryotes, occurs in two relatively divergent paralogues: MAT and MATX. MATX has a punctate distribution across the tree of eukaryotes and, except for a few cases, is mutually exclusive with MAT. This phylogenetic pattern could have arisen by either differential loss of old paralogues or the spread of one of these paralogues by horizontal gene transfer. Our aim was to map the distribution of MAT/MATX genes within the Euglenida in order to more comprehensively characterize the evolutionary history of MATX. Results We generated 26 new sequences from 23 different lineages of euglenids and one prasinophyte alga Pyramimonas parkeae. MATX was present only in photoautotrophic euglenids. The mixotroph Rapaza viridis and the prasinophyte alga Pyramimonas parkeae, which harbors chloroplasts that are most closely related to the chloroplasts in photoautotrophic euglenids, both possessed only the MAT paralogue. We found both the MAT and MATX paralogues in two photoautotrophic species (Phacus orbicularis and Monomorphina pyrum). The significant conflict between eukaryotic phylogenies inferred from MATX and SSU rDNA data represents strong evidence that MATX paralogues have undergone horizontal gene transfer across the tree of eukaryotes. Conclusions Our results suggest that MATX entered the euglenid lineage in a single horizontal gene transfer event that took place after the secondary endosymbiotic origin of the euglenid chloroplast. The origin of the MATX paralogue is unclear, and it cannot be excluded that it arose by a gene duplication event before the most recent common ancestor of eukaryotes.
Collapse
Affiliation(s)
- Jana Szabová
- Department of Parasitology, Charles University in Prague, Faculty of Science, Vinicna 7, Prague 2 128 44, Czech Republic.
| | | | | | | | | |
Collapse
|
16
|
Zano SP, Pavlovsky AG, Viola RE. Structure of an unusual S-adenosylmethionine synthetase from Campylobacter jejuni. ACTA ACUST UNITED AC 2014; 70:442-50. [PMID: 24531478 DOI: 10.1107/s139900471303023x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 11/04/2013] [Indexed: 05/15/2025]
Abstract
S-Adenosylmethionine (AdoMet) participates in a wide range of methylation and other group-transfer reactions and also serves as the precursor for two groups of quorum-sensing molecules that function as regulators of the production of virulence factors in Gram-negative bacteria. The synthesis of AdoMet is catalyzed by AdoMet synthetases (MATs), a ubiquitous family of enzymes found in species ranging from microorganisms to mammals. The AdoMet synthetase from the bacterium Campylobacter jejuni (cjMAT) is an outlier among this homologous enzyme family, with lower sequence identity, numerous insertions and substitutions, and higher catalytic activity compared with other bacterial MATs. Alterations in the structure of this enzyme provide an explanation for its unusual dimeric quaternary structure relative to the other MATs. Taken together with several active-site substitutions, this new structure provides insights into its improved kinetic properties with alternative substrates.
Collapse
Affiliation(s)
- Stephen P Zano
- Department of Chemistry, The University of Toledo, Toledo, OH 43606, USA
| | | | - Ronald E Viola
- Department of Chemistry, The University of Toledo, Toledo, OH 43606, USA
| |
Collapse
|
17
|
Structural and functional characterisation of the methionine adenosyltransferase from Thermococcus kodakarensis. BMC STRUCTURAL BIOLOGY 2013; 13:22. [PMID: 24134203 PMCID: PMC3853416 DOI: 10.1186/1472-6807-13-22] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 10/11/2013] [Indexed: 11/10/2022]
Abstract
BACKGROUND Methionine adenosyltransferases catalyse the synthesis of S-adenosylmethionine, a cofactor abundant in all domains of life. In contrast to the enzymes from bacteria and eukarya that show high sequence similarity, methionine adenosyltransferases from archaea diverge on the amino acid sequence level and only few conserved residues are retained. RESULTS We describe the initial characterisation and the crystal structure of the methionine adenosyltransferase from the hyperthermophilic archaeon Thermococcus kodakarensis. As described for other archaeal methionine adenosyltransferases the enzyme is a dimer in solution and shows high temperature stability. The overall structure is very similar to that of the bacterial and eukaryotic enzymes described, with some additional features that might add to the stability of the enzyme. Compared to bacterial and eukaryotic structures, the active site architecture is largely conserved, with some variation in the substrate/product-binding residues. A flexible loop that was not fully ordered in previous structures without ligands in the active side is clearly visible and forms a helix that leaves an entrance to the active site open. CONCLUSIONS The similar three-dimensional structures of archaeal and bacterial or eukaryotic methionine adenosyltransferases support that these enzymes share an early common ancestor from which they evolved independently, explaining the low similarity in their amino acid sequences. Furthermore, methionine adenosyltransferase from T. kodakarensis is the first structure without any ligands bound in the active site where the flexible loop covering the entrance to the active site is fully ordered, supporting a mechanism postulated earlier for the methionine adenosyltransferase from E. coli. The structure will serve as a starting point for further mechanistic studies and permit the generation of enzyme variants with different characteristics by rational design.
Collapse
|
18
|
Abstract
S-adenosylmethionine (AdoMet, also known as SAM and SAMe) is the principal biological methyl donor synthesized in all mammalian cells but most abundantly in the liver. Biosynthesis of AdoMet requires the enzyme methionine adenosyltransferase (MAT). In mammals, two genes, MAT1A that is largely expressed by normal liver and MAT2A that is expressed by all extrahepatic tissues, encode MAT. Patients with chronic liver disease have reduced MAT activity and AdoMet levels. Mice lacking Mat1a have reduced hepatic AdoMet levels and develop oxidative stress, steatohepatitis, and hepatocellular carcinoma (HCC). In these mice, several signaling pathways are abnormal that can contribute to HCC formation. However, injury and HCC also occur if hepatic AdoMet level is excessive chronically. This can result from inactive mutation of the enzyme glycine N-methyltransferase (GNMT). Children with GNMT mutation have elevated liver transaminases, and Gnmt knockout mice develop liver injury, fibrosis, and HCC. Thus a normal hepatic AdoMet level is necessary to maintain liver health and prevent injury and HCC. AdoMet is effective in cholestasis of pregnancy, and its role in other human liver diseases remains to be better defined. In experimental models, it is effective as a chemopreventive agent in HCC and perhaps other forms of cancer as well.
Collapse
Affiliation(s)
- Shelly C Lu
- Division of Gastroenterology and Liver Diseases, USC Research Center for Liver Diseases, Southern California Research Center for ALPD and Cirrhosis, Keck School of Medicine, Los Angeles, California 90033, USA.
| | | |
Collapse
|
19
|
Fungal S-adenosylmethionine synthetase and the control of development and secondary metabolism in Aspergillus nidulans. Fungal Genet Biol 2012; 49:443-54. [DOI: 10.1016/j.fgb.2012.04.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Revised: 04/11/2012] [Accepted: 04/12/2012] [Indexed: 12/15/2022]
|
20
|
Pajares MA, Markham GD. Methionine adenosyltransferase (s-adenosylmethionine synthetase). ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 2011; 78:449-521. [PMID: 22220481 DOI: 10.1002/9781118105771.ch11] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- María A Pajares
- Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM), Madrid Spain
| | | |
Collapse
|
21
|
More than 200 genes required for methane formation from H₂ and CO₂ and energy conservation are present in Methanothermobacter marburgensis and Methanothermobacter thermautotrophicus. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2011; 2011:973848. [PMID: 21559116 PMCID: PMC3087415 DOI: 10.1155/2011/973848] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Revised: 12/07/2010] [Accepted: 02/18/2011] [Indexed: 12/19/2022]
Abstract
The hydrogenotrophic methanogens Methanothermobacter marburgensis and Methanothermobacter thermautotrophicus can easily be mass cultured. They have therefore been used almost exclusively to study the biochemistry of methanogenesis from H2 and CO2, and the genomes of these two model organisms have been sequenced. The close relationship of the two organisms is reflected in their genomic architecture and coding potential. Within the 1,607 protein coding sequences (CDS) in common, we identified approximately 200 CDS required for the synthesis of the enzymes, coenzymes, and prosthetic groups involved in CO2 reduction to methane and in coupling this process with the phosphorylation of ADP. Approximately 20 additional genes, such as those for the biosynthesis of F430 and methanofuran and for the posttranslational modifications of the two methyl-coenzyme M reductases, remain to be identified.
Collapse
|
22
|
Garrido F, Taylor JC, Alfonso C, Markham GD, Pajares MA. Structural basis for the stability of a thermophilic methionine adenosyltransferase against guanidinium chloride. Amino Acids 2010; 42:361-73. [PMID: 21132339 DOI: 10.1007/s00726-010-0813-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Accepted: 11/15/2010] [Indexed: 01/27/2023]
Abstract
The methionine adenosyltransferase from the thermophile Methanococcus jannaschii is fully and irreversibly unfolded in the presence of guanidinium chloride. Unfolding of this dimeric protein is a three-state process in which a dimeric intermediate could be identified. The less stable secondary structural elements of the protein are the C-terminal ends of β-strands E2 and E6, as deduced from the behavior of tyrosine to tryptophan mutants at residues 72 and 170, which are located in the subunit interface. Unraveling of these elements at the monomer interface may soften intersubunit interactions, leading to the observed 85% activity loss. Accumulation of the intermediate was associated with maintenance of residual activity, an increase in the elution volume of the protein upon gel filtration and a decrease in the sedimentation coefficient. Elimination of the remaining enzymatic activity occurred in conjunction with a 50% reduction in helicity and fluorescence alterations illustrating a transient burial of tryptophans at β-strands E2, E3 and E9. The available 3D-model predicted that these β-strands are involved in the central and N-terminal domains of the monomer structure. Severe perturbation of this area of the monomer-monomer interface may destroy the remaining intermolecular interactions, thus leading to dissociation and aggregation. Finally, transition to the denatured state includes completion of the changes detected in the microenvironments around tryptophans included at α-helixes H5 and H6, the loops connecting H5-E8 and E9, β-strands E3 and E12.
Collapse
Affiliation(s)
- Francisco Garrido
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Arturo Duperier 4, 28029, Madrid, Spain
| | | | | | | | | |
Collapse
|
23
|
Markham GD, Takusagawa F, Dijulio AM, Bock CW. An investigation of the catalytic mechanism of S-adenosylmethionine synthetase by QM/MM calculations. Arch Biochem Biophys 2009; 492:82-92. [PMID: 19699176 DOI: 10.1016/j.abb.2009.08.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Accepted: 08/14/2009] [Indexed: 12/12/2022]
Abstract
Catalysis by S-adenosylmethionine synthetase has been investigated by quantum mechanical/molecular mechanical calculations, exploiting structures of the active crystalline enzyme. The transition state energy of +19.1 kcal/mol computed for a nucleophilic attack of the methionyl sulfur on carbon-5' of the nucleotide was indistinguishable from the experimental (solution) value when the QM residues were an uncharged histidine that hydrogen bonds to the leaving oxygen-5' and an aspartate that chelates a Mg2+ ion, and was similar (+18.8 kcal/mol) when the QM region also included the active site arginine and lysines. The computed energy difference between reactant and product was also consistent with their equimolar abundance in co-crystals. The calculated geometrical changes support catalysis of a S(N)2 reaction through hydrogen bonding of the liberated oxygen-5' to the histidine, charge neutralization by the two Mg2+ ions, and stabilization of the product sulfonium cation through a close, non-bonded, contact between the sulfur and the ribose oxygen-4'.
Collapse
Affiliation(s)
- George D Markham
- Institute for Cancer Research, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA.
| | | | | | | |
Collapse
|
24
|
Reytor E, Pérez-Miguelsanz J, Alvarez L, Pérez-Sala D, Pajares MA. Conformational signals in the C-terminal domain of methionine adenosyltransferase I/III determine its nucleocytoplasmic distribution. FASEB J 2009; 23:3347-60. [PMID: 19497982 DOI: 10.1096/fj.09-130187] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The methyl donor S-adenosylmethionine is synthesized in mammalian cytosol by three isoenzymes. Methionine adenosyltransferase II is ubiquitously expressed, whereas isoenzymes I (homotetramer) and III (homodimer) are considered the hepatic enzymes. In this work, we identified methionine adenosyltransferase I/III in most rat tissues, both in the cytoplasm and the nucleus. Nuclear localization was the preferred distribution observed in extrahepatic tissues, where the protein colocalizes with nuclear matrix markers. A battery of mutants used in several cell lines to decipher the determinants involved in methionine adenosyltransferase subcellular localization demonstrated, by confocal microscopy and subcellular fractionation, the presence of two partially overlapping areas at the C-terminal end of the protein involved both in cytoplasmic retention and nuclear localization. Immunoprecipitation of coexpressed FLAG and EGFP fusions and gel-filtration chromatography allowed detection of tetramers and monomers in nuclear fractions that also exhibited S-adenosylmethionine synthesis. Neither nuclear localization nor matrix binding required activity, as demonstrated with the inactive F251D mutant. Nuclear accumulation of the active enzyme only correlated with histone H3K27 trimethylation among the epigenetic modifications evaluated, therefore pointing to the necessity of methionine adenosyltransferase I/III to guarantee the supply of S-adenosylmethionine for specific methylations. However, nuclear monomers may exhibit additional roles.
Collapse
Affiliation(s)
- Edel Reytor
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain
| | | | | | | | | |
Collapse
|
25
|
Garrido F, Alfonso C, Taylor JC, Markham GD, Pajares MA. Subunit association as the stabilizing determinant for archaeal methionine adenosyltransferases. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2009; 1794:1082-90. [PMID: 19348969 DOI: 10.1016/j.bbapap.2009.03.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Revised: 03/13/2009] [Accepted: 03/16/2009] [Indexed: 11/26/2022]
Abstract
Archaea contain a class of methionine adenosyltransferases (MATs) that exhibit substantially higher stability than their mesophilic counterparts. Their sequences are highly divergent, but preserve the essential active site motifs of the family. We have investigated the origin of this increased stability using chemical denaturation experiments on Methanococcus jannaschii MAT (Mj-MAT) and mutants containing single tryptophans in place of tyrosine residues. The results from fluorescence, circular dichroism, hydrodynamic, and enzyme activity measurements showed that the higher stability of Mj-MAT derives largely from a tighter association of its subunits in the dimer. Local fluorescence changes, interpreted using secondary structure predictions, further identify the least stable structural elements as the C-terminal ends of beta-strands E2 and E6, and the N-terminus of E3. Dimer dissociation however requires a wider perturbation of the molecule. Additional analysis was initially hindered by the lack of crystal structures for archaeal MATs, a limitation that we overcame by construction of a 3D-homology model of Mj-MAT. This model predicts preservation of the chain topology and three-domain organization typical of this family, locates the least stable structural elements at the flat contact surface between monomers, and shows that alterations in all three domains are required for dimer dissociation.
Collapse
Affiliation(s)
- Francisco Garrido
- Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain
| | | | | | | | | |
Collapse
|
26
|
Abstract
Methionine adenosyltransferases (MATs) are the family of enzymes that synthesize the main biological methyl donor, S-adenosylmethionine. The high sequence conservation among catalytic subunits from bacteria and eukarya preserves key residues that control activity and oligomerization, which is reflected in the protein structure. However, structural differences among complexes with substrates and products have led to proposals of several reaction mechanisms. In parallel, folding studies begin to explain how the three intertwined domains of the catalytic subunit are produced, and to highlight the importance of certain intermediates in attaining the active final conformation. This review analyzes the available structural data and proposes a consensus interpretation that facilitates an understanding of the pathological problems derived from impairment of MAT function. In addition, new research opportunities directed toward clarification of aspects that remain obscure are also identified.
Collapse
Affiliation(s)
- G. D. Markham
- Institute for Cancer Research, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111 USA
| | - M. A. Pajares
- Instituto de Investigaciones Biomédicas “Alberto Sols” (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain
| |
Collapse
|
27
|
Giles TN, Graham DE. Crenarchaeal arginine decarboxylase evolved from an S-adenosylmethionine decarboxylase enzyme. J Biol Chem 2008; 283:25829-38. [PMID: 18650422 DOI: 10.1074/jbc.m802674200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The crenarchaeon Sulfolobus solfataricus uses arginine to produce putrescine for polyamine biosynthesis. However, genome sequences from S. solfataricus and most crenarchaea have no known homologs of the previously characterized pyridoxal 5'-phosphate or pyruvoyl-dependent arginine decarboxylases that catalyze the first step in this pathway. Instead they have two paralogs of the S-adenosylmethionine decarboxylase (AdoMetDC). The gene at locus SSO0585 produces an AdoMetDC enzyme, whereas the gene at locus SSO0536 produces a novel arginine decarboxylase (ArgDC). Both thermostable enzymes self-cleave at conserved serine residues to form amino-terminal beta-domains and carboxyl-terminal alpha-domains with reactive pyruvoyl cofactors. The ArgDC enzyme specifically catalyzed arginine decarboxylation more efficiently than previously studied pyruvoyl enzymes. alpha-Difluoromethylarginine significantly reduced the ArgDC activity of purified enzyme, and treating growing S. solfataricus cells with this inhibitor reduced the cells' ratio of spermidine to norspermine by decreasing the putrescine pool. The crenarchaeal ArgDC had no AdoMetDC activity, whereas its AdoMetDC paralog had no ArgDC activity. A chimeric protein containing the beta-subunit of SSO0536 and the alpha-subunit of SSO0585 had ArgDC activity, implicating residues responsible for substrate specificity in the amino-terminal domain. This crenarchaeal ArgDC is the first example of alternative substrate specificity in the AdoMetDC family. ArgDC activity has evolved through convergent evolution at least five times, demonstrating the utility of this enzyme and the plasticity of amino acid decarboxylases.
Collapse
Affiliation(s)
- Teresa N Giles
- Department of Chemistry and Biochemistry, University of Texas, Austin, Texas 78712, USA
| | | |
Collapse
|
28
|
Sun N, Beck F, Knispel RW, Siedler F, Scheffer B, Nickell S, Baumeister W, Nagy I. Proteomics Analysis of Thermoplasma acidophilum with a Focus on Protein Complexes. Mol Cell Proteomics 2007; 6:492-502. [PMID: 17151018 DOI: 10.1074/mcp.m600322-mcp200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Two-dimensional gel electrophoresis (2DE) and MALDI-TOF MS were used to obtain a global view of the cytoplasmic proteins expressed by Thermoplasma acidophilum. In addition, glycerol gradient ultracentrifugation coupled to 2DE-MALDI-TOF MS analysis was used to identify subunits of macromolecular complexes. With the 2DE proteomics approach, over 900 spots were resolved of which 271 proteins were identified. A significant number of these form macromolecular complexes, among them the ribosome, proteasome, and thermosome, which are expressed at high levels. In the glycerol gradient heavy fractions, 10 as yet uncharacterized proteins (besides the well known ribosomal subunits, translation initiation factor eIF-6-related protein, elongation factor 1, and DNA-dependent RNA polymerase) were identified that are putative building blocks of protein complexes. These proteins belong to the categories of hypothetical or conserved hypothetical proteins, and they are present in the cytosol at low concentrations. Although these proteins exhibit homology to known sequences, their structures, subunit compositions, and biological functions are not yet known.
Collapse
Affiliation(s)
- Na Sun
- Department of Structural Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, D-82152 Martinsried bei München, Germany
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Kozbial PZ, Mushegian AR. Natural history of S-adenosylmethionine-binding proteins. BMC STRUCTURAL BIOLOGY 2005; 5:19. [PMID: 16225687 PMCID: PMC1282579 DOI: 10.1186/1472-6807-5-19] [Citation(s) in RCA: 218] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2005] [Accepted: 10/14/2005] [Indexed: 11/10/2022]
Abstract
BACKGROUND S-adenosylmethionine is a source of diverse chemical groups used in biosynthesis and modification of virtually every class of biomolecules. The most notable reaction requiring S-adenosylmethionine, transfer of methyl group, is performed by a large class of enzymes, S-adenosylmethionine-dependent methyltransferases, which have been the focus of considerable structure-function studies. Evolutionary trajectories of these enzymes, and especially of other classes of S-adenosylmethionine-binding proteins, nevertheless, remain poorly understood. We addressed this issue by computational comparison of sequences and structures of various S-adenosylmethionine-binding proteins. RESULTS Two widespread folds, Rossmann fold and TIM barrel, have been repeatedly used in evolution for diverse types of S-adenosylmethionine conversion. There were also cases of recruitment of other relatively common folds for S-adenosylmethionine binding. Several classes of proteins have unique unrelated folds, specialized for just one type of chemistry and unified by the theme of internal domain duplications. In several cases, functional divergence is evident, when evolutionarily related enzymes have changed the mode of binding and the type of chemical transformation of S-adenosylmethionine. There are also instances of functional convergence, when biochemically similar processes are performed by drastically different classes of S-adenosylmethionine-binding proteins. Comparison of remote sequence similarities and analysis of phyletic patterns suggests that the last universal common ancestor of cellular life had between 10 and 20 S-adenosylmethionine-binding proteins from at least 5 fold classes, providing for S-adenosylmethionine formation, polyamine biosynthesis, and methylation of several substrates, including nucleic acids and peptide chain release factor. CONCLUSION We have observed several novel relationships between families that were not known to be related before, and defined 15 large superfamilies of SAM-binding proteins, at least 5 of which may have been represented in the last common ancestor.
Collapse
Affiliation(s)
- Piotr Z Kozbial
- Stowers Institute for Medical Research, 1000 E. 50th St., Kansas City, MO 64110, USA
| | - Arcady R Mushegian
- Stowers Institute for Medical Research, 1000 E. 50th St., Kansas City, MO 64110, USA
- Department of Microbiology, Molecular Genetics, and Immunology, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| |
Collapse
|
30
|
Tsoka S, Simon D, Ouzounis CA. Automated metabolic reconstruction for Methanococcus jannaschii. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2005; 1:223-9. [PMID: 15810431 PMCID: PMC2685575 DOI: 10.1155/2004/324925] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We present the computational prediction and synthesis of the metabolic pathways in Methanococcus jannaschii from its genomic sequence using the PathoLogic software. Metabolic reconstruction is based on a reference knowledge base of metabolic pathways and is performed with minimal manual intervention. We predict the existence of 609 metabolic reactions that are assembled in 113 metabolic pathways and an additional 17 super-pathways consisting of one or more component pathways. These assignments represent significantly improved enzyme and pathway predictions compared with previous metabolic reconstructions, and some key metabolic reactions, previously missing, have been identified. Our results, in the form of enzymatic assignments and metabolic pathway predictions, form a database (MJCyc) that is accessible over the World Wide Web for further dissemination among members of the scientific community.
Collapse
Affiliation(s)
- Sophia Tsoka
- Computational Genomics Group, The European Bioinformatics Institute, EMBL Cambridge Outstation, Cambridge CB10 1SD, UK.
| | | | | |
Collapse
|
31
|
Rodionov DA, Dubchak I, Arkin A, Alm E, Gelfand MS. Reconstruction of regulatory and metabolic pathways in metal-reducing delta-proteobacteria. Genome Biol 2004; 5:R90. [PMID: 15535866 PMCID: PMC545781 DOI: 10.1186/gb-2004-5-11-r90] [Citation(s) in RCA: 152] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2004] [Revised: 09/20/2004] [Accepted: 09/30/2004] [Indexed: 12/23/2022] Open
Abstract
A study of the genetic and regulatory factors in several biosynthesis, metal ion homeostasis, stress response, and energy metabolism pathways suggests that phylogenetically diverse δ-proteobacteria have homologous regulatory components. Background Relatively little is known about the genetic basis for the unique physiology of metal-reducing genera in the delta subgroup of the proteobacteria. The recent availability of complete finished or draft-quality genome sequences for seven representatives allowed us to investigate the genetic and regulatory factors in a number of key pathways involved in the biosynthesis of building blocks and cofactors, metal-ion homeostasis, stress response, and energy metabolism using a combination of regulatory sequence detection and analysis of genomic context. Results In the genomes of δ-proteobacteria, we identified candidate binding sites for four regulators of known specificity (BirA, CooA, HrcA, sigma-32), four types of metabolite-binding riboswitches (RFN-, THI-, B12-elements and S-box), and new binding sites for the FUR, ModE, NikR, PerR, and ZUR transcription factors, as well as for the previously uncharacterized factors HcpR and LysX. After reconstruction of the corresponding metabolic pathways and regulatory interactions, we identified possible functions for a large number of previously uncharacterized genes covering a wide range of cellular functions. Conclusions Phylogenetically diverse δ-proteobacteria appear to have homologous regulatory components. This study for the first time demonstrates the adaptability of the comparative genomic approach to de novo reconstruction of a regulatory network in a poorly studied taxonomic group of bacteria. Recent efforts in large-scale functional genomic characterization of Desulfovibrio species will provide a unique opportunity to test and expand our predictions.
Collapse
Affiliation(s)
- Dmitry A Rodionov
- Institute for Information Transmission Problems, Russian Academy of Sciences, Bolshoi Karetny per. 19, Moscow 127994, Russia
| | - Inna Dubchak
- Genomics Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Adam Arkin
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Howard Hughes Medical Institute, Berkeley, CA 94720, USA
- University of California, Berkeley, CA 94720, USA
| | - Eric Alm
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Mikhail S Gelfand
- Institute for Information Transmission Problems, Russian Academy of Sciences, Bolshoi Karetny per. 19, Moscow 127994, Russia
- State Scientific Center GosniiGenetika, 1st Dorozhny pr. 1, Moscow 117545, Russia
| |
Collapse
|
32
|
Sánchez-Pérez GF, Bautista JM, Pajares MA. Methionine adenosyltransferase as a useful molecular systematics tool revealed by phylogenetic and structural analyses. J Mol Biol 2004; 335:693-706. [PMID: 14687567 DOI: 10.1016/j.jmb.2003.11.022] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Structural and phylogenetic relationships among Bacteria and Eukaryota were analyzed by examining 292 methionine adenosyltransferase (MAT) amino acid sequences with respect to the crystal structure of this enzyme established for Escherichia coli and rat liver. Approximately 30% of MAT residues were found to be identical in all species. Five highly conserved amino acid sequence blocks did not vary in the MAT family. We detected specific structural features that correlated with sequence signatures for several clades, allowing taxonomical identification by sequence analysis. In addition, the number of amino acid residues in the loop connecting beta-strands A2 and A3 served to clearly distinguish sequences between eukaryotes and eubacteria. The molecular phylogeny of MAT genes in eukaryotes can be explained in terms of functional diversification coupled to gene duplication or alternative splicing and adaptation through strong structural constraints. Sequence analyses and intron/exon junction positions among nematodes, arthropods and vertebrates support the traditional Coelomata hypothesis. In vertebrates, the liver MAT I isoenzyme has gradually adapted its sequence towards one providing a more specific liver function. MAT phylogeny also served to cluster the major bacterial groups, demonstrating the superior phylogenetic performance of this ubiquitous, housekeeping gene in reconstructing the evolutionary history of distant relatives.
Collapse
Affiliation(s)
- Gabino F Sánchez-Pérez
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain
| | | | | |
Collapse
|
33
|
Slapeta J, Stejskal F, Keithly JS. Characterization of S-adenosylmethionine synthetase in Cryptosporidium parvum (Apicomplexa). FEMS Microbiol Lett 2003; 225:271-7. [PMID: 12951252 DOI: 10.1016/s0378-1097(03)00537-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The S-adenosylmethionine synthetase gene of the apicomplexan Cryptosporidium parvum (CpSAMS), an agent of diarrhea in immunocompromised and healthy humans and animals is described. CpSAMS is a single-copy, intronless gene of 1221 bp encoding a polypeptide of 406 amino acids with a molecular mass of 44.8 kDa. The gene is AT-rich (61.8%). CpSAMS was expressed in Escherichia coli TB1 cells as a fusion with maltose binding protein. The activity of the recombinant fusion was assayed, and was found to be inhibited by the methionine analog cycloleucine. In order to determine whether CpSAMS was differentially expressed during the life cycle of C. parvum, HCT-8 cells were infected with C. parvum and assayed over 72 h. Semi-quantitative reverse transcription-polymerase chain reaction (RT-PCR) confirmed the differential expression of CpSAMS.
Collapse
Affiliation(s)
- Jan Slapeta
- Wadsworth Center, New York State Department of Health, P.O. Box 22002, Albany, NY 12201-2002, USA
| | | | | |
Collapse
|
34
|
Makarova KS, Koonin EV. Comparative genomics of Archaea: how much have we learned in six years, and what's next? Genome Biol 2003; 4:115. [PMID: 12914651 PMCID: PMC193635 DOI: 10.1186/gb-2003-4-8-115] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Archaea comprise one of the three distinct domains of life (with bacteria and eukaryotes). With 16 complete archaeal genomes sequenced to date, comparative genomics has revealed a conserved core of 313 genes that are represented in all sequenced archaeal genomes, plus a variable 'shell' that is prone to lineage-specific gene loss and horizontal gene exchange. The majority of archaeal genes have not been experimentally characterized, but novel functional pathways have been predicted.
Collapse
Affiliation(s)
- Kira S Makarova
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.
| | | |
Collapse
|
35
|
Berger BJ, Knodel MH. Characterisation of methionine adenosyltransferase from Mycobacterium smegmatis and M. tuberculosis. BMC Microbiol 2003; 3:12. [PMID: 12809568 PMCID: PMC165446 DOI: 10.1186/1471-2180-3-12] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2003] [Accepted: 06/16/2003] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Tuberculosis remains a serious world-wide health threat which requires the characterisation of novel drug targets for the development of future antimycobacterials. One of the key obstacles in the definition of new targets is the large variety of metabolic alterations that occur between cells in the active growth and chronic/dormant phases of tuberculosis. The ideal biochemical target should be active in both growth phases. Methionine adenosyltransferase, which catalyses the formation of S-adenosylmethionine from methionine and ATP, is involved in polyamine biosynthesis during active growth and is also required for the methylation and cyclopropylation of mycolipids necessary for survival in the chronic phase. RESULTS The gene encoding methionine adenosyltransferase has been cloned from Mycobacterium tuberculosis and the model organism M. smegmatis. Both enzymes retained all amino acids known to be involved in catalysing the reaction. While the M. smegmatis enzyme could be functionally expressed, the M. tuberculosis homologue was insoluble and inactive under a large variety of expression conditions. For the M. smegmatis enzyme, the Vmax for S-adenosylmethionine formation was 1.30 micromol/min/mg protein and the Km for methionine and ATP was 288 microM and 76 microM respectively. In addition, the enzyme was competitively inhibited by 8-azaguanine and azathioprine with a Ki of 4.7 mM and 3.7 mM respectively. Azathioprine inhibited the in vitro growth of M. smegmatis with a minimal inhibitory concentration (MIC) of 500 microM, while the MIC for 8-azaguanine was >1.0 mM. CONCLUSION The methionine adenosyltransferase from both organisms had a primary structure very similar those previously characterised in other prokaryotic and eukaryotic organisms. The kinetic properties of the M. smegmatis enzyme were also similar to known prokaryotic methionine adenosyltransferases. Inhibition of the enzyme by 8-azaguanine and azathioprine provides a starting point for the synthesis of higher affinity purine-based inhibitors.
Collapse
Affiliation(s)
- Bradley J Berger
- Chemical & Biological Defence Section, Defence R&D Canada – Suffield, PO Box 4000, Medicine Hat, AB, T1A 8K6, Canada
| | - Marvin H Knodel
- Chemical & Biological Defence Section, Defence R&D Canada – Suffield, PO Box 4000, Medicine Hat, AB, T1A 8K6, Canada
| |
Collapse
|
36
|
Abstract
Rickettsia prowazekii, the causative agent of epidemic typhus, is an obligate, intracellular, parasitic bacterium that grows within the cytoplasm of eucaryotic host cells. Rickettsiae exploit this intracellular environment by using transport systems for the compounds available in the host cell's cytoplasm. Analysis of the R. prowazekii Madrid E genome sequence revealed the presence of a mutation in the rickettsial metK gene, the gene encoding the enzyme responsible for the synthesis of S-adenosylmethionine (AdoMet). Since AdoMet is required for rickettsial processes, the apparent inability of this strain to synthesize AdoMet suggested the presence of a rickettsial AdoMet transporter. We have confirmed the presence of an AdoMet transporter in the rickettsiae which, to our knowledge, is the first bacterial AdoMet transporter identified. The influx of AdoMet into rickettsiae was a saturable process with a K(T) of 2.3 micro M. Transport was inhibited by S-adenosylethionine and S-adenosylhomocysteine but not by sinfungin or methionine. Transport was also inhibited by 2,4-dinitrophenol, suggesting an energy-linked transport mechanism, and by N-ethylmaleimide. AdoMet transporters with similar properties were also identified in the Breinl strain of R. prowazekii and in Rickettsia typhi. By screening Escherichia coli clone banks for AdoMet transport, the R. prowazekii gene coding for a transporter, RP076 (sam), was identified. AdoMet transport in E. coli containing the R. prowazekii sam gene exhibited kinetics similar to that seen in rickettsiae. The existence of a rickettsial transporter for AdoMet raises intriguing questions concerning the evolutionary relationship between the synthesis and transport of this essential metabolite.
Collapse
Affiliation(s)
- Aimee M Tucker
- Laboratory of Molecular Biology, Department of Microbiology and Immunology, University of South Alabama College of Medicine, Mobile, Alabama 36688, USA
| | | | | | | |
Collapse
|
37
|
Tolbert WD, Graham DE, White RH, Ealick SE. Pyruvoyl-dependent arginine decarboxylase from Methanococcus jannaschii: crystal structures of the self-cleaved and S53A proenzyme forms. Structure 2003; 11:285-94. [PMID: 12623016 DOI: 10.1016/s0969-2126(03)00026-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The three-dimensional structure of pyruvoyl-dependent arginine decarboxylase from Methanococcus jannaschii was determined at 1.4 A resolution. The pyruvoyl group of arginine decarboxylase is generated by an autocatalytic internal serinolysis reaction at Ser53 in the proenzyme resulting in two polypeptide chains. The structure of the nonprocessing S53A mutant was also determined. The active site of the processed enzyme unexpectedly contained the reaction product agmatine. The crystal structure confirms that arginine decarboxylase is a homotrimer. The protomer fold is a four-layer alphabetabetaalpha sandwich with topology similar to pyruvoyl-dependent histidine decarboxylase. Highly conserved residues Asn47, Ser52, Ser53, Ile54, and Glu109 are proposed to play roles in the self-processing reaction. Agmatine binding residues include the C terminus of the beta chain (Ser52) from one protomer and the Asp35 side chain and the Gly44 and Val46 carbonyl oxygen atoms from an adjacent protomer. Glu109 is proposed to play a catalytic role in the decarboxylation reaction.
Collapse
Affiliation(s)
- W David Tolbert
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | | | | | | |
Collapse
|
38
|
Cannon LM, Butler FN, Wan W, Zhou ZS. A stereospecific colorimetric assay for (S,S)-adenosylmethionine quantification based on thiopurine methyltransferase-catalyzed thiol methylation. Anal Biochem 2002; 308:358-63. [PMID: 12419350 DOI: 10.1016/s0003-2697(02)00267-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
S-Adenosyl-L-methionine (AdoMet) which is biologically synthesized by AdoMet synthetase bears an S configuration at the sulfur atom. The chiral sulfonium spontaneously racemizes to form a mixture of S and R isomers of AdoMet under physiological conditions or normal storage conditions. The chirality of AdoMet greatly affects its activity; the R isomer is not accepted as a substrate for AdoMet-dependent methyltransferases. We report a stereospecific colorimetric assay for (S,S)-adenosylmethionine quantification based on an enzyme-coupled reaction in which (S,S)-AdoMet reacts with 2-nitro-5-thiobenzoic acid to form AdoHcy and 2-nitro-5-methylthiobenzoic acid. The transformation is catalyzed by recombinant human thiopurine S-methyltransferase (TPMT, EC 2.1.1.67) and is associated with a large spectral change at 410 nm. Accumulation of the S-adenosylhomocysteine (AdoHcy) product, a feedback inhibitor of TPMT, slows the assay. AdoHcy nucleosidase (EC 3.2.2.9) irreversibly cleaves AdoHcy to adenine and S-ribosylhomocysteine, significantly shortening the assay time to less than 10 min. The assay is linear from 5 to at least 60 microM (S,S)-AdoMet.
Collapse
Affiliation(s)
- Lisa M Cannon
- Department of Chemistry and School of Molecular Biosciences, Washington State University, Pullman 99164, USA
| | | | | | | |
Collapse
|
39
|
Bentley R, Chasteen TG. Microbial methylation of metalloids: arsenic, antimony, and bismuth. Microbiol Mol Biol Rev 2002; 66:250-71. [PMID: 12040126 PMCID: PMC120786 DOI: 10.1128/mmbr.66.2.250-271.2002] [Citation(s) in RCA: 309] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A significant 19th century public health problem was that the inhabitants of many houses containing wallpaper decorated with green arsenical pigments experienced illness and death. The problem was caused by certain fungi that grew in the presence of inorganic arsenic to form a toxic, garlic-odored gas. The garlic odor was actually put to use in a very delicate microbiological test for arsenic. In 1933, the gas was shown to be trimethylarsine. It was not until 1971 that arsenic methylation by bacteria was demonstrated. Further research in biomethylation has been facilitated by the development of delicate techniques for the determination of arsenic species. As described in this review, many microorganisms (bacteria, fungi, and yeasts) and animals are now known to biomethylate arsenic, forming both volatile (e.g., methylarsines) and nonvolatile (e.g., methylarsonic acid and dimethylarsinic acid) compounds. The enzymatic mechanisms for this biomethylation are discussed. The microbial conversion of sodium arsenate to trimethylarsine proceeds by alternate reduction and methylation steps, with S-adenosylmethionine as the usual methyl donor. Thiols have important roles in the reductions. In anaerobic bacteria, methylcobalamin may be the donor. The other metalloid elements of the periodic table group 15, antimony and bismuth, also undergo biomethylation to some extent. Trimethylstibine formation by microorganisms is now well established, but this process apparently does not occur in animals. Formation of trimethylbismuth by microorganisms has been reported in a few cases. Microbial methylation plays important roles in the biogeochemical cycling of these metalloid elements and possibly in their detoxification. The wheel has come full circle, and public health considerations are again important.
Collapse
Affiliation(s)
- Ronald Bentley
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA.
| | | |
Collapse
|
40
|
Lu ZJ, Markham GD. Enzymatic properties of S-adenosylmethionine synthetase from the archaeon Methanococcus jannaschii. J Biol Chem 2002; 277:16624-31. [PMID: 11872742 DOI: 10.1074/jbc.m110456200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
S-Adenosylmethionine synthetase (ATP:l-methionine S-adenosyltransferase, MAT) catalyzes a unique enzymatic reaction that leads to formation of the primary biological alkylating agent. MAT from the hyperthermophilic archaeon Methanococcus jannaschii (MjMAT) is a prototype of the newly discovered archaeal class of MAT proteins that are nearly unrecognizable in sequence when compared with the class that encompasses both the eucaryal and bacterial enzymes. In this study the functional properties of purified recombinant MjMAT have been evaluated. The products of the reaction are AdoMet, PP(i), and P(i); >90% of the P(i) originates from the gamma-phosphoryl group of ATP. The circular dichroism spectrum of the dimeric MjMAT indicates that the secondary structure is more helical than the Escherichia coli counterpart (EcMAT), suggesting a different protein topology. The steady state kinetic mechanism is sequential, with random addition of ATP and methionine; AdoMet is the first product released, followed by release of PP(i) and P(i). The substrate specificity differs remarkably from the previously characterized MATs; the nucleotide binding site has a very broad tolerance of alterations in the adenosine moiety. MjMAT has activity at 70 degrees C comparable with that of EcMAT at 37 degrees C, consistent with the higher temperature habitat of M. jannaschii. The activation energy for AdoMet formation is larger than that for the E. coli MAT-catalyzed reaction, in accord with the notion that enzymes from thermophilic organisms are often more rigid than their mesophilic counterparts. The broad substrate tolerance of this enzyme proffers routes to preparation of novel AdoMet analogs.
Collapse
Affiliation(s)
- Zichun J Lu
- Fox Chase Cancer Center, Institute for Cancer Research, Philadelphia, Pennsylvania 19111, USA
| | | |
Collapse
|
41
|
Kim AD, Graham DE, Seeholzer SH, Markham GD. S-Adenosylmethionine decarboxylase from the archaeon Methanococcus jannaschii: identification of a novel family of pyruvoyl enzymes. J Bacteriol 2000; 182:6667-72. [PMID: 11073910 PMCID: PMC111408 DOI: 10.1128/jb.182.23.6667-6672.2000] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Polyamines are present in high concentrations in archaea, yet little is known about their synthesis, except by extrapolation from bacterial and eucaryal systems. S-Adenosylmethionine (AdoMet) decarboxylase, a pyruvoyl group-containing enzyme that is required for spermidine biosynthesis, has been previously identified in eucarya and Escherichia coli. Despite spermidine concentrations in the Methanococcales that are several times higher than in E. coli, no AdoMet decarboxylase gene was recognized in the complete genome sequence of Methanococcus jannaschii. The gene encoding AdoMet decarboxylase in this archaeon is identified herein as a highly diverged homolog of the E. coli speD gene (less than 11% identity). The M. jannaschii enzyme has been expressed in E. coli and purified to homogeneity. Mass spectrometry showed that the enzyme is composed of two subunits of 61 and 63 residues that are derived from a common proenzyme; these proteins associate in an (alphabeta)(2) complex. The pyruvoyl-containing subunit is less than one-half the size of that in previously reported AdoMet decarboxylases, but the holoenzyme has enzymatic activity comparable to that of other AdoMet decarboxylases. The sequence of the M. jannaschii enzyme is a prototype of a class of AdoMet decarboxylases that includes homologs in other archaea and diverse bacteria. The broad phylogenetic distribution of this group suggests that the canonical SpeD-type decarboxylase was derived from an archaeal enzyme within the gamma proteobacterial lineage. Both SpeD-type and archaeal-type enzymes have diverged widely in sequence and size from analogous eucaryal enzymes.
Collapse
Affiliation(s)
- A D Kim
- Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
| | | | | | | |
Collapse
|
42
|
del Pino MM, Corrales FJ, Mato JM. Hysteretic behavior of methionine adenosyltransferase III. Methionine switches between two conformations of the enzyme with different specific activity. J Biol Chem 2000; 275:23476-23482. [PMID: 10811651 DOI: 10.1074/jbc.m002730200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Methionine adenosyltransferase III (MATIII) catalyzes S-adenosylmethionine (AdoMet) synthesis and, as part of its reaction mechanism, it also hydrolyzes tripolyphosphate. Tripolyphosphatase activity was linear over time and had a slightly sigmoidal behavior with an affinity in the low micromolar range. On the contrary, AdoMet synthetase activity showed a lag phase that was independent of protein concentration but decreased at increasing substrate concentrations. Tripolyphosphatase activity, which appeared to be slower than AdoMet synthesis, was stimulated by preincubation with ATP and methionine so that it matched AdoMet synthetase activity. This stimulation process, which is probably the origin of the lag phase, represents the slow transition between two conformations of the enzyme that could be distinguished by their different tripolyphosphatase activity and sensitivity to S-nitrosylation. Tripolyphosphatase activity appeared to be the rate-determining reaction in AdoMet synthesis and the one inhibited by S-nitrosylation. The methionine concentration necessary to obtain half-maximal stimulation was in the range of physiological methionine fluctuations. Moreover, stimulation of MAT activity by methionine was demonstrated in vivo. We propose that the hysteretic behavior of MATIII, in which methionine induces the transition to a higher specific activity conformation, can be considered as an adaptation to the specific functional requirements of the liver.
Collapse
Affiliation(s)
- M M del Pino
- Division of Hepatology and Gene Therapy, Department of Medicine, University of Navarra, 31008 Pamplona, Navarra, Spain.
| | | | | |
Collapse
|