1
|
Lu Y, Schuller M, Bullen N, Mikolcevic P, Zonjic I, Raggiaschi R, Mikoc A, Whitney J, Ahel I. Discovery of reversing enzymes for RNA ADP-ribosylation reveals a possible defence module against toxic attack. Nucleic Acids Res 2025; 53:gkaf069. [PMID: 39964479 PMCID: PMC11833690 DOI: 10.1093/nar/gkaf069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 12/12/2024] [Accepted: 01/28/2025] [Indexed: 02/21/2025] Open
Abstract
Nucleic acid ADP-ribosylation and its associated enzymes involved in catalysis and hydrolysis are widespread among all kingdoms of life. Yet, its roles in mammalian and bacterial physiology including inter-/intraspecies conflicts are currently underexplored. Recently, several examples of enzymatic systems for RNA ADP-ribosylation have been identified, showing that all major types of RNA species, including messenger RNA, ribosomal RNA, and transfer RNA, can be targeted by ADP-ribosyltransferases (ARTs) which attach ADP-ribose modifications either to nucleobases, the backbone ribose, or phosphate ends. Yet little is known about the reversibility of RNA ADP-ribosylation by ADP-ribosylhydrolases belonging to the macrodomain, ARH, or NADAR superfamilies. Here, we characterize the hydrolytic activity of ADP-ribosylhydrolases on RNA species ADP-ribosylated by mammalian and bacterial ARTs. We demonstrate that NADAR ADP-ribosylhydrolases are the only hydrolase family able to reverse guanosine RNA base ADP-ribosylation while they are inactive on phosphate-end RNA ADP-ribosylation. Furthermore, we reveal that macrodomain-containing PARG enzymes are the only hydrolase type with the ability for specific and efficient reversal of 2'-hydroxyl group RNA ADP-ribosylation catalysed by Pseudomonas aeruginosa effector toxin RhsP2. Moreover, using the RhsP2/bacterial PARG system as an example, we demonstrate that PARG enzymes can act as protective immunity enzymes against antibacterial RNA-targeting ART toxins.
Collapse
Affiliation(s)
- Yang Lu
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, United Kingdom
| | - Marion Schuller
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, United Kingdom
| | - Nathan P Bullen
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Petra Mikolcevic
- Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, 10000, Croatia
| | - Iva Zonjic
- Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, 10000, Croatia
| | - Roberto Raggiaschi
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, United Kingdom
| | - Andreja Mikoc
- Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, 10000, Croatia
| | - John C Whitney
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Ivan Ahel
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, United Kingdom
| |
Collapse
|
2
|
Dumont B, Terradot L, Cascales E, Van Melderen L, Jurėnas D. Thioredoxin 1 moonlights as a chaperone for an interbacterial ADP-ribosyltransferase toxin. Nat Commun 2024; 15:10388. [PMID: 39613764 DOI: 10.1038/s41467-024-54892-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 11/22/2024] [Indexed: 12/01/2024] Open
Abstract
Formation and breakage of disulfide bridges strongly impacts folding and activity of proteins. Thioredoxin 1 (TrxA) is a small, conserved enzyme that reduces disulfide bonds in the bacterial cytosol. In this study, we provide an example of the emergence of a chaperone role for TrxA, which is independent of redox catalysis. We show that the activity of the secreted bacterial ADP-ribosyltransferase (ART) toxin TreX, which does not contain any cysteines, is dependent on TrxA. TreX binds to the reduced form of TrxA via its carboxy-terminal extension to form a soluble and active complex. Structural studies revealed that TreX-like toxins are homologous to Scabin-like ART toxins which possess cysteine residues and form disulfide bridges at the position that superimposes the TrxA binding site in TreX. Our study therefore suggests that thioredoxin 1 evolved alternative functions by maintaining the interaction with cysteine-free substrates.
Collapse
Affiliation(s)
- Baptiste Dumont
- Bacterial Genetics and Physiology, Faculté des Sciences, Université Libre de Bruxelles (ULB), Gosselies, Belgium
- Unité Biodiversité et Amélioration des Plantes et Forêts, Centre Wallon de Recherches Agronomiques (CRA-W), Bâtiment Emile Marchal, Gembloux, Belgium
| | - Laurent Terradot
- Laboratory of Molecular Microbiology and Structural Biochemistry, Institut de Biologie et Chimie des Protéines (IBCP), Université de Lyon, Lyon, France
| | - Eric Cascales
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires (LISM), Institut de Microbiologie de la Méditerranée (IMM), Aix-Marseille Université, Marseille, France
| | - Laurence Van Melderen
- Bacterial Genetics and Physiology, Faculté des Sciences, Université Libre de Bruxelles (ULB), Gosselies, Belgium.
| | - Dukas Jurėnas
- Bacterial Genetics and Physiology, Faculté des Sciences, Université Libre de Bruxelles (ULB), Gosselies, Belgium.
- WEL Research Institute, Wavre, Belgique.
| |
Collapse
|
3
|
Kawanishi M, Yagi T, Totsuka Y, Wakabayashi K. DNA Repair and Mutagenesis of ADP-Ribosylated DNA by Pierisin. Toxins (Basel) 2024; 16:331. [PMID: 39195741 PMCID: PMC11359729 DOI: 10.3390/toxins16080331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/19/2024] [Accepted: 07/24/2024] [Indexed: 08/29/2024] Open
Abstract
Pierisin is a DNA-targeting ADP-ribosyltransferase found in cabbage white butterfly (Pieris rapae). Pierisin transfers an ADP-ribosyl moiety to the 2-amino group of the guanine residue in DNA, yielding N2-(ADP-ribos-1-yl)-2'-deoxyguanosine (N2-ADPR-dG). Generally, such chemically modified DNA is recognized as DNA damage and elicits cellular responses, including DNA repair pathways. In Escherichia coli and human cells, it has been experimentally demonstrated that N2-ADPR-dG is a substrate of the nucleotide excision repair system. Although DNA repair machineries can remove most lesions, some unrepaired damages frequently lead to mutagenesis through DNA replication. Replication past the damaged DNA template is called translesion DNA synthesis (TLS). In vitro primer extension experiments have shown that eukaryotic DNA polymerase κ is involved in TLS across N2-ADPR-dG. In many cases, TLS is error-prone and thus a mutagenic process. Indeed, the induction of G:C to T:A and G:C to C:G mutations by N2-ADPR-dG in the hypoxanthine phosphoribosyltransferase gene mutation assay with Chinese hamster cells and supF shuttle vector plasmids assay using human fibroblasts has been reported. This review provides a detailed overview of DNA repair, TLS and mutagenesis of N2-ADPR-dG induced by cabbage butterfly pierisin-1.
Collapse
Affiliation(s)
- Masanobu Kawanishi
- Environmental Molecular Toxicology, Department of Biological Chemistry, Graduate School of Science, Osaka Metropolitan University, 1-2 Gakuen-cho, Naka-ku, Sakai 599-8570, Japan;
| | - Takashi Yagi
- Environmental Molecular Toxicology, Department of Biological Chemistry, Graduate School of Science, Osaka Metropolitan University, 1-2 Gakuen-cho, Naka-ku, Sakai 599-8570, Japan;
| | - Yukari Totsuka
- Department of Environmental Health Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan;
| | - Keiji Wakabayashi
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan;
| |
Collapse
|
4
|
Tsuge H, Habuka N, Yoshida T. General ADP-Ribosylation Mechanism Based on the Structure of ADP-Ribosyltransferase-Substrate Complexes. Toxins (Basel) 2024; 16:313. [PMID: 39057953 PMCID: PMC11281641 DOI: 10.3390/toxins16070313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/06/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
ADP-ribosylation is a ubiquitous modification of proteins and other targets, such as nucleic acids, that regulates various cellular functions in all kingdoms of life. Furthermore, these ADP-ribosyltransferases (ARTs) modify a variety of substrates and atoms. It has been almost 60 years since ADP-ribosylation was discovered. Various ART structures have been revealed with cofactors (NAD+ or NAD+ analog). However, we still do not know the molecular mechanisms of ART. It needs to be better understood how ART specifies the target amino acids or bases. For this purpose, more information is needed about the tripartite complex structures of ART, the cofactors, and the substrates. The tripartite complex is essential to understand the mechanism of ADP-ribosyltransferase. This review updates the general ADP-ribosylation mechanism based on ART tripartite complex structures.
Collapse
Affiliation(s)
- Hideaki Tsuge
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto 6038555, Japan
| | - Noriyuki Habuka
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto 6038555, Japan
| | - Toru Yoshida
- Faculty of Sciences, Japan Women’s University, Tokyo 1120015, Japan
| |
Collapse
|
5
|
Takahashi-Nakaguchi A, Horiuchi Y, Yamamoto M, Totsuka Y, Wakabayashi K. Pierisin, Cytotoxic and Apoptosis-Inducing DNA ADP-Ribosylating Protein in Cabbage Butterfly. Toxins (Basel) 2024; 16:270. [PMID: 38922164 PMCID: PMC11209040 DOI: 10.3390/toxins16060270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 06/27/2024] Open
Abstract
Pierisin-1 was serendipitously discovered as a strong cytotoxic and apoptosis-inducing protein from pupae of the cabbage butterfly Pieris rapae against cancer cell lines. This 98-kDa protein consists of the N-terminal region (27 kDa) and C-terminal region (71 kDa), and analysis of their biological function revealed that pierisin-1 binds to cell surface glycosphingolipids on the C-terminal side, is taken up into the cell, and is cleaved to N- and C-terminal portions, where the N-terminal portion mono-ADP-ribosylates the guanine base of DNA in the presence of NAD to induce cellular genetic mutation and apoptosis. Unlike other ADP-ribosyltransferases, pieisin-1 was first found to exhibit DNA mono-ADP-ribosylating activity and show anti-cancer activity in vitro and in vivo against various cancer cell lines. Pierisin-1 was most abundantly produced during the transition from the final larval stage to the pupal stage of the cabbage butterfly, and this production was regulated by ecdysteroid hormones. This suggests that pierisn-1 might play a pivotal role in the process of metamorphosis. Moreover, pierisin-1 could contribute as a defense factor against parasitization and microbial infections in the cabbage butterfly. Pierisin-like proteins in butterflies were shown to be present not only among the subtribe Pierina but also among the subtribes Aporiina and Appiadina, and pierisin-2, -3, and -4 were identified in these butterflies. Furthermore, DNA ADP-ribosylating activities were found in six different edible clams. Understanding of the biological nature of pierisin-1 with DNA mono-ADP-ribosylating activity could open up exciting avenues for research and potential therapeutic applications, making it a subject of great interest in the field of molecular biology and biotechnology.
Collapse
Affiliation(s)
| | - Yu Horiuchi
- Aquatic Food Research Laboratory, Central Research Institute, Tokyo Innovation Center, Nissui Corporation, 1-32-3 Shichikoku, Hachioji City 192-0991, Japan
| | - Masafumi Yamamoto
- Central Institute for Experimental Medicine and Life Science, 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan
| | - Yukari Totsuka
- Department of Environmental Health Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Keiji Wakabayashi
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| |
Collapse
|
6
|
Cihlova B, Lu Y, Mikoč A, Schuller M, Ahel I. Specificity of DNA ADP-Ribosylation Reversal by NADARs. Toxins (Basel) 2024; 16:208. [PMID: 38787060 PMCID: PMC11125620 DOI: 10.3390/toxins16050208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/25/2024] Open
Abstract
Recent discoveries establish DNA and RNA as bona fide substrates for ADP-ribosylation. NADAR ("NAD- and ADP-ribose"-associated) enzymes reverse guanine ADP-ribosylation and serve as antitoxins in the DarT-NADAR operon. Although NADARs are widespread across prokaryotes, eukaryotes, and viruses, their specificity and broader physiological roles remain poorly understood. Using phylogenetic and biochemical analyses, we further explore de-ADP-ribosylation activity and antitoxin functions of NADAR domains. We demonstrate that different subfamilies of NADAR proteins from representative E. coli strains and an E. coli-infecting phage retain biochemical activity while displaying specificity in providing protection from toxic guanine ADP-ribosylation in cells. Furthermore, we identify a myxobacterial enzyme within the YbiA subfamily that functions as an antitoxin for its associated DarT-unrelated ART toxin, which we termed YarT, thus presenting a hitherto uncharacterised ART-YbiA toxin-antitoxin pair. Our studies contribute to the burgeoning field of DNA ADP-ribosylation, supporting its physiological relevance within and beyond bacterial toxin-antitoxin systems. Notably, the specificity and confinement of NADARs to non-mammals infer their potential as highly specific targets for antimicrobial drugs with minimal off-target effects.
Collapse
Affiliation(s)
- Bara Cihlova
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK; (B.C.); (Y.L.)
| | - Yang Lu
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK; (B.C.); (Y.L.)
| | - Andreja Mikoč
- Division of Molecular Biology, Ruđer Bošković Institute, 10000 Zagreb, Croatia;
| | - Marion Schuller
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK; (B.C.); (Y.L.)
| | - Ivan Ahel
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK; (B.C.); (Y.L.)
| |
Collapse
|
7
|
Schuller M, Raggiaschi R, Mikolcevic P, Rack JGM, Ariza A, Zhang Y, Ledermann R, Tang C, Mikoc A, Ahel I. Molecular basis for the reversible ADP-ribosylation of guanosine bases. Mol Cell 2023; 83:2303-2315.e6. [PMID: 37390817 PMCID: PMC11543638 DOI: 10.1016/j.molcel.2023.06.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 04/13/2023] [Accepted: 06/08/2023] [Indexed: 07/02/2023]
Abstract
Modification of nucleic acids by ADP-ribosylation is catalyzed by various ADP-ribosyltransferases, including the DarT enzyme. The latter is part of the bacterial toxin-antitoxin (TA) system DarTG, which was shown to provide control of DNA replication and bacterial growth as well as protection against bacteriophages. Two subfamilies have been identified, DarTG1 and DarTG2, which are distinguished by their associated antitoxins. While DarTG2 catalyzes reversible ADP-ribosylation of thymidine bases employing a macrodomain as antitoxin, the DNA ADP-ribosylation activity of DarTG1 and the biochemical function of its antitoxin, a NADAR domain, are as yet unknown. Using structural and biochemical approaches, we show that DarT1-NADAR is a TA system for reversible ADP-ribosylation of guanosine bases. DarT1 evolved the ability to link ADP-ribose to the guanine amino group, which is specifically hydrolyzed by NADAR. We show that guanine de-ADP-ribosylation is also conserved among eukaryotic and non-DarT-associated NADAR members, indicating a wide distribution of reversible guanine modifications beyond DarTG systems.
Collapse
Affiliation(s)
- Marion Schuller
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | | | - Petra Mikolcevic
- Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Johannes G M Rack
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Antonio Ariza
- School of Biosciences, University of Sheffield, Sheffield, UK
| | - YuGeng Zhang
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | | | - Christoph Tang
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Andreja Mikoc
- Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Ivan Ahel
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK.
| |
Collapse
|
8
|
Henao L, Zade RSH, Restrepo S, Husserl J, Abeel T. Genomes of four Streptomyces strains reveal insights into putative new species and pathogenicity of scab-causing organisms. BMC Genomics 2023; 24:143. [PMID: 36959546 PMCID: PMC10037901 DOI: 10.1186/s12864-023-09190-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 02/15/2023] [Indexed: 03/25/2023] Open
Abstract
Genomes of four Streptomyces isolates, two putative new species (Streptomyces sp. JH14 and Streptomyces sp. JH34) and two non thaxtomin-producing pathogens (Streptomyces sp. JH002 and Streptomyces sp. JH010) isolated from potato fields in Colombia were selected to investigate their taxonomic classification, their pathogenicity, and the production of unique secondary metabolites of Streptomycetes inhabiting potato crops in this region. The average nucleotide identity (ANI) value calculated between Streptomyces sp. JH34 and its closest relatives (92.23%) classified this isolate as a new species. However, Streptomyces sp. JH14 could not be classified as a new species due to the lack of genomic data of closely related strains. Phylogenetic analysis based on 231 single-copy core genes, confirmed that the two pathogenic isolates (Streptomyces sp. JH010 and JH002) belong to Streptomyces pratensis and Streptomyces xiamenensis, respectively, are distant from the most well-known pathogenic species, and belong to two different lineages. We did not find orthogroups of protein-coding genes characteristic of scab-causing Streptomycetes shared by all known pathogenic species. Most genes involved in biosynthesis of known virulence factors are not present in the scab-causing isolates (Streptomyces sp. JH002 and Streptomyces sp. JH010). However, Tat-system substrates likely involved in pathogenicity in Streptomyces sp. JH002 and Streptomyces sp. JH010 were identified. Lastly, the presence of a putative mono-ADP-ribosyl transferase, homologous to the virulence factor scabin, was confirmed in Streptomyces sp. JH002. The described pathogenic isolates likely produce virulence factors uncommon in Streptomyces species, including a histidine phosphatase and a metalloprotease potentially produced by Streptomyces sp. JH002, and a pectinesterase, potentially produced by Streptomyces sp. JH010. Biosynthetic gene clusters (BGCs) showed the presence of clusters associated with the synthesis of medicinal compounds and BGCs potentially linked to pathogenicity in Streptomyces sp. JH010 and JH002. Interestingly, BGCs that have not been previously reported were also found. Our findings suggest that the four isolates produce novel secondary metabolites and metabolites with medicinal properties.
Collapse
Affiliation(s)
- Laura Henao
- Department of Civil and Environmental Engineering, Universidad de los Andes, 111711, Bogotá, Colombia
| | | | - Silvia Restrepo
- Laboratory of Mycology and Phytopathology - (LAMFU), Department of Chemical and Food Engineering, Universidad de los Andes, 111711, Bogotá, Colombia
| | - Johana Husserl
- Department of Civil and Environmental Engineering, Universidad de los Andes, 111711, Bogotá, Colombia
| | - Thomas Abeel
- Delft Bioinformatics Lab, Delft University of Technology, 2628 XE, Delft, Netherlands.
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA, 02142, USA.
| |
Collapse
|
9
|
The DarT/DarG Toxin-Antitoxin ADP-Ribosylation System as a Novel Target for a Rational Design of Innovative Antimicrobial Strategies. Pathogens 2023; 12:pathogens12020240. [PMID: 36839512 PMCID: PMC9967889 DOI: 10.3390/pathogens12020240] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
The chemical modification of cellular macromolecules by the transfer of ADP-ribose unit(s), known as ADP-ribosylation, is an ancient homeostatic and stress response control system. Highly conserved across the evolution, ADP-ribosyltransferases and ADP-ribosylhydrolases control ADP-ribosylation signalling and cellular responses. In addition to proteins, both prokaryotic and eukaryotic transferases can covalently link ADP-ribosylation to different conformations of nucleic acids, thus highlighting the evolutionary conservation of archaic stress response mechanisms. Here, we report several structural and functional aspects of DNA ADP-ribosylation modification controlled by the prototype DarT and DarG pair, which show ADP-ribosyltransferase and hydrolase activity, respectively. DarT/DarG is a toxin-antitoxin system conserved in many bacterial pathogens, for example in Mycobacterium tuberculosis, which regulates two clinically important processes for human health, namely, growth control and the anti-phage response. The chemical modulation of the DarT/DarG system by selective inhibitors may thus represent an exciting strategy to tackle resistance to current antimicrobial therapies.
Collapse
|
10
|
Hloušek-Kasun A, Mikolčević P, Rack JGM, Tromans-Coia C, Schuller M, Jankevicius G, Matković M, Bertoša B, Ahel I, Mikoč A. Streptomyces coelicolor macrodomain hydrolase SCO6735 cleaves thymidine-linked ADP-ribosylation of DNA. Comput Struct Biotechnol J 2022; 20:4337-4350. [PMID: 36051881 PMCID: PMC9411070 DOI: 10.1016/j.csbj.2022.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 08/01/2022] [Accepted: 08/01/2022] [Indexed: 11/03/2022] Open
Abstract
ADP-ribosylation is an ancient, highly conserved, and reversible covalent modification critical for a variety of endogenous processes in both prokaryotes and eukaryotes. ADP-ribosylation targets proteins, nucleic acids, and small molecules (including antibiotics). ADP-ribosylation signalling involves enzymes that add ADP-ribose to the target molecule, the (ADP-ribosyl)transferases; and those that remove it, the (ADP-ribosyl)hydrolases. Recently, the toxin/antitoxin pair DarT/DarG composed of a DNA ADP-ribosylating toxin, DarT, and (ADP-ribosyl)hydrolase antitoxin, DarG, was described. DarT modifies thymidine in single-stranded DNA in a sequence-specific manner while DarG reverses this modification, thereby rescuing cells from DarT toxicity. We studied the DarG homologue SCO6735 which is highly conserved in all Streptomyces species and known to be associated with antibiotic production in the bacterium S. coelicolor. SCO6735 shares a high structural similarity with the bacterial DarG and human TARG1. Like DarG and TARG1, SCO6735 can also readily reverse thymidine-linked ADP-ribosylation catalysed by DarT in vitro and in cells. SCO6735 active site analysis including molecular dynamic simulations of its complex with ADP-ribosylated thymidine suggests a novel catalytic mechanism of DNA-(ADP-ribose) hydrolysis. Moreover, a comparison of SCO6735 structure with ALC1-like homologues revealed an evolutionarily conserved feature characteristic for this subclass of macrodomain hydrolases.
Collapse
Affiliation(s)
| | - Petra Mikolčević
- Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | | | | | - Marion Schuller
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Gytis Jankevicius
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Marija Matković
- Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Zagreb, Croatia
| | - Branimir Bertoša
- Department of Chemistry, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Ivan Ahel
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Andreja Mikoč
- Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| |
Collapse
|
11
|
Schuller M, Ahel I. Beyond protein modification: the rise of non-canonical ADP-ribosylation. Biochem J 2022; 479:463-477. [PMID: 35175282 PMCID: PMC8883491 DOI: 10.1042/bcj20210280] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/18/2022] [Accepted: 01/21/2022] [Indexed: 12/22/2022]
Abstract
ADP-ribosylation has primarily been known as post-translational modification of proteins. As signalling strategy conserved in all domains of life, it modulates substrate activity, localisation, stability or interactions, thereby regulating a variety of cellular processes and microbial pathogenicity. Yet over the last years, there is increasing evidence of non-canonical forms of ADP-ribosylation that are catalysed by certain members of the ADP-ribosyltransferase family and go beyond traditional protein ADP-ribosylation signalling. New macromolecular targets such as nucleic acids and new ADP-ribose derivatives have been established, notably extending the repertoire of ADP-ribosylation signalling. Based on the physiological relevance known so far, non-canonical ADP-ribosylation deserves its recognition next to the traditional protein ADP-ribosylation modification and which we therefore review in the following.
Collapse
Affiliation(s)
- Marion Schuller
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, U.K
| | - Ivan Ahel
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, U.K
| |
Collapse
|
12
|
Mikolčević P, Hloušek-Kasun A, Ahel I, Mikoč A. ADP-ribosylation systems in bacteria and viruses. Comput Struct Biotechnol J 2021; 19:2366-2383. [PMID: 34025930 PMCID: PMC8120803 DOI: 10.1016/j.csbj.2021.04.023] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/07/2021] [Accepted: 04/07/2021] [Indexed: 12/30/2022] Open
Abstract
ADP-ribosylation is an ancient posttranslational modification present in all kingdoms of life. The system likely originated in bacteria where it functions in inter- and intra-species conflict, stress response and pathogenicity. It was repeatedly adopted via lateral transfer by eukaryotes, including humans, where it has a pivotal role in epigenetics, DNA-damage repair, apoptosis, and other crucial pathways including the immune response to pathogenic bacteria and viruses. In other words, the same ammunition used by pathogens is adapted by eukaryotes to fight back. While we know quite a lot about the eukaryotic system, expanding rather patchy knowledge on bacterial and viral ADP-ribosylation would give us not only a better understanding of the system as a whole but a fighting advantage in this constant arms race. By writing this review we hope to put into focus the available information and give a perspective on how this system works and can be exploited in the search for therapeutic targets in the future. The relevance of the subject is especially highlighted by the current situation of being amid the world pandemic caused by a virus harbouring and dependent on a representative of such a system.
Collapse
Affiliation(s)
- Petra Mikolčević
- Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | | | - Ivan Ahel
- Sir William Dunn School of Pathology, University of Oxford, UK
| | - Andreja Mikoč
- Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| |
Collapse
|
13
|
Suskiewicz MJ, Palazzo L, Hughes R, Ahel I. Progress and outlook in studying the substrate specificities of PARPs and related enzymes. FEBS J 2021; 288:2131-2142. [PMID: 32785980 DOI: 10.1111/febs.15518] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/13/2020] [Accepted: 08/08/2020] [Indexed: 12/17/2022]
Abstract
Despite decades of research on ADP-ribosyltransferases (ARTs) from the poly(ADP-ribose) polymerase (PARP) family, one key aspect of these enzymes - their substrate specificity - has remained unclear. Here, we briefly discuss the history of this area and, more extensively, the recent breakthroughs, including the identification of protein serine residues as a major substrate of PARP1 and PARP2 in human cells and of cysteine and tyrosine as potential targets of specific PARPs. On the molecular level, the modification of serine residues requires a composite active site formed by PARP1 or PARP2 together with a specificity-determining factor, HPF1; this represents a new paradigm not only for PARPs but generally for post-translational modification (PTM) catalysis. Additionally, we discuss the identification of DNA as a substrate of PARP1, PARP2 and PARP3, and some bacterial ARTs and the discovery of noncanonical RNA capping by several PARP family members. Together, these recent findings shed new light on PARP-mediated catalysis and caution to 'expect the unexpected' when it comes to further potential substrates.
Collapse
Affiliation(s)
| | - Luca Palazzo
- Institute for the Experimental Endocrinology and Oncology, National Research Council of Italy, Naples, Italy
| | - Rebecca Hughes
- Sir William Dunn School of Pathology, University of Oxford, UK
| | - Ivan Ahel
- Sir William Dunn School of Pathology, University of Oxford, UK
| |
Collapse
|
14
|
Vatta M, Lyons B, Heney KA, Lidster T, Merrill AR. Mapping the DNA-Binding Motif of Scabin Toxin, a Guanine Modifying Enzyme from Streptomyces scabies. Toxins (Basel) 2021; 13:toxins13010055. [PMID: 33450958 PMCID: PMC7828395 DOI: 10.3390/toxins13010055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/23/2020] [Accepted: 01/09/2021] [Indexed: 11/16/2022] Open
Abstract
Scabin is a mono-ADP-ribosyltransferase toxin/enzyme and possible virulence factor produced by the agriculture pathogen, Streptomyces scabies. Recently, molecular dynamic approaches and MD simulations revealed its interaction with both NAD+ and DNA substrates. An Essential Dynamics Analysis identified a crab-claw-like mechanism, including coupled changes in the exposed motifs, and the Rβ1-RLa-NLc-STTβ2-WPN-WARTT-(QxE)ARTT sequence motif was proposed as a catalytic signature of the Pierisin family of DNA-acting toxins. A new fluorescence assay was devised to measure the kinetics for both RNA and DNA substrates. Several protein variants were prepared to probe the Scabin-NAD-DNA molecular model and to reveal the reaction mechanism for the transfer of ADP-ribose to the guanine base in the DNA substrate. The results revealed that there are several lysine and arginine residues in Scabin that are important for binding the DNA substrate; also, key residues such as Asn110 in the mechanism of ADP-ribose transfer to the guanine base were identified. The DNA-binding residues are shared with ScARP from Streptomyces coelicolor but are not conserved with Pierisin-1, suggesting that the modification of guanine bases by ADP-ribosyltransferases is divergent even in the Pierisin family.
Collapse
Affiliation(s)
- Maritza Vatta
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada;
| | - Bronwyn Lyons
- Department of Biochemistry and Molecular Biology and Center for Blood Research, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada;
| | - Kayla A. Heney
- Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada;
| | - Taylor Lidster
- Department of Biological Sciences, Brock University, St. Catherines, ON L2S 3A1, Canada;
| | - A. Rod Merrill
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada;
- Correspondence: ; Fax: +1-519-837-1802
| |
Collapse
|
15
|
Yoshida T, Tsuge H. Common Mechanism for Target Specificity of Protein- and DNA-Targeting ADP-Ribosyltransferases. Toxins (Basel) 2021; 13:toxins13010040. [PMID: 33430384 PMCID: PMC7827354 DOI: 10.3390/toxins13010040] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 01/01/2021] [Accepted: 01/03/2021] [Indexed: 12/14/2022] Open
Abstract
Many bacterial pathogens utilize ADP-ribosyltransferases (ARTs) as virulence factors. The critical aspect of ARTs is their target specificity. Each individual ART modifies a specific residue of its substrates, which could be proteins, DNA, or antibiotics. However, the mechanism underlying this specificity is poorly understood. Here, we review the substrate recognition mechanism and target residue specificity based on the available complex structures of ARTs and their substrates. We show that there are common mechanisms of target residue specificity among protein- and DNA-targeting ARTs.
Collapse
Affiliation(s)
- Toru Yoshida
- Faculty of Science, Japan Women’s University, 2-8-1 Mejirodai, Bunkyo-ku, Tokyo 112-8681, Japan;
| | - Hideaki Tsuge
- Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo-motoyama, Kita-ku, Kyoto 603-8555, Japan
- Institute for Protein Dynamics, Kyoto Sangyo University, Kamigamo-motoyama, Kita-ku, Kyoto 603-8555, Japan
- Center for Molecular Research in Infectious Diseases, Kyoto Sangyo University, Kamigamo-motoyama, Kita-ku, Kyoto 603-8555, Japan
- Correspondence: ; Tel.: +81-75-705-3117
| |
Collapse
|
16
|
Zhang SP, Feng HZ, Wang Q, Kempher ML, Quan SW, Tao X, Niu S, Wang Y, Feng HY, He YX. Bacterial type II toxin-antitoxin systems acting through post-translational modifications. Comput Struct Biotechnol J 2020; 19:86-93. [PMID: 33384857 PMCID: PMC7758455 DOI: 10.1016/j.csbj.2020.12.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/30/2020] [Accepted: 12/02/2020] [Indexed: 11/17/2022] Open
Abstract
The post-translational modification (PTM) serves as an important molecular switch mechanism to modulate diverse biological functions in response to specific cues. Though more commonly found in eukaryotic cells, many PTMs have been identified and characterized in bacteria over the past decade, highlighting the importance of PTMs in regulating bacterial physiology. Several bacterial PTM enzymes have been characterized to function as the toxin component of type II TA systems, which consist of a toxin that inhibits cell growth and an antitoxin that protects the cell from poisoning by the toxin. While TA systems can be classified into seven types based on nature of the antitoxin and its activity, type II TA systems are perhaps the most studied among the different TA types and widely distributed in eubacteria and archaea. The type II toxins possessing PTM activities typically modify various cellular targets mostly associated with protein translation and DNA replication. This review mainly focuses on the enzymatic activities, target specificities, antitoxin neutralizing mechanisms of the different families of PTM toxins. We also proposed that TA systems can be conceptually viewed as molecular switches where the 'on' and 'off' state of the system is tightly controlled by antitoxins and discussed the perspective on toxins having other physiologically roles apart from growth inhibition by acting on the nonessential cellular targets.
Collapse
Affiliation(s)
- Si-Ping Zhang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, PR China
| | - Han-Zhong Feng
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, PR China
| | - Qian Wang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, PR China
| | - Megan L Kempher
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, USA
| | - Shuo-Wei Quan
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, PR China
| | - Xuanyu Tao
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, USA
| | - Shaomin Niu
- Institute of Urology, Lanzhou University Second Hospital, Key Laboratory of Urological Diseases in Gansu Province, Gansu Nephro-Urological Clinical Center, Lanzhou, PR China
| | - Yong Wang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, PR China
| | - Hu-Yuan Feng
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, PR China
| | - Yong-Xing He
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, PR China
| |
Collapse
|
17
|
|