1
|
Blombach F, Sýkora M, Case J, Feng X, Baquero DP, Fouqueau T, Phung DK, Barker D, Krupovic M, She Q, Werner F. Cbp1 and Cren7 form chromatin-like structures that ensure efficient transcription of long CRISPR arrays. Nat Commun 2024; 15:1620. [PMID: 38388540 PMCID: PMC10883916 DOI: 10.1038/s41467-024-45728-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 02/01/2024] [Indexed: 02/24/2024] Open
Abstract
CRISPR arrays form the physical memory of CRISPR adaptive immune systems by incorporating foreign DNA as spacers that are often AT-rich and derived from viruses. As promoter elements such as the TATA-box are AT-rich, CRISPR arrays are prone to harbouring cryptic promoters. Sulfolobales harbour extremely long CRISPR arrays spanning several kilobases, a feature that is accompanied by the CRISPR-specific transcription factor Cbp1. Aberrant Cbp1 expression modulates CRISPR array transcription, but the molecular mechanisms underlying this regulation are unknown. Here, we characterise the genome-wide Cbp1 binding at nucleotide resolution and characterise the binding motifs on distinct CRISPR arrays, as well as on unexpected non-canonical binding sites associated with transposons. Cbp1 recruits Cren7 forming together 'chimeric' chromatin-like structures at CRISPR arrays. We dissect Cbp1 function in vitro and in vivo and show that the third helix-turn-helix domain is responsible for Cren7 recruitment, and that Cbp1-Cren7 chromatinization plays a dual role in the transcription of CRISPR arrays. It suppresses spurious transcription from cryptic promoters within CRISPR arrays but enhances CRISPR RNA transcription directed from their cognate promoters in their leader region. Our results show that Cbp1-Cren7 chromatinization drives the productive expression of long CRISPR arrays.
Collapse
Affiliation(s)
- Fabian Blombach
- RNAP laboratory, Institute for Structural and Molecular Biology, Division of Biosciences, University College London, Gower Street, London, WC1E 6BT, United Kingdom.
| | - Michal Sýkora
- RNAP laboratory, Institute for Structural and Molecular Biology, Division of Biosciences, University College London, Gower Street, London, WC1E 6BT, United Kingdom
| | - Jo Case
- RNAP laboratory, Institute for Structural and Molecular Biology, Division of Biosciences, University College London, Gower Street, London, WC1E 6BT, United Kingdom
| | - Xu Feng
- CRISPR and Archaea Biology Research Center, Microbial Technology Institute, Shandong University, Qingdao, 266237, PR China
| | - Diana P Baquero
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Archaeal Virology Unit, F-75015, Paris, France
| | - Thomas Fouqueau
- RNAP laboratory, Institute for Structural and Molecular Biology, Division of Biosciences, University College London, Gower Street, London, WC1E 6BT, United Kingdom
| | - Duy Khanh Phung
- RNAP laboratory, Institute for Structural and Molecular Biology, Division of Biosciences, University College London, Gower Street, London, WC1E 6BT, United Kingdom
| | - Declan Barker
- RNAP laboratory, Institute for Structural and Molecular Biology, Division of Biosciences, University College London, Gower Street, London, WC1E 6BT, United Kingdom
| | - Mart Krupovic
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Archaeal Virology Unit, F-75015, Paris, France
| | - Qunxin She
- CRISPR and Archaea Biology Research Center, Microbial Technology Institute, Shandong University, Qingdao, 266237, PR China
| | - Finn Werner
- RNAP laboratory, Institute for Structural and Molecular Biology, Division of Biosciences, University College London, Gower Street, London, WC1E 6BT, United Kingdom.
| |
Collapse
|
2
|
Cheng A, Wan D, Ghatak A, Wang C, Feng D, Fondell JD, Ebright RH, Fan H. Identification and Structural Modeling of the RNA Polymerase Omega Subunits in Chlamydiae and Other Obligate Intracellular Bacteria. mBio 2023; 14:e0349922. [PMID: 36719197 PMCID: PMC9973325 DOI: 10.1128/mbio.03499-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 01/04/2023] [Indexed: 02/01/2023] Open
Abstract
Gene transcription in bacteria is carried out by the multisubunit RNA polymerase (RNAP), which is composed of a catalytic core enzyme and a promoter-recognizing σ factor. The core enzyme comprises two α subunits, one β subunit, one β' subunit, and one ω subunit. The ω subunit plays critical roles in the assembly of the core enzyme and other cellular functions, including the regulation of bacterial growth, the stress response, and biofilm formation. However, the identity of an ω subunit for the obligate intracellular bacterium Chlamydia has not previously been determined. Here, we report the identification of the hypothetical protein CTL0286 as the probable chlamydial ω subunit based on sequence, synteny, and AlphaFold and AlphaFold-Multimer three-dimensional-structure predictions. Our findings indicate that CTL0286 functions as the missing ω subunit of chlamydial RNAP. Our extended analysis also indicates that all obligate intracellular bacteria have ω orthologs. IMPORTANCE Chlamydiae are obligate intracellular bacteria that replicate only inside eukaryotic cells. Previously, it has not been possible to identify a candidate gene encoding the chlamydial RNA polymerase ω subunit, and it has been hypothesized that the chlamydial RNA polymerase ω subunit was lost in the evolutionary process through which Chlamydiae reduced their genome size and proteome sizes to adapt to an obligate intracellular lifestyle. Here, we report the identification of the chlamydial RNA polymerase ω subunit, based on conserved sequence, conserved synteny, AlphaFold-predicted conserved three-dimensional structure, and AlfaFold-Multimer-predicted conserved interactions. Our identification of the previously elusive chlamydial RNA polymerase ω subunit sets the stage for investigation of its roles in regulation of gene expression during chlamydial growth, development, and stress responses, and sets the stage for preparation and study of the intact chlamydial RNA polymerase and its interactions with inhibitors.
Collapse
Affiliation(s)
- Andrew Cheng
- Department of Pharmacology, Rutgers-Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| | - Danny Wan
- Department of Pharmacology, Rutgers-Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
- Graduate Program in Physiology and Integrative Biology, Rutgers School of Graduate Studies, Piscataway, New Jersey, USA
| | - Arkaprabha Ghatak
- Department of Pharmacology, Rutgers-Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| | - Chengyuan Wang
- Center for Microbes, Development and Health, CAS Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Deyu Feng
- Center for Microbes, Development and Health, CAS Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Joseph D. Fondell
- Department of Pharmacology, Rutgers-Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| | - Richard H. Ebright
- Waksman Institute, Rutgers University, Piscataway, New Jersey, USA
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey, USA
| | - Huizhou Fan
- Department of Pharmacology, Rutgers-Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| |
Collapse
|
3
|
Blombach F, Fouqueau T, Matelska D, Smollett K, Werner F. Promoter-proximal elongation regulates transcription in archaea. Nat Commun 2021; 12:5524. [PMID: 34535658 PMCID: PMC8448881 DOI: 10.1038/s41467-021-25669-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 08/25/2021] [Indexed: 01/17/2023] Open
Abstract
Recruitment of RNA polymerase and initiation factors to the promoter is the only known target for transcription activation and repression in archaea. Whether any of the subsequent steps towards productive transcription elongation are involved in regulation is not known. We characterised how the basal transcription machinery is distributed along genes in the archaeon Saccharolobus solfataricus. We discovered a distinct early elongation phase where RNA polymerases sequentially recruit the elongation factors Spt4/5 and Elf1 to form the transcription elongation complex (TEC) before the TEC escapes into productive transcription. TEC escape is rate-limiting for transcription output during exponential growth. Oxidative stress causes changes in TEC escape that correlate with changes in the transcriptome. Our results thus establish that TEC escape contributes to the basal promoter strength and facilitates transcription regulation. Impaired TEC escape coincides with the accumulation of initiation factors at the promoter and recruitment of termination factor aCPSF1 to the early TEC. This suggests two possible mechanisms for how TEC escape limits transcription, physically blocking upstream RNA polymerases during transcription initiation and premature termination of early TECs.
Collapse
Affiliation(s)
- Fabian Blombach
- Division of Biosciences, Institute of Structural and Molecular Biology, University College London, London, UK.
| | - Thomas Fouqueau
- Division of Biosciences, Institute of Structural and Molecular Biology, University College London, London, UK
| | - Dorota Matelska
- Division of Biosciences, Institute of Structural and Molecular Biology, University College London, London, UK
| | - Katherine Smollett
- Division of Biosciences, Institute of Structural and Molecular Biology, University College London, London, UK
| | - Finn Werner
- Division of Biosciences, Institute of Structural and Molecular Biology, University College London, London, UK.
| |
Collapse
|
4
|
|
5
|
The first prokaryotic trehalose synthase complex identified in the hyperthermophilic crenarchaeon Thermoproteus tenax. PLoS One 2013; 8:e61354. [PMID: 23626675 PMCID: PMC3634074 DOI: 10.1371/journal.pone.0061354] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 03/07/2013] [Indexed: 12/29/2022] Open
Abstract
The role of the disaccharide trehalose, its biosynthesis pathways and their regulation in Archaea are still ambiguous. In Thermoproteus tenax a fused trehalose-6-phosphate synthase/phosphatase (TPSP), consisting of an N-terminal trehalose-6-phosphate synthase (TPS) and a C-terminal trehalose-6-phosphate phosphatase (TPP) domain, was identified. The tpsp gene is organized in an operon with a putative glycosyltransferase (GT) and a putative mechanosensitive channel (MSC). The T. tenax TPSP exhibits high phosphatase activity, but requires activation by the co-expressed GT for bifunctional synthase-phosphatase activity. The GT mediated activation of TPS activity relies on the fusion of both, TPS and TPP domain, in the TPSP enzyme. Activation is mediated by complex-formation in vivo as indicated by yeast two-hybrid and crude extract analysis. In combination with first evidence for MSC activity the results suggest a sophisticated stress response involving TPSP, GT and MSC in T. tenax and probably in other Thermoproteales species. The monophyletic prokaryotic TPSP proteins likely originated via a single fusion event in the Bacteroidetes with subsequent horizontal gene transfers to other Bacteria and Archaea. Furthermore, evidence for the origin of eukaryotic TPSP fusions via HGT from prokaryotes and therefore a monophyletic origin of eukaryotic and prokaryotic fused TPSPs is presented. This is the first report of a prokaryotic, archaeal trehalose synthase complex exhibiting a much more simple composition than the eukaryotic complex described in yeast. Thus, complex formation and a complex-associated regulatory potential might represent a more general feature of trehalose synthesizing proteins.
Collapse
|
6
|
Okutan E, Deng L, Mirlashari S, Uldahl K, Halim M, Liu C, Garrett RA, She Q, Peng X. Novel insights into gene regulation of the rudivirus SIRV2 infecting Sulfolobus cells. RNA Biol 2013; 10:875-85. [PMID: 23584138 DOI: 10.4161/rna.24537] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Microarray analysis of infection by a lytic Sulfolobus rudivirus, SIRV2, revealed both the temporal expression of viral genes and the differential regulation of host genes. A highly susceptible strain derived from Sulfolobus solfataricus P2 with a large genomic deletion spanning CRISPR clusters A to D was infected with SIRV2, and subjected to a microarray analysis. Transcripts from a few viral genes were detected at 15 min post-infection and all except one were expressed within 2 h. The earliest expressed genes were located mainly at the termini of the linear viral genome while later expressed genes were concentrated in the central region. Timing of the expression correlated with the known or predicted functions of the viral gene products and, thus, should facilitate functional characterization of many hypothetical viral genes. Evaluation of the microarray data with quantitative reverse-transcription PCR analyses of a few selected viral genes revealed a good correlation between the two methods. Expression of about 3,000 host genes was examined. Seventy-two were downregulated>2-fold that were mainly associated with stress response and vesicle formation, as well as chromosome structure maintenance, which appears to contribute to host chromosome degradation and cellular collapse. A further 76 host genes were upregulated>2-fold and they were dominated by genes associated with metabolism and membrane transport, including phosphate transport and DNA precursor synthesis. The altered transcriptional patterns suggest that the virus reprograms the host cellular machinery to facilitate its own DNA replication and to inhibit cellular processes required for defense against viruses.
Collapse
Affiliation(s)
- Ebru Okutan
- Archaea Centre, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
De Carlo S, Lin SC, Taatjes DJ, Hoenger A. Molecular basis of transcription initiation in Archaea. Transcription 2012; 1:103-11. [PMID: 21326901 DOI: 10.4161/trns.1.2.13189] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2010] [Revised: 07/19/2010] [Accepted: 07/27/2010] [Indexed: 01/24/2023] Open
Abstract
Compared with eukaryotes, the archaeal transcription initiation machinery-commonly known as the Pre-Initiation Complex-is relatively simple. The archaeal PIC consists of the TFIIB ortholog TFB, TBP, and an 11-subunit RNA polymerase (RNAP). The relatively small size of the entire archaeal PIC makes it amenable to structural analysis. Using purified RNAP, TFB, and TBP from the thermophile Pyrococcus furiosus, we assembled the biochemically active PIC at 65ºC. The intact archaeal PIC was isolated by implementing a cross-linking technique followed by size-exclusion chromatography, and the structure of this 440 kDa assembly was determined using electron microscopy and single-particle reconstruction techniques. Combining difference maps with crystal structure docking of various sub-domains, TBP and TFB were localized within the macromolecular PIC. TBP/TFB assemble near the large RpoB subunit and the RpoD/L "foot" domain behind the RNAP central cleft. This location mimics that of yeast TBP and TFIIB in complex with yeast RNAP II. Collectively, these results define the structural organization of the archaeal transcription machinery and suggest a conserved core PIC architecture.
Collapse
Affiliation(s)
- Sacha De Carlo
- Department of Chemistry, City College of the City University of New York, NY, USA.
| | | | | | | |
Collapse
|
8
|
Marrero Coto J, Ehrenhofer-Murray AE, Pons T, Siebers B. Functional analysis of archaeal MBF1 by complementation studies in yeast. Biol Direct 2011; 6:18. [PMID: 21392374 PMCID: PMC3062615 DOI: 10.1186/1745-6150-6-18] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Accepted: 03/10/2011] [Indexed: 11/21/2022] Open
Abstract
Background Multiprotein-bridging factor 1 (MBF1) is a transcriptional co-activator that bridges a sequence-specific activator (basic-leucine zipper (bZIP) like proteins (e.g. Gcn4 in yeast) or steroid/nuclear-hormone receptor family (e.g. FTZ-F1 in insect)) and the TATA-box binding protein (TBP) in Eukaryotes. MBF1 is absent in Bacteria, but is well- conserved in Eukaryotes and Archaea and harbors a C-terminal Cro-like Helix Turn Helix (HTH) domain, which is the only highly conserved, classical HTH domain that is vertically inherited in all Eukaryotes and Archaea. The main structural difference between archaeal MBF1 (aMBF1) and eukaryotic MBF1 is the presence of a Zn ribbon motif in aMBF1. In addition MBF1 interacting activators are absent in the archaeal domain. To study the function and therefore the evolutionary conservation of MBF1 and its single domains complementation studies in yeast (mbf1Δ) as well as domain swap experiments between aMBF1 and yMbf1 were performed. Results In contrast to previous reports for eukaryotic MBF1 (i.e. Arabidopsis thaliana, insect and human) the two archaeal MBF1 orthologs, TMBF1 from the hyperthermophile Thermoproteus tenax and MMBF1 from the mesophile Methanosarcina mazei were not functional for complementation of an Saccharomyces cerevisiae mutant lacking Mbf1 (mbf1Δ). Of twelve chimeric proteins representing different combinations of the N-terminal, core domain, and the C-terminal extension from yeast and aMBF1, only the chimeric MBF1 comprising the yeast N-terminal and core domain fused to the archaeal C-terminal part was able to restore full wild-type activity of MBF1. However, as reported previously for Bombyx mori, the C-terminal part of yeast Mbf1 was shown to be not essential for function. In addition phylogenetic analyses revealed a common distribution of MBF1 in all Archaea with available genome sequence, except of two of the three Thaumarchaeota; Cenarchaeum symbiosum A and Nitrosopumilus maritimus SCM1. Conclusions The absence of MBF1-interacting activators in the archaeal domain, the presence of a Zn ribbon motif in the divergent N-terminal domain of aMBF1 and the complementation experiments using archaeal- yeast chimeric proteins presented here suggests that archaeal MBF1 is not able to functionally interact with the transcription machinery and/or Gcn4 of S. cerevisiae. Based on modeling and structural prediction it is tempting to speculate that aMBF1 might act as a single regulator or non-essential transcription factor, which directly interacts with DNA via the positive charged linker or the basal transcription machinery via its Zn ribbon motif and the HTH domain. However, also alternative functions in ribosome biosynthesis and/or functionality have been discussed and therefore further experiments are required to unravel the function of MBF1 in Archaea. Reviewers This article was reviewed by William Martin, Patrick Forterre, John van der Oost and Fabian Blombach (nominated by Eugene V Koonin (United States)). For the full reviews, please go to the Reviewer's Reports section.
Collapse
Affiliation(s)
- Jeannette Marrero Coto
- Faculty of Chemistry, Biofilm Centre, Molecular Enzyme Technology and Biochemistry, University of Duisburg-Essen, Universitätsstr. 5, (S05 V03 F41), 45141 Essen, Germany
| | | | | | | |
Collapse
|
9
|
Wiesler SC, Weinzierl ROJ. The linker domain of basal transcription factor TFIIB controls distinct recruitment and transcription stimulation functions. Nucleic Acids Res 2010; 39:464-74. [PMID: 20851833 PMCID: PMC3025549 DOI: 10.1093/nar/gkq809] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
RNA polymerases (RNAPs) require basal transcription factors to assist them during transcription initiation. One of these factors, TFIIB, combines promoter recognition, recruitment of RNAP, promoter melting, start site selection and various post-initiation functions. The ability of 381 site-directed mutants in the TFIIB 'linker domain' to stimulate abortive transcription was systematically quantitated using promoter-independent dinucleotide extension assays. The results revealed two distinct clusters (mjTFIIB E78-R80 and mjTFIIB R90-G94, respectively) that were particularly sensitive to substitutions. In contrast, a short sequence (mjTFIIB A81-K89) between these two clusters tolerated radical single amino acid substitutions; short deletions in that region even caused a marked increase in the ability of TFIIB to stimulate abortive transcription ('superstimulation'). The superstimulating activity did, however, not correlate with increased recruitment of the TFIIB/RNAP complex because substitutions in a particular residue (mjTFIIB K87) increased recruitment by more than 5-fold without affecting the rate of abortive transcript stimulation. Our work demonstrates that highly localized changes within the TFIIB linker have profound, yet surprisingly disconnected, effects on RNAP recruitment, TFIIB/RNAP complex stability and the rate of transcription initiation. The identification of superstimulating TFIIB variants reveals the existence of a previously unknown rate-limiting step acting on the earliest stages of gene expression.
Collapse
Affiliation(s)
- Simone C Wiesler
- Imperial College London, Department of Life Sciences, London, UK
| | | |
Collapse
|
10
|
Paytubi S, White MF. The crenarchaeal DNA damage-inducible transcription factor B paralogue TFB3 is a general activator of transcription. Mol Microbiol 2009; 72:1487-99. [PMID: 19460096 DOI: 10.1111/j.1365-2958.2009.06737.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Transcription initiation factor B (TFB) is conserved in eukaryotes and archaea and has an essential role in the recruitment of RNA polymerase to the promoter and the initiation of transcription. The genome of Sulfolobus solfataricus and related crenarchaea contain three paralogues of the tfb gene. Two of them (tfb1 and tfb2) encode full-length TFB proteins. The third (tfb3) is significantly shorter than the other two, possessing an N-terminal Zn ribbon domain but lacking the B-finger and DNA binding domains. In S. solfataricus and Sulfolobus acidocaldarius, tfb3 is one of the most highly upregulated transcripts following exposure to UV irradiation. We demonstrate that S. solfataricus TFB3 binds to the RpoK subunit of RNA polymerase, an interaction dependent on the Zn ribbon motif of TFB3. TFB3 can also interact with the ternary complex of TBP and TFB1 bound to a DNA promoter. TFB3 stimulates transcription in vitro from several promoters in the presence of TFB1 and TBP. These observations are consistent with a model whereby TFB3 activates general transcription in trans, via an interaction with RNA polymerase in the pre-initiation complex. This could provide a mechanism for the modulation of transcription initiation in response to environmental stresses, such as DNA damage.
Collapse
Affiliation(s)
- Sonia Paytubi
- Centre for Biomolecular Sciences, University of St Andrews, St Andrews, Fife KY16 9ST, UK
| | | |
Collapse
|
11
|
Mathew R, Chatterji D. The evolving story of the omega subunit of bacterial RNA polymerase. Trends Microbiol 2006; 14:450-5. [PMID: 16908155 DOI: 10.1016/j.tim.2006.08.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2006] [Revised: 07/10/2006] [Accepted: 08/02/2006] [Indexed: 10/24/2022]
Abstract
Omega (omega) is the smallest subunit of bacterial RNA polymerase (RNAP). Although identified early in RNAP research, its function remained ambiguous and shrouded by controversy for a considerable period. It has subsequently been shown that the protein has a structural role in maintenance of the conformation of the largest subunit, beta', and recruitment of beta' to the enzyme assembly. Conservation of this function across all forms of life indicates the importance of its role. Several recent observations have suggested additional functional roles for this protein and have settled some long-standing controversies surrounding it. In this context, revisiting the omega subunit story is especially interesting; here, we review the progress of omega research since its discovery and highlight the importance of these recent observations.
Collapse
Affiliation(s)
- Renjith Mathew
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore-560012, India
| | | |
Collapse
|
12
|
Goede B, Naji S, von Kampen O, Ilg K, Thomm M. Protein-protein interactions in the archaeal transcriptional machinery: binding studies of isolated RNA polymerase subunits and transcription factors. J Biol Chem 2006; 281:30581-92. [PMID: 16885163 DOI: 10.1074/jbc.m605209200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transcription in Archaea is directed by a pol II-like RNA polymerase and homologues of TBP and TFIIB (TFB) but the crystal structure of the archaeal enzyme and the subunits involved in recruitment of RNA polymerase to the promoter-TBP-TFB-complex are unknown. We described here the cloning expression and purification of 11 bacterially expressed subunits of the Pyrococcus furiosus RNAP. Protein interactions of subunits with each other and of archaeal transcription factors TFB and TFB with RNAP subunits were studied by Far-Western blotting and reconstitution of subcomplexes from single subunits in solution. In silico comparison of a consensus sequence of archaeal RNAP subunits with the sequence of yeast pol II subunits revealed a high degree of conservation of domains of the enzymes forming the cleft and catalytic center of the enzyme. Interaction studies with the large subunits were complicated by the low solubility of isolated subunits B, A', and A'', but an interaction network of the smaller subunits of the enzyme was established. Far-Western analyses identified subunit D as structurally important key polypeptide of RNAP involved in interactions with subunits B, L, N, and P and revealed also a strong interaction of subunits E' and F. Stable complexes consisting of subunits E' and F, of D and L and a BDLNP-subcomplex were reconstituted and purified. Gel shift analyses revealed an association of the BDLNP subcomplex with promoter-bound TBP-TFB. These results suggest a major role of subunit B (Rpb2) in RNAP recruitment to the TBP-TFB promoter complex.
Collapse
Affiliation(s)
- Bernd Goede
- Lehrstuhl für Allgemeine Mikrobiologie, Universität Kiel, am Botanischen Garten 1-9, 24107 Kiel, Germany
| | | | | | | | | |
Collapse
|
13
|
Palenchar JB, Liu W, Palenchar PM, Bellofatto V. A divergent transcription factor TFIIB in trypanosomes is required for RNA polymerase II-dependent spliced leader RNA transcription and cell viability. EUKARYOTIC CELL 2006; 5:293-300. [PMID: 16467470 PMCID: PMC1405894 DOI: 10.1128/ec.5.2.293-300.2006] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Transcription by RNA polymerase II in trypanosomes deviates from the standard eukaryotic paradigm. Genes are transcribed polycistronically and subsequently cleaved into functional mRNAs, requiring trans splicing of a capped 39-nucleotide leader RNA derived from a short transcript, the spliced leader (SL) RNA. The only identified trypanosome RNA polymerase II promoter is that of the SL RNA gene. We have previously shown that transcription of SL RNA requires divergent trypanosome homologs of RNA polymerase II, TATA binding protein, and the small nuclear RNA (snRNA)-activating protein complex. In other eukaryotes, TFIIB is an additional key component of transcription for both mRNAs and polymerase II-dependent snRNAs. We have identified a divergent homolog of the usually highly conserved basal transcription factor, TFIIB, from the pathogenic parasite Trypanosoma brucei. T. brucei TFIIB (TbTFIIB) interacted directly with the trypanosome TATA binding protein and RNA polymerase II, confirming its identity. Functionally, in vitro transcription studies demonstrated that TbTFIIB is indispensable in SL RNA gene transcription. RNA interference (RNAi) studies corroborated the essential nature of TbTFIIB, as depletion of this protein led to growth arrest of parasites. Furthermore, nuclear extracts prepared from parasites depleted of TbTFIIB, after the induction of RNAi, required recombinant TbTFIIB to support spliced leader transcription. The information gleaned from TbTFIIB studies furthers our understanding of SL RNA gene transcription and the elusive overall transcriptional processes in trypanosomes.
Collapse
Affiliation(s)
- Jennifer B Palenchar
- Department of Microbiology and Molecular Genetics, UMDNJ-NJ Medical School, International Center for Public Health, 225 Warren St., Newark, NJ 07103, USA
| | | | | | | |
Collapse
|
14
|
Bartlett MS. Determinants of transcription initiation by archaeal RNA polymerase. Curr Opin Microbiol 2005; 8:677-84. [PMID: 16249119 DOI: 10.1016/j.mib.2005.10.016] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2005] [Accepted: 10/13/2005] [Indexed: 12/27/2022]
Abstract
Transcription in Archaea is catalyzed by an RNA polymerase that is most similar to eukaryotic RNA polymerases both in subunit composition and in transcription initiation factor requirements. Recent studies on archaeal transcription in diverse members of this domain have contributed new details concerning the functions of promoters and transcription factors in guiding initiation by RNA polymerase, and phylogenetic arguments have allowed modeling of archaeal transcription initiation complexes by comparison with recently described models of eukaryotic and bacterial transcription initiation complexes. Important new advances in reconstitution of archaeal transcription complexes from fully recombinant components is permitting testing of hypotheses derived from and informed by these structural models, and will help bring the study of archaeal transcription to the levels of understanding currently enjoyed by bacterial and eukaryotic RNA polymerase II transcription.
Collapse
Affiliation(s)
- Michael S Bartlett
- Department of Biology, Portland State University, SB2 Room 246, 1719 SW 10th Avenue, Portland, OR 97201, USA.
| |
Collapse
|
15
|
Abstract
During the past few decades, it has become clear that microorganisms can thrive under the most diverse conditions, including extremes of temperature, pressure, salinity and pH. Most of these extremophilic organisms belong to the third domain of life, that of the Archaea. The organisms of this domain are of particular interest because most informational systems that are associated with archaeal genomes and their expression are reminiscent of those seen in Eucarya, whereas, most of their metabolic aspects are similar to those of Bacteria. A better understanding of the regulatory mechanisms of gene expression in Archaea will, therefore, help to integrate the body of knowledge regarding the regulatory mechanisms that underlie gene expression in all three domains of life.
Collapse
Affiliation(s)
- Mohamed Ouhammouch
- Center for Molecular Genetics and Division of Biological Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0634, USA.
| |
Collapse
|
16
|
Tubon TC, Tansey WP, Herr W. A nonconserved surface of the TFIIB zinc ribbon domain plays a direct role in RNA polymerase II recruitment. Mol Cell Biol 2004; 24:2863-74. [PMID: 15024075 PMCID: PMC371104 DOI: 10.1128/mcb.24.7.2863-2874.2004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The general transcription factor TFIIB is a highly conserved and essential component of the eukaryotic RNA polymerase II (pol II) transcription initiation machinery. It consists of a single polypeptide with two conserved structural domains: an amino-terminal zinc ribbon structure (TFIIB(ZR)) and a carboxy-terminal core (TFIIB(CORE)). We have analyzed the role of the amino-terminal region of human TFIIB in transcription in vivo and in vitro. We identified a small nonconserved surface of the TFIIB(ZR) that is required for pol II transcription in vivo and for different types of basal pol II transcription in vitro. Consistent with a general role in transcription, this TFIIB(ZR) surface is directly involved in the recruitment of pol II to a TATA box-containing promoter. Curiously, although the amino-terminal human TFIIB(ZR) domain can recruit both human pol II and yeast (Saccharomyces cerevisiae) pol II, the yeast TFIIB amino-terminal region recruits yeast pol II but not human pol II. Thus, a critical process in transcription from many different promoters-pol II recruitment-has changed in sequence specificity during eukaryotic evolution.
Collapse
Affiliation(s)
- Thomas C Tubon
- Graduate Program in Genetics, State University of New York at Stony Brook, Stony Brook, New York 11794, USA
| | | | | |
Collapse
|
17
|
Affiliation(s)
- Patrick Cramer
- Institute of Biochemistry and Gene Center, University of Munich, 81377 Munich, Germany
| |
Collapse
|
18
|
Bartlett MS, Thomm M, Geiduschek EP. Topography of the euryarchaeal transcription initiation complex. J Biol Chem 2003; 279:5894-903. [PMID: 14617625 DOI: 10.1074/jbc.m311429200] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transcription in the Archaea is carried out by RNA polymerases and transcription factors that are highly homologous to their eukaryotic counterparts, but little is known about the structural organization of the archaeal transcription complex. To address this, transcription initiation complexes have been formed with Pyrococcus furiosus transcription factors (TBP and TFB1), RNA polymerase, and a linear DNA fragment containing a strong promoter. The arrangement of proteins from base pair -35 to +20 (relative to the transcriptional start site) has been analyzed by photochemical protein-DNA cross-linking. TBP cross-links to the TATA box and TFB1 cross-links both upstream and downstream of the TATA box, as expected, but the sites of most prominent TFB1 cross-linking are located well downstream of the TATA box, reaching as far as the start site of transcription, suggesting a role for TFB1 in initiation of transcription that extends beyond polymerase recruitment. These cross-links indicate the transcription factor orientation in the initiation complex. The pattern of cross-linking of four RNA polymerase subunits (B, A', A", and H) to the promoter suggests a path for promoter DNA relative to the RNA polymerase surface in this archaeal transcription initiation complex. In addition, an unidentified protein approximately the size of TBP cross-links to the non-transcribed DNA strand near the upstream edge of the transcription bubble. Cross-linking is specific to the polymerase-containing initiation complex and requires the gdh promoter TATA box. The location of this protein suggests that it, like TFB1, could also have a role in transcription initiation following RNA polymerase recruitment.
Collapse
Affiliation(s)
- Michael S Bartlett
- Division of Biological Sciences, Center for Molecular Genetics, University of California at San Diego, La Jolla, California 92093-0634, USA.
| | | | | |
Collapse
|
19
|
Renfrow MB, Naryshkin N, Lewis LM, Chen HT, Ebright RH, Scott RA. Transcription factor B contacts promoter DNA near the transcription start site of the archaeal transcription initiation complex. J Biol Chem 2003; 279:2825-31. [PMID: 14597623 DOI: 10.1074/jbc.m311433200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transcription initiation in all three domains of life requires the assembly of large multiprotein complexes at DNA promoters before RNA polymerase (RNAP)-catalyzed transcript synthesis. Core RNAP subunits show homology among the three domains of life, and recent structural information supports this homology. General transcription factors are required for productive transcription initiation complex formation. The archaeal general transcription factors TATA-element-binding protein (TBP), which mediates promoter recognition, and transcription factor B (TFB), which mediates recruitment of RNAP, show extensive homology to eukaryal TBP and TFIIB. Crystallographic information is becoming available for fragments of transcription initiation complexes (e.g. RNAP, TBP-TFB-DNA, TBP-TFIIB-DNA), but understanding the molecular topography of complete initiation complexes still requires biochemical and biophysical characterization of protein-protein and protein-DNA interactions. In published work, systematic site-specific protein-DNA photocrosslinking has been used to define positions of RNAP subunits and general transcription factors in bacterial and eukaryal initiation complexes. In this work, we have used systematic site-specific protein-DNA photocrosslinking to define positions of RNAP subunits and general transcription factors in an archaeal initiation complex. Employing a set of 41 derivatized DNA fragments, each having a phenyl azide photoactivable crosslinking agent incorporated at a single, defined site within positions -40 to +1 of the gdh promoter of the hyperthermophilic marine archaea, Pyrococcus furiosus (Pf), we have determined the locations of PfRNAP subunits PfTBP and PfTFB relative to promoter DNA. The resulting topographical information supports the striking homology with the eukaryal initiation complex and permits one major new conclusion, which is that PfTFB interacts with promoter DNA not only in the TATA-element region but also in the transcription-bubble region, near the transcription start site. Comparison with crystallographic information implicates the PfTFB N-terminal domain in the interaction with the transcription-bubble region. The results are discussed in relation to the known effects of substitutions in the TFB and TFIIB N-terminal domains on transcription initiation and transcription start-site selection.
Collapse
Affiliation(s)
- Matthew B Renfrow
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602-2256, USA
| | | | | | | | | | | |
Collapse
|
20
|
Abstract
RNA polymerase II (Pol II) is recruited to promoters by interaction with general transcription factors. The zinc ribbon domain of the general factor TFIIB is essential for Pol II recruitment. Site-specific photocrosslinking and directed hydroxyl radical probing were used to map the location of the TFIIB zinc ribbon domain on Pol II within the transcription preinitiation complex (PIC). These results, along with mutational analysis, suggest that in the PIC, the TFIIB ribbon domain interacts with a surface of the Pol II Dock domain where it overlaps the RNA exit point. This surface is best conserved in polymerases that require a TFIIB-like factor. Our results suggest a general mechanism for interaction of TFIIB-like factors and RNA polymerases and a mechanism for the function of the ribbon domain.
Collapse
Affiliation(s)
- Hung-Ta Chen
- Fred Hutchinson Cancer Research Center and Howard Hughes Medical Institute, 1100 Fairview Avenue N., Mail Stop A1-162, Seattle, WA 98109, USA
| | | |
Collapse
|
21
|
Armache KJ, Kettenberger H, Cramer P. Architecture of initiation-competent 12-subunit RNA polymerase II. Proc Natl Acad Sci U S A 2003; 100:6964-8. [PMID: 12746495 PMCID: PMC165813 DOI: 10.1073/pnas.1030608100] [Citation(s) in RCA: 195] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2003] [Indexed: 12/17/2022] Open
Abstract
RNA polymerase (Pol) II consists of a 10-polypeptide catalytic core and the two-subunit Rpb4/7 complex that is required for transcription initiation. Previous structures of the Pol II core revealed a "clamp," which binds the DNA template strand via three "switch regions," and a flexible "linker" to the C-terminal repeat domain (CTD). Here we derived a model of the complete Pol II by fitting structures of the core and Rpb4/7 to a 4.2-A crystallographic electron density map. Rpb4/7 protrudes from the polymerase "upstream face," on which initiation factors assemble for promoter DNA loading. Rpb7 forms a wedge between the clamp and the linker, restricting the clamp to a closed position. The wedge allosterically prevents entry of the promoter DNA duplex into the active center cleft and induces in two switch regions a conformation poised for template-strand binding. Interaction of Rpb4/7 with the linker explains Rpb4-mediated recruitment of the CTD phosphatase to the CTD during Pol II recycling. The core-Rpb7 interaction and some functions of Rpb4/7 are apparently conserved in all eukaryotic and archaeal RNA polymerases but not in the bacterial enzyme.
Collapse
Affiliation(s)
- Karim-Jean Armache
- Institute of Biochemistry and Gene Center, University of Munich, Feodor-Lynen-Strasse 25, 81377 Munich, Germany
| | | | | |
Collapse
|
22
|
Tan Q, Prysak MH, Woychik NA. Loss of the Rpb4/Rpb7 subcomplex in a mutant form of the Rpb6 subunit shared by RNA polymerases I, II, and III. Mol Cell Biol 2003; 23:3329-38. [PMID: 12697831 PMCID: PMC153193 DOI: 10.1128/mcb.23.9.3329-3338.2003] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2002] [Revised: 10/16/2002] [Accepted: 01/17/2003] [Indexed: 11/20/2022] Open
Abstract
We have identified a conditional mutation in the shared Rpb6 subunit, assembled in RNA polymerases I, II, and III, that illuminated a new role that is independent of its assembly function. RNA polymerase II and III activities were significantly reduced in mutant cells before and after the shift to nonpermissive temperature. In contrast, RNA polymerase I was marginally affected. Although the Rpb6 mutant strain contained two mutations (P75S and Q100R), the majority of growth and transcription defects originated from substitution of an amino acid nearly identical in all eukaryotic counterparts as well as bacterial omega subunits (Q100R). Purification of mutant RNA polymerase II revealed that two subunits, Rpb4 and Rpb7, are selectively lost in mutant cells. Rpb4 and Rpb7 are present at substoichiometric levels, form a dissociable subcomplex, are required for RNA polymerase II activity at high temperatures, and have been implicated in the regulation of enzyme activity. Interaction experiments support a direct association between the Rpb6 and Rpb4 subunits, indicating that Rpb6 is one point of contact between the Rpb4/Rpb7 subcomplex and RNA polymerase II. The association of Rpb4/Rpb7 with Rpb6 suggests that analogous subunits of each RNA polymerase impart class-specific functions through a conserved core subunit.
Collapse
Affiliation(s)
- Qian Tan
- Department of Molecular Genetics, Microbiology and Immunology, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, Piscataway, New Jersey 08854-5635, USA
| | | | | |
Collapse
|
23
|
Abstract
Archaea contain a variety of sequence-independent DNA binding proteins consistent with the evolution of several different, sometimes overlapping and exchangeable solutions to the problem of genome compaction. Some of these proteins undergo residue-specific post-translational lysine acetylation or methylation, hinting at analogues of the histone modifications that regulate eukaryotic chromatin structure and transcription. Archaeal transcription initiation most closely resembles the eukaryotic RNA polymerase II (RNAPII) system, but Archaea do not appear to have homologues of the multisubunit complexes that remodel eukaryotic chromatin and activate RNAPII initiation. In contrast, they have sequence-specific regulators that repress and perhaps activate archaeal transcription by mechanisms superficially similar to the bacterial paradigm of regulating promoter binding by RNAP. Repressors compete with archaeal TATA-box binding protein (TBP) and TFB for the TATA-box and TFB-recognition elements (BRE) of the archaeal promoter, or with archaeal RNAP for the site of transcription initiation. Transcript-specific regulation by repressors binding to sites of transcript initiation is consistent with such sites having very little sequence conservation. However, most Archaea have only one TBP and/or TFB that presumably must therefore bind to similar TATA-box and BRE sequences upstream of most genes. Repressors that function by competing with TBP and/or TFB binding must therefore also make additional contacts with transcript-specific regulatory sites adjacent or remote from the TATA-box/BRE region. The fate of the archaeal TBP and TFB following transcription initiation remains to be determined. Based on functional homology with their eukaryotic RNAPII-system counterparts, archaeal TBP and possibly also TFB should remain bound to the TATA-box/BRE region after transcription initiation. However, this seems unlikely as it might limit repressor competition at this site to only the first round of transcription initiation.
Collapse
Affiliation(s)
- John N Reeve
- Department of Microbiology, Ohio State University, Columbus, OH 43210-1292, USA.
| |
Collapse
|
24
|
Ghosh P, Ramakrishnan C, Chatterji D. Inter-subunit recognition and manifestation of segmental mobility in Escherichia coli RNA polymerase: a case study with omega-beta' interaction. Biophys Chem 2003; 103:223-37. [PMID: 12727285 DOI: 10.1016/s0301-4622(02)00271-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Omega (omega), consisting of 91 amino acids, is the smallest of all the Escherichia coli RNA polymerase subunits and is organized into an N-terminal domain of 53 amino acids followed by an unstructured tail in the C-terminal region. Our earlier experiments have shown a chaperone-like function of omega in which it helps to maintain beta' in a correct conformation and recruit it to the alpha(2)beta subassembly to form a functional core enzyme (alpha(2)betabeta'omega). The X-ray structure analysis of Thermus aquaticus core RNA polymerase suggests that two regions of omega latch onto the N-terminal and C-terminal ends of the beta'-subunit. In the present study we have monitored the conformational changes in beta' as the denatured protein is refolded in the presence and absence of omega using tryptophan fluorescence emission of beta' as well as acrylamide quenching of Trp fluorescence. Results indicate that the presence of stoichiometric amounts of omega is helpful in beta' refolding. We have also monitored the behavior of the C-terminal tail of omega by engineering three cysteine residues at three different sites in omega and subsequently labeling them with a sulphydryl-specific fluorescent probe. Fluorescence anisotropy measurements of the labeled protein indicate that the C-terminal domain of omega is mobile in the free protein and gets restrained in the presence of beta'. Calculations on side-chain interactions show that out of the three mutated positions, two have near neighbourhood interactions only with side-chains in the beta' subunit whereas the end of the C-terminal of omega, although it is restrained in the presence of beta', has no interacting partner within a 4-A radius.
Collapse
Affiliation(s)
- Pallavi Ghosh
- Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, A.P., India
| | | | | |
Collapse
|
25
|
Siaut M, Zaros C, Levivier E, Ferri ML, Court M, Werner M, Callebaut I, Thuriaux P, Sentenac A, Conesa C. An Rpb4/Rpb7-like complex in yeast RNA polymerase III contains the orthologue of mammalian CGRP-RCP. Mol Cell Biol 2003; 23:195-205. [PMID: 12482973 PMCID: PMC140662 DOI: 10.1128/mcb.23.1.195-205.2003] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2002] [Revised: 08/06/2002] [Accepted: 09/30/2002] [Indexed: 11/20/2022] Open
Abstract
The essential C17 subunit of yeast RNA polymerase (Pol) III interacts with Brf1, a component of TFIIIB, suggesting a role for C17 in the initiation step of transcription. The protein sequence of C17 (encoded by RPC17) is conserved from yeasts to humans. However, mammalian homologues of C17 (named CGRP-RCP) are known to be involved in a signal transduction pathway related to G protein-coupled receptors, not in transcription. In the present work, we first establish that human CGRP-RCP is the genuine orthologue of C17. CGRP-RCP was found to functionally replace C17 in Deltarpc17 yeast cells; the purified mutant Pol III contained CGRP-RCP and had a decreased specific activity but initiated faithfully. Furthermore, CGRP-RCP was identified by mass spectrometry in a highly purified human Pol III preparation. These results suggest that CGRP-RCP has a dual function in mammals. Next, we demonstrate by genetic and biochemical approaches that C17 forms with C25 (encoded by RPC25) a heterodimer akin to Rpb4/Rpb7 in Pol II. C17 and C25 were found to interact genetically in suppression screens and physically in coimmunopurification and two-hybrid experiments. Sequence analysis and molecular modeling indicated that the C17/C25 heterodimer likely adopts a structure similar to that of the archaeal RpoE/RpoF counterpart of the Rpb4/Rpb7 complex. These RNA polymerase subunits appear to have evolved to meet the distinct requirements of the multiple forms of RNA polymerases.
Collapse
Affiliation(s)
- Magali Siaut
- Service de Biochimie et de Génétique Moléculaire, CEA/Saclay, F-91191 Gif sur Yvette Cedex, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Enoru-Eta J, Gigot D, Glansdorff N, Charlier D. High resolution contact probing of the Lrp-like DNA-binding protein Ss-Lrp from the hyperthermoacidophilic crenarchaeote Sulfolobus solfataricus P2. Mol Microbiol 2002; 45:1541-55. [PMID: 12354224 DOI: 10.1046/j.1365-2958.2002.03136.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Ss-Lrp, from Sulfolobus solfataricus, is an archaeal homologue of the global bacterial regulator Lrp (Leucine-responsive regulatory protein), which out of all genome-encoded proteins is most similar to Escherichia coli Lrp (E-value of 5.6 e-14). The recombinant protein has been purified as a 68 kDa homotetramer. The specific binding of Ss-Lrp to its own control region is suggestive of negative autoregulation. A high resolution contact map of Ss-Lrp binding was established by DNase I and hydroxyl radical footprinting, small non-intercalating groove-specific ligand-binding interference, and various base-specific premodification and base removal binding interference techniques. We show that Ss-Lrp binds one face of the DNA helix and establishes the most salient contacts with two major groove segments and the intervening minor groove, in a region that overlaps the TATA-box and BRE promoter elements. Therefore, Ss-Lrp most likely exerts autoregulation by preventing promoter recognition by TBP and TFB. Moreover, the results demonstrate profound Ss-Lrp induced structural alterations of sequence stretches flanking the core contact site, and reveal that the deformability of these regions significantly contributes to binding selectivity.
Collapse
Affiliation(s)
- Julius Enoru-Eta
- Erfelijkheidsleer en Microbiologie, Vrije Universiteit Brussels, Belgium
| | | | | | | |
Collapse
|
27
|
Werner F, Weinzierl ROJ. A recombinant RNA polymerase II-like enzyme capable of promoter-specific transcription. Mol Cell 2002; 10:635-46. [PMID: 12408830 DOI: 10.1016/s1097-2765(02)00629-9] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
RNA polymerases (RNAPs) are core components of the cellular transcriptional machinery. Progress with functional studies of eukaryotic RNAPs has been delayed by the fact that it has not yet been possible to assemble active enzymes from individual subunits. Archaeal RNAPs are directly comparable to eukaryotic RNAPII in terms of primary sequence homology and quaternary structure. Here we report the successful in vitro assembly of a recombinant archaeal RNAP from purified subunits. The recombinant enzyme displays full activity in transcription assays and is capable, in the presence of two other basal factors, of promoter-specific transcription. The assembly of mutant enzymes yielded several unexpected insights into the structural and functional contributions of various subunits toward overall RNAP activity.
Collapse
Affiliation(s)
- Finn Werner
- Department of Biological Sciences, Imperial College of Science, Technology and Medicine, London, United Kingdom
| | | |
Collapse
|
28
|
Brinkman AB, Bell SD, Lebbink RJ, de Vos WM, van der Oost J. The Sulfolobus solfataricus Lrp-like protein LysM regulates lysine biosynthesis in response to lysine availability. J Biol Chem 2002; 277:29537-49. [PMID: 12042311 DOI: 10.1074/jbc.m203528200] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Although the archaeal transcription apparatus resembles the eukaryal RNA polymerase II system, many bacterial-like regulators can be found in archaea. Particularly, all archaeal genomes sequenced to date contain genes encoding homologues of Lrp (leucine-responsive regulatory protein). Whereas Lrp-like proteins in bacteria are involved in regulation of amino acid metabolism, their physiological role in archaea is unknown. Although several archaeal Lrp-like proteins have been characterized recently, no target genes apart from their own coding genes have been discovered yet, and no ligands for these regulators have been identified so far. In this study, we show that the Lrp-like protein LysM from Sulfolobus solfataricus is involved in the regulation of lysine and possibly also arginine biosynthesis, encoded by the lys gene cluster. Exogenous lysine is the regulatory signal for lys gene expression and specifically serves as a ligand for LysM by altering its DNA binding affinity. LysM binds directly upstream of the TFB-responsive element of the intrinsically weak lysW promoter, and DNA binding is favored in the absence of lysine, when lysWXJK transcription is maximal. The combined in vivo and in vitro data are most compatible with a model in which the bacterial-like LysM activates the eukarya-like transcriptional machinery. As with transcriptional activation by Escherichia coli Lrp, activation by LysM is apparently dependent on a co-activator, which remains to be identified.
Collapse
Affiliation(s)
- Arie B Brinkman
- Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University, Hesselink van Suchtelenweg 4, 6703 CT Wageningen, The Netherlands.
| | | | | | | | | |
Collapse
|
29
|
Bell SD, Botting CH, Wardleworth BN, Jackson SP, White MF. The interaction of Alba, a conserved archaeal chromatin protein, with Sir2 and its regulation by acetylation. Science 2002; 296:148-51. [PMID: 11935028 DOI: 10.1126/science.1070506] [Citation(s) in RCA: 229] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The conserved Sir2 family of proteins has protein deacetylase activity that is dependent on NAD (the oxidized form of nicotinamide adenine dinucleotide). Although histones are one likely target for the enzymatic activity of eukaryotic Sir2 proteins, little is known about the substrates and roles of prokaryotic Sir2 homologs. We reveal that an archaeal Sir2 homolog interacts specifically with the major archaeal chromatin protein, Alba, and that Alba exists in acetylated and nonacetylated forms. Furthermore, we show that Sir2 can deacetylate Alba and mediate transcriptional repression in a reconstituted in vitro transcription system. These data provide a paradigm for how Sir2 family proteins influence transcription and suggest that modulation of chromatin structure by acetylation arose before the divergence of the archaeal and eukaryotic lineages.
Collapse
Affiliation(s)
- Stephen D Bell
- Medical Research Council (MRC) Cancer Cell Unit, The Hutchison/MRC Research Centre, Hills Road, Cambridge, CB2 2QH, UK.
| | | | | | | | | |
Collapse
|