1
|
Anderson AC, Malloch T, Clarke AJ. From structure to function: Decoding peptidoglycan O-acetylation in pathogenic bacteria. Carbohydr Res 2025; 554:109517. [PMID: 40393299 DOI: 10.1016/j.carres.2025.109517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 04/26/2025] [Accepted: 05/09/2025] [Indexed: 05/22/2025]
Abstract
Numerous pathogenic and non-pathogenic bacteria modulate the structure of their cell wall to escape the action of lytic enzymes that target it, threatening cell integrity. Of these modifications, the most taxonomically widespread is the addition of an acetyl to the C6 hydroxyl group of muramyl residues within the essential cell-wall heteropolymer peptidoglycan. This modification is found in many clinically important pathogens, including the WHO priority pathogens Neisseria gonorrhoeae, Staphylococcus aureus, Enterococcus faecium, and Streptococcus pneumoniae. In this review, we summarize the last 60 years of discoveries about the genetics, biochemistry, structural biology, and cellular metabolism that underlie this enigmatic bacterial self-defence mechanism.
Collapse
Affiliation(s)
- Alexander C Anderson
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Tyler Malloch
- Department of Chemistry and Biochemistry, Wilfrid Laurier University, Waterloo, ON, N2L 3C5, Canada
| | - Anthony J Clarke
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada; Department of Chemistry and Biochemistry, Wilfrid Laurier University, Waterloo, ON, N2L 3C5, Canada.
| |
Collapse
|
2
|
Alvarez L, Hernandez SB, Torrens G, Weaver AI, Dörr T, Cava F. Control of bacterial cell wall autolysins by peptidoglycan crosslinking mode. Nat Commun 2024; 15:7937. [PMID: 39261529 PMCID: PMC11390936 DOI: 10.1038/s41467-024-52325-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 09/03/2024] [Indexed: 09/13/2024] Open
Abstract
To withstand their internal turgor pressure and external threats, most bacteria have a protective peptidoglycan (PG) cell wall. The growth of this PG polymer relies on autolysins, enzymes that create space within the structure. Despite extensive research, the regulatory mechanisms governing these PG-degrading enzymes remain poorly understood. Here, we unveil a novel and widespread control mechanism of lytic transglycosylases (LTs), a type of autolysin responsible for breaking down PG glycan chains. Specifically, we show that LD-crosslinks within the PG sacculus act as an inhibitor of LT activity. Moreover, we demonstrate that this regulation controls the release of immunogenic PG fragments and provides resistance against predatory LTs of both bacterial and viral origin. Our findings address a critical gap in understanding the physiological role of the LD-crosslinking mode in PG homeostasis, highlighting how bacteria can enhance their resilience against environmental threats, including phage attacks, through a single structural PG modification.
Collapse
Affiliation(s)
- Laura Alvarez
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Sara B Hernandez
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Seville, Spain
| | - Gabriel Torrens
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Anna I Weaver
- Department of Microbiology, Cornell University, Ithaca, New York, USA
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York, USA
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Tobias Dörr
- Department of Microbiology, Cornell University, Ithaca, New York, USA
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York, USA
- Cornell Institute of Host-Microbe Interactions and Disease, Cornell University, Ithaca, New York, USA
| | - Felipe Cava
- Department of Molecular Biology, Umeå University, Umeå, Sweden.
- Umeå Center for Microbial Research (UCMR), Umeå University, Umeå, Sweden.
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå, Sweden.
- Science for Life Laboratory (SciLifeLab), Umeå University, Umeå, Sweden.
| |
Collapse
|
3
|
Roy S, Srinivasan VR, Arunagiri S, Mishra N, Bhatia A, Shejale KP, Prajapati KP, Kar K, Anand BG. Molecular insights into the phase transition of lysozyme into amyloid nanostructures: Implications of therapeutic strategies in diverse pathological conditions. Adv Colloid Interface Sci 2024; 331:103205. [PMID: 38875805 DOI: 10.1016/j.cis.2024.103205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 05/13/2024] [Accepted: 05/21/2024] [Indexed: 06/16/2024]
Abstract
Lysozyme, a well-known bacteriolytic enzyme, exhibits a fascinating yet complex behavior when it comes to protein aggregation. Under certain conditions, this enzyme undergoes flexible transformation, transitioning from partially unfolded intermediate units of native conformers into complex cross-β-rich nano fibrillar amyloid architectures. Formation of such lysozyme amyloids has been implicated in a multitude of pathological and medical severities, like hepatic dysfunction, hepatomegaly, splenic rupture as well as spleen dysfunction, nephropathy, sicca syndrome, renal dysfunction, renal amyloidosis, and systemic amyloidosis. In this comprehensive review, we have attempted to provide in-depth insights into the aggregating behavior of lysozyme across a spectrum of variables, including concentrations, temperatures, pH levels, and mutations. Our objective is to elucidate the underlying mechanisms that govern lysozyme's aggregation process and to unravel the complex interplay between its structural attributes. Moreover, this work has critically examined the latest advancements in the field, focusing specifically on novel strategies and systems, that have been implemented to delay or inhibit the lysozyme amyloidogenesis. Apart from this, we have tried to explore and advance our fundamental understanding of the complex processes involved in lysozyme aggregation. This will help the research community to lay a robust foundation for screening, designing, and formulating targeted anti-amyloid therapeutics offering improved treatment modalities and interventions not only for lysozyme-linked amyloidopathy but for a wide range of amyloid-related disorders.
Collapse
Affiliation(s)
- Sindhujit Roy
- Biomolecular Self-Assembly Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Venkat Ramanan Srinivasan
- Biomolecular Self-Assembly Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Subash Arunagiri
- Biomolecular Self-Assembly Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Nishant Mishra
- Biomolecular Self-Assembly Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Anubhuti Bhatia
- Biomolecular Self-Assembly Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Kiran P Shejale
- Dept. of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673, South Korea
| | - Kailash Prasad Prajapati
- Biophysical and Biomaterials Research Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Karunakar Kar
- Biophysical and Biomaterials Research Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India..
| | - Bibin Gnanadhason Anand
- Biomolecular Self-Assembly Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India..
| |
Collapse
|
4
|
Wang M, Xiao Ma S, Darwin AJ. An inhibitor/anti-inhibitor system controls the activity of lytic transglycosylase MltF in Pseudomonas aeruginosa. mBio 2023; 14:e0202223. [PMID: 38047649 PMCID: PMC10746161 DOI: 10.1128/mbio.02022-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 10/23/2023] [Indexed: 12/05/2023] Open
Abstract
IMPORTANCE A peptidoglycan cell wall is an essential component of almost all bacterial cell envelopes, which determines cell shape and prevents osmotic rupture. Antibiotics that interfere with peptidoglycan synthesis have been one of the most important treatments for bacterial infections. Peptidoglycan must also be hydrolyzed to incorporate new material for cell growth and division and to help accommodate important envelope-spanning systems. However, the enzymes that hydrolyze peptidoglycan must be carefully controlled to prevent autolysis. Exactly how this control is achieved is poorly understood in most cases but is a highly active area of current research. Identifying hydrolase control mechanisms has the potential to provide new targets for therapeutic intervention. The work here reports the important discovery of a novel inhibitor/anti-inhibitor system that controls the activity of a cell wall hydrolase in the human pathogen Pseudomonas aeruginosa, which also affects resistance to an antibiotic used in the clinic.
Collapse
Affiliation(s)
- Michelle Wang
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Sheya Xiao Ma
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Andrew J. Darwin
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
| |
Collapse
|
5
|
Wang M, Ma SX, Darwin AJ. An inhibitor/anti-inhibitor system controls the activity of lytic transglycosylase MltF in Pseudomonas aeruginosa. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.28.551027. [PMID: 37546783 PMCID: PMC10402148 DOI: 10.1101/2023.07.28.551027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Most bacterial cell envelopes contain a cell wall layer made of peptidoglycan. The synthesis of new peptidoglycan is critical for cell growth, division and morphogenesis, and is also coordinated with peptidoglycan hydrolysis to accommodate the new material. However, the enzymes that cleave peptidoglycan must be carefully controlled to avoid autolysis. In recent years, some control mechanisms have begun to emerge, although there are many more questions than answers for how most cell wall hydrolases are regulated. Here, we report a novel cell wall hydrolase control mechanism in Pseudomonas aeruginosa , which we discovered during our characterization of a mutant sensitive to the overproduction of a secretin protein. The mutation affected an uncharacterized Sel1-like repeat protein encoded by the PA3978 locus. In addition to the secretin-sensitivity phenotype, PA3978 disruption also increased resistance to a β-lactam antibiotic used in the clinic. In vivo and in vitro analysis revealed that PA3978 binds to the catalytic domain of the lytic transglycosylase MltF and inhibits its activity. ΔPA3978 mutant phenotypes were suppressed by deleting mltF , consistent with them having been caused by elevated MltF activity. We also discovered another interaction partner of PA3978 encoded by the PA5502 locus. The phenotypes of a ΔPA5502 mutant suggested that PA5502 interferes with the inhibitory function of PA3978 towards MltF, and we confirmed that activity for PA5502 in vitro . Therefore, PA3978 and PA5502 form an inhibitor/anti-inhibitor system that controls MltF activity. We propose to name these proteins Ilt (inhibitor of lytic transglycosylase) and Lii (lytic transglycosylase inhibitor, inhibitor). IMPORTANCE A peptidoglycan cell wall is an essential component of almost all bacterial cell envelopes, which determines cell shape and prevents osmotic rupture. Antibiotics that interfere with peptidoglycan synthesis have been one of the most important treatments for bacterial infections. Peptidoglycan must also be hydrolyzed to incorporate new material for cell growth and division, and to help accommodate important envelope-spanning systems. However, the enzymes that hydrolyze peptidoglycan must be carefully controlled to prevent autolysis. Exactly how this control is achieved is poorly understood in most cases, but is a highly active area of current research. Identifying hydrolase control mechanisms has the potential to provide new targets for therapeutic intervention. The work here reports the important discovery of a novel inhibitor/anti-nhibitor system that controls the activity of a cell wall hydrolase in the human pathogen Pseudomonas aeruginosa , and which also affects resistance to an antibiotic used in the clinic.
Collapse
|
6
|
Liang Y, Zhao Y, Kwan J, Wang Y, Qiao Y. Escherichia coli has robust regulatory mechanisms against elevated peptidoglycan cleavage by lytic transglycosylases. J Biol Chem 2023; 299:104615. [PMID: 36931392 PMCID: PMC10139938 DOI: 10.1016/j.jbc.2023.104615] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/25/2023] [Accepted: 03/09/2023] [Indexed: 03/17/2023] Open
Abstract
Peptidoglycan (PG) is an essential and conserved exoskeletal component in all bacteria that protects cells from lysis. Gram-negative bacteria such as Escherichia coli encode multiple redundant lytic transglycosylases (LTs) that engage in PG cleavage, a potentially lethal activity requiring proper regulation to prevent autolysis. To elucidate the potential effects and cellular regulatory mechanisms of elevated LT activity, we individually cloned the periplasmic domains of two membrane-bound LTs, MltA and MltB under the control of the arabinose-inducible system for overexpression in the periplasmic space in E. coli. Interestingly, upon induction, the culture undergoes an initial period of cell lysis followed by robust growth restoration. The LT-overexpressing E. coli exhibits altered morphology with larger spherical cells, which is in line with the weakening of the PG layer due to aberrant LT activity. On the other hand, the restored cells display a similar rod shape and peptidoglycan profile that is indistinguishable from the uninduced control. Quantitative proteomics analysis of the restored cells identified significant protein enrichment in the regulator of capsule synthesis (Rcs) regulon, a two-component stress response known to be specifically activated by PG damage. We showed that LT-overexpressing E. coli with an inactivated Rcs system partially impairs the growth restoration process, supporting the involvement of the Rcs system in countering aberrant PG cleavage. Furthermore, we demonstrated that the elevated LT activity specifically potentiates β-lactam antibiotics against E. coli with a defective Rcs regulon, suggesting the dual effects of augmented PG cleavage and blocked PG synthesis as a potential antimicrobial strategy.
Collapse
Affiliation(s)
- Yaquan Liang
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technical University, Singapore 637371
| | - Yilin Zhao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technical University, Singapore 637371
| | - JericMunChung Kwan
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technical University, Singapore 637371
| | - Yue Wang
- A*STAR Infectious Disease Labs, Singapore 138648
| | - Yuan Qiao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technical University, Singapore 637371.
| |
Collapse
|
7
|
Wang J, Yu Q, Peng Q, Slamti L, Zhang R, Hou S, Lereclus D, Song F. Deletion of the novel gene mother cell lysis X results in Cry1Ac encapsulation in the Bacillus thuringiensis HD73. Front Microbiol 2022; 13:951830. [PMID: 36016772 PMCID: PMC9397120 DOI: 10.3389/fmicb.2022.951830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/14/2022] [Indexed: 11/13/2022] Open
Abstract
The novel protein MclX (mother cell lysis X) in Bacillus thuringiensis subsp. kurstaki strain HD73 (B. thuringiensis HD73) was characterized in this work. MclX has no known domain and its gene deletion in HD73 resulted in Cry1Ac encapsulation in the mother cell and did not influence Cry1Ac protein production or insecticidal activity. In vitro cell wall hydrolysis experiments showed that MclX cannot hydrolyze the cell wall. In mclX deletion mutants, the expression of cwlC (which encodes a key cell wall hydrolase) was significantly decreased, as shown by the β-galactosidase activity assay. MclX cannot directly bind to the cwlC promoter, based on the electrophoretic mobility shift assay (EMSA). The cwlC was reported to be regulated by σK and GerE. However, the transcriptional activities of sigK and gerE showed no difference between HD73 and the mclX deletion mutant. It is indicated that MclX influenced cwlC expression independently of σK or GerE, through a new pathway to regulate cwlC expression. mclX deletion could be a new approach for insecticidal protein encapsulation in Bacillus thuringiensis.
Collapse
Affiliation(s)
- Jiaojiao Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qingyue Yu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qi Peng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Leyla Slamti
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Ruibin Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Shuo Hou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Didier Lereclus
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Fuping Song
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Fuping Song,
| |
Collapse
|
8
|
The Lysozyme Inhibitor Thionine Acetate Is Also an Inhibitor of the Soluble Lytic Transglycosylase Slt35 from Escherichia coli. Molecules 2021; 26:molecules26144189. [PMID: 34299465 PMCID: PMC8307938 DOI: 10.3390/molecules26144189] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/03/2021] [Accepted: 07/06/2021] [Indexed: 11/18/2022] Open
Abstract
Lytic transglycosylases such as Slt35 from E. coli are enzymes involved in bacterial cell wall remodelling and recycling, which represent potential targets for novel antibacterial agents. Here, we investigated a series of known glycosidase inhibitors for their ability to inhibit Slt35. While glycosidase inhibitors such as 1-deoxynojirimycin, castanospermine, thiamet G and miglitol had no effect, the phenothiazinium dye thionine acetate was found to be a weak inhibitor. IC50 values and binding constants for thionine acetate were similar for Slt35 and the hen egg white lysozyme. Molecular docking simulations suggest that thionine binds to the active site of both Slt35 and lysozyme, although it does not make direct interactions with the side-chain of the catalytic Asp and Glu residues as might be expected based on other inhibitors. Thionine acetate also increased the potency of the beta-lactam antibiotic ampicillin against a laboratory strain of E. coli.
Collapse
|
9
|
Torrens G, Escobar-Salom M, Oliver A, Juan C. Activity of mammalian peptidoglycan-targeting immunity against Pseudomonas aeruginosa. J Med Microbiol 2020; 69:492-504. [PMID: 32427563 DOI: 10.1099/jmm.0.001167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Pseudomonas aeruginosa is one of the most important opportunistic pathogens, whose clinical relevance is not only due to the high morbidity/mortality of the infections caused, but also to its striking capacity for antibiotic resistance development. In the current scenario of a shortage of effective antipseudomonal drugs, it is essential to have thorough knowledge of the pathogen's biology from all sides, so as to find weak points for drug development. Obviously, one of these points could be the peptidoglycan, given its essential role for cell viability. Meanwhile, immune weapons targeting this structure could constitute an excellent model to be taken advantage of in order to design new therapeutic strategies. In this context, this review gathers all the information regarding the activity of mammalian peptidoglycan-targeting innate immunity (namely lysozyme and peptidoglycan recognition proteins), specifically against P. aeruginosa. All the published studies were considered, from both in vitro and in vivo fields, including works that envisage these weapons as options not only to potentiate their innate effects within the host or for use as exogenously administered treatments, but also harnessing their inflammatory and immune regulatory capacity to finally reduce damage in the patient. Altogether, this review has the objective of anticipating and discussing whether these innate immune resources, in combination or not with other drugs attacking certain P. aeruginosa targets leading to its increased sensitization, could be valid therapeutic antipseudomonal allies.
Collapse
Affiliation(s)
- Gabriel Torrens
- Servicio de Microbiología and Unidad de Investigación, Hospital Universitari Son Espases-Institut de Investigació Sanitària Illes Balears (IdISBa), Palma, Spain
| | - Maria Escobar-Salom
- Servicio de Microbiología and Unidad de Investigación, Hospital Universitari Son Espases-Institut de Investigació Sanitària Illes Balears (IdISBa), Palma, Spain
| | - Antonio Oliver
- Servicio de Microbiología and Unidad de Investigación, Hospital Universitari Son Espases-Institut de Investigació Sanitària Illes Balears (IdISBa), Palma, Spain
| | | |
Collapse
|
10
|
Ragland SA, Gray MC, Melson EM, Kendall MM, Criss AK. Effect of Lipidation on the Localization and Activity of a Lysozyme Inhibitor in Neisseria gonorrhoeae. J Bacteriol 2020; 202:e00633-19. [PMID: 32041800 PMCID: PMC7099142 DOI: 10.1128/jb.00633-19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 02/01/2020] [Indexed: 01/02/2023] Open
Abstract
The Gram-negative pathogen Neisseria gonorrhoeae (gonococcus [Gc]) colonizes lysozyme-rich mucosal surfaces. Lysozyme hydrolyzes peptidoglycan, leading to bacterial lysis. Gc expresses two proteins, SliC and NgACP, that bind and inhibit the enzymatic activity of lysozyme. SliC is a surface-exposed lipoprotein, while NgACP is found in the periplasm and also released extracellularly. Purified SliC and NgACP similarly inhibit lysozyme. However, whereas mutation of ngACP increases Gc susceptibility to lysozyme, the sliC mutant is only susceptible to lysozyme when ngACP is inactivated. In this work, we examined how lipidation contributes to SliC expression, cellular localization, and resistance of Gc to killing by lysozyme. To do so, we mutated the conserved cysteine residue (C18) in the N-terminal lipobox motif of SliC, the site for lipid anchor attachment, to alanine. SliC(C18A) localized to soluble rather than membrane fractions in Gc and was not displayed on the bacterial surface. Less SliC(C18A) was detected in Gc lysates compared to the wild-type protein. This was due in part to some release of the C18A mutant, but not wild-type, protein into the extracellular space. Surprisingly, Gc expressing SliC(C18A) survived better than SliC (wild type)-expressing Gc after exposure to lysozyme. We conclude that lipidation is not required for the ability of SliC to inhibit lysozyme, even though the lipidated cysteine is 100% conserved in Gc SliC alleles. These findings shed light on how members of the growing family of lysozyme inhibitors with distinct subcellular localizations contribute to bacterial defense against lysozyme.IMPORTANCENeisseria gonorrhoeae is one of many bacterial species that express multiple lysozyme inhibitors. It is unclear how inhibitors that differ in their subcellular localization contribute to defense from lysozyme. We investigated how lipidation of SliC, an MliC (membrane-bound lysozyme inhibitor of c-type lysozyme)-type inhibitor, contributes to its localization and lysozyme inhibitory activity. We found that lipidation was required for surface exposure of SliC and yet was dispensable for protecting the gonococcus from killing by lysozyme. To our knowledge, this is the first time the role of lipid anchoring of a lysozyme inhibitor has been investigated. These results help us understand how different lysozyme inhibitors are localized in bacteria and how this impacts resistance to lysozyme.
Collapse
Affiliation(s)
- Stephanie A Ragland
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Mary C Gray
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Elizabeth M Melson
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Melissa M Kendall
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Alison K Criss
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
11
|
Williams AH, Wheeler R, Deghmane AE, Santecchia I, Schaub RE, Hicham S, Moya Nilges M, Malosse C, Chamot-Rooke J, Haouz A, Dillard JP, Robins WP, Taha MK, Gomperts Boneca I. Defective lytic transglycosylase disrupts cell morphogenesis by hindering cell wall de- O-acetylation in Neisseria meningitidis. eLife 2020; 9:e51247. [PMID: 32022687 PMCID: PMC7083599 DOI: 10.7554/elife.51247] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 02/04/2020] [Indexed: 12/17/2022] Open
Abstract
Lytic transglycosylases (LT) are enzymes involved in peptidoglycan (PG) remodeling. However, their contribution to cell-wall-modifying complexes and their potential as antimicrobial drug targets remains unclear. Here, we determined a high-resolution structure of the LT, an outer membrane lipoprotein from Neisseria species with a disordered active site helix (alpha helix 30). We show that deletion of the conserved alpha-helix 30 interferes with the integrity of the cell wall, disrupts cell division, cell separation, and impairs the fitness of the human pathogen Neisseria meningitidis during infection. Additionally, deletion of alpha-helix 30 results in hyperacetylated PG, suggesting this LtgA variant affects the function of the PG de-O-acetylase (Ape 1). Our study revealed that Ape 1 requires LtgA for optimal function, demonstrating that LTs can modulate the activity of their protein-binding partner. We show that targeting specific domains in LTs can be lethal, which opens the possibility that LTs are useful drug-targets.
Collapse
Affiliation(s)
- Allison Hillary Williams
- Unité Biologie et Génétique de la Paroi Bactérienne, Institut Pasteur; Groupe Avenir, INSERM 75015ParisFrance
| | - Richard Wheeler
- Unité Biologie et Génétique de la Paroi Bactérienne, Institut Pasteur; Groupe Avenir, INSERM 75015ParisFrance
- Tumour Immunology and Immunotherapy, Institut Gustave RoussyVillejuifFrance
| | | | - Ignacio Santecchia
- Unité Biologie et Génétique de la Paroi Bactérienne, Institut Pasteur; Groupe Avenir, INSERM 75015ParisFrance
- Universté Paris Descartes, Sorbonne Paris CitéParisFrance
| | - Ryan E Schaub
- Department of Medical Microbiology and Immunology, University of Wisconsin-MadisonMadisonUnited States
| | - Samia Hicham
- Unité Biologie et Génétique de la Paroi Bactérienne, Institut Pasteur; Groupe Avenir, INSERM 75015ParisFrance
| | - Maryse Moya Nilges
- Unité Technologie et Service BioImagerie Ultrastructural, Institut PasteurParisFrance
| | - Christian Malosse
- Unité Technologie et Service Spectrométrie de Masse pour la Biologie, Institut Pasteur; UMR 3528, CNRS 75015ParisFrance
| | - Julia Chamot-Rooke
- Unité Technologie et Service Spectrométrie de Masse pour la Biologie, Institut Pasteur; UMR 3528, CNRS 75015ParisFrance
| | - Ahmed Haouz
- Plate-forme de Cristallographie-C2RT, Institut Pasteur; UMR3528, CNRS 75015ParisFrance
| | - Joseph P Dillard
- Department of Medical Microbiology and Immunology, University of Wisconsin-MadisonMadisonUnited States
| | - William P Robins
- Department of Microbiology, Harvard Medical SchoolBostonUnited States
| | | | - Ivo Gomperts Boneca
- Unité Biologie et Génétique de la Paroi Bactérienne, Institut Pasteur; Groupe Avenir, INSERM 75015ParisFrance
| |
Collapse
|
12
|
Do T, Page JE, Walker S. Uncovering the activities, biological roles, and regulation of bacterial cell wall hydrolases and tailoring enzymes. J Biol Chem 2020; 295:3347-3361. [PMID: 31974163 DOI: 10.1074/jbc.rev119.010155] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Bacteria account for 1000-fold more biomass than humans. They vary widely in shape and size. The morphological diversity of bacteria is due largely to the different peptidoglycan-based cell wall structures that encase bacterial cells. Although the basic structure of peptidoglycan is highly conserved, consisting of long glycan strands that are cross-linked by short peptide chains, the mature cell wall is chemically diverse. Peptidoglycan hydrolases and cell wall-tailoring enzymes that regulate glycan strand length, the degree of cross-linking, and the addition of other modifications to peptidoglycan are central in determining the final architecture of the bacterial cell wall. Historically, it has been difficult to biochemically characterize these enzymes that act on peptidoglycan because suitable peptidoglycan substrates were inaccessible. In this review, we discuss fundamental aspects of bacterial cell wall synthesis, describe the regulation and diverse biochemical and functional activities of peptidoglycan hydrolases, and highlight recently developed methods to make and label defined peptidoglycan substrates. We also review how access to these substrates has now enabled biochemical studies that deepen our understanding of how bacterial cell wall enzymes cooperate to build a mature cell wall. Such improved understanding is critical to the development of new antibiotics that disrupt cell wall biogenesis, a process essential to the survival of bacteria.
Collapse
Affiliation(s)
- Truc Do
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts 02115
| | - Julia E Page
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts 02115
| | - Suzanne Walker
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts 02115.
| |
Collapse
|
13
|
Anderson EM, Sychantha D, Brewer D, Clarke AJ, Geddes-McAlister J, Khursigara CM. Peptidoglycomics reveals compositional changes in peptidoglycan between biofilm- and planktonic-derived Pseudomonas aeruginosa. J Biol Chem 2019; 295:504-516. [PMID: 31771981 DOI: 10.1074/jbc.ra119.010505] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 11/25/2019] [Indexed: 12/14/2022] Open
Abstract
Peptidoglycan (PG) is a critical component of the bacterial cell wall and is composed of a repeating β-1,4-linked disaccharide of N-acetylglucosamine and N-acetylmuramic acid appended with a highly conserved stem peptide. In Gram-negative bacteria, PG is assembled in the cytoplasm and exported into the periplasm where it undergoes considerable maturation, modification, or degradation depending on the growth phase or presence of environmental stressors. These modifications serve important functions in diverse processes, including PG turnover, cell elongation/division, and antibiotic resistance. Conventional methods for analyzing PG composition are complex and time-consuming. We present here a streamlined MS-based method that combines differential analysis with statistical 1D annotation approaches to quantitatively compare PGs produced in planktonic- and biofilm-cultured Pseudomonas aeruginosa We identified a core assembly of PG that is present in high abundance and that does not significantly differ between the two growth states. We also identified an adaptive PG assembly that is present in smaller amounts and fluctuates considerably between growth states in response to physiological changes. Biofilm-derived adaptive PG exhibited significant changes compared with planktonic-derived PG, including amino acid substitutions of the stem peptide and modifications that indicate changes in the activity of amidases, deacetylases, and lytic transglycosylases. The results of this work also provide first evidence of de-N-acetylated muropeptides from P. aeruginosa The method developed here offers a robust and reproducible workflow for accurately determining PG composition in samples that can be used to assess global PG fluctuations in response to changing growth conditions or external stimuli.
Collapse
Affiliation(s)
- Erin M Anderson
- Department of Molecular and Cellular Biology, University of Guelph, Ontario N1G 2W1, Canada
| | - David Sychantha
- Department of Molecular and Cellular Biology, University of Guelph, Ontario N1G 2W1, Canada
| | - Dyanne Brewer
- Mass Spectrometry Facility, University of Guelph, Ontario N1G 2W1, Canada
| | - Anthony J Clarke
- Department of Molecular and Cellular Biology, University of Guelph, Ontario N1G 2W1, Canada
| | - Jennifer Geddes-McAlister
- Department of Molecular and Cellular Biology, University of Guelph, Ontario N1G 2W1, Canada; Mass Spectrometry Facility, University of Guelph, Ontario N1G 2W1, Canada.
| | - Cezar M Khursigara
- Department of Molecular and Cellular Biology, University of Guelph, Ontario N1G 2W1, Canada; Mass Spectrometry Facility, University of Guelph, Ontario N1G 2W1, Canada.
| |
Collapse
|
14
|
Brott AS, Clarke AJ. Peptidoglycan O-Acetylation as a Virulence Factor: Its Effect on Lysozyme in the Innate Immune System. Antibiotics (Basel) 2019; 8:E94. [PMID: 31323733 PMCID: PMC6783866 DOI: 10.3390/antibiotics8030094] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 07/11/2019] [Accepted: 07/13/2019] [Indexed: 11/16/2022] Open
Abstract
The peptidoglycan sacculus of both Gram-positive and Gram-negative bacteria acts as a protective mesh and provides structural support around the entirety of the cell. The integrity of this structure is of utmost importance for cell viability and so naturally is the first target for attack by the host immune system during bacterial infection. Lysozyme, a muramidase and the first line of defense of the innate immune system, targets the peptidoglycan sacculus hydrolyzing the β-(1→4) linkage between repeating glycan units, causing lysis and the death of the invading bacterium. The O-acetylation of N-acetylmuramoyl residues within peptidoglycan precludes the productive binding of lysozyme, and in doing so renders it inactive. This modification has been shown to be an important virulence factor in pathogens such as Staphylococcus aureus and Neisseria gonorrhoeae and is currently being investigated as a novel target for anti-virulence therapies. This article reviews interactions made between peptidoglycan and the host immune system, specifically with respect to lysozyme, and how the O-acetylation of the peptidoglycan interrupts these interactions, leading to increased pathogenicity.
Collapse
Affiliation(s)
- Ashley S Brott
- Department of Molecular & Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Anthony J Clarke
- Department of Molecular & Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada.
| |
Collapse
|
15
|
Porfírio S, Carlson RW, Azadi P. Elucidating Peptidoglycan Structure: An Analytical Toolset. Trends Microbiol 2019; 27:607-622. [DOI: 10.1016/j.tim.2019.01.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 01/16/2019] [Accepted: 01/29/2019] [Indexed: 01/04/2023]
|
16
|
Juan C, Torrens G, Barceló IM, Oliver A. Interplay between Peptidoglycan Biology and Virulence in Gram-Negative Pathogens. Microbiol Mol Biol Rev 2018; 82:e00033-18. [PMID: 30209071 PMCID: PMC6298613 DOI: 10.1128/mmbr.00033-18] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The clinical and epidemiological threat of the growing antimicrobial resistance in Gram-negative pathogens, particularly for β-lactams, the most frequently used and relevant antibiotics, urges research to find new therapeutic weapons to combat the infections caused by these microorganisms. An essential previous step in the development of these therapeutic solutions is to identify their potential targets in the biology of the pathogen. This is precisely what we sought to do in this review specifically regarding the barely exploited field analyzing the interplay among the biology of the peptidoglycan and related processes, such as β-lactamase regulation and virulence. Hence, here we gather, analyze, and integrate the knowledge derived from published works that provide information on the topic, starting with those dealing with the historically neglected essential role of the Gram-negative peptidoglycan in virulence, including structural, biogenesis, remodeling, and recycling aspects, in addition to proinflammatory and other interactions with the host. We also review the complex link between intrinsic β-lactamase production and peptidoglycan metabolism, as well as the biological costs potentially associated with the expression of horizontally acquired β-lactamases. Finally, we analyze the existing evidence from multiple perspectives to provide useful clues for identifying targets enabling the future development of therapeutic options attacking the peptidoglycan-virulence interconnection as a key weak point of the Gram-negative pathogens to be used, if not to kill the bacteria, to mitigate their capacity to produce severe infections.
Collapse
Affiliation(s)
- Carlos Juan
- Servicio de Microbiología and Unidad de Investigación, Hospital Son Espases, Instituto de Investigación Sanitaria de Baleares (IdISBa), Palma, Spain
| | - Gabriel Torrens
- Servicio de Microbiología and Unidad de Investigación, Hospital Son Espases, Instituto de Investigación Sanitaria de Baleares (IdISBa), Palma, Spain
| | - Isabel Maria Barceló
- Servicio de Microbiología and Unidad de Investigación, Hospital Son Espases, Instituto de Investigación Sanitaria de Baleares (IdISBa), Palma, Spain
| | - Antonio Oliver
- Servicio de Microbiología and Unidad de Investigación, Hospital Son Espases, Instituto de Investigación Sanitaria de Baleares (IdISBa), Palma, Spain
| |
Collapse
|
17
|
Sychantha D, Brott AS, Jones CS, Clarke AJ. Mechanistic Pathways for Peptidoglycan O-Acetylation and De-O-Acetylation. Front Microbiol 2018; 9:2332. [PMID: 30327644 PMCID: PMC6174289 DOI: 10.3389/fmicb.2018.02332] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 09/11/2018] [Indexed: 12/22/2022] Open
Abstract
The post-synthetic O-acetylation of the essential component of bacterial cell walls, peptidoglycan (PG), is performed by many pathogenic bacteria to help them evade the lytic action of innate immunity responses. Occurring at the C-6 hydroxyl of N-acetylmuramoyl residues, this modification to the glycan backbone of PG sterically blocks the activity of lysozymes. As such, the enzyme responsible for this modification in Gram-positive bacteria is recognized as a virulence factor. With Gram-negative bacteria, the O-acetylation of PG provides a means of control of their autolysins at the substrate level. In this review, we discuss the pathways for PG O-acetylation and de-O-acetylation and the structure and function relationship of the O-acetyltransferases and O-acetylesterases that catalyze these reactions. The current understanding of their mechanisms of action is presented and the prospects of targeting these systems for the development of novel therapeutics are explored.
Collapse
Affiliation(s)
| | | | | | - Anthony J. Clarke
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
18
|
Bao Y, Zhang H, Huang X, Ma J, Logue CM, Nolan LK, Li G. O-specific polysaccharide confers lysozyme resistance to extraintestinal pathogenic Escherichia coli. Virulence 2018; 9:666-680. [PMID: 29405825 PMCID: PMC5955474 DOI: 10.1080/21505594.2018.1433979] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Extraintestinal pathogenic Escherichia coli (ExPEC) is the leading cause of bloodstream and other extraintestinal infections in human and animals. The greatest challenge encountered by ExPEC during an infection is posed by the host defense mechanisms, including lysozyme. ExPEC have developed diverse strategies to overcome this challenge. The aim of this study was to characterize the molecular mechanism of ExPEC resistance to lysozyme. For this, 15,000 transposon mutants of a lysozyme-resistant ExPEC strain NMEC38 were screened; 20 genes were identified as involved in ExPEC resistance to lysozyme—of which five were located in the gene cluster between galF and gnd, and were further confirmed to be involved in O-specific polysaccharide biosynthesis. The O-specific polysaccharide was able to inhibit the hydrolytic activity of lysozyme; it was also required by the complete lipopolysaccharide (LPS)-mediated protection of ExPEC against the bactericidal activity of lysozyme. The O-specific polysaccharide was further shown to be able to directly interact with lysozyme. Furthermore, LPS from ExPEC strains of different O serotypes was also able to inhibit the hydrolytic activity of lysozyme. Because of their cell surface localization and wide distribution in Gram-negative bacteria, O-specific polysaccharides appear to play a long-overlooked role in protecting bacteria against exogenous lysozyme.
Collapse
Affiliation(s)
- Yinli Bao
- a Department of Veterinary Diagnostic and Production Animal Medicine , College of Veterinary Medicine, Iowa State University , Ames , IA , USA.,b Department of Veterinary Preventive Medicine , College of Veterinary Medicine, Nanjing Agricultural University , Nanjing , China
| | - Haobo Zhang
- b Department of Veterinary Preventive Medicine , College of Veterinary Medicine, Nanjing Agricultural University , Nanjing , China
| | - Xinxin Huang
- c Shanghai Entry-Exit Inspection and Quarantine Bureau , Shanghai , China
| | - Jiale Ma
- a Department of Veterinary Diagnostic and Production Animal Medicine , College of Veterinary Medicine, Iowa State University , Ames , IA , USA.,b Department of Veterinary Preventive Medicine , College of Veterinary Medicine, Nanjing Agricultural University , Nanjing , China
| | - Catherine M Logue
- d Department of Veterinary Microbiology and Preventive Medicine , College of Veterinary Medicine, Iowa State University , Ames , IA , USA
| | - Lisa K Nolan
- d Department of Veterinary Microbiology and Preventive Medicine , College of Veterinary Medicine, Iowa State University , Ames , IA , USA
| | - Ganwu Li
- a Department of Veterinary Diagnostic and Production Animal Medicine , College of Veterinary Medicine, Iowa State University , Ames , IA , USA.,e State Key Laboratory of Veterinary Biotechnology , Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences , Harbin , China
| |
Collapse
|
19
|
Abstract
Lysozyme is a cornerstone of innate immunity. The canonical mechanism for bacterial killing by lysozyme occurs through the hydrolysis of cell wall peptidoglycan (PG). Conventional type (c-type) lysozymes are also highly cationic and can kill certain bacteria independently of PG hydrolytic activity. Reflecting the ongoing arms race between host and invading microorganisms, both gram-positive and gram-negative bacteria have evolved mechanisms to thwart killing by lysozyme. In addition to its direct antimicrobial role, more recent evidence has shown that lysozyme modulates the host immune response to infection. The degradation and lysis of bacteria by lysozyme enhance the release of bacterial products, including PG, that activate pattern recognition receptors in host cells. Yet paradoxically, lysozyme is important for the resolution of inflammation at mucosal sites. This review will highlight recent advances in our understanding of the diverse mechanisms that bacteria use to protect themselves against lysozyme, the intriguing immunomodulatory function of lysozyme, and the relationship between these features in the context of infection.
Collapse
Affiliation(s)
- Stephanie A. Ragland
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Alison K. Criss
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia, United States of America
- * E-mail:
| |
Collapse
|
20
|
Targeting the permeability barrier and peptidoglycan recycling pathways to disarm Pseudomonas aeruginosa against the innate immune system. PLoS One 2017; 12:e0181932. [PMID: 28742861 PMCID: PMC5526577 DOI: 10.1371/journal.pone.0181932] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 07/10/2017] [Indexed: 11/19/2022] Open
Abstract
Antimicrobial resistance is a continuously increasing threat that severely compromises our antibiotic arsenal and causes thousands of deaths due to hospital-acquired infections by pathogens such as Pseudomonas aeruginosa, situation further aggravated by the limited development of new antibiotics. Thus, alternative strategies such as those targeting bacterial resistance mechanisms, virulence or potentiating the activity of our immune system resources are urgently needed. We have recently shown that mutations simultaneously causing the peptidoglycan recycling blockage and the β-lactamase AmpC overexpression impair the virulence of P.aeruginosa. These findings suggested that peptidoglycan metabolism might be a good target not only for fighting antibiotic resistance, but also for the attenuation of virulence and/or potentiation of our innate immune weapons. Here we analyzed the activity of the innate immune elements peptidoglycan recognition proteins (PGRPs) and lysozyme against P. aeruginosa. We show that while lysozyme and PGRPs have a very modest basal effect over P. aeruginosa, their bactericidal activity is dramatically increased in the presence of subinhibitory concentrations of the permeabilizing agent colistin. We also show that the P. aeruginosa lysozyme inhibitors seem to play a very residual protective role even in permeabilizing conditions. In contrast, we demonstrate that, once the permeability barrier is overpassed, the activity of lysozyme and PGRPs is dramatically enhanced when inhibiting key peptidoglycan recycling components (such as the 3 AmpDs, AmpG or NagZ), indicating a decisive protective role for cell-wall recycling and that direct peptidoglycan-binding supports, at least partially, the activity of these enzymes. Finally, we show that recycling blockade when occurring simultaneously with AmpC overexpression determines a further decrease in the resistance against PGRP2 and lysozyme, linked to quantitative changes in the cell-wall. Thus, our results help to delineate new strategies against P. aeruginosa infections, simultaneously targeting β–lactam resistance, cell-wall metabolism and virulence, ultimately enhancing the activity of our innate immune weapons.
Collapse
|
21
|
Humbert MV, Awanye AM, Lian LY, Derrick JP, Christodoulides M. Structure of the Neisseria Adhesin Complex Protein (ACP) and its role as a novel lysozyme inhibitor. PLoS Pathog 2017; 13:e1006448. [PMID: 28662181 PMCID: PMC5507604 DOI: 10.1371/journal.ppat.1006448] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 07/12/2017] [Accepted: 06/06/2017] [Indexed: 12/12/2022] Open
Abstract
Pathogenic and commensal Neisseria species produce an Adhesin Complex Protein, which was first characterised in Neisseria meningitidis (Nm) as a novel surface-exposed adhesin with vaccine potential. In the current study, the crystal structure of a recombinant (r)Nm-ACP Type I protein was determined to 1.4 Å resolution: the fold resembles an eight-stranded β-barrel, stabilized by a disulphide bond between the first (Cys38) and last (Cys121) β-strands. There are few main-chain hydrogen bonds linking β4-β5 and β8-β1, so the structure divides into two four-stranded anti-parallel β-sheets (β1-β4 and β5-β8). The computed surface electrostatic charge distribution showed that the β1-β4 sheet face is predominantly basic, whereas the β5-β8 sheet is apolar, apart from the loop between β4 and β5. Concentrations of rNm-ACP and rNeisseria gonorrhoeae-ACP proteins ≥0.25 μg/ml significantly inhibited by ~80–100% (P<0.05) the in vitro activity of human lysozyme (HL) over 24 h. Specificity was demonstrated by the ability of murine anti-Neisseria ACP sera to block ACP inhibition and restore HL activity. ACP expression conferred tolerance to HL activity, as demonstrated by significant 3–9 fold reductions (P<0.05) in the growth of meningococcal and gonococcal acp gene knock-out mutants in the presence of lysozyme. In addition, wild-type Neisseria lactamica treated with purified ACP-specific rabbit IgG antibodies showed similar fold reductions in bacterial growth, compared with untreated bacteria (P<0.05). Nm-ACPI is structurally similar to the MliC/PliC protein family of lysozyme inhibitors. However, Neisseria ACP proteins show <20% primary sequence similarity with these inhibitors and do not share any conserved MliC/PliC sequence motifs associated with lysozyme recognition. These observations suggest that Neisseria ACP adopts a different mode of lysozyme inhibition and that the ability of ACP to inhibit lysozyme activity could be important for host colonization by both pathogenic and commensal Neisseria organisms. Thus, ACP represents a dual target for developing Neisseria vaccines and drugs to inhibit host-pathogen interactions. The genus Neisseria contains two major human pathogens: N. meningitidis (Nm) causes meningitis and sepsis, and N. gonorrhoeae (Ng) causes the sexually transmitted disease gonorrhoea. In addition, the genus contains a larger number of commensal organisms, including N. lactamica (Nl). Common to all of these organisms is the ability to colonize exposed mucosal epithelia. Recently, we identified a novel surface-exposed adhesin in Neisseria spp., the Adhesin Complex Protein (ACP), which was capable also of generating a functional bactericidal antibody response in mice. In the current study, we have determined the crystal structure of a recombinant (r)Nm-ACP and shown that it shares structural homology to bacterial lysozyme inhibitors. We demonstrate that Neisseria ACP functions as an inhibitor of mammalian lysozyme but the mechanism appears to be different from other bacterial family lysozyme inhibitors. Expression of ACP enables Neisseria spp. to tolerate human lysozyme. We propose that ACP-mediated inhibition of lysozyme activity could be important for host colonization by both pathogenic and commensal Neisseria organisms and that ACP represents not only a target for developing Neisseria vaccines but also drugs to inhibit host-pathogen interactions.
Collapse
Affiliation(s)
- María Victoria Humbert
- Neisseria Research, Molecular Microbiology, Academic Unit of Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, University of Southampton Faculty of Medicine, Southampton, United Kingdom
| | - Amaka Marian Awanye
- Faculty of Biology, Medicine and Health, University of Manchester, Michael Smith Building, Oxford Road, Manchester, United Kingdom
| | - Lu-Yun Lian
- NMR Centre for Structural Biology, Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Jeremy P. Derrick
- Faculty of Biology, Medicine and Health, University of Manchester, Michael Smith Building, Oxford Road, Manchester, United Kingdom
| | - Myron Christodoulides
- Neisseria Research, Molecular Microbiology, Academic Unit of Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, University of Southampton Faculty of Medicine, Southampton, United Kingdom
- * E-mail:
| |
Collapse
|
22
|
Dik DA, Marous DR, Fisher JF, Mobashery S. Lytic transglycosylases: concinnity in concision of the bacterial cell wall. Crit Rev Biochem Mol Biol 2017. [PMID: 28644060 DOI: 10.1080/10409238.2017.1337705] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The lytic transglycosylases (LTs) are bacterial enzymes that catalyze the non-hydrolytic cleavage of the peptidoglycan structures of the bacterial cell wall. They are not catalysts of glycan synthesis as might be surmised from their name. Notwithstanding the seemingly mundane reaction catalyzed by the LTs, their lytic reactions serve bacteria for a series of astonishingly diverse purposes. These purposes include cell-wall synthesis, remodeling, and degradation; for the detection of cell-wall-acting antibiotics; for the expression of the mechanism of cell-wall-acting antibiotics; for the insertion of secretion systems and flagellar assemblies into the cell wall; as a virulence mechanism during infection by certain Gram-negative bacteria; and in the sporulation and germination of Gram-positive spores. Significant advances in the mechanistic understanding of each of these processes have coincided with the successive discovery of new LTs structures. In this review, we provide a systematic perspective on what is known on the structure-function correlations for the LTs, while simultaneously identifying numerous opportunities for the future study of these enigmatic enzymes.
Collapse
Affiliation(s)
- David A Dik
- a Department of Chemistry and Biochemistry , University of Notre Dame , Notre Dame , IN , USA
| | - Daniel R Marous
- a Department of Chemistry and Biochemistry , University of Notre Dame , Notre Dame , IN , USA
| | - Jed F Fisher
- a Department of Chemistry and Biochemistry , University of Notre Dame , Notre Dame , IN , USA
| | - Shahriar Mobashery
- a Department of Chemistry and Biochemistry , University of Notre Dame , Notre Dame , IN , USA
| |
Collapse
|
23
|
Skalweit MJ, Li M. Bulgecin A as a β-lactam enhancer for carbapenem-resistant Pseudomonas aeruginosa and carbapenem-resistant Acinetobacter baumannii clinical isolates containing various resistance mechanisms. DRUG DESIGN DEVELOPMENT AND THERAPY 2016; 10:3013-3020. [PMID: 27703329 PMCID: PMC5036594 DOI: 10.2147/dddt.s110193] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Genetic screening of Pseudomonas aeruginosa (PSDA) and Acinetobacter baumannii (ACB) reveals genes that confer increased susceptibility to β-lactams when disrupted, suggesting novel drug targets. One such target is lytic transglycosylase. Bulgecin A (BlgA) is a natural product of Pseudomonas mesoacidophila and a lytic transglycosolase inhibitor that works synergistically with β-lactams targeting PBP3 for Enterobacteriaceae. BlgA also weakly inhibits di-Zn2+ metallo-β-lactamases like L1 of Stenotrophomonas maltophilia. We hypothesized that because of its unique mechanism of action, BlgA could restore susceptibility to carbapenems in carbapenem-resistant PSDA (CR-PSDA) and carbapenem-resistant ACB, as well as ACB resistant to sulbactam. A BlgA-containing extract was prepared using a previously published protocol. CR-PSDA clinical isolates demonstrating a variety of carbapenem resistance mechanisms (VIM-2 carbapenemases, efflux mechanisms, and AmpC producer expression) were characterized with agar dilution minimum inhibitory concentration (MIC) testing and polymerase chain reaction. Growth curves using these strains were prepared using meropenem, BlgA extract, and meropenem plus BlgA extract. A concentrated Blg A extract combined with low concentrations of meropenem, was able to inhibit the growth of clinical strains of CR-PSDA for strains that had meropenem MICs ≥8 mg/L by agar dilution, and a clinical strain of an OXA-24 producing ACB that had a meropenem MIC >32 mg/L and intermediate ampicillin/sulbactam susceptibility. Similar experiments were conducted on a TEM-1 producing ACB strain resistant to sulbactam. BlgA with ampicillin/sulbactam inhibited the growth of this organism. As in Enterobacteriaceae, BlgA appears to restore the efficacy of meropenem in suppressing the growth of CR-PSDA and carbapenem-resistant ACB strains with a variety of common carbapenem resistance mechanisms. BlgA extract also inhibits VIM-2 β-lactamase in vitro. BlgA may prove to be an exciting adjunctive compound to extend the life of carbapenems against these vexing pathogens.
Collapse
Affiliation(s)
- Marion J Skalweit
- Department of Medicine; Research Section; Infectious Diseases Section, Louis Stokes Cleveland Department of Veterans; Department of Medicine; Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | | |
Collapse
|
24
|
Pseudomonas aeruginosa: targeting cell-wall metabolism for new antibacterial discovery and development. Future Med Chem 2016; 8:975-92. [PMID: 27228070 DOI: 10.4155/fmc-2016-0017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Pseudomonas aeruginosa is a leading cause of hospital-acquired infections and is resistant to most antibiotics. With therapeutic options against P. aeruginosa dwindling, and the lack of new antibiotics in advanced developmental stages, strategies for preserving the effectiveness of current antibiotics are urgently required. β-Lactam antibiotics are important agents for treating P. aeruginosa infections, thus, adjuvants that potentiate the activity of these compounds are desirable for extending their lifespan while new antibiotics - or antibiotic classes - are discovered and developed. In this review, we discuss recent research that has identified exploitable targets of cell-wall metabolism for the design and development of compounds that hinder resistance and potentiate the activity of antipseudomonal β-lactams.
Collapse
|
25
|
Herlihey FA, Clarke AJ. Controlling Autolysis During Flagella Insertion in Gram-Negative Bacteria. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 925:41-56. [PMID: 27722959 DOI: 10.1007/5584_2016_52] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The flagellum is an important macromolecular machine for many pathogenic bacteria. It is a hetero-oligomeric structure comprised of three major sub-structures: basal body, hook and thin helical filament. An important step during flagellum assembly is the localized and controlled degradation of the peptidoglycan sacculus to allow for the insertion of the rod as well as to facilitate anchoring for proper motor function. The peptidoglycan lysis events require specialized lytic enzymes, β-N-acetylglucosaminidases and lytic transglycosylases, which differ in flagellated proteobacteria. Due to their autolytic activity, these enzymes need to be controlled in order to prevent cellular lysis. This review summarizes are current understanding of the peptidoglycan lysis events required for flagellum assembly and motility with a main focus on Gram-negative bacteria.
Collapse
Affiliation(s)
- Francesca A Herlihey
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, N1G2W1, Canada
| | - Anthony J Clarke
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, N1G2W1, Canada.
| |
Collapse
|
26
|
Liu Z, García-Díaz B, Catacchio B, Chiancone E, Vogel HJ. Protecting Gram-negative bacterial cell envelopes from human lysozyme: Interactions with Ivy inhibitor proteins from Escherichia coli and Pseudomonas aeruginosa. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:3032-46. [PMID: 25838125 DOI: 10.1016/j.bbamem.2015.03.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 03/16/2015] [Accepted: 03/24/2015] [Indexed: 11/15/2022]
Abstract
Lysozymes play an important role in host defense by degrading peptidoglycan in the cell envelopes of pathogenic bacteria. Several Gram-negative bacteria can evade this mechanism by producing periplasmic proteins that inhibit the enzymatic activity of lysozyme. The Escherichia coli inhibitor of vertebrate lysozyme, Ivyc and its Pseudomonas aeruginosa homolog, Ivyp1 have been shown to be potent inhibitors of hen egg white lysozyme (HEWL). Since human lysozyme (HL) plays an important role in the innate immune response, we have examined the binding of HL to Ivyc and Ivyp1. Our results show that Ivyp1 is a weaker inhibitor of HL than Ivyc even though they inhibit HEWL with similar potency. Calorimetry experiments confirm that Ivyp1 interacts more weakly with HL than HEWL. Analytical ultracentrifugation studies revealed that Ivyp1 in solution is a monomer and forms a 30kDa heterodimer with both HL and HEWL, while Ivyc is a homodimer that forms a tetramer with both enzymes. The interaction of Ivyp1 with HL was further characterized by NMR chemical shift perturbation experiments. In addition to the characteristic His-containing Ivy inhibitory loop that binds into the active site of lysozyme, an extended loop (P2) between the final two beta-strands also participates in forming protein-protein interactions. The P2 loop is not conserved in Ivyc and it constitutes a flexible region in Ivyp1 that becomes more rigid in the complex with HL. We conclude that differences in the electrostatic interactions at the binding interface between Ivy inhibitors and distinct lysozymes determine the strength of this interaction. This article is part of a Special Issue entitled: Bacterial Resistance to Antimicrobial Peptides.
Collapse
Affiliation(s)
- Zhihong Liu
- Biochemistry Research Group, Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Beatriz García-Díaz
- Biochemistry Research Group, Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Bruno Catacchio
- Dipartimento di Scienze Biochimiche, Istituto di Biologia e Patologia Molecolari CNR, Università Sapienza, P.le A. Moro, 5-00185 Roma, Italy
| | - Emilia Chiancone
- Dipartimento di Scienze Biochimiche, Istituto di Biologia e Patologia Molecolari CNR, Università Sapienza, P.le A. Moro, 5-00185 Roma, Italy
| | - Hans J Vogel
- Biochemistry Research Group, Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada.
| |
Collapse
|
27
|
Li MF, Wang C, Sun L. Edwardsiella tarda MliC, a lysozyme inhibitor that participates in pathogenesis in a manner that parallels Ivy. Infect Immun 2015; 83:583-90. [PMID: 25404031 PMCID: PMC4294240 DOI: 10.1128/iai.02473-14] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Accepted: 11/13/2014] [Indexed: 11/20/2022] Open
Abstract
Edwardsiella tarda, a bacterial pathogen to farmed fish as well as humans, possesses the genes of two lysozyme inhibitors, ivy and mliC (ivy(Et) and mliC(Et)). We recently studied IvyEt and found it to be implicated in E. tarda virulence. In the present study, we characterized MliC(Et) in comparison with Ivy(Et) in a turbot model. MliC(Et) contains the FWSKG motif and two cysteines (C33 and C98) that are highly conserved in subgroup 1 MliCs but are of unknown functional importance. To examine the essentialness of these conserved structural features, recombinant MliC(Et) (rMliC) and its mutants bearing C33S and W79A (of the FWSKG motif) substitutions were prepared. Subsequent analysis showed that rMliC (i) inhibited lysozyme-induced lysis of a Gram-positive bacterium, (ii) reduced serum-facilitated lysozyme killing of E. tarda, and (iii) when introduced into turbot, promoted bacterial dissemination in fish tissues. The C33S mutation had no influence on the activity of rMliC, while the W79A mutation slightly but significantly enhanced the activity of rMliC. Knockout strains of either mliC(Et) or ivy(Et) were severely attenuated for the ability of tissue invasion, host lethality, serum survival, and intracellular replication. The lost virulence of the mliC transformant (TXΔmliC) was restored by complementation with an introduced mliC(Et) gene. Compared to the Δivy(Et) or ΔmliC(Et) single-knockout strains, the ΔmliC(Et) Δivy(Et) double-knockout strain was significantly impaired in most of the virulence features. Together, these results provide the first evidence that the conserved cysteine is functionally dispensable to a subgroup 1 MliC and that as a virulence factor, MliC(Et) most likely works in a concerted and parallel manner with Ivy.
Collapse
Affiliation(s)
- Mo-Fei Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China University of Chinese Academy of Sciences, Beijing, China
| | - Chong Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China University of Chinese Academy of Sciences, Beijing, China
| | - Li Sun
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China Collaborative Innovation Center of Deep Sea Biology, Zhejiang University, Hangzhou, China
| |
Collapse
|
28
|
Anzengruber J, Courtin P, Claes IJJ, Debreczeny M, Hofbauer S, Obinger C, Chapot-Chartier MP, Vanderleyden J, Messner P, Schäffer C. Biochemical characterization of the major N-acetylmuramidase from Lactobacillus buchneri. Microbiology (Reading) 2014; 160:1807-1819. [DOI: 10.1099/mic.0.078162-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bacterial cell wall hydrolases are essential for peptidoglycan remodelling in regard to bacterial cell growth and division. In this study, peptidoglycan hydrolases (PGHs) of different Lactobacillus buchneri strains were investigated. First, the genome sequence of L. buchneri CD034 and L. buchneri NRRL B-30929 was analysed in silico for the presence of PGHs. Of 23 putative PGHs with different predicted hydrolytic specificities, the glycosyl hydrolase family 25 domain-containing homologues LbGH25B and LbGH25N from L. buchneri CD034 and NRRL B-30929, respectively, were selected and characterized in detail. Zymogram analysis confirmed hydrolysing activity on bacterial cell walls for both enzymes. Subsequent reversed-phase HPLC and MALDI-TOF MS analysis of the peptidoglycan breakdown products from L. buchneri strains CD034 and NRRL B-30929, and from Lactobacillus rhamnosus GG, which served as a reference, revealed that LbGH25B and LbGH25N have N-acetylmuramidase activity. Both enzymes were identified as cell wall-associated proteins by means of immunofluorescence microscopy and cellular fractionation, as well as by the ability of purified recombinant LbGH25B and LbGH25N to bind to L. buchneri cell walls in vitro. Moreover, similar secondary structures mainly composed of β-sheets and nearly identical thermal stabilities with T
m values around 49 °C were found for the two N-acetylmuramidases by far-UV circular dichroism spectroscopy. The functional and structural data obtained are discussed and compared to related PGHs. In this study, a major N-acetylmuramidase from L. buchneri was characterized in detail for the first time.
Collapse
Affiliation(s)
- Julia Anzengruber
- Department of NanoBiotechnology, NanoGlycobiology unit, Universität für Bodenkultur Wien, Muthgasse 11, 1190 Vienna, Austria
| | - Pascal Courtin
- AgroParisTech, UMR Micalis, Jouy-en-Josas, France
- INRA and AgroParisTech, UMR1319 Micalis, 78350 Jouy-en-Josas, France
| | - Ingmar J. J. Claes
- Center of Microbial and Plant Genetics, K.U. Leuven, 3001 Leuven, Belgium
| | - Monika Debreczeny
- VIBT Imaging Centre, Universität für Bodenkultur Wien, Muthgasse 11, 1190 Vienna, Austria
| | - Stefan Hofbauer
- Department of Chemistry, Universität für Bodenkultur Wien, Muthgasse 18, 1190 Vienna, Austria
| | - Christian Obinger
- Department of Chemistry, Universität für Bodenkultur Wien, Muthgasse 18, 1190 Vienna, Austria
| | - Marie-Pierre Chapot-Chartier
- AgroParisTech, UMR Micalis, Jouy-en-Josas, France
- INRA and AgroParisTech, UMR1319 Micalis, 78350 Jouy-en-Josas, France
| | - Jos Vanderleyden
- Center of Microbial and Plant Genetics, K.U. Leuven, 3001 Leuven, Belgium
| | - Paul Messner
- Department of NanoBiotechnology, NanoGlycobiology unit, Universität für Bodenkultur Wien, Muthgasse 11, 1190 Vienna, Austria
| | - Christina Schäffer
- Department of NanoBiotechnology, NanoGlycobiology unit, Universität für Bodenkultur Wien, Muthgasse 11, 1190 Vienna, Austria
| |
Collapse
|
29
|
Chemical biology of peptidoglycan acetylation and deacetylation. Bioorg Chem 2014; 54:44-50. [DOI: 10.1016/j.bioorg.2014.03.010] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 03/25/2014] [Indexed: 12/16/2022]
|
30
|
Frirdich E, Gaynor EC. Peptidoglycan hydrolases, bacterial shape, and pathogenesis. Curr Opin Microbiol 2013; 16:767-78. [PMID: 24121030 DOI: 10.1016/j.mib.2013.09.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 09/08/2013] [Accepted: 09/11/2013] [Indexed: 01/29/2023]
Abstract
Bacterial shape has always been hypothesized to play an important role in the biology of a species and in the ability of certain bacteria to influence human health. The recent discovery of peptidoglycan hydrolases that modulate shape has now allowed this hypothesis to be addressed directly. Genetic, biochemical, and phenotypic studies have found that changes in shape and underlying peptidoglycan structure influence many pathogenic attributes including surviving unfavorable conditions, predation, transmission, colonization, and host interactions. The diversity of bacterial shapes, niches, and lifestyles is also reflected in diverse mechanisms of hydrolase regulation, critical for maintaining peptidoglycan integrity and biological properties of the cell. Future studies will build on the current work described and further elucidate the intersection of peptidoglycan hydrolase activity, shape, and disease outcome.
Collapse
Affiliation(s)
- Emilisa Frirdich
- Department of Microbiology and Immunology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, Canada V6T1Z3
| | | |
Collapse
|
31
|
Zeng X, Lin J. Beta-lactamase induction and cell wall metabolism in Gram-negative bacteria. Front Microbiol 2013; 4:128. [PMID: 23734147 PMCID: PMC3660660 DOI: 10.3389/fmicb.2013.00128] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 05/04/2013] [Indexed: 11/13/2022] Open
Abstract
Production of beta-lactamases, the enzymes that degrade beta-lactam antibiotics, is the most widespread and threatening mechanism of antibiotic resistance. In the past, extensive research has focused on the structure, function, and ecology of beta-lactamases while limited efforts were placed on the regulatory mechanisms of beta-lactamases. Recently, increasing evidence demonstrate a direct link between beta-lactamase induction and cell wall metabolism in Gram-negative bacteria. Specifically, expression of beta-lactamase could be induced by the liberated murein fragments, such as muropeptides. This article summarizes current knowledge on cell wall metabolism, beta-lactam antibiotics, and beta-lactamases. In particular, we comprehensively reviewed recent studies on the beta-lactamase induction by muropeptides via two major molecular mechanisms (the AmpG-AmpR-AmpC pathway and BlrAB-like two-component regulatory system) in Gram-negative bacteria. The signaling pathways for beta-lactamase induction offer a broad array of promising targets for the discovery of new antibacterial drugs used for combination therapies. Therefore, to develop effective mitigation strategies against the widespread beta-lactam resistance, examination of the molecular basis of beta-lactamase induction by cell wall fragment is highly warranted.
Collapse
Affiliation(s)
| | - Jun Lin
- Department of Animal Science, The University of TennesseeKnoxville, TN, USA
| |
Collapse
|
32
|
Derbise A, Pierre F, Merchez M, Pradel E, Laouami S, Ricard I, Sirard JC, Fritz J, Lemaître N, Akinbi H, Boneca IG, Sebbane F. Inheritance of the lysozyme inhibitor Ivy was an important evolutionary step by Yersinia pestis to avoid the host innate immune response. J Infect Dis 2013; 207:1535-43. [PMID: 23402825 DOI: 10.1093/infdis/jit057] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Yersinia pestis (the plague bacillus) and its ancestor, Yersinia pseudotuberculosis (which causes self-limited bowel disease), encode putative homologues of the periplasmic lysozyme inhibitor Ivy and the membrane-bound lysozyme inhibitor MliC. The involvement of both inhibitors in virulence remains subject to debate. METHODS Mutants lacking ivy and/or mliC were generated. We evaluated the mutants' ability to counter lysozyme, grow in serum, and/or counter leukocytes; to produce disease in wild-type, neutropenic, or lysozyme-deficient rodents; and to induce host inflammation. RESULTS MliC was not required for lysozyme resistance and the development of plague. Deletion of ivy decreased Y. pestis' ability to counter lysozyme and polymorphonuclear neutrophils, but it did not affect the bacterium's ability to grow in serum or resist macrophages. Y. pestis lacking Ivy had attenuated virulence, unless animals were neutropenic or lysozyme deficient. The Ivy mutant induced inflammation to a degree similar to that of the parental strain. Last, Y. pseudotuberculosis did not require Ivy to counter lysozyme and for virulence. CONCLUSIONS Ivy is required to counter lysozyme during infection, but its role as a virulence factor is species dependent. Our study also shows that a gene that is not necessary for the virulence of an ancestral bacterium may become essential in the emergence of a new pathogen.
Collapse
Affiliation(s)
- Anne Derbise
- Equipe Peste et Yersinia pestis, INSERM U1019, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Arai R, Fukui S, Kobayashi N, Sekiguchi J. Solution structure of IseA, an inhibitor protein of DL-endopeptidases from Bacillus subtilis, reveals a novel fold with a characteristic inhibitory loop. J Biol Chem 2012; 287:44736-48. [PMID: 23091053 DOI: 10.1074/jbc.m112.414763] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In Bacillus subtilis, LytE, LytF, CwlS, and CwlO are vegetative autolysins, DL-endopeptidases in the NlpC/P60 family, and play essential roles in cell growth and separation. IseA (YoeB) is a proteinaceous inhibitor against the DL-endopeptidases, peptidoglycan hydrolases. Overexpression of IseA caused significantly long chained cell morphology, because IseA inhibits the cell separation DL-endopeptidases post-translationally. Here, we report the first three-dimensional structure of IseA, determined by NMR spectroscopy. The structure includes a single domain consisting of three α-helices, one 3(10)-helix, and eight β-strands, which is a novel fold like a "hacksaw." Noteworthy is a dynamic loop between β4 and the 3(10)-helix, which resembles a "blade." The electrostatic potential distribution shows that most of the surface is positively charged, but the region around the loop is negatively charged. In contrast, the LytF active-site cleft is expected to be positively charged. NMR chemical shift perturbation of IseA interacting with LytF indicated that potential interaction sites are located around the loop. Furthermore, the IseA mutants D100K/D102K and G99P/G101P at the loop showed dramatic loss of inhibition activity against LytF, compared with wild-type IseA, indicating that the β4-3(10) loop plays an important role in inhibition. Moreover, we built a complex structure model of IseA-LytF by docking simulation, suggesting that the β4-3(10) loop of IseA gets stuck deep in the cleft of LytF, and the active site is occluded. These results suggest a novel inhibition mechanism of the hacksaw-like structure, which is different from known inhibitor proteins, through interactions around the characteristic loop regions with the active-site cleft of enzymes.
Collapse
Affiliation(s)
- Ryoichi Arai
- Division of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, Ueda, Nagano 386-8567, Japan.
| | | | | | | |
Collapse
|
34
|
Callewaert L, Van Herreweghe JM, Vanderkelen L, Leysen S, Voet A, Michiels CW. Guards of the great wall: bacterial lysozyme inhibitors. Trends Microbiol 2012; 20:501-10. [DOI: 10.1016/j.tim.2012.06.005] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Revised: 06/22/2012] [Accepted: 06/29/2012] [Indexed: 10/28/2022]
|
35
|
Roure S, Bonis M, Chaput C, Ecobichon C, Mattox A, Barrière C, Geldmacher N, Guadagnini S, Schmitt C, Prévost MC, Labigne A, Backert S, Ferrero RL, Boneca IG. Peptidoglycan maturation enzymes affect flagellar functionality in bacteria. Mol Microbiol 2012; 86:845-56. [PMID: 22994973 DOI: 10.1111/mmi.12019] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2012] [Indexed: 12/24/2022]
Abstract
The flagellar machinery is a highly complex organelle composed of a free rotating flagellum and a fixed stator that converts energy into movement. The assembly of the flagella and the stator requires interactions with the peptidoglycan layer through which the organelle has to pass for externalization. Lytic transglycosylases are peptidoglycan degrading enzymes that cleave the sugar backbone of peptidoglycan layer. We show that an endogenous lytic transglycosylase is required for full motility of Helicobacter pylori and colonization of the gastric mucosa. Deficiency of motility resulted from a paralysed phenotype implying an altered ability to generate flagellar rotation. Similarly, another Gram-negative pathogen Salmonella typhimurium and the Gram-positive pathogen Listeria monocytogenes required the activity of lytic transglycosylases, Slt or MltC, and a glucosaminidase (Auto), respectively, for full motility. Furthermore, we show that in absence of the appropriate lytic transglycosylase, the flagellar motor protein MotB from H. pylori does not localize properly to the bacterial pole. We present a new model involving the maturation of the surrounding peptidoglycan for the proper anchoring and functionality of the flagellar motor.
Collapse
Affiliation(s)
- Sophie Roure
- Institut Pasteur, Group Biology and Genetics of the Bacterial Cell Wall, Paris, F-75015, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Yang DC, Tan K, Joachimiak A, Bernhardt TG. A conformational switch controls cell wall-remodelling enzymes required for bacterial cell division. Mol Microbiol 2012; 85:768-81. [PMID: 22715947 DOI: 10.1111/j.1365-2958.2012.08138.x] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Remodelling of the peptidoglycan (PG) exoskeleton is intimately tied to the growth and division of bacteria. Enzymes that hydrolyse PG are critical for these processes, but their activities must be tightly regulated to prevent the generation of lethal breaches in the PG matrix. Despite their importance, the mechanisms regulating PG hydrolase activity have remained elusive. Here we investigate the control of cell division hydrolases called amidases (AmiA, AmiB and AmiC) required for Escherichia coli cell division. Poorly regulated amiB mutants were isolated encoding lytic AmiB variants with elevated basal PG hydrolase activities in vitro. The structure of an AmiB orthologue was also solved, revealing that the active site of AmiB is occluded by a conserved alpha helix. Strikingly, most of the amino acid substitutions in the lytic AmiB variants mapped to this domain and are predicted to disrupt its interaction with the active site. Our results therefore support a model in which cell separation is stimulated by the reversible relief of amidase autoinhibition governed by conserved subcomplexes within the cytokinetic ring. Analogous conformational control mechanisms are likely to be part of a general strategy used to control PG hydrolases present within multienzyme PG-remodelling machines.
Collapse
Affiliation(s)
- Desirée C Yang
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
37
|
Structural characterization of the PliG lysozyme inhibitor family. J Struct Biol 2012; 180:235-42. [PMID: 22634186 DOI: 10.1016/j.jsb.2012.05.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Revised: 05/08/2012] [Accepted: 05/15/2012] [Indexed: 11/22/2022]
Abstract
Several Gram-negative bacteria protect themselves against the lytic action of host lysozymes by producing specific proteinaceous inhibitors. So far, four different families of lysozyme inhibitors have been identified including Ivy (Inhibitor of vertebrate lysozyme), MliC/PliC (Membrane associated/periplasmic inhibitor of C-type lysozyme), PliI and PliG (periplasmic inhibitors of I- and G-type lysozymes, respectively). Here we provide the first crystallographic description of the PliG family. Crystal structures were obtained for the PliG homologues from Escherichia coli, Salmonella enterica serotype Typhimurium and Aeromonas hydrophila. These structures show that the fold of the PliG family is very distinct from that of all other families of lysozyme inhibitors. Small-angle X-ray scattering studies reveal that PliG is monomeric in solution as opposed to the dimeric PliC and PliI. The PliG family shares a highly conserved SG(x)xY sequence motif with the MliC/PliC and PliI families where it was shown to reside on a loop that blocks the active site of lysozyme leading to inhibition. Surprisingly, we found that in PliG this motif is not well exposed and not involved in the inhibitory action. Instead, we could identify a distinct cluster of surface residues that are conserved across the PliG family and are essential for efficient G-type lysozyme inhibition, as evidenced by mutagenesis studies.
Collapse
|
38
|
Müller I, Gernold M, Schneider B, Geider K. Expression of lysozymes from Erwinia amylovora phages and Erwinia genomes and inhibition by a bacterial protein. J Mol Microbiol Biotechnol 2012; 22:59-70. [PMID: 22456518 DOI: 10.1159/000335878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Genes coding for lysozyme-inhibiting proteins (Ivy) were cloned from the chromosomes of the plant pathogens Erwinia amylovora and Erwinia pyrifoliae. The product interfered not only with activity of hen egg white lysozyme, but also with an enzyme from E. amylovora phage ΦEa1h. We have expressed lysozyme genes from the genomes of three Erwinia species in Escherichia coli. The lysozymes expressed from genes of the E. amylovora phages ΦEa104 and ΦEa116, Erwinia chromosomes and Arabidopsis thaliana were not affected by Ivy. The enzyme from bacteriophage ΦEa1h was fused at the N- or C-terminus to other peptides. Compared to the intact lysozyme, a His-tag reduced its lytic activity about 10-fold and larger fusion proteins abolished activity completely. Specific protease cleavage restored lysozyme activity of a GST-fusion. The bacteriophage-encoded lysozymes were more active than the enzymes from bacterial chromosomes. Viral lyz genes were inserted into a broad-host range vector, and transfer to E. amylovora inhibited cell growth. Inserted in the yeast Pichia pastoris, the ΦEa1h-lysozyme was secreted and also inhibited by Ivy. Here we describe expression of unrelated cloned 'silent' lyz genes from Erwinia chromosomes and a novel interference of bacterial Ivy proteins with a viral lysozyme.
Collapse
Affiliation(s)
- Ina Müller
- Julius Kühn-Institut, Institut für Pflanzenschutz in Obst- und Weinbau, Dossenheim, Deutschland
| | | | | | | |
Collapse
|
39
|
Pfeffer JM, Clarke AJ. Identification of the first known inhibitors of O-acetylpeptidoglycan esterase: a potential new antibacterial target. Chembiochem 2012; 13:722-31. [PMID: 22351512 DOI: 10.1002/cbic.201100744] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Indexed: 11/08/2022]
Abstract
The O-acetylation of peptidoglycan (PG) is now known to occur in 53 species, including numerous human pathogens such as, Staphylococcus aureus, Bacillus anthracis, species of Enterococcus, Campylobacter jejuni, Helicobacter pylori, Neisseria gonorrhoeae and N. meningitidis. This modification, which occurs at the C-6 hydroxyl of N-acetylmuramoyl residues within PG, serves to regulate autolytic activity during PG metabolism and contributes to pathogenesis and persistence within a host. O-Acetylpeptidoglycan esterase (Ape) was recently discovered as an enzyme responsible for the removal of O-acetyl groups from PG, thus permitting the continued maintenance and metabolism of the sacculus. Recombinant Ape1 from N. gonorrhoeae was purified to apparent homogeneity and optimal storage conditions for the enzyme were determined. Using 4-methylumbelliferyl acetate as substrate, a fluorogenic assay amenable for the high-throughput screening for potential inhibitors was developed and Ape1 was screened against a subset of compounds of the Canadian Compound Collection. The overall Z' score for the screen was 0.62, indicative of a well-suited assay with a sufficient signal window, and the threshold was set at 65 %. After eliminating a number of false-positives, seven compounds were identified as true inhibitors of Ape1, the first to be identified for this class of enzyme. Dose-response curves were generated leading to the identification of five of these compounds with IC(50) values ranging between 0.3 and 23 μM. Of these, purpurin was selected for further analysis and it was found to inhibit the growth of both Gram-positive and Gram-negative bacteria that produce both O-acetylated PG and Ape.
Collapse
Affiliation(s)
- John M Pfeffer
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | | |
Collapse
|
40
|
From the regulation of peptidoglycan synthesis to bacterial growth and morphology. Nat Rev Microbiol 2011; 10:123-36. [PMID: 22203377 DOI: 10.1038/nrmicro2677] [Citation(s) in RCA: 913] [Impact Index Per Article: 65.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
How bacteria grow and divide while retaining a defined shape is a fundamental question in microbiology, but technological advances are now driving a new understanding of how the shape-maintaining bacterial peptidoglycan sacculus grows. In this Review, we highlight the relationship between peptidoglycan synthesis complexes and cytoskeletal elements, as well as recent evidence that peptidoglycan growth is regulated from outside the sacculus in Gram-negative bacteria. We also discuss how growth of the sacculus is sensitive to mechanical force and nutritional status, and describe the roles of peptidoglycan hydrolases in generating cell shape and of D-amino acids in sacculus remodelling.
Collapse
|
41
|
Moynihan PJ, Clarke AJ. O-Acetylated peptidoglycan: Controlling the activity of bacterial autolysins and lytic enzymes of innate immune systems. Int J Biochem Cell Biol 2011; 43:1655-9. [DOI: 10.1016/j.biocel.2011.08.007] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Revised: 07/30/2011] [Accepted: 08/09/2011] [Indexed: 10/17/2022]
|
42
|
Vanderkelen L, Van Herreweghe JM, Vanoirbeek KGA, Baggerman G, Myrnes B, Declerck PJ, Nilsen IW, Michiels CW, Callewaert L. Identification of a bacterial inhibitor against g-type lysozyme. Cell Mol Life Sci 2011; 68:1053-64. [PMID: 20734102 PMCID: PMC11115080 DOI: 10.1007/s00018-010-0507-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Revised: 07/12/2010] [Accepted: 08/10/2010] [Indexed: 01/17/2023]
Abstract
Lysozymes are antibacterial effectors of the innate immune system in animals that hydrolyze peptidoglycan. Bacteria have evolved protective mechanisms that contribute to lysozyme tolerance such as the production of lysozyme inhibitors, but only inhibitors of chicken (c-) and invertebrate (i-) type lysozyme have been identified. We here report the discovery of a novel Escherichia coli inhibitor specific for goose (g-) type lysozymes, which we designate PliG (periplasmic lysozyme inhibitor of g-type lysozyme). Although it does not inhibit c- or i-type lysozymes, PliG shares a structural sequence motif with the previously described PliI and MliC/PliC lysozyme inhibitor families, suggesting a common ancestry and mode of action. Deletion of pliG increased the sensitivity of E. coli to g-type lysozyme. The existence of inhibitors against all major types of animal lysozyme and their contribution to lysozyme tolerance suggest that lysozyme inhibitors may play a role in bacterial interactions with animal hosts.
Collapse
Affiliation(s)
- L. Vanderkelen
- Laboratory of Food Microbiology and Leuven Food Science and Nutrition Research Centre (LFoRCe), Katholieke Universiteit Leuven, Kasteelpark Arenberg 22, 3001 Leuven, Belgium
| | - J. M. Van Herreweghe
- Laboratory of Food Microbiology and Leuven Food Science and Nutrition Research Centre (LFoRCe), Katholieke Universiteit Leuven, Kasteelpark Arenberg 22, 3001 Leuven, Belgium
| | - K. G. A. Vanoirbeek
- Laboratory of Food Microbiology and Leuven Food Science and Nutrition Research Centre (LFoRCe), Katholieke Universiteit Leuven, Kasteelpark Arenberg 22, 3001 Leuven, Belgium
| | - G. Baggerman
- Prometa, Interfaculty Centre for Proteomics and Metabolomics, Katholieke Universiteit Leuven, O&N II Herestraat 49, 3000 Leuven, Belgium
| | - B. Myrnes
- Fish Health and Marine Bioprospecting, Nofima Marin, P.O. Box 6122, 9291 Tromsø, Norway
| | - P. J. Declerck
- Laboratory for Pharmaceutical Biology, Katholieke Universiteit Leuven, O&N II Herestraat 49, 3000 Leuven, Belgium
| | - I. W. Nilsen
- Fish Health and Marine Bioprospecting, Nofima Marin, P.O. Box 6122, 9291 Tromsø, Norway
| | - C. W. Michiels
- Laboratory of Food Microbiology and Leuven Food Science and Nutrition Research Centre (LFoRCe), Katholieke Universiteit Leuven, Kasteelpark Arenberg 22, 3001 Leuven, Belgium
| | - L. Callewaert
- Laboratory of Food Microbiology and Leuven Food Science and Nutrition Research Centre (LFoRCe), Katholieke Universiteit Leuven, Kasteelpark Arenberg 22, 3001 Leuven, Belgium
| |
Collapse
|
43
|
García-Gómez E, Espinosa N, de la Mora J, Dreyfus G, González-Pedrajo B. The muramidase EtgA from enteropathogenic Escherichia coli is required for efficient type III secretion. MICROBIOLOGY-SGM 2011; 157:1145-1160. [PMID: 21233160 DOI: 10.1099/mic.0.045617-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Enteropathogenic Escherichia coli (EPEC) is an important cause of infectious diarrhoea. It colonizes human intestinal epithelial cells by delivering effector proteins into the host cell cytoplasm via a type III secretion system (T3SS) encoded within the chromosomal locus of enterocyte effacement (LEE). The LEE pathogenicity island also encodes a lytic transglycosylase (LT) homologue named EtgA. In the present work we investigated the significance of EtgA function in type III secretion (T3S). Purified recombinant EtgA was found to have peptidoglycan lytic activity in vitro. Consistent with this function, signal peptide processing and bacterial cell fractionation revealed that EtgA is a periplasmic protein. EtgA possesses the conserved glutamate characteristic of the LT family, and we show here that it is essential for enzymic activity. Overproduction of EtgA in EPEC inhibits bacterial growth and induces cell lysis unless the predicted catalytic glutamate is mutated. An etgA mutant is attenuated for T3S, red blood cell haemolysis and EspA filamentation. BfpH, a plasmid-encoded putative LT, was not able to functionally replace EtgA. Overall, our results indicate that the muramidase activity of EtgA is not critical but makes a significant contribution to the efficiency of the T3S process.
Collapse
Affiliation(s)
- Elizabeth García-Gómez
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México, D.F., 04510, Mexico
| | - Norma Espinosa
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México, D.F., 04510, Mexico
| | - Javier de la Mora
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México, D.F., 04510, Mexico
| | - Georges Dreyfus
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México, D.F., 04510, Mexico
| | - Bertha González-Pedrajo
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México, D.F., 04510, Mexico
| |
Collapse
|