1
|
Wang L, Li P, Zeng P, Xie D, Gao M, Ma L, Sohail A, Zeng F. Dosage suppressors of gpn2ts mutants and functional insights into the role of Gpn2 in budding yeast. PLoS One 2024; 19:e0313597. [PMID: 39642114 PMCID: PMC11623451 DOI: 10.1371/journal.pone.0313597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 10/28/2024] [Indexed: 12/08/2024] Open
Abstract
Gpn2 is a highly conserved protein essential for the assembly of RNA polymerase II (RNAPII) in eukaryotic cells. Mutations in Gpn2, specifically Phe105Tyr and Leu164Pro, confer temperature sensitivity and significantly impair RNAPII assembly. Despite its crucial role, the complete range of Gpn2 functions remains to be elucidated. To further explore these functions, we conducted large-scale multicopy suppressor screening in budding yeast, aiming to identify genes whose overexpression could mitigate the growth defects of a temperature-sensitive gpn2 mutant (gpn2ts) at restrictive temperatures. We screened over 30,000 colonies harboring plasmids from a multicopy genetic library and identified 31 genes that rescued the growth defects of gpn2ts to various extents. Notably, we found that PAB1, CDC5, and RGS2 reduced the drug sensitivity of gpn2ts mutants. These findings lay a theoretical foundation for future studies on the function of Gpn2 in RNAPII assembly.
Collapse
Affiliation(s)
- Le Wang
- College of Life Sciences, Hebei Agricultural University, Baoding, Hebei, China
| | - Pan Li
- College of Plant Protection, Hebei Agricultural University, Baoding, Hebei, China
| | - Pei Zeng
- College of Life Sciences, Hebei Agricultural University, Baoding, Hebei, China
| | - Debao Xie
- College of Life Sciences, Hebei Agricultural University, Baoding, Hebei, China
| | - Mengdi Gao
- College of Life Sciences, Hebei Agricultural University, Baoding, Hebei, China
| | - Lujie Ma
- College of Life Sciences, Hebei Agricultural University, Baoding, Hebei, China
| | - Aamir Sohail
- College of Life Sciences, Hebei Agricultural University, Baoding, Hebei, China
| | - Fanli Zeng
- College of Life Sciences, Hebei Agricultural University, Baoding, Hebei, China
| |
Collapse
|
2
|
O’Brien MJ, Schrader J, Ansari A. Genome-wide analysis of TFIIB's role in termination of transcription. RESEARCH SQUARE 2024:rs.3.rs-4619136. [PMID: 39070618 PMCID: PMC11276024 DOI: 10.21203/rs.3.rs-4619136/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
This study provides evidence that the role of TFIIB extends beyond initiation to include the termination step of transcription. Using GRO-seq analyses, we compared terminator readthrough phenotype in sua7-1 mutant (TFIIB sua7-1 ) and the isogenic wild type (TFIIB WT ) strains. Approximately 74% of genes analyzed exhibited a 2-3-fold increase in readthrough of the poly(A)-termination signal in the TFIIB sua7-1 mutant compared to TFIIB WT cells. Mass spectrometry of affinity purified TFIIB from chromatin fraction found TFIIB exhibiting interaction with CF1A and Rat1 termination complexes in TFIIB WT cells. There was, however, a drastic decrease in TFIIB interaction with CF1A and Rat1 termination complexes in the TFIIB sua7-1 mutant. ChIP assays revealed about 90% decline in recruitment of termination factors in TFIIB sua7-1 mutant compared to wild type cells. The overall conclusion of these results is that TFIIB affects termination of transcription on a genome-wide scale, and TFIIB-termination factor interaction may play a crucial role in the process.
Collapse
Affiliation(s)
- Michael J. O’Brien
- Department of Biological Science, 5047 Gullen Mall, Wayne State University, Detroit, MI 48202
| | - Jared Schrader
- Department of Biological Science, 5047 Gullen Mall, Wayne State University, Detroit, MI 48202
| | - Athar Ansari
- Department of Biological Science, 5047 Gullen Mall, Wayne State University, Detroit, MI 48202
| |
Collapse
|
3
|
O'Brien MJ, Schrader J, Ansari A. Genome-wide analysis of TFIIB's role in termination of transcription. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.22.581640. [PMID: 38915573 PMCID: PMC11195087 DOI: 10.1101/2024.02.22.581640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Apart from its well-established role in initiation of transcription, the general transcription factor TFIIB has been implicated in the termination step as well. The ubiquity of TFIIB involvement in termination as well as mechanistic details of its termination function, however, remains largely unexplored. To determine the prevalence of TFIIB's role in termination, we performed GRO-seq analyses in sua7-1 mutant (TFIIB sua7-1 ) and the isogenic wild type (TFIIB WT ) strains of yeast. Almost a three-fold increase in readthrough of the poly(A)-termination signal was observed in TFIIB sua7-1 mutant compared to the TFIIB WT cells. Of all genes analyzed in this study, nearly 74% genes exhibited a statistically significant increase in terminator readthrough in the mutant. To gain an understanding of the mechanistic basis of TFIIB involvement in termination, we performed mass spectrometry of TFIIB, affinity purified from chromatin and soluble cellular fractions, from TFIIB sua7-1 and TFIIB WT cells. TFIIB purified from the chromatin fraction of TFIIB WT cells exhibited significant enrichment of CF1A and Rat1 termination complexes. There was, however, a drastic decrease in TFIIB interaction with both CF1A and Rat1 termination complexes in TFIIB sua7-1 mutant. ChIP assay revealed that the recruitment of Pta1 subunit of CPF complex, Rna15 subunit of CF1 complex and Rat1 subunit of Rat1 complex registered nearly 90% decline in the mutant over wild type cells. The overall conclusion of these results is that TFIIB affects termination of transcription on a genome-wide scale, and TFIIB-termination factor interaction may play a crucial role in the process.
Collapse
|
4
|
Pal S, Biswas D. Promoter-proximal regulation of gene transcription: Key factors involved and emerging role of general transcription factors in assisting productive elongation. Gene 2023:147571. [PMID: 37331491 DOI: 10.1016/j.gene.2023.147571] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/02/2023] [Accepted: 06/13/2023] [Indexed: 06/20/2023]
Abstract
The pausing of RNA polymerase II (Pol II) at the promoter-proximal sites is a key rate-limiting step in gene expression. Cells have dedicated a specific set of proteins that sequentially establish pause and then release the Pol II from promoter-proximal sites. A well-controlled pausing and subsequent release of Pol II is crucial for thefine tuning of expression of genes including signal-responsive and developmentally-regulated ones. The release of paused Pol II broadly involves its transition from initiation to elongation. In this review article, we will discuss the phenomenon of Pol II pausing, the underlying mechanism, and also the role of different known factors, with an emphasis on general transcription factors, involved in this overall regulation. We will further discuss some recent findings suggesting a possible role (underexplored) of initiation factors in assisting the transition of transcriptionally-engaged paused Pol II into productive elongation.
Collapse
Affiliation(s)
- Sujay Pal
- Laboratory of Transcription Biology, Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata - 32, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Debabrata Biswas
- Laboratory of Transcription Biology, Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata - 32, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
5
|
Suzuki H, Furugori K, Abe R, Ogawa S, Ito S, Akiyama T, Horiuchi K, Takahashi H. MED26-containing Mediator may orchestrate multiple transcription processes through organization of nuclear bodies. Bioessays 2023; 45:e2200178. [PMID: 36852638 DOI: 10.1002/bies.202200178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 02/04/2023] [Accepted: 02/06/2023] [Indexed: 03/01/2023]
Abstract
Mediator is a coregulatory complex that plays essential roles in multiple processes of transcription regulation. One of the human Mediator subunits, MED26, has a role in recruitment of the super elongation complex (SEC) to polyadenylated genes and little elongation complex (LEC) to non-polyadenylated genes, including small nuclear RNAs (snRNAs) and replication-dependent histone (RDH) genes. MED26-containing Mediator plays a role in 3' Pol II pausing at the proximal region of transcript end sites in RDH genes through recruitment of Cajal bodies (CBs) to histone locus bodies (HLBs). This finding suggests that Mediator is involved in the association of CBs with HLBs to facilitate 3' Pol II pausing and subsequent 3'-end processing by supplying 3'-end processing factors from CBs. Thus, we argue the possibility that Mediator is involved in the organization of nuclear bodies to orchestrate multiple processes of gene transcription.
Collapse
Affiliation(s)
- Hidefumi Suzuki
- Department of Molecular Biology, Yokohama City University Graduate School of Medical Science, Yokohama, Kanagawa, Japan
| | - Kazuki Furugori
- Department of Molecular Biology, Yokohama City University Graduate School of Medical Science, Yokohama, Kanagawa, Japan
| | - Ryota Abe
- Department of Molecular Biology, Yokohama City University Graduate School of Medical Science, Yokohama, Kanagawa, Japan
| | - Shintaro Ogawa
- Department of Molecular Biology, Yokohama City University Graduate School of Medical Science, Yokohama, Kanagawa, Japan
| | - Sayaka Ito
- Department of Molecular Biology, Yokohama City University Graduate School of Medical Science, Yokohama, Kanagawa, Japan
| | - Tomohiko Akiyama
- Department of Molecular Biology, Yokohama City University Graduate School of Medical Science, Yokohama, Kanagawa, Japan
| | - Keiko Horiuchi
- Department of Molecular Biology, Yokohama City University Graduate School of Medical Science, Yokohama, Kanagawa, Japan
| | - Hidehisa Takahashi
- Department of Molecular Biology, Yokohama City University Graduate School of Medical Science, Yokohama, Kanagawa, Japan
| |
Collapse
|
6
|
Iyer U, Park JE, Sze SK, Bozdech Z, Featherstone M. Mediator Complex of the Malaria Parasite Plasmodium falciparum Associates with Evolutionarily Novel Subunits. ACS OMEGA 2022; 7:14867-14874. [PMID: 35557691 PMCID: PMC9088918 DOI: 10.1021/acsomega.2c00368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/31/2022] [Indexed: 06/15/2023]
Abstract
The eukaryotic Mediator is a large and conserved multisubunit protein complex that directly contacts RNA polymerase II and impinges on multiple aspects of gene expression. The genome of the human malaria parasite Plasmodium falciparum has been predicted to encode several Mediator subunits. We provide physical evidence for the presence of a Mediator complex in P. falciparum by using coimmunoprecipitation and mass spectrometry to identify interaction partners of the highly conserved Mediator subunit PfMed31. We identify 11 of 14 predicted Mediator subunits and the products of two uncharacterized genes, PF3D7_0526800 and PF3D7_1363600, which are strongly associated with PfMed31. As expected, several additional interaction partners have known roles in the transcriptional control of gene expression and mRNA processing. Intriguingly, multiple interaction partners are implicated in endoplasmic reticulum function and the ER stress (ERS) response, suggesting crosstalk between the ERS response and the transcriptional machinery. Our results establish for the first time the physical presence of the Mediator complex within P. falciparum and strongly suggest that it plays both conserved and unique roles in the control of gene expression. Data are available via ProteomeXchange with the identifier PXD027640.
Collapse
|
7
|
Bhardwaj R, Thakur JK, Kumar S. MedProDB: A database of Mediator proteins. Comput Struct Biotechnol J 2021; 19:4165-4176. [PMID: 34527190 PMCID: PMC8342855 DOI: 10.1016/j.csbj.2021.07.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 07/08/2021] [Accepted: 07/24/2021] [Indexed: 12/03/2022] Open
Abstract
Mediator complex is a key component of transcriptional regulation in eukaryotes. Identification of Mediator subunits was done by using computational approaches. Different physicochemical properties, and functions of Mediators were discussed. We have developed first database of Mediator proteins e.g. MedProDB. MedProDB contains different types of search and browse options, and various tools.
In the last three decades, the multi-subunit Mediator complex has emerged as the key component of transcriptional regulation of eukaryotic gene expression. Although there were initial hiccups, recent advancements in bioinformatics tools contributed significantly to in-silico prediction and characterization of Mediator subunits from several organisms belonging to different eukaryotic kingdoms. In this study, we have developed the first database of Mediator proteins named MedProDB with 33,971 Mediator protein entries. Out of those, 12531, 11545, and 9895 sequences belong to metazoans, plants, and fungi, respectively. Apart from the core information consisting of sequence, length, position, organism, molecular weight, and taxonomic lineage, additional information of each Mediator sequence like aromaticity, hydropathy, instability index, isoelectric point, functions, interactions, repeat regions, diseases, sequence alignment to Mediator subunit family, Intrinsically Disordered Regions (IDRs), Post-translation modifications (PTMs), and Molecular Recognition Features (MoRFs) may be of high utility to the users. Furthermore, different types of search and browse options with four different tools namely BLAST, Smith-Waterman Align, IUPred, and MoRF-Chibi_Light are provided at MedProDB to perform different types of analysis. Being a critical component of the transcriptional machinery and regulating almost all the aspects of transcription, it generated lots of interest in structural and functional studies of Mediator functioning. So, we think that the MedProDB database will be very useful for researchers studying the process of transcription. This database is freely available at www.nipgr.ac.in/MedProDB.
Collapse
Affiliation(s)
- Rohan Bhardwaj
- Bioinformatics Lab, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India.,Plant Mediator Lab, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Jitendra Kumar Thakur
- Plant Mediator Lab, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India.,Plant Transcription Regulation, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Shailesh Kumar
- Bioinformatics Lab, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| |
Collapse
|
8
|
Terabayashi T, Hashimoto S. Increased unfolded protein responses caused by MED17 mutations. Neurogenetics 2021; 22:353-357. [PMID: 34392449 DOI: 10.1007/s10048-021-00661-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 07/20/2021] [Indexed: 11/26/2022]
Abstract
Mediator (MED) is a key regulator of protein-coding gene expression, and mutations in MED subunits are associated with a broad spectrum of diseases. Because mutations in MED17 result in autosomal recessive disorders, including microcephaly, intellectual disability, epilepsy, and ataxia, which are barely reported, with only three case reports to date, genotype-phenotype association should be elucidated. Here, we investigated the impact of MED17 mutations on cellular responses and found increased unfolded protein responses (UPRs) in fibroblasts derived from Japanese patients with MED17 mutations. The expression of the UPR genes CHOP and ATF4 was upregulated, and the phosphorylation of eIF2a was basally increased in patients' cells. Based on our findings, we propose that increased UPRs caused by MED17 mutations might contribute to the clinical phenotype.
Collapse
Affiliation(s)
- Takeshi Terabayashi
- Department of Pharmacology, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama, Yufu, Oita, 879-5593, Japan
| | - Satoru Hashimoto
- Faculty of Science and Technology, Oita University, 700 Dannoharu, Oita, 870-1192, Japan.
- Clinical Research Center for Diabetes, Tokushima University Hospital, Tokushima, 770-8503, Japan.
| |
Collapse
|
9
|
Al-Husini N, Medler S, Ansari A. Crosstalk of promoter and terminator during RNA polymerase II transcription cycle. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1863:194657. [PMID: 33246184 DOI: 10.1016/j.bbagrm.2020.194657] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 12/16/2022]
Abstract
The transcription cycle of RNAPII is comprised of three consecutive steps; initiation, elongation and termination. It has been assumed that the initiation and termination steps occur in spatial isolation, essentially as independent events. A growing body of evidence, however, has challenged this dogma. First, factors involved in initiation and termination exhibit both a genetic and a physical interaction during transcription. Second, the initiation and termination factors have been found to occupy both ends of a transcribing gene. Third, physical interaction of initiation and termination factors occupying distal ends of a gene sometime results in the entire terminator region of a genes looping back and contact its cognate promoter, thereby forming a looped gene architecture during transcription. A logical interpretation of these findings is that the initiation and termination steps of transcription do not occur in isolation. There is extensive communication of factors occupying promoter and terminator ends of a gene during transcription cycle. This review entails a discussion of the promoter-terminator crosstalk and its implication in the context of transcription.
Collapse
Affiliation(s)
- Nadra Al-Husini
- Department of Biological Science, Wayne State University, Detroit, MI, United States of America
| | - Scott Medler
- Department of Biological Science, Wayne State University, Detroit, MI, United States of America
| | - Athar Ansari
- Department of Biological Science, Wayne State University, Detroit, MI, United States of America.
| |
Collapse
|
10
|
Mao X, Weake VM, Chapple C. Mediator function in plant metabolism revealed by large-scale biology. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:5995-6003. [PMID: 31504746 DOI: 10.1093/jxb/erz372] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 08/07/2019] [Indexed: 05/16/2023]
Abstract
Mediator is a multisubunit transcriptional co-regulator that is involved in the regulation of an array of processes including plant metabolism. The pathways regulated by Mediator-dependent processes include those for the synthesis of phenylpropanoids (MED5), cellulose (MED16), lipids (MED15 and CDK8), and the regulation of iron homeostasis (MED16 and MED25). Traditional genetic and biochemical approaches laid the foundation for our understanding of Mediator function, but recent transcriptomic and metabolomic studies have provided deeper insights into how specific subunits cooperate in the regulation of plant metabolism. In this review, we highlight recent developments in the investigation of Mediator and plant metabolism, with particular emphasis on the large-scale biology studies of med mutants.
Collapse
Affiliation(s)
- Xiangying Mao
- Department of Biochemistry, Purdue University, West Lafayette, IN, USA
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN, USA
| | - Vikki M Weake
- Department of Biochemistry, Purdue University, West Lafayette, IN, USA
- Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN, USA
| | - Clint Chapple
- Department of Biochemistry, Purdue University, West Lafayette, IN, USA
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
11
|
Fang T, Yan H, Li G, Chen W, Liu J, Jiang L. Chromatin remodeling complexes are involvesd in the regulation of ethanol production during static fermentation in budding yeast. Genomics 2019; 112:1674-1679. [PMID: 31618673 DOI: 10.1016/j.ygeno.2019.10.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 10/02/2019] [Accepted: 10/07/2019] [Indexed: 12/17/2022]
Abstract
The budding yeast Saccharomyces cerevisiae remains a central position among biofuel-producing organisms. However, the gene expression regulatory networks behind the ethanol fermentation is still not fully understood. Using a static fermentation model, we have examined the ethanol yields on biomass of deletion mutants for all yeast nonessential genes encoding transcription factors and their related proteins in the yeast genome. A total of 20 (about 10%) transcription factors are identified to be regulators of ethanol production during fermentation. These transcription factors are mainly involved in cell cycling, chromatin remodeling, transcription, stress response, protein synthesis and lipid synthesis. Our data provides a basis for further understanding mechanisms regulating ethanol production in budding yeast.
Collapse
Affiliation(s)
- Tianshu Fang
- Laboratory for Yeast Molecular and Cell Biology, the Research Center of Fermentation Technology, Department of Food Science, School of Agricultural Engineering and Food Sciences, Shandong University of Technology, Zibo 255000, Shandong Province, China
| | - Hongbo Yan
- Laboratory for Yeast Molecular and Cell Biology, the Research Center of Fermentation Technology, Department of Food Science, School of Agricultural Engineering and Food Sciences, Shandong University of Technology, Zibo 255000, Shandong Province, China
| | - Gaozhen Li
- Laboratory for Yeast Molecular and Cell Biology, the Research Center of Fermentation Technology, Department of Food Science, School of Agricultural Engineering and Food Sciences, Shandong University of Technology, Zibo 255000, Shandong Province, China
| | - Weipeng Chen
- Laboratory for Yeast Molecular and Cell Biology, the Research Center of Fermentation Technology, Department of Food Science, School of Agricultural Engineering and Food Sciences, Shandong University of Technology, Zibo 255000, Shandong Province, China
| | - Jian Liu
- Laboratory for Yeast Molecular and Cell Biology, the Research Center of Fermentation Technology, Department of Food Science, School of Agricultural Engineering and Food Sciences, Shandong University of Technology, Zibo 255000, Shandong Province, China
| | - Linghuo Jiang
- Laboratory for Yeast Molecular and Cell Biology, the Research Center of Fermentation Technology, Department of Food Science, School of Agricultural Engineering and Food Sciences, Shandong University of Technology, Zibo 255000, Shandong Province, China.
| |
Collapse
|
12
|
Shah N, Maqbool MA, Yahia Y, El Aabidine AZ, Esnault C, Forné I, Decker TM, Martin D, Schüller R, Krebs S, Blum H, Imhof A, Eick D, Andrau JC. Tyrosine-1 of RNA Polymerase II CTD Controls Global Termination of Gene Transcription in Mammals. Mol Cell 2018; 69:48-61.e6. [PMID: 29304333 DOI: 10.1016/j.molcel.2017.12.009] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 10/30/2017] [Accepted: 12/11/2017] [Indexed: 12/20/2022]
Abstract
The carboxy-terminal domain (CTD) of RNA polymerase (Pol) II is composed of a repetition of YSPTSPS heptads and functions as a loading platform for protein complexes that regulate transcription, splicing, and maturation of RNAs. Here, we studied mammalian CTD mutants to analyze the function of tyrosine1 residues in the transcription cycle. Mutation of 3/4 of the tyrosine residues (YFFF mutant) resulted in a massive read-through transcription phenotype in the antisense direction of promoters as well as in the 3' direction several hundred kilobases downstream of genes. The YFFF mutant shows reduced Pol II at promoter-proximal pause sites, a loss of interaction with the Mediator and Integrator complexes, and impaired recruitment of these complexes to chromatin. Consistent with these observations, Pol II loading at enhancers and maturation of snRNAs are altered in the YFFF context genome-wide. We conclude that tyrosine1 residues of the CTD control termination of transcription by Pol II.
Collapse
Affiliation(s)
- Nilay Shah
- Department of Molecular Epigenetics, Helmholtz Center Munich and Center for Integrated Protein Science Munich (CIPSM), Marchioninistrasse 25, 81377 Munich, Germany
| | - Muhammad Ahmad Maqbool
- Institut de Génétique Moléculaire de Montpellier (IGMM), Univ Montpellier, CNRS, Montpellier, France
| | - Yousra Yahia
- Institut de Génétique Moléculaire de Montpellier (IGMM), Univ Montpellier, CNRS, Montpellier, France
| | - Amal Zine El Aabidine
- Institut de Génétique Moléculaire de Montpellier (IGMM), Univ Montpellier, CNRS, Montpellier, France
| | - Cyril Esnault
- Institut de Génétique Moléculaire de Montpellier (IGMM), Univ Montpellier, CNRS, Montpellier, France
| | - Ignasi Forné
- Biomedical Center Munich, ZFP, Großhaderner Strasse 9, 82152 Planegg-Martinsried, Germany
| | - Tim-Michael Decker
- Department of Molecular Epigenetics, Helmholtz Center Munich and Center for Integrated Protein Science Munich (CIPSM), Marchioninistrasse 25, 81377 Munich, Germany
| | - David Martin
- Institut de Génétique Moléculaire de Montpellier (IGMM), Univ Montpellier, CNRS, Montpellier, France
| | - Roland Schüller
- Department of Molecular Epigenetics, Helmholtz Center Munich and Center for Integrated Protein Science Munich (CIPSM), Marchioninistrasse 25, 81377 Munich, Germany
| | - Stefan Krebs
- Laboratory for Functional Genome Analysis, Gene Center, Ludwig-Maximilians-Universität, Munich, Germany
| | - Helmut Blum
- Laboratory for Functional Genome Analysis, Gene Center, Ludwig-Maximilians-Universität, Munich, Germany
| | - Axel Imhof
- Biomedical Center Munich, ZFP, Großhaderner Strasse 9, 82152 Planegg-Martinsried, Germany
| | - Dirk Eick
- Department of Molecular Epigenetics, Helmholtz Center Munich and Center for Integrated Protein Science Munich (CIPSM), Marchioninistrasse 25, 81377 Munich, Germany.
| | - Jean-Christophe Andrau
- Institut de Génétique Moléculaire de Montpellier (IGMM), Univ Montpellier, CNRS, Montpellier, France.
| |
Collapse
|
13
|
Pérez-Martín F, Yuste-Lisbona FJ, Pineda B, García-Sogo B, Olmo ID, de Dios Alché J, Egea I, Flores FB, Piñeiro M, Jarillo JA, Angosto T, Capel J, Moreno V, Lozano R. Developmental role of the tomato Mediator complex subunit MED18 in pollen ontogeny. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 96:300-315. [PMID: 30003619 DOI: 10.1111/tpj.14031] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 06/17/2018] [Accepted: 06/26/2018] [Indexed: 05/06/2023]
Abstract
Pollen development is a crucial step in higher plants, which not only makes possible plant fertilization and seed formation, but also determines fruit quality and yield in crop species. Here, we reported a tomato T-DNA mutant, pollen deficient1 (pod1), characterized by an abnormal anther development and the lack of viable pollen formation, which led to the production of parthenocarpic fruits. Genomic analyses and the characterization of silencing lines proved that pod1 mutant phenotype relies on the tomato SlMED18 gene encoding the subunit 18 of Mediator multi-protein complex involved in RNA polymerase II transcription machinery. The loss of SlMED18 function delayed tapetum degeneration, which resulted in deficient microspore development and scarce production of viable pollen. A detailed histological characterization of anther development proved that changes during microgametogenesis and a significant delay in tapetum degeneration are associated with a high proportion of degenerated cells and, hence, should be responsible for the low production of functional pollen grains. Expression of pollen marker genes indicated that SlMED18 is essential for the proper transcription of a subset of genes specifically required to pollen formation and fruit development, revealing a key role of SlMED18 in male gametogenesis of tomato. Additionally, SlMED18 is able to rescue developmental abnormalities of the Arabidopsis med18 mutant, indicating that most biological functions have been conserved in both species.
Collapse
Affiliation(s)
- Fernando Pérez-Martín
- Centro de Investigación en Biotecnología Agroalimentaria (BITAL), Universidad de Almería, 04120, Almería, Spain
| | - Fernando J Yuste-Lisbona
- Centro de Investigación en Biotecnología Agroalimentaria (BITAL), Universidad de Almería, 04120, Almería, Spain
| | - Benito Pineda
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-CSIC, 46022, Valencia, Spain
| | - Begoña García-Sogo
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-CSIC, 46022, Valencia, Spain
| | - Iván Del Olmo
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo UPM, 28223, Pozuelo de Alarcón (Madrid), Spain
| | - Juan de Dios Alché
- Departamento de Bioquímica, Biología Celular y Molecular de Plantas, EEZ-CSIC, 18008, Granada, Spain
| | - Isabel Egea
- Departamento de Biología del Estrés y Patología Vegetal, CEBAS-CSIC, 30100, Espinardo-Murcia, Spain
| | - Francisco B Flores
- Departamento de Biología del Estrés y Patología Vegetal, CEBAS-CSIC, 30100, Espinardo-Murcia, Spain
| | - Manuel Piñeiro
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo UPM, 28223, Pozuelo de Alarcón (Madrid), Spain
| | - José A Jarillo
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo UPM, 28223, Pozuelo de Alarcón (Madrid), Spain
| | - Trinidad Angosto
- Centro de Investigación en Biotecnología Agroalimentaria (BITAL), Universidad de Almería, 04120, Almería, Spain
| | - Juan Capel
- Centro de Investigación en Biotecnología Agroalimentaria (BITAL), Universidad de Almería, 04120, Almería, Spain
| | - Vicente Moreno
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-CSIC, 46022, Valencia, Spain
| | - Rafael Lozano
- Centro de Investigación en Biotecnología Agroalimentaria (BITAL), Universidad de Almería, 04120, Almería, Spain
| |
Collapse
|
14
|
Candida glabrata Med3 Plays a Role in Altering Cell Size and Budding Index To Coordinate Cell Growth. Appl Environ Microbiol 2018; 84:AEM.00781-18. [PMID: 29776932 DOI: 10.1128/aem.00781-18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 05/14/2018] [Indexed: 12/11/2022] Open
Abstract
Candida glabrata is a promising microorganism for the production of organic acids. Here, we report deletion and quantitative-expression approaches to elucidate the role of C. glabrata Med3AB (CgMed3AB), a subunit of the mediator transcriptional coactivator, in regulating cell growth. Deletion of CgMed3AB caused an 8.6% decrease in final biomass based on growth curve plots and 10.5% lower cell viability. Based on transcriptomics data, the reason for this growth defect was attributable to changes in expression of genes involved in pyruvate and acetyl-coenzyme A (CoA)-related metabolism in a Cgmed3abΔ strain. Furthermore, the mRNA level of acetyl-CoA synthetase was downregulated after deleting Cgmed3ab, resulting in 22.8% and 21% lower activity of acetyl-CoA synthetase and cellular acetyl-CoA, respectively. Additionally, the mRNA level of CgCln3, whose expression depends on acetyl-CoA, was 34% lower in this strain. As a consequence, the cell size and budding index in the Cgmed3abΔ strain were both reduced. Conversely, overexpression of Cgmed3ab led to 16.8% more acetyl-CoA and 120% higher CgCln3 mRNA levels, as well as 19.1% larger cell size and a 13.3% higher budding index than in wild-type cells. Taken together, these results suggest that CgMed3AB regulates cell growth in C. glabrata by coordinating homeostasis between cellular acetyl-CoA and CgCln3.IMPORTANCE This study demonstrates that CgMed3AB can regulate cell growth in C. glabrata by coordinating the homeostasis of cellular acetyl-CoA metabolism and the cell cycle cyclin CgCln3. Specifically, we report that CgMed3AB regulates the cellular acetyl-CoA level, which induces the transcription of Cgcln3, finally resulting in alterations to the cell size and budding index. In conclusion, we report that CgMed3AB functions as a wheel responsible for driving cellular acetyl-CoA metabolism, indirectly inducing the transcription of Cgcln3 and coordinating cell growth. We propose that Mediator subunits may represent a vital regulatory target modulating cell growth in C. glabrata.
Collapse
|
15
|
Malik N, Agarwal P, Tyagi A. Emerging functions of multi-protein complex Mediator with special emphasis on plants. Crit Rev Biochem Mol Biol 2017; 52:475-502. [DOI: 10.1080/10409238.2017.1325830] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Naveen Malik
- National Institute of Plant Genome Research (NIPGR), New Delhi, India
| | - Pinky Agarwal
- National Institute of Plant Genome Research (NIPGR), New Delhi, India
| | - Akhilesh Tyagi
- National Institute of Plant Genome Research (NIPGR), New Delhi, India
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| |
Collapse
|
16
|
Uthe H, Vanselow JT, Schlosser A. Proteomic Analysis of the Mediator Complex Interactome in Saccharomyces cerevisiae. Sci Rep 2017; 7:43584. [PMID: 28240253 PMCID: PMC5327418 DOI: 10.1038/srep43584] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 01/25/2017] [Indexed: 12/02/2022] Open
Abstract
Here we present the most comprehensive analysis of the yeast Mediator complex interactome to date. Particularly gentle cell lysis and co-immunopurification conditions allowed us to preserve even transient protein-protein interactions and to comprehensively probe the molecular environment of the Mediator complex in the cell. Metabolic 15N-labeling thereby enabled stringent discrimination between bona fide interaction partners and nonspecifically captured proteins. Our data indicates a functional role for Mediator beyond transcription initiation. We identified a large number of Mediator-interacting proteins and protein complexes, such as RNA polymerase II, general transcription factors, a large number of transcriptional activators, the SAGA complex, chromatin remodeling complexes, histone chaperones, highly acetylated histones, as well as proteins playing a role in co-transcriptional processes, such as splicing, mRNA decapping and mRNA decay. Moreover, our data provides clear evidence, that the Mediator complex interacts not only with RNA polymerase II, but also with RNA polymerases I and III, and indicates a functional role of the Mediator complex in rRNA processing and ribosome biogenesis.
Collapse
Affiliation(s)
- Henriette Uthe
- Rudolf Virchow Center for Experimental Biomedicine, University of Wuerzburg, Josef-Schneider-Str. 2, 97080, Wuerzburg, Germany
| | - Jens T Vanselow
- Rudolf Virchow Center for Experimental Biomedicine, University of Wuerzburg, Josef-Schneider-Str. 2, 97080, Wuerzburg, Germany
| | - Andreas Schlosser
- Rudolf Virchow Center for Experimental Biomedicine, University of Wuerzburg, Josef-Schneider-Str. 2, 97080, Wuerzburg, Germany
| |
Collapse
|
17
|
Shaikhali J, Wingsle G. Redox-regulated transcription in plants: Emerging concepts. AIMS MOLECULAR SCIENCE 2017. [DOI: 10.3934/molsci.2017.3.301] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
18
|
Regulation of metabolism by the Mediator complex. BIOPHYSICS REPORTS 2016; 2:69-77. [PMID: 28018965 PMCID: PMC5138257 DOI: 10.1007/s41048-016-0031-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 02/15/2016] [Indexed: 01/11/2023] Open
Abstract
The Mediator complex was originally discovered in yeast, but it is conserved in all eukaryotes. Its best-known function is to regulate RNA polymerase II-dependent gene transcription. Although the mechanisms by which the Mediator complex regulates transcription are often complicated by the context-dependent regulation, this transcription cofactor complex plays a pivotal role in numerous biological pathways. Biochemical, molecular, and physiological studies using cancer cell lines or model organisms have established the current paradigm of the Mediator functions. However, the physiological roles of the mammalian Mediator complex remain poorly defined, but have attracted a great interest in recent years. In this short review, we will summarize some of the reported functions of selective Mediator subunits in the regulation of metabolism. These intriguing findings suggest that the Mediator complex may be an important player in nutrient sensing and energy balance in mammals.
Collapse
|
19
|
MED18 interaction with distinct transcription factors regulates multiple plant functions. Nat Commun 2015; 5:3064. [PMID: 24451981 DOI: 10.1038/ncomms4064] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 12/04/2013] [Indexed: 12/25/2022] Open
Abstract
Mediator is an evolutionarily conserved transcriptional regulatory complex. Mechanisms of Mediator function are poorly understood. Here we show that Arabidopsis MED18 is a multifunctional protein regulating plant immunity, flowering time and responses to hormones through interactions with distinct transcription factors. MED18 interacts with YIN YANG1 to suppress disease susceptibility genes glutaredoxins GRX480, GRXS13 and thioredoxin TRX-h5. Consequently, yy1 and med18 mutants exhibit deregulated expression of these genes and enhanced susceptibility to fungal infection. In addition, MED18 interacts with ABA INSENSITIVE 4 and SUPPRESSOR OF FRIGIDA4 to regulate abscisic acid responses and flowering time, respectively. MED18 associates with the promoter, coding and terminator regions of target genes suggesting its function in transcription initiation, elongation and termination. Notably, RNA polymerase II occupancy and histone H3 lysine tri-methylation of target genes are affected in the med18 mutant, reinforcing MED18 function in different mechanisms of transcriptional control. Overall, MED18 conveys distinct cues to engender transcription underpinning plant responses.
Collapse
|
20
|
Yao X, Tang Z, Fu X, Yin J, Liang Y, Li C, Li H, Tian Q, Roeder RG, Wang G. The Mediator subunit MED23 couples H2B mono-ubiquitination to transcriptional control and cell fate determination. EMBO J 2015; 34:2885-902. [PMID: 26330467 DOI: 10.15252/embj.201591279] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 08/10/2015] [Indexed: 01/18/2023] Open
Abstract
The Mediator complex orchestrates multiple transcription factors with the Pol II apparatus for precise transcriptional control. However, its interplay with the surrounding chromatin remains poorly understood. Here, we analyze differential histone modifications between WT and MED23(-/-) (KO) cells and identify H2B mono-ubiquitination at lysine 120 (H2Bub) as a MED23-dependent histone modification. Using tandem affinity purification and mass spectrometry, we find that MED23 associates with the RNF20/40 complex, the enzyme for H2Bub, and show that this association is critical for the recruitment of RNF20/40 to chromatin. In a cell-free system, Mediator directly and substantially increases H2Bub on recombinant chromatin through its cooperation with RNF20/40 and the PAF complex. Integrative genome-wide analyses show that MED23 depletion specifically reduces H2Bub on a subset of MED23-controlled genes. Importantly, MED23-coupled H2Bub levels are oppositely regulated during myogenesis and lung carcinogenesis. In sum, these results establish a mechanistic link between the Mediator complex and a critical chromatin modification in coordinating transcription with cell growth and differentiation.
Collapse
Affiliation(s)
- Xiao Yao
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology Shanghai Institutes for Biological Sciences Chinese Academy of Sciences, Shanghai, China
| | - Zhanyun Tang
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, NY, USA
| | - Xing Fu
- Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences Chinese Academy of Sciences, Shanghai, China
| | - Jingwen Yin
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology Shanghai Institutes for Biological Sciences Chinese Academy of Sciences, Shanghai, China
| | - Yan Liang
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology Shanghai Institutes for Biological Sciences Chinese Academy of Sciences, Shanghai, China
| | - Chonghui Li
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology Shanghai Institutes for Biological Sciences Chinese Academy of Sciences, Shanghai, China
| | - Huayun Li
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology Shanghai Institutes for Biological Sciences Chinese Academy of Sciences, Shanghai, China
| | - Qing Tian
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology Shanghai Institutes for Biological Sciences Chinese Academy of Sciences, Shanghai, China
| | - Robert G Roeder
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, NY, USA
| | - Gang Wang
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology Shanghai Institutes for Biological Sciences Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
21
|
Medler S, Ansari A. Gene looping facilitates TFIIH kinase-mediated termination of transcription. Sci Rep 2015; 5:12586. [PMID: 26286112 PMCID: PMC4541409 DOI: 10.1038/srep12586] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 06/08/2015] [Indexed: 12/14/2022] Open
Abstract
TFIIH is a general transcription factor with kinase and helicase activities. The kinase activity resides in the Kin28 subunit of TFIIH. The role of Kin28 kinase in the early steps of transcription is well established. Here we report a novel role of Kin28 in the termination of transcription. We show that RNAPII reads through a termination signal upon kinase inhibition. Furthermore, the recruitment of termination factors towards the 3′ end of a gene was compromised in the kinase mutant, thus confirming the termination defect. A concomitant decrease in crosslinking of termination factors near the 5′ end of genes was also observed in the kinase-defective mutant. Simultaneous presence of termination factors towards both the ends of a gene is indicative of gene looping; while the loss of termination factor occupancy from the distal ends suggest the abolition of a looped gene conformation. Accordingly, CCC analysis revealed that the looped architecture of genes was severely compromised in the Kin28 kinase mutant. In a looping defective sua7-1 mutant, even the enzymatically active Kin28 kinase could not rescue the termination defect. These results strongly suggest a crucial role of Kin28 kinase-dependent gene looping in the termination of transcription in budding yeast.
Collapse
Affiliation(s)
- Scott Medler
- Department of Biological Sciences, Wayne State University, 5047 Gullen Mall Detroit, MI 48202
| | - Athar Ansari
- Department of Biological Sciences, Wayne State University, 5047 Gullen Mall Detroit, MI 48202
| |
Collapse
|
22
|
Suk H, Knipe DM. Proteomic analysis of the herpes simplex virus 1 virion protein 16 transactivator protein in infected cells. Proteomics 2015; 15:1957-67. [PMID: 25809282 DOI: 10.1002/pmic.201500020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 02/13/2015] [Accepted: 03/18/2015] [Indexed: 01/06/2023]
Abstract
The herpes simplex virus 1 virion protein 16 (VP16) tegument protein forms a transactivation complex with the cellular proteins host cell factor 1 (HCF-1) and octamer-binding transcription factor 1 (Oct-1) upon entry into the host cell. VP16 has also been shown to interact with a number of virion tegument proteins and viral glycoprotein H to promote viral assembly, but no comprehensive study of the VP16 proteome has been performed at early times postinfection. We therefore performed a proteomic analysis of VP16-interacting proteins at 3 h postinfection. We confirmed the interaction of VP16 with HCF-1 and a large number of cellular Mediator complex proteins, but most surprisingly, we found that the major viral protein associating with VP16 is the infected cell protein 4 (ICP4) immediate-early (IE) transactivator protein. These results raise the potential for a new function for VP16 in associating with the IE ICP4 and playing a role in transactivation of early and late gene expression, in addition to its well-documented function in transactivation of IE gene expression.
Collapse
Affiliation(s)
- Hyung Suk
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA
| | - David M Knipe
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
23
|
Samanta S, Thakur JK. Importance of Mediator complex in the regulation and integration of diverse signaling pathways in plants. FRONTIERS IN PLANT SCIENCE 2015; 6:757. [PMID: 26442070 PMCID: PMC4584954 DOI: 10.3389/fpls.2015.00757] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 09/04/2015] [Indexed: 05/19/2023]
Abstract
Basic transcriptional machinery in eukaryotes is assisted by a number of cofactors, which either increase or decrease the rate of transcription. Mediator complex is one such cofactor, and recently has drawn a lot of interest because of its integrative power to converge different signaling pathways before channeling the transcription instructions to the RNA polymerase II machinery. Like yeast and metazoans, plants do possess the Mediator complex across the kingdom, and its isolation and subunit analyses have been reported from the model plant, Arabidopsis. Genetic, and molecular analyses have unraveled important regulatory roles of Mediator subunits at every stage of plant life cycle starting from flowering to embryo and organ development, to even size determination. It also contributes immensely to the survival of plants against different environmental vagaries by the timely activation of its resistance mechanisms. Here, we have provided an overview of plant Mediator complex starting from its discovery to regulation of stoichiometry of its subunits. We have also reviewed involvement of different Mediator subunits in different processes and pathways including defense response pathways evoked by diverse biotic cues. Wherever possible, attempts have been made to provide mechanistic insight of Mediator's involvement in these processes.
Collapse
Affiliation(s)
| | - Jitendra K. Thakur
- *Correspondence: Jitendra K. Thakur, Plant Mediator Lab, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi-110067, India
| |
Collapse
|
24
|
Huang Y, Yao X, Wang G. 'Mediator-ing' messenger RNA processing. WILEY INTERDISCIPLINARY REVIEWS-RNA 2014; 6:257-69. [PMID: 25515410 DOI: 10.1002/wrna.1273] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 09/29/2014] [Accepted: 10/17/2014] [Indexed: 12/27/2022]
Abstract
Pre-messenger RNA (mRNA) processing, generally including capping, mRNA splicing, and cleavage-polyadenylation, is physically and functionally associated with transcription. The reciprocal coupling between transcription and mRNA processing ensures the efficient and regulated gene expression and editing. Multiple transcription factors/cofactors and mRNA processing factors are involved in the coupling process. This review focuses on several classic examples and recent advances that enlarge our understanding of how the transcriptional factors or cofactors, especially the Mediator complex, contribute to the RNA Pol II elongation, mRNA splicing, and polyadenylation.
Collapse
Affiliation(s)
- Yan Huang
- Key Laboratory of Gene Engineering of the Ministry of Education and State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | | | | |
Collapse
|
25
|
A functional portrait of Med7 and the mediator complex in Candida albicans. PLoS Genet 2014; 10:e1004770. [PMID: 25375174 PMCID: PMC4222720 DOI: 10.1371/journal.pgen.1004770] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 09/22/2014] [Indexed: 11/19/2022] Open
Abstract
Mediator is a multi-subunit protein complex that regulates gene expression in eukaryotes by integrating physiological and developmental signals and transmitting them to the general RNA polymerase II machinery. We examined, in the fungal pathogen Candida albicans, a set of conditional alleles of genes encoding Mediator subunits of the head, middle, and tail modules that were found to be essential in the related ascomycete Saccharomyces cerevisiae. Intriguingly, while the Med4, 8, 10, 11, 14, 17, 21 and 22 subunits were essential in both fungi, the structurally highly conserved Med7 subunit was apparently non-essential in C. albicans. While loss of CaMed7 did not lead to loss of viability under normal growth conditions, it dramatically influenced the pathogen's ability to grow in different carbon sources, to form hyphae and biofilms, and to colonize the gastrointestinal tracts of mice. We used epitope tagging and location profiling of the Med7 subunit to examine the distribution of the DNA sites bound by Mediator during growth in either the yeast or the hyphal form, two distinct morphologies characterized by different transcription profiles. We observed a core set of 200 genes bound by Med7 under both conditions; this core set is expanded moderately during yeast growth, but is expanded considerably during hyphal growth, supporting the idea that Mediator binding correlates with changes in transcriptional activity and that this binding is condition specific. Med7 bound not only in the promoter regions of active genes but also within coding regions and at the 3′ ends of genes. By combining genome-wide location profiling, expression analyses and phenotyping, we have identified different Med7p-influenced regulons including genes related to glycolysis and the Filamentous Growth Regulator family. In the absence of Med7, the ribosomal regulon is de-repressed, suggesting Med7 is involved in central aspects of growth control. In this study, we have investigated Mediator function in the human fungal pathogen C. albicans. An initial screening of conditionally regulated Mediator subunits showed that the Med7 of C. albicans was not essential, in contrast to the situation noted for S. cerevisiae. While loss of CaMed7 did not lead to loss of viability under normal growth conditions, it dramatically influenced the pathogen's ability to grow in different carbon sources, to form hyphae and biofilms, and to colonize the gastrointestinal tracts of mice. We used location profiling to determine Mediator binding under yeast and hyphal morphologies characterized by different transcription profiles. We observed a core set of specific and common genes bound by Med7 under both conditions; this specific core set is expanded considerably during hyphal growth, supporting the idea that Mediator binding correlates with changes in transcriptional activity and that this binding is condition specific. Med7 bound not only in the promoter regions of active genes but also of inactive genes and within coding regions and at the 3′ ends of genes. By combining genome-wide location profiling, expression analyses and phenotyping, we have identified different Med7 regulons including genes related to glycolysis and the Filamentous Growth Regulator family.
Collapse
|
26
|
Shi J, Liu H, Yao F, Zhong C, Zhao H. Upregulation of mediator MED23 in non-small-cell lung cancer promotes the growth, migration, and metastasis of cancer cells. Tumour Biol 2014; 35:12005-13. [DOI: 10.1007/s13277-014-2499-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Accepted: 08/13/2014] [Indexed: 10/24/2022] Open
|
27
|
Liver Med23 ablation improves glucose and lipid metabolism through modulating FOXO1 activity. Cell Res 2014; 24:1250-65. [PMID: 25223702 PMCID: PMC4185346 DOI: 10.1038/cr.2014.120] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 07/03/2014] [Accepted: 07/27/2014] [Indexed: 12/23/2022] Open
Abstract
Mediator complex is a molecular hub integrating signaling, transcription factors, and RNA polymerase II (RNAPII) machinery. Mediator MED23 is involved in adipogenesis and smooth muscle cell differentiation, suggesting its role in energy homeostasis. Here, through the generation and analysis of a liver-specific Med23-knockout mouse, we found that liver Med23 deletion improved glucose and lipid metabolism, as well as insulin responsiveness, and prevented diet-induced obesity. Remarkably, acute hepatic Med23 knockdown in db/db mice significantly improved the lipid profile and glucose tolerance. Mechanistically, MED23 participates in gluconeogenesis and cholesterol synthesis through modulating the transcriptional activity of FOXO1, a key metabolic transcription factor. Indeed, hepatic Med23 deletion impaired the Mediator and RNAPII recruitment and attenuated the expression of FOXO1 target genes. Moreover, this functional interaction between FOXO1 and MED23 is evolutionarily conserved, as the in vivo activities of dFOXO in larval fat body and in adult wing can be partially blocked by Med23 knockdown in Drosophila. Collectively, our data revealed Mediator MED23 as a novel regulator for energy homeostasis, suggesting potential therapeutic strategies against metabolic diseases.
Collapse
|
28
|
Yin JW, Wang G. The Mediator complex: a master coordinator of transcription and cell lineage development. Development 2014; 141:977-87. [PMID: 24550107 DOI: 10.1242/dev.098392] [Citation(s) in RCA: 146] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Mediator is a multiprotein complex that is required for gene transcription by RNA polymerase II. Multiple subunits of the complex show specificity in relaying information from signals and transcription factors to the RNA polymerase II machinery, thus enabling control of the expression of specific genes. Recent studies have also provided novel mechanistic insights into the roles of Mediator in epigenetic regulation, transcriptional elongation, termination, mRNA processing, noncoding RNA activation and super enhancer formation. Based on these specific roles in gene regulation, Mediator has emerged as a master coordinator of development and cell lineage determination. Here, we describe the most recent advances in understanding the mechanisms of Mediator function, with an emphasis on its role during development and disease.
Collapse
Affiliation(s)
- Jing-wen Yin
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | | |
Collapse
|
29
|
Schiano C, Casamassimi A, Vietri MT, Rienzo M, Napoli C. The roles of mediator complex in cardiovascular diseases. BIOCHIMICA ET BIOPHYSICA ACTA 2014; 1839:444-51. [PMID: 24751643 DOI: 10.1016/j.bbagrm.2014.04.012] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 03/19/2014] [Accepted: 04/11/2014] [Indexed: 02/08/2023]
Abstract
Despite recent treatment advances, an increase in cardiovascular diseases (CVD) mortality is expected for the next years. Mediator (MED) complex plays key roles in eukaryotic gene transcription. Currently, while numerous studies have correlated MED alterations with several diseases, like cancer or neurological disorders, fewer studies have investigated MED role in CVD initiation and progression. The first finding of MED involvement in these pathologies was the correlation of missense mutations in MED13L gene with transposition of the great arteries. Nowadays, also MED13 and MED15 have been associated with human congenital heart diseases and others could be added, like MED12 that is involved in early mouse development and heart formation. Interestingly, a missense mutation in MED30 gene causes a progressive cardiomyopathy in homozygous mice suggesting a potential role for this subunit also in human CVDs. Moreover, several subunits like MED1, MED13, MED14, MED15, MED23, MED25 and CDK8 exert important roles in glucose and lipid metabolism. Although these evidences derive from in vitro and animal model studies, they indicate that their deregulation may have a significant role in human CVD-related metabolic disorders. Finally, alternative transcripts of MED12, MED19 and MED30 are differently expressed in circulating endothelial progenitor cells thus suggesting they can play a role in the field of regenerative medicine. Overall, further functional studies exploring MED role in human CVD are warranted. The results could allow identifying novel biomarkers to use in combination with imaging techniques for early diagnosis; otherwise, they could be useful to develop targets for novel therapeutic approaches.
Collapse
Affiliation(s)
- Concetta Schiano
- Institute of Diagnostic and Nuclear Development (SDN), IRCCS, Via E. Gianturco 113, 80143 Naples, Italy
| | - Amelia Casamassimi
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Via L. De Crecchio 7, 80138 Naples, Italy.
| | - Maria Teresa Vietri
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Via L. De Crecchio 7, 80138 Naples, Italy
| | - Monica Rienzo
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Via L. De Crecchio 7, 80138 Naples, Italy
| | - Claudio Napoli
- Institute of Diagnostic and Nuclear Development (SDN), IRCCS, Via E. Gianturco 113, 80143 Naples, Italy; Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Via L. De Crecchio 7, 80138 Naples, Italy; U.O.C. Immunohematology, Transfusion Medicine and Transplant Immunology [SIMT], Regional Reference Laboratory of Transplant Immunology [LIT], Azienda Universitaria Policlinico (AOU), 1st School of Medicine, Second University of Naples, Piazza Miraglia 2, 80138 Naples, Italy
| |
Collapse
|
30
|
Jeronimo C, Robert F. Kin28 regulates the transient association of Mediator with core promoters. Nat Struct Mol Biol 2014; 21:449-55. [PMID: 24704787 PMCID: PMC3997488 DOI: 10.1038/nsmb.2810] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 03/11/2014] [Indexed: 12/23/2022]
Abstract
Mediator is an essential, broadly used eukaryotic transcriptional coactivator. How and what Mediator communicates from activators to RNA polymerase II (RNAPII) remains an open question. Here we performed genome-wide location profiling of Saccharomyces cerevisiae Mediator subunits. Mediator is not found at core promoters but rather occupies the upstream activating sequence, upstream of the pre-initiation complex. In the absence of Kin28 (CDK7) kinase activity or in cells in which the RNAPII C-terminal domain is mutated to replace Ser5 with alanine, however, Mediator accumulates at core promoters together with RNAPII. We propose that Mediator is released quickly from promoters after phosphorylation of Ser5 by Kin28 (CDK7), which also allows for RNAPII to escape from the promoter.
Collapse
Affiliation(s)
- Célia Jeronimo
- Institut de recherches cliniques de Montréal, Montréal, Québec, Canada
| | - François Robert
- 1] Institut de recherches cliniques de Montréal, Montréal, Québec, Canada. [2] Département de Médecine, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
31
|
Abstract
The Mediator complex is a multi-subunit assembly that appears to be required for regulating expression of most RNA polymerase II (pol II) transcripts, which include protein-coding and most non-coding RNA genes. Mediator and pol II function within the pre-initiation complex (PIC), which consists of Mediator, pol II, TFIIA, TFIIB, TFIID, TFIIE, TFIIF and TFIIH and is approximately 4.0 MDa in size. Mediator serves as a central scaffold within the PIC and helps regulate pol II activity in ways that remain poorly understood. Mediator is also generally targeted by sequence-specific, DNA-binding transcription factors (TFs) that work to control gene expression programs in response to developmental or environmental cues. At a basic level, Mediator functions by relaying signals from TFs directly to the pol II enzyme, thereby facilitating TF-dependent regulation of gene expression. Thus, Mediator is essential for converting biological inputs (communicated by TFs) to physiological responses (via changes in gene expression). In this review, we summarize an expansive body of research on the Mediator complex, with an emphasis on yeast and mammalian complexes. We focus on the basics that underlie Mediator function, such as its structure and subunit composition, and describe its broad regulatory influence on gene expression, ranging from chromatin architecture to transcription initiation and elongation, to mRNA processing. We also describe factors that influence Mediator structure and activity, including TFs, non-coding RNAs and the CDK8 module.
Collapse
Affiliation(s)
- Zachary C Poss
- Department of Chemistry and Biochemistry, University of Colorado , Boulder, CO , USA
| | | | | |
Collapse
|
32
|
Carlsten JOP, Zhu X, Gustafsson CM. The multitalented Mediator complex. Trends Biochem Sci 2013; 38:531-7. [PMID: 24074826 DOI: 10.1016/j.tibs.2013.08.007] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 08/15/2013] [Accepted: 08/20/2013] [Indexed: 10/26/2022]
Abstract
The Mediator complex is needed for regulated transcription of RNA polymerase II (Pol II)-dependent genes. Initially, Mediator was only seen as a protein bridge that conveyed regulatory information from enhancers to the promoter. Later studies have added many other functions to the Mediator repertoire. Indeed, recent findings show that Mediator influences nearly all stages of transcription and coordinates these events with concomitant changes in chromatin organization. We review the multitude of activities associated with Mediator and discuss how this complex coordinates transcription with other cellular events. We also discuss the inherent difficulties associated with in vivo characterization of a coactivator complex that can indirectly affect diverse cellular processes via changes in gene transcription.
Collapse
Affiliation(s)
- Jonas O P Carlsten
- University of Gothenburg, Institute of Biomedicine, PO Box 440, 40530 Gothenburg, Sweden
| | | | | |
Collapse
|
33
|
Lee SK, Chen X, Huang L, Stargell LA. The head module of Mediator directs activation of preloaded RNAPII in vivo. Nucleic Acids Res 2013; 41:10124-34. [PMID: 24005039 PMCID: PMC3905900 DOI: 10.1093/nar/gkt796] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The successful synthesis of a transcript by RNA polymerase II (RNAPII) is a multistage process with distinct rate-limiting steps that can vary depending on the particular gene. A growing number of genes in a variety of organisms are regulated at steps after the recruitment of RNAPII. The best-characterized Saccharomyces cerevisiae gene regulated in this manner is CYC1. This gene has high occupancy of RNAPII under non-inducing conditions, defining it as a poised gene. Here, we find that subunits of the head module of Mediator, Med18 and Med20, and Med19 are required for activation of transcription at the CYC1 promoter in response to environmental cues. These subunits of Mediator are required at the preloaded promoter for normal levels of recruitment and activity of the general transcription factor TFIIH. Strikingly, these Mediator components are dispensable for activation by the same activator at a different gene, which lacks a preloaded polymerase in the promoter region. Based on these results and other studies, we speculate that Mediator plays an essential role in triggering an inactive polymerase at CYC1 into a productively elongating form.
Collapse
Affiliation(s)
- Sarah K Lee
- Department of Biochemistry and Molecular Biology, Colorado State University, CO 80523, USA
| | | | | | | |
Collapse
|
34
|
Al Husini N, Kudla P, Ansari A. A role for CF1A 3' end processing complex in promoter-associated transcription. PLoS Genet 2013; 9:e1003722. [PMID: 23966880 PMCID: PMC3744418 DOI: 10.1371/journal.pgen.1003722] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 06/30/2013] [Indexed: 11/18/2022] Open
Abstract
The Cleavage Factor 1A (CF1A) complex, which is required for the termination of transcription in budding yeast, occupies the 3' end of transcriptionally active genes. We recently demonstrated that CF1A subunits also crosslink to the 5' end of genes during transcription. The presence of CF1A complex at the promoter suggested its possible involvement in the initiation/reinitiation of transcription. To check this possibility, we performed transcription run-on assay, RNAP II-density ChIP and strand-specific RT-PCR analysis in a mutant of CF1A subunit Clp1. As expected, RNAP II read through the termination signal in the temperature-sensitive mutant of clp1 at elevated temperature. The transcription readthrough phenotype was accompanied by a decrease in the density of RNAP II in the vicinity of the promoter region. With the exception of TFIIB and TFIIF, the recruitment of the general transcription factors onto the promoter, however, remained unaffected in the clp1 mutant. These results suggest that the CF1A complex affects the recruitment of RNAP II onto the promoter for reinitiation of transcription. Simultaneously, an increase in synthesis of promoter-initiated divergent antisense transcript was observed in the clp1 mutant, thereby implicating CF1A complex in providing directionality to the promoter-bound polymerase. Chromosome Conformation Capture (3C) analysis revealed a physical interaction of the promoter and terminator regions of a gene in the presence of a functional CF1A complex. Gene looping was completely abolished in the clp1 mutant. On the basis of these results, we propose that the CF1A-dependent recruitment of RNAP II onto the promoter for reinitiation and the regulation of directionality of promoter-associated transcription are accomplished through gene looping.
Collapse
Affiliation(s)
- Nadra Al Husini
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, United States of America
| | - Paul Kudla
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, United States of America
| | - Athar Ansari
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, United States of America
- * E-mail:
| |
Collapse
|
35
|
Ansari SA, Morse RH. Mechanisms of Mediator complex action in transcriptional activation. Cell Mol Life Sci 2013; 70:2743-56. [PMID: 23361037 PMCID: PMC11113466 DOI: 10.1007/s00018-013-1265-9] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Revised: 01/07/2013] [Accepted: 01/09/2013] [Indexed: 12/14/2022]
Abstract
Mediator is a large multisubunit complex that plays a central role in the regulation of RNA Pol II transcribed genes. Conserved in overall structure and function among eukaryotes, Mediator comprises 25-30 protein subunits that reside in four distinct modules, termed head, middle, tail, and CDK8/kinase. Different subunits of Mediator contact other transcriptional regulators including activators, co-activators, general transcription factors, subunits of RNA Pol II, and specifically modified histones, leading to the regulated expression of target genes. This review is focused on the interactions of specific Mediator subunits with diverse transcription regulators and how those interactions contribute to Mediator function in transcriptional activation.
Collapse
Affiliation(s)
- Suraiya A. Ansari
- Laboratory of Molecular Genetics, Wadsworth Center, New York State Department of Health, Albany, NY 12201–0509 USA
| | - Randall H. Morse
- Laboratory of Molecular Genetics, Wadsworth Center, New York State Department of Health, Albany, NY 12201–0509 USA
- Department of Biomedical Science, University at Albany School of Public Health, Albany, NY USA
| |
Collapse
|
36
|
Pearson EL, Moore CL. Dismantling promoter-driven RNA polymerase II transcription complexes in vitro by the termination factor Rat1. J Biol Chem 2013; 288:19750-9. [PMID: 23689372 DOI: 10.1074/jbc.m112.434985] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Proper RNA polymerase II (Pol II) transcription termination is essential to generate stable transcripts, to prevent interference at downstream loci, and to recycle Pol II back to the promoter (1-3). As such, termination is an intricately controlled process that is tightly regulated by a variety of different cis- and trans-acting factors (4, 5). Although many eukaryotic termination factors have been identified to date, the details of the precise molecular mechanisms governing termination remain to be elucidated. We devised an in vitro transcription system to study specific Pol II termination. We show for the first time that the exonucleolytic Rat1·Rai1 complex can elicit the release of stalled Pol II in vitro and can do so in the absence of other factors. We also find that Rtt103, which interacts with the Pol II C-terminal domain (CTD) and with Rat1, can rescue termination activity of an exonucleolytically deficient Rat1 mutant. In light of our findings, we posit a model whereby functional nucleolytic activity is not the feature of Rat1 that ultimately promotes termination. Degradation of the nascent transcript allows Rat1 to pursue Pol II in a guided fashion and arrive at the site of RNA exit from Pol II. Upon this arrival, however, it is perhaps the specific and direct contact between Rat1 and Pol II that transmits the signal to terminate transcription.
Collapse
Affiliation(s)
- Erika L Pearson
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | |
Collapse
|
37
|
Mukundan B, Ansari A. Srb5/Med18-mediated termination of transcription is dependent on gene looping. J Biol Chem 2013; 288:11384-94. [PMID: 23476016 PMCID: PMC3630880 DOI: 10.1074/jbc.m112.446773] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 02/21/2013] [Indexed: 11/06/2022] Open
Abstract
We have earlier demonstrated the involvement of Mediator subunit Srb5/Med18 in the termination of transcription for a subset of genes in yeast. Srb5/Med18 could affect termination either indirectly by modulating CTD-Ser(2) phosphorylation near the 3' end of a gene or directly by physically interacting with the cleavage and polyadenylation factor or cleavage factor 1 (CF1) complex and facilitating their recruitment to the terminator region. Here, we show that the CTD-Ser(2) phosphorylation pattern on Srb5/Med18-dependent genes remains unchanged in the absence of Srb5 in cells. Coimmunoprecipitation analysis revealed the physical interaction of Srb5/Med18 with the CF1 complex. No such interaction of Srb5/Med18 with the cleavage and polyadenylation factor complex, however, could be detected. The Srb5/Med18-CF1 interaction was not observed in the looping defective sua7-1 strain. Srb5/Med18 cross-linking to the 3' end of genes was also abolished in the sua7-1 strain. Chromosome conformation capture analysis revealed that the looped architecture of Srb5/Med18-dependent genes was abrogated in srb5(-) cells. Furthermore, Srb5-dependent termination of transcription was compromised in the looping defective sua7-1 cells. The overall conclusion of these results is that gene looping plays a crucial role in Srb5/Med18 facilitated termination of transcription, and the looped gene architecture may have a general role in termination of transcription in budding yeast.
Collapse
Affiliation(s)
- Banupriya Mukundan
- From the Department of Biological Sciences, Wayne State University, Detroit, Michigan 48202
| | - Athar Ansari
- From the Department of Biological Sciences, Wayne State University, Detroit, Michigan 48202
| |
Collapse
|
38
|
Zheng Z, Guan H, Leal F, Grey PH, Oppenheimer DG. Mediator subunit18 controls flowering time and floral organ identity in Arabidopsis. PLoS One 2013; 8:e53924. [PMID: 23326539 PMCID: PMC3543355 DOI: 10.1371/journal.pone.0053924] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 12/04/2012] [Indexed: 12/18/2022] Open
Abstract
Mediator is a conserved multi-protein complex that plays an important role in regulating transcription by mediating interactions between transcriptional activator proteins and RNA polymerase II. Much evidence exists that Mediator plays a constitutive role in the transcription of all genes transcribed by RNA polymerase II. However, evidence is mounting that specific Mediator subunits may control the developmental regulation of specific subsets of RNA polymerase II-dependent genes. Although the Mediator complex has been extensively studied in yeast and mammals, only a few reports on Mediator function in flowering time control of plants, little is known about Mediator function in floral organ identity. Here we show that in Arabidopsis thaliana, MEDIATOR SUBUNIT 18 (MED18) affects flowering time and floral organ formation through FLOWERING LOCUS C (FLC) and AGAMOUS (AG). A MED18 loss-of-function mutant showed a remarkable syndrome of later flowering and altered floral organ number. We show that FLC and AG mRNA levels and AG expression patterns are altered in the mutant. Our results support parallels between the regulation of FLC and AG and demonstrate a developmental role for Mediator in plants.
Collapse
Affiliation(s)
- Zhengui Zheng
- Department of Biology, University of Florida, Gainesville, Florida, United States of America
- Howard Hughes Medical Institute, Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida, United States of America
- * E-mail: (ZZ); (DGO)
| | - Hexin Guan
- Department of Biology, University of Florida, Gainesville, Florida, United States of America
| | - Francisca Leal
- Department of Biology, University of Florida, Gainesville, Florida, United States of America
| | - Paris H. Grey
- Department of Biology, University of Florida, Gainesville, Florida, United States of America
| | - David G. Oppenheimer
- Department of Biology, University of Florida, Gainesville, Florida, United States of America
- * E-mail: (ZZ); (DGO)
| |
Collapse
|
39
|
Zhang L, Liu N, Ma X, Jiang L. The transcriptional control machinery as well as the cell wall integrity and its regulation are involved in the detoxification of the organic solvent dimethyl sulfoxide in Saccharomyces cerevisiae. FEMS Yeast Res 2012; 13:200-18. [PMID: 23157175 DOI: 10.1111/1567-1364.12022] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 10/08/2012] [Accepted: 11/08/2012] [Indexed: 11/30/2022] Open
Abstract
In the present study, we have identified 339 dimethyl sulfoxide (DMSO)-sensitive and nine DMSO-tolerant gene mutations in Saccharomyces cerevisiae through a functional genomics approach. Twelve of these identified DMSO-sensitive mutations are of genes involved in the general control of gene expression mediated by the SWR1 complex and the RNA polymerase II mediator complex, whereas 71 of them are of genes involved in the protein trafficking and vacuolar sorting processes. In addition, twelve of these DMSO-sensitive mutations are of genes involved in the cell wall integrity (CWI) and its regulation. DMSO-tolerant mutations are of genes mainly involved in the metabolism and the gene expression control. Therefore, the transcriptional control machinery, the CWI and its regulation as well as the protein trafficking and sorting process play critical roles in the DMSO detoxification in yeast cells.
Collapse
Affiliation(s)
- Lilin Zhang
- Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | | | | | | |
Collapse
|
40
|
Kondrashov A, Meijer HA, Barthet-Barateig A, Parker HN, Khurshid A, Tessier S, Sicard M, Knox AJ, Pang L, de Moor CH. Inhibition of polyadenylation reduces inflammatory gene induction. RNA (NEW YORK, N.Y.) 2012; 18:2236-2250. [PMID: 23118416 PMCID: PMC3504674 DOI: 10.1261/rna.032391.112] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Accepted: 09/14/2012] [Indexed: 05/31/2023]
Abstract
Cordycepin (3' deoxyadenosine) has long been used in the study of in vitro assembled polyadenylation complexes, because it terminates the poly(A) tail and arrests the cleavage complex. It is derived from caterpillar fungi, which are highly prized in Chinese traditional medicine. Here we show that cordycepin specifically inhibits the induction of inflammatory mRNAs by cytokines in human airway smooth muscle cells without affecting the expression of control mRNAs. Cordycepin treatment results in shorter poly(A) tails, and a reduction in the efficiency of mRNA cleavage and transcription termination is observed, indicating that the effects of cordycepin on 3' processing in cells are similar to those described in in vitro reactions. For the CCL2 and CXCL1 mRNAs, the effects of cordycepin are post-transcriptional, with the mRNA disappearing during or immediately after nuclear export. In contrast, although the recruitment of RNA polymerase II to the IL8 promoter is also unaffected, the levels of nascent transcript are reduced, indicating a defect in transcription elongation. We show that a reporter construct with 3' sequences from a histone gene is unaffected by cordycepin, while CXCL1 sequences confer cordycepin sensitivity to the reporter, demonstrating that polyadenylation is indeed required for the effect of cordycepin on gene expression. In addition, treatment with another polyadenyation inhibitor and knockdown of poly(A) polymerase α also specifically reduced the induction of inflammatory mRNAs. These data demonstrate that there are differences in the 3' processing of inflammatory and housekeeping genes and identify polyadenylation as a novel target for anti-inflammatory drugs.
Collapse
Affiliation(s)
- Alexander Kondrashov
- School of Pharmacy, The University of Nottingham, Nottingham, NG7 2RD, United Kingdom
| | - Hedda A. Meijer
- School of Clinical Sciences, The University of Nottingham, Nottingham, NG7 2RD, United Kingdom
| | | | - Hannah N. Parker
- School of Pharmacy, The University of Nottingham, Nottingham, NG7 2RD, United Kingdom
| | - Asma Khurshid
- School of Pharmacy, The University of Nottingham, Nottingham, NG7 2RD, United Kingdom
| | - Sarah Tessier
- School of Pharmacy, The University of Nottingham, Nottingham, NG7 2RD, United Kingdom
| | - Marie Sicard
- School of Pharmacy, The University of Nottingham, Nottingham, NG7 2RD, United Kingdom
| | - Alan J. Knox
- School of Clinical Sciences, The University of Nottingham, Nottingham, NG7 2RD, United Kingdom
| | - Linhua Pang
- School of Clinical Sciences, The University of Nottingham, Nottingham, NG7 2RD, United Kingdom
| | - Cornelia H. de Moor
- School of Pharmacy, The University of Nottingham, Nottingham, NG7 2RD, United Kingdom
| |
Collapse
|
41
|
Anamika K, Gyenis À, Tora L. How to stop: the mysterious links among RNA polymerase II occupancy 3' of genes, mRNA 3' processing and termination. Transcription 2012; 4:7-12. [PMID: 23131668 DOI: 10.4161/trns.22300] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Eukaryotic genes are transcribed by RNA polymerase II (RNAP II) through cycles of initiation, elongation and termination. Termination remains the least understood stage of transcription. Here we discuss the role of RNAP II occupancy downstream of the 3'ends of genes and its links with termination and mRNA 3' processing.
Collapse
Affiliation(s)
- Krishanpal Anamika
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR 7104, INSERM U 964, Université de Strasbourg, Illkirch Cedex, France
| | | | | |
Collapse
|
42
|
Conaway RC, Conaway JW. The Mediator complex and transcription elongation. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1829:69-75. [PMID: 22983086 DOI: 10.1016/j.bbagrm.2012.08.017] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Revised: 08/14/2012] [Accepted: 08/29/2012] [Indexed: 11/25/2022]
Abstract
BACKGROUND Mediator is an evolutionarily conserved multisubunit RNA polymerase II (Pol II) coregulatory complex. Although Mediator was initially found to play a critical role in the regulation of the initiation of Pol II transcription, recent studies have brought to light an expanded role for Mediator at post-initiation stages of transcription. SCOPE OF REVIEW We provide a brief description of the structure of Mediator and its function in the regulation of Pol II transcription initiation, and we summarize recent findings implicating Mediator in the regulation of various stages of Pol II transcription elongation. MAJOR CONCLUSIONS Emerging evidence is revealing new roles for Mediator in nearly all stages of Pol II transcription, including initiation, promoter escape, elongation, pre-mRNA processing, and termination. GENERAL SIGNIFICANCE Mediator plays a central role in the regulation of gene expression by impacting nearly all stages of mRNA synthesis. This article is part of a Special Issue entitled: RNA polymerase II Transcript Elongation.
Collapse
Affiliation(s)
- Ronald C Conaway
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA.
| | | |
Collapse
|
43
|
Potter K, Cremona N, Sunder S, Wise JA. A dominant role for meiosis-specific 3' RNA processing in controlling expression of a fission yeast cyclin gene. RNA (NEW YORK, N.Y.) 2012; 18:1408-1420. [PMID: 22647846 PMCID: PMC3383971 DOI: 10.1261/rna.033423.112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Accepted: 05/15/2012] [Indexed: 06/01/2023]
Abstract
Meiotic gene regulation provides a rich source of insight into mechanisms of temporal control during development. We previously reported that accumulation of many meiotic mRNAs in fission yeast is governed by changes in 3' RNA processing and elucidated the molecular basis of this regulatory mechanism for an early meiotic gene. Here, we report that cleavage/polyadenylation is also the nexus of negative control for middle meiotic genes. Parallel profiles of splicing and polyadenylation are observed over a meiotic time course for both rem1 and spo4 but not for a constitutive control gene. Nevertheless, polyadenylation of rem1 transcripts is restricted to meiosis by a splicing-independent mechanism. Through systematic sequence substitutions, we identified a negative control region (NCR) located upstream of the rem1 transcription start site and found that it is required to block 3' RNA processing in proliferating cells. Ablation of the NCR relieves inhibition regardless of whether the intron is present, absent, or carries splice site mutations. Consistent with the previous report of a polypeptide encoded by the first exon of rem1, we discovered a second 3' processing site just downstream from the 5' splice site. Polyadenylation within the intron is activated concurrent with the downstream site during meiosis, is controlled by the NCR, and is enhanced when splicing is blocked via 5' junction or branch point mutations. Taken together, these data suggest a novel regulatory mechanism in which a 5' element modulates the dynamic interplay between splicing and polyadenylation.
Collapse
Affiliation(s)
- Kristine Potter
- Center for RNA Molecular Biology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106-4960, USA
| | - Nicole Cremona
- Center for RNA Molecular Biology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106-4960, USA
| | | | - Jo Ann Wise
- Center for RNA Molecular Biology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106-4960, USA
| |
Collapse
|
44
|
RNA polymerase II pausing downstream of core histone genes is different from genes producing polyadenylated transcripts. PLoS One 2012; 7:e38769. [PMID: 22701709 PMCID: PMC3372504 DOI: 10.1371/journal.pone.0038769] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Accepted: 05/13/2012] [Indexed: 11/19/2022] Open
Abstract
Recent genome-wide chromatin immunoprecipitation coupled high throughput sequencing (ChIP-seq) analyses performed in various eukaryotic organisms, analysed RNA Polymerase II (Pol II) pausing around the transcription start sites of genes. In this study we have further investigated genome-wide binding of Pol II downstream of the 3′ end of the annotated genes (EAGs) by ChIP-seq in human cells. At almost all expressed genes we observed Pol II occupancy downstream of the EAGs suggesting that Pol II pausing 3′ from the transcription units is a rather common phenomenon. Downstream of EAGs Pol II transcripts can also be detected by global run-on and sequencing, suggesting the presence of functionally active Pol II. Based on Pol II occupancy downstream of EAGs we could distinguish distinct clusters of Pol II pause patterns. On core histone genes, coding for non-polyadenylated transcripts, Pol II occupancy is quickly dropping after the EAG. In contrast, on genes, whose transcripts undergo polyA tail addition [poly(A)+], Pol II occupancy downstream of the EAGs can be detected up to 4–6 kb. Inhibition of polyadenylation significantly increased Pol II occupancy downstream of EAGs at poly(A)+ genes, but not at the EAGs of core histone genes. The differential genome-wide Pol II occupancy profiles 3′ of the EAGs have also been confirmed in mouse embryonic stem (mES) cells, indicating that Pol II pauses genome-wide downstream of the EAGs in mammalian cells. Moreover, in mES cells the sharp drop of Pol II signal at the EAG of core histone genes seems to be independent of the phosphorylation status of the C-terminal domain of the large subunit of Pol II. Thus, our study uncovers a potential link between different mRNA 3′ end processing mechanisms and consequent Pol II transcription termination processes.
Collapse
|
45
|
Fong YW, Cattoglio C, Yamaguchi T, Tjian R. Transcriptional regulation by coactivators in embryonic stem cells. Trends Cell Biol 2012; 22:292-8. [PMID: 22572610 DOI: 10.1016/j.tcb.2012.04.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Revised: 04/03/2012] [Accepted: 04/03/2012] [Indexed: 11/24/2022]
Abstract
Embryonic stem (ES) cells, like all cell types, are defined by their unique transcriptional signatures. The ability of ES cells to self-renew or exit the pluripotent state and enter differentiation requires extensive changes in their transcriptome and epigenome. Remarkably, transcriptional programs governing each cell fate must remain sufficiently malleable so that expression of only a handful of transcriptional activators can override the pre-existing state by collaborating with an unexpectedly elaborate collection of coactivators to specify, restrict and stabilize the new state. Here, we discuss recent advances in our understanding of how the same coactivator can interpret multiple lines of information encoded by different activators and integrate signals from diverse regulators into stem cell-specific transcriptional outputs.
Collapse
Affiliation(s)
- Yick W Fong
- Howard Hughes Medical Institute, Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | | | | | | |
Collapse
|
46
|
Role of Mediator in regulating Pol II elongation and nucleosome displacement in Saccharomyces cerevisiae. Genetics 2012; 191:95-106. [PMID: 22377631 DOI: 10.1534/genetics.111.135806] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Mediator is a modular multisubunit complex that functions as a critical coregulator of RNA polymerase II (Pol II) transcription. While it is well accepted that Mediator plays important roles in the assembly and function of the preinitiation complex (PIC), less is known of its potential roles in regulating downstream steps of the transcription cycle. Here we use a combination of genetic and molecular approaches to investigate Mediator regulation of Pol II elongation in the model eukaryote, Saccharomyces cerevisiae. We find that ewe (expression without heat shock element) mutations in conserved Mediator subunits Med7, Med14, Med19, and Med21-all located within or adjacent to the middle module-severely diminish heat-shock-induced expression of the Hsf1-regulated HSP82 gene. Interestingly, these mutations do not impede Pol II recruitment to the gene's promoter but instead impair its transit through the coding region. This implies that a normal function of Mediator is to regulate a postinitiation step at HSP82. In addition, displacement of histones from promoter and coding regions, a hallmark of activated heat-shock genes, is significantly impaired in the med14 and med21 mutants. Suggestive of a more general role, ewe mutations confer hypersensitivity to the anti-elongation drug 6-azauracil (6-AU) and one of them-med21-impairs Pol II processivity on a GAL1-regulated reporter gene. Taken together, our results suggest that yeast Mediator, acting principally through its middle module, can regulate Pol II elongation at both heat-shock and non-heat-shock genes.
Collapse
|