1
|
Nagamura R, Kujirai T, Kato J, Shuto Y, Kusakizako T, Hirano H, Endo M, Toki S, Saika H, Kurumizaka H, Nureki O. Structural insights into how Cas9 targets nucleosomes. Nat Commun 2024; 15:10744. [PMID: 39737984 PMCID: PMC11685650 DOI: 10.1038/s41467-024-54768-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 11/19/2024] [Indexed: 01/01/2025] Open
Abstract
The CRISPR-associated endonuclease Cas9 derived from prokaryotes is used as a genome editing, which targets specific genomic loci by single guide RNAs (sgRNAs). The eukaryotes, the target of genome editing, store their genome DNA in chromatin, in which the nucleosome is a basic unit. Despite previous structural analyses focusing on Cas9 cleaving free DNA, structural insights into Cas9 targeting of DNA within nucleosomes are limited, leading to uncertainties in understanding how Cas9 operates in the eukaryotic genome. In the present study, we perform native-polyacrylamide gel electrophoresis (PAGE) analyses and find that Cas9 targets the linker DNA and the entry-exit DNA region of the nucleosome but not the DNA tightly wrapped around the histone octamer. We further determine cryo-electron microscopy (cryo-EM) structure of the Cas9-sgRNA-nucleosome ternary complex that targets linker DNA in nucleosomes. The structure suggests interactions between Cas9 and nucleosomes at multiple sites. Mutants that reduce the interaction between nucleosomal DNA and Cas9 improve nucleosomal DNA cleavage activity in vitro, although inhibition by the interaction between Cas9 and nucleosomes is limited in vivo. These findings will contribute to the development of novel genome editing tools in chromatin.
Collapse
Affiliation(s)
- Reina Nagamura
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Tomoya Kujirai
- Institute for Quantitative Biosciences, Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Junko Kato
- Institute for Quantitative Biosciences, Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Yutaro Shuto
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Tsukasa Kusakizako
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Hisato Hirano
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Masaki Endo
- Division of Crop Genome Editing Research, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Seiichi Toki
- Division of Crop Genome Editing Research, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Japan
- Graduate School of Nanobioscience, Yokohama City University, Yokohama, Kanagawa, Japan
- Laboratory of Plant Genome Engineering, Department of Life Science, Faculty of Agriculture, Ryukoku University, Shiga, Japan
| | - Hiroaki Saika
- Division of Crop Genome Editing Research, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Hitoshi Kurumizaka
- Institute for Quantitative Biosciences, Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan.
| | - Osamu Nureki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
2
|
Goldberg GW, Kogenaru M, Keegan S, Haase MAB, Kagermazova L, Arias MA, Onyebeke K, Adams S, Beyer DK, Fenyö D, Noyes MB, Boeke JD. Engineered transcription-associated Cas9 targeting in eukaryotic cells. Nat Commun 2024; 15:10287. [PMID: 39604381 PMCID: PMC11603292 DOI: 10.1038/s41467-024-54629-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 11/18/2024] [Indexed: 11/29/2024] Open
Abstract
DNA targeting Class 2 CRISPR-Cas effector nucleases, including the well-studied Cas9 proteins, evolved protospacer-adjacent motif (PAM) and guide RNA interactions that sequentially license their binding and cleavage activities at protospacer target sites. Both interactions are nucleic acid sequence specific but function constitutively; thus, they provide intrinsic spatial control over DNA targeting activities but naturally lack temporal control. Here we show that engineered Cas9 fusion proteins which bind to nascent RNAs near a protospacer can facilitate spatiotemporal coupling between transcription and DNA targeting at that protospacer: Transcription-associated Cas9 Targeting (TraCT). Engineered TraCT is enabled in eukaryotic yeast or human cells when suboptimal PAM interactions limit basal activity and when one or more nascent RNA substrates are still tethered to the actively transcribed target DNA in cis. Using yeast, we further show that this phenomenon can be applied for selective editing at one of two identical targets in distinct gene loci, or, in diploid allelic loci that are differentially transcribed. Our work demonstrates that temporal control over Cas9's targeting activity at specific DNA sites may be engineered without modifying Cas9's core domains and guide RNA components or their expression levels. More broadly, it establishes co-transcriptional RNA binding as a cis-acting mechanism that can conditionally stimulate CRISPR-Cas DNA targeting in eukaryotic cells.
Collapse
Affiliation(s)
- Gregory W Goldberg
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA.
| | - Manjunatha Kogenaru
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| | - Sarah Keegan
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| | - Max A B Haase
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| | - Larisa Kagermazova
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| | - Mauricio A Arias
- Courant Institute of Mathematical Sciences, New York University, New York, NY, USA
| | - Kenenna Onyebeke
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| | - Samantha Adams
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| | - Daniel K Beyer
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| | - David Fenyö
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| | - Marcus B Noyes
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA.
| | - Jef D Boeke
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA.
- Department of Biomedical Engineering, NYU Tandon School of Engineering, Brooklyn, NY, USA.
| |
Collapse
|
3
|
Goldberg GW, Kogenaru M, Keegan S, Haase MAB, Kagermazova L, Arias MA, Onyebeke K, Adams S, Beyer DK, Fenyö D, Noyes MB, Boeke JD. Engineered transcription-associated Cas9 targeting in eukaryotic cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.18.558319. [PMID: 37781609 PMCID: PMC10541143 DOI: 10.1101/2023.09.18.558319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
DNA targeting Class 2 CRISPR-Cas effector nucleases, including the well-studied Cas9 proteins, evolved protospacer-adjacent motif (PAM) and guide RNA interactions that sequentially license their binding and cleavage activities at protospacer target sites. Both interactions are nucleic acid sequence specific but function constitutively; thus, they provide intrinsic spatial control over DNA targeting activities but naturally lack temporal control. Here we show that engineered Cas9 fusion proteins which bind to nascent RNAs near a protospacer can facilitate spatiotemporal coupling between transcription and DNA targeting at that protospacer: Transcription-associated Cas9 Targeting (TraCT). Engineered TraCT is enabled in eukaryotic yeast or human cells when suboptimal PAM interactions limit basal activity and when one or more nascent RNA substrates are still tethered to the actively transcribed target DNA in cis. Using yeast, we further show that this phenomenon can be applied for selective editing at one of two identical targets in distinct gene loci, or, in diploid allelic loci that are differentially transcribed. Our work demonstrates that temporal control over Cas9's targeting activity at specific DNA sites may be engineered without modifying Cas9's core domains and guide RNA components or their expression levels. More broadly, it establishes co-transcriptional RNA binding as a cis-acting mechanism that can conditionally stimulate CRISPR-Cas DNA targeting in eukaryotic cells.
Collapse
Affiliation(s)
- Gregory W. Goldberg
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
| | - Manjunatha Kogenaru
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
| | - Sarah Keegan
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
| | - Max A. B. Haase
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
| | - Larisa Kagermazova
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
| | - Mauricio A. Arias
- Courant Institute of Mathematical Sciences, New York University, New York, NY 10012, USA
| | - Kenenna Onyebeke
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
| | - Samantha Adams
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
| | - Daniel K. Beyer
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
| | - David Fenyö
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
| | - Marcus B. Noyes
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
| | - Jef D. Boeke
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
- Department of Biomedical Engineering, NYU Tandon School of Engineering, Brooklyn NY 11201
| |
Collapse
|
4
|
Handelmann CR, Tsompana M, Samudrala R, Buck M. The impact of nucleosome structure on CRISPR/Cas9 fidelity. Nucleic Acids Res 2023; 51:2333-2344. [PMID: 36727449 PMCID: PMC10018339 DOI: 10.1093/nar/gkad021] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 01/05/2023] [Accepted: 01/31/2023] [Indexed: 02/03/2023] Open
Abstract
The clustered regularly interspaced short palindromic repeats (CRISPR) Cas system is a powerful tool that has the potential to become a therapeutic gene editor in the near future. Cas9 is the best studied CRISPR system and has been shown to have problems that restrict its use in therapeutic applications. Chromatin structure is a known impactor of Cas9 targeting and there is a gap in knowledge on Cas9's efficacy when targeting such locations. To quantify at a single base pair resolution how chromatin inhibits on-target gene editing relative to off-target editing of exposed mismatching targets, we developed the gene editor mismatch nucleosome inhibition assay (GEMiNI-seq). GEMiNI-seq utilizes a library of nucleosome sequences to examine all target locations throughout nucleosomes in a single assay. The results from GEMiNI-seq revealed that the location of the protospacer-adjacent motif (PAM) sequence on the nucleosome edge drives the ability for Cas9 to access its target sequence. In addition, Cas9 had a higher affinity for exposed mismatched targets than on-target sequences within a nucleosome. Overall, our results show how chromatin structure impacts the fidelity of Cas9 to potential targets and highlight how targeting sequences with exposed PAMs could limit off-target gene editing, with such considerations improving Cas9 efficacy and resolving current limitations.
Collapse
Affiliation(s)
- Christopher R Handelmann
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14203, USA
- Department of Biomedical Informatics, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | - Maria Tsompana
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | - Ram Samudrala
- Department of Biomedical Informatics, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | - Michael J Buck
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14203, USA
- Department of Biomedical Informatics, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14203, USA
| |
Collapse
|
5
|
Antony JS, Hinz JM, Wyrick JJ. Tips, Tricks, and Potential Pitfalls of CRISPR Genome Editing in Saccharomyces cerevisiae. Front Bioeng Biotechnol 2022; 10:924914. [PMID: 35706506 PMCID: PMC9190257 DOI: 10.3389/fbioe.2022.924914] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 05/16/2022] [Indexed: 12/26/2022] Open
Abstract
The versatility of clustered regularly interspaced short palindromic repeat (CRISPR)-associated (Cas) genome editing makes it a popular tool for many research and biotechnology applications. Recent advancements in genome editing in eukaryotic organisms, like fungi, allow for precise manipulation of genetic information and fine-tuned control of gene expression. Here, we provide an overview of CRISPR genome editing technologies in yeast, with a particular focus on Saccharomyces cerevisiae. We describe the tools and methods that have been previously developed for genome editing in Saccharomyces cerevisiae and discuss tips and experimental tricks for promoting efficient, marker-free genome editing in this model organism. These include sgRNA design and expression, multiplexing genome editing, optimizing Cas9 expression, allele-specific editing in diploid cells, and understanding the impact of chromatin on genome editing. Finally, we summarize recent studies describing the potential pitfalls of using CRISPR genome targeting in yeast, including the induction of background mutations.
Collapse
Affiliation(s)
- Jacob S. Antony
- School of Molecular Biosciences, Washington State University, Pullman, WA, United States
| | - John M. Hinz
- School of Molecular Biosciences, Washington State University, Pullman, WA, United States
| | - John J. Wyrick
- School of Molecular Biosciences, Washington State University, Pullman, WA, United States
- Center for Reproductive Biology, Washington State University, Pullman, WA, United States
- *Correspondence: John J. Wyrick,
| |
Collapse
|
6
|
dCas9 binding inhibits the initiation of base excision repair in vitro. DNA Repair (Amst) 2022; 109:103257. [PMID: 34847381 PMCID: PMC8748382 DOI: 10.1016/j.dnarep.2021.103257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/08/2021] [Accepted: 11/16/2021] [Indexed: 01/03/2023]
Abstract
Cas9 targets DNA during genome editing by forming an RNA:DNA heteroduplex (R-loop) between the Cas9-bound guide RNA and the targeted DNA strand. We have recently demonstrated that R-loop formation by catalytically inactive Cas9 (dCas9) is inherently mutagenic, in part, by promoting spontaneous cytosine deamination within the non-targeted single-stranded DNA of the dCas9-induced R-loop. However, the extent to which dCas9 binding and R-loop formation affect the subsequent repair of uracil lesions or other damaged DNA bases is unclear. Here, we show that DNA binding by dCas9 inhibits initiation of base excision repair (BER) for uracil lesions in vitro. Our data indicate that cleavage of uracil lesions by Uracil-DNA glycosylase (UDG) is generally inhibited at dCas9-bound DNA, in both the dCas9:sgRNA-bound target strand (TS) or the single-stranded non-target strand (NT). However, cleavage of a uracil lesion within the base editor window of the NT strand was less inhibited than at other locations, indicating that this site is more permissive to UDG activity. Furthermore, our data suggest that dCas9 binding to PAM sites can inhibit UDG activity. However, this non-specific inhibition can be relieved with the addition of an sgRNA lacking sequence complementarity to the DNA substrate. Moreover, we show that dCas9 binding also inhibits human single-strand selective monofunctional uracil-DNA glycosylase (SMUG1). Structural analysis of a Cas9-bound target site subsequently suggests a molecular mechanism for BER inhibition. Taken together, our results imply that dCas9 (or Cas9) binding may promote background mutagenesis by inhibiting the removal of DNA base lesions by BER.
Collapse
|
7
|
Smith LM, Ladner JT, Hodara VL, Parodi LM, Harris RA, Callery JE, Lai Z, Zou Y, Raveedran M, Rogers J, Giavedoni LD. Multiplexed Simian Immunodeficiency Virus-Specific Paired RNA-Guided Cas9 Nickases Inactivate Proviral DNA. J Virol 2021; 95:e0088221. [PMID: 34549979 PMCID: PMC8577357 DOI: 10.1128/jvi.00882-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 09/16/2021] [Indexed: 12/20/2022] Open
Abstract
Human and simian immunodeficiency virus (HIV and SIV) infections establish lifelong reservoirs of cells harboring an integrated proviral genome. Genome editing CRISPR-associated Cas9 nucleases, combined with SIV-specific guiding RNA (gRNA) molecules, inactivate integrated provirus DNA in vitro and in animal models. We generated RNA-guided Cas9 nucleases (RGNu) and nickases (RGNi) targeting conserved SIV regions with no homology in the human or rhesus macaque genome. Assays in cells cotransfected with SIV provirus and plasmids coding for RGNus identified SIV long terminal repeat (LTR), trans-activation response (TAR) element, and ribosome slip site (RSS) regions as the most effective at virus suppression; RGNi targeting these regions inhibited virus production significantly. Multiplex plasmids that coexpressed these three RGNu (Nu3), or six (three pairs) RGNi (Ni6), were more efficient at virus suppression than any combination of individual RGNu and RGNi plasmids. Both Nu3 and Ni6 plasmids were tested in lymphoid cells chronically infected with SIVmac239, and whole-genome sequencing was used to determine on- and off-target mutations. Treatment with these all-in-one plasmids resulted in similar levels of mutations of viral sequences from the cellular genome; Nu3 induced indels at the 3 SIV-specific sites, whereas for Ni6 indels were present at the LTR and TAR sites. Levels of off-target effects detected by two different algorithms were indistinguishable from background mutations. In summary, we demonstrate that Cas9 nickase in association with gRNA pairs can specifically eliminate parts of the integrated provirus DNA; also, we show that careful design of an all-in-one plasmid coding for 3 gRNAs and Cas9 nuclease inhibits SIV production with undetectable off-target mutations, making these tools a desirable prospect for moving into animal studies. IMPORTANCE Our approach to HIV cure, utilizing the translatable SIV/rhesus macaque model system, aims at provirus inactivation and its removal with the least possible off-target side effects. We developed single molecules that delivered either three truncated SIV-specific gRNAs along with Cas9 nuclease or three pairs of SIV-specific gRNAs (six individual gRNAs) along with Cas9 nickase to enhance efficacy of on-target mutagenesis. Whole-genome sequencing demonstrated effective SIV sequence mutation and inactivation and the absence of demonstrable off-target mutations. These results open the possibility to employ Cas9 variants that introduce single-strand DNA breaks to eliminate integrated proviral DNA.
Collapse
Affiliation(s)
- Lisa M. Smith
- Host-Pathogen Interactions Program and Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, Texas, USA
- Department of Microbiology, Immunology, and Molecular Genetics, UT Health San Antonio, San Antonio, Texas, USA
| | - Jason T. Ladner
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, USA
| | - Vida L. Hodara
- Host-Pathogen Interactions Program and Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Laura M. Parodi
- Host-Pathogen Interactions Program and Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - R. Alan Harris
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Jessica E. Callery
- Host-Pathogen Interactions Program and Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Zhao Lai
- Department of Molecular Medicine, UT Health San Antonio, San Antonio, Texas, USA
- Greehey Children’s Cancer Research Institute, UT Health San Antonio, San Antonio, Texas, USA
| | - Yi Zou
- Greehey Children’s Cancer Research Institute, UT Health San Antonio, San Antonio, Texas, USA
| | - Muthuswamy Raveedran
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Jeffrey Rogers
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Luis D. Giavedoni
- Host-Pathogen Interactions Program and Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, Texas, USA
| |
Collapse
|
8
|
Makasheva K, Bryan LC, Anders C, Panikulam S, Jinek M, Fierz B. Multiplexed Single-Molecule Experiments Reveal Nucleosome Invasion Dynamics of the Cas9 Genome Editor. J Am Chem Soc 2021; 143:16313-16319. [PMID: 34597515 PMCID: PMC8517959 DOI: 10.1021/jacs.1c06195] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Indexed: 12/29/2022]
Abstract
Single-molecule measurements provide detailed mechanistic insights into molecular processes, for example in genome regulation where DNA access is controlled by nucleosomes and the chromatin machinery. However, real-time single-molecule observations of nuclear factors acting on defined chromatin substrates are challenging to perform quantitatively and reproducibly. Here we present XSCAN (multiplexed single-molecule detection of chromatin association), a method to parallelize single-molecule experiments by simultaneous imaging of a nucleosome library, where each nucleosome type carries an identifiable DNA sequence within its nucleosomal DNA. Parallel experiments are subsequently spatially decoded, via the detection of specific binding of dye-labeled DNA probes. We use this method to reveal how the Cas9 nuclease overcomes the nucleosome barrier when invading chromatinized DNA as a function of PAM position.
Collapse
Affiliation(s)
- Kristina Makasheva
- Laboratory
of Biophysical Chemistry of Macromolecules, Institute of Chemical
Sciences and Engineering (ISIC), École
Polytechnique Fédérale de Lausanne (EPFL), Station 6, 1015 Lausanne, Switzerland
| | - Louise C. Bryan
- Laboratory
of Biophysical Chemistry of Macromolecules, Institute of Chemical
Sciences and Engineering (ISIC), École
Polytechnique Fédérale de Lausanne (EPFL), Station 6, 1015 Lausanne, Switzerland
| | - Carolin Anders
- Department
of Biochemistry, University of Zurich, Winterthurerstr. 190, 8057 Zurich, Switzerland
| | - Sherin Panikulam
- Department
of Biochemistry, University of Zurich, Winterthurerstr. 190, 8057 Zurich, Switzerland
| | - Martin Jinek
- Department
of Biochemistry, University of Zurich, Winterthurerstr. 190, 8057 Zurich, Switzerland
| | - Beat Fierz
- Laboratory
of Biophysical Chemistry of Macromolecules, Institute of Chemical
Sciences and Engineering (ISIC), École
Polytechnique Fédérale de Lausanne (EPFL), Station 6, 1015 Lausanne, Switzerland
| |
Collapse
|
9
|
Strohkendl I, Saifuddin FA, Gibson BA, Rosen MK, Russell R, Finkelstein IJ. Inhibition of CRISPR-Cas12a DNA targeting by nucleosomes and chromatin. SCIENCE ADVANCES 2021; 7:7/11/eabd6030. [PMID: 33692102 PMCID: PMC7946368 DOI: 10.1126/sciadv.abd6030] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 01/22/2021] [Indexed: 06/10/2023]
Abstract
Genome engineering nucleases must access chromatinized DNA. Here, we investigate how AsCas12a cleaves DNA within human nucleosomes and phase-condensed nucleosome arrays. Using quantitative kinetics approaches, we show that dynamic nucleosome unwrapping regulates target accessibility to Cas12a and determines the extent to which both steps of binding-PAM recognition and R-loop formation-are inhibited by the nucleosome. Relaxing DNA wrapping within the nucleosome by reducing DNA bendability, adding histone modifications, or introducing target-proximal dCas9 enhances DNA cleavage rates over 10-fold. Unexpectedly, Cas12a readily cleaves internucleosomal linker DNA within chromatin-like, phase-separated nucleosome arrays. DNA targeting is reduced only ~5-fold due to neighboring nucleosomes and chromatin compaction. This work explains the observation that on-target cleavage within nucleosomes occurs less often than off-target cleavage within nucleosome-depleted genomic regions in cells. We conclude that nucleosome unwrapping regulates accessibility to CRISPR-Cas nucleases and propose that increasing nucleosome breathing dynamics will improve DNA targeting in eukaryotic cells.
Collapse
Affiliation(s)
- Isabel Strohkendl
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA.
| | - Fatema A Saifuddin
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
- Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, TX 78712, USA
- Department of Cell and Tissue Biology, University of California, San Francisco, 513 Parnassus Ave, San Francisco, CA 94143, USA
| | - Bryan A Gibson
- Department of Biophysics and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Michael K Rosen
- Department of Biophysics and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Rick Russell
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA.
| | - Ilya J Finkelstein
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA.
- Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
10
|
Ishibashi R, Abe K, Ido N, Kitano S, Miyachi H, Toyoshima F. Genome editing with the donor plasmid equipped with synthetic crRNA-target sequence. Sci Rep 2020; 10:14120. [PMID: 32839482 PMCID: PMC7445171 DOI: 10.1038/s41598-020-70804-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 08/03/2020] [Indexed: 01/12/2023] Open
Abstract
CRISPR/Cas-mediated genome editing is a powerful tool for generating genetically mutated cells and organisms. Linearisation of donor cassettes with this system has been shown to facilitate both transgene donor insertion and targeted knock-in. Here, we developed a donor plasmid that we name pCriMGET (plasmid of synthetic CRISPR coded RNA target sequence-equipped donor plasmid-mediated gene targeting), in which an off-target free synthetic CRISPR coded RNA-target sequence (syn-crRNA-TS) is incorporated with a multi-cloning site, where a donor cassette can be inserted. With co-expression of Cas9 and the syn-crRNA-TS guide RNA (gRNA), pCriMGET provides a linearised donor cassette in vivo, thereby promoting the transgene donor insertion and targeted knock-in. When co-injected with Cas9 protein and gRNA into murine zygotes, pCriMGET yielded around 20% transgene insertion in embryos. This method also achieved more than 25% in-frame knock-in at the mouse Tbx3 gene locus without predicted insertion-deletion mutations using a transgene donor with 400-bp homology arms. pCriMGET is therefore useful as a versatile CRISPR/Cas9-cleavable donor plasmid for efficient integration and targeted knock-in of exogenous DNA in mice.
Collapse
Affiliation(s)
- Riki Ishibashi
- Department of Biosystems Science, Institute for Frontier and Medical Sciences, Kyoto University, Sakyo-ku, Kyoto, 606-8507, Japan.
- Department of Mammalian Regulatory Networks, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan.
| | - Kota Abe
- Department of Biosystems Science, Institute for Frontier and Medical Sciences, Kyoto University, Sakyo-ku, Kyoto, 606-8507, Japan
- Department of Mammalian Regulatory Networks, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Nanami Ido
- Department of Biosystems Science, Institute for Frontier and Medical Sciences, Kyoto University, Sakyo-ku, Kyoto, 606-8507, Japan
- Department of Mammalian Regulatory Networks, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Satsuki Kitano
- Department of Biosystems Science, Institute for Frontier and Medical Sciences, Kyoto University, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Hitoshi Miyachi
- Department of Biosystems Science, Institute for Frontier and Medical Sciences, Kyoto University, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Fumiko Toyoshima
- Department of Biosystems Science, Institute for Frontier and Medical Sciences, Kyoto University, Sakyo-ku, Kyoto, 606-8507, Japan.
- Department of Mammalian Regulatory Networks, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan.
| |
Collapse
|
11
|
Wang P, Xu L, Gao Y, Han R. BEON: A Functional Fluorescence Reporter for Quantification and Enrichment of Adenine Base-Editing Activity. Mol Ther 2020; 28:1696-1705. [PMID: 32353322 PMCID: PMC7335737 DOI: 10.1016/j.ymthe.2020.04.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 02/12/2020] [Accepted: 04/09/2020] [Indexed: 12/11/2022] Open
Abstract
Adenine base editor (ABE) is a new generation of genome-editing technology through fusion of Cas9 nickase with an evolved E. coli TadA (TadA∗) and holds great promise as novel genome-editing therapeutics for treating genetic disorders. ABEs can directly convert A-T to G-C in specific genomic DNA targets without introducing double-strand breaks (DSBs). We recently showed that computer program-assisted analysis of Sanger sequencing traces can be used as a low-cost and rapid alternative of deep sequencing to assess base-editing outcomes. Here we developed a rapid fluorescence-based reporter assay (Base Editing ON [BEON]) to quantify ABE efficiency. The assay relies on the restoration of the downstream green fluorescent protein (GFP) in ABE-mediated editing of a stop codon located within the guide RNA (gRNA). We showed that this assay can be used to screen for effective ABE variants, characterize the protospacer adjacent motif (PAM) requirement of a novel NNG-targeting ABE based on ScCas9, and enrich for edited cells. Finally, we demonstrated that the reporter assay allowed us to assess the feasibility of ABE editing to correct point mutations associated with dysferlinopathy. Taken together, the BEON assay would facilitate and simplify the studies with ABEs.
Collapse
Affiliation(s)
- Peipei Wang
- Department of Surgery, Davis Heart and Lung Research Institute, Biomedical Sciences Graduate Program, Biophysics Graduate Program, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Li Xu
- Department of Surgery, Davis Heart and Lung Research Institute, Biomedical Sciences Graduate Program, Biophysics Graduate Program, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Yandi Gao
- Department of Surgery, Davis Heart and Lung Research Institute, Biomedical Sciences Graduate Program, Biophysics Graduate Program, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Renzhi Han
- Department of Surgery, Davis Heart and Lung Research Institute, Biomedical Sciences Graduate Program, Biophysics Graduate Program, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.
| |
Collapse
|
12
|
Dhanjal JK, Dammalapati S, Pal S, Sundar D. Evaluation of off-targets predicted by sgRNA design tools. Genomics 2020; 112:3609-3614. [PMID: 32353475 DOI: 10.1016/j.ygeno.2020.04.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 02/13/2020] [Accepted: 04/24/2020] [Indexed: 12/26/2022]
Abstract
The ease of programming CRISPR/Cas9 system for targeting a specific location within the genome has paved way for many clinical and industrial applications. However, its widespread use is still limited owing to its off-target effects. Though this off-target activity has been reported to be dependent on both sgRNA sequence and experimental conditions, a clear understanding of the factors imparting specificity to CRISPR/Cas9 system is important. A machine learning-based computational model has been developed for prediction of off-targets with more likelihood to be cleaved in vivo with an accuracy of 91.49%. The sequence features important for the prediction of positive off-targets were found to be accessibility, mismatches, GC-content and position-specific conservation of nucleotides. The instructions and code to generate the dataset and reproduce the analysis has been made available at http://web.iitd.ac.in/crispcut/off-targets/.
Collapse
Affiliation(s)
- Jaspreet Kaur Dhanjal
- Department of Biochemical Engineering and Biotechnology, DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
| | - Samvit Dammalapati
- Department of Mathematics, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
| | - Shreya Pal
- Department of Biochemical Engineering and Biotechnology, DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
| | - Durai Sundar
- Department of Biochemical Engineering and Biotechnology, DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
| |
Collapse
|
13
|
Yang B, McJunkin K. The mir-35-42 binding site in the nhl-2 3'UTR is dispensable for development and fecundity. MICROPUBLICATION BIOLOGY 2020; 2020. [PMID: 32550481 PMCID: PMC7252230 DOI: 10.17912/micropub.biology.000241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Bing Yang
- Laboratory of Cellular and Developmental Biology, NIDDK Intramural Research Program, Bethesda, MD 20892
| | - Katherine McJunkin
- Laboratory of Cellular and Developmental Biology, NIDDK Intramural Research Program, Bethesda, MD 20892
| |
Collapse
|
14
|
Ding X, Seebeck T, Feng Y, Jiang Y, Davis GD, Chen F. Improving CRISPR-Cas9 Genome Editing Efficiency by Fusion with Chromatin-Modulating Peptides. CRISPR J 2020; 2:51-63. [PMID: 31021236 DOI: 10.1089/crispr.2018.0036] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Bacterial-derived CRISPR-Cas9 nucleases have become a common tool in genome engineering. However, the editing efficiency by even the best-crafted Cas9 nucleases varies considerably with different genomic sites, and efforts to explore the vast natural Cas9 diversity have often met with mixed or little success. Here, we show that modification of the widely used Streptococcus pyogenes Cas9 by fusion with chromatin-modulating peptides (CMPs), derived from high mobility group proteins HMGN1 and HMGB1, histone H1, and chromatin remodeling complexes, improves its activity by up to several fold, particularly on refractory target sites. We further show that this CMP fusion strategy (termed CRISPR-chrom) is also effective in improving the activities of smaller Cas9 nucleases from Streptococcus pasteurianus and Campylobacter jejuni, as well as four newly characterized Cas9 orthologs from Bacillus smithii, Lactobacillus rhamnosus, Mycoplasma canis, and Parasutterella excrementihominis. Our findings suggest that this CRISPR-chrom strategy can be used to improve established Cas9 nucleases and facilitate exploration of novel Cas9 orthologs for genome modification.
Collapse
Affiliation(s)
- Xiao Ding
- MilliporeSigma (a business of Merck KGaA, Darmstadt, Germany), St. Louis, Missouri
| | - Timothy Seebeck
- MilliporeSigma (a business of Merck KGaA, Darmstadt, Germany), St. Louis, Missouri
| | - Yongmei Feng
- MilliporeSigma (a business of Merck KGaA, Darmstadt, Germany), St. Louis, Missouri
| | - Yanfang Jiang
- MilliporeSigma (a business of Merck KGaA, Darmstadt, Germany), St. Louis, Missouri
| | - Gregory D Davis
- MilliporeSigma (a business of Merck KGaA, Darmstadt, Germany), St. Louis, Missouri
| | - Fuqiang Chen
- MilliporeSigma (a business of Merck KGaA, Darmstadt, Germany), St. Louis, Missouri
| |
Collapse
|
15
|
Wang J, Wu H, Chen Y, Yin T. Efficient CRISPR/Cas9-Mediated Gene Editing in an Interspecific Hybrid Poplar With a Highly Heterozygous Genome. FRONTIERS IN PLANT SCIENCE 2020; 11:996. [PMID: 32719704 PMCID: PMC7347981 DOI: 10.3389/fpls.2020.00996] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 06/17/2020] [Indexed: 05/12/2023]
Abstract
Although the CRISPR/Cas9 system has been widely used for crop breeding, its application for the genetic improvement of trees has been limited, partly because of the outcrossing nature and substantial genomic heterozygosity of trees. Shanxin yang (Populus davidiana × P. bolleana), is a commercially important poplar clone that is widely grown in northern China. An established transformation protocol for this interspecific hybrid enables researchers to simultaneously investigate the efficiency and specificity of the CRISPR/Cas9-mediated manipulation of a highly heterozygous genome. Using the phytoene desaturase gene (PDS) as an example, we revealed that the CRISPR/Cas9 system could efficiently edit the Shanxin yang genome. Two sgRNAs were designed and incorporated into a single binary vector containing the Cas9 expression cassette. Among 62 independent transgenic lines, 85.5% exhibited an exclusively albino phenotype, revealing the total loss of PDS function. The Illumina sequencing results confirmed the targeted mutation of PdbPDS homologs induced by CRISPR/Cas9, and small insertions/deletions were the most common mutations. Biallelic and homozygous knockout mutations were detected at both target sites of the T0 transformants. Off-target activity was detected for sgRNA2 with a frequency of 3.2%. Additionally, the SNP interference of targeting specificity was assessed based on the sequence variation among PdbPDS homologs. A single mismatch at 19- or 10-bp from the PAM was tolerated by the CRISPR/Cas9 system. Therefore, multiple homologous genes were simultaneously edited despite the presence of a mismatch between the sgRNA and the target site. The establishment of a viable CRISPR/Cas9-based strategy for editing the Shanxin yang genome will not only accelerate the breeding process, but may also be relevant for other economically or scientifically important non-model plants species.
Collapse
|
16
|
Kim D, Kim JS. DIG-seq: a genome-wide CRISPR off-target profiling method using chromatin DNA. Genome Res 2018; 28:1894-1900. [PMID: 30413470 PMCID: PMC6280750 DOI: 10.1101/gr.236620.118] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 10/10/2018] [Indexed: 12/21/2022]
Abstract
To investigate whether and how CRISPR-Cas9 on-target and off-target activities are affected by chromatin in eukaryotic cells, we first identified a series of identical endogenous DNA sequences present in both open and closed chromatin regions and then measured mutation frequencies at these sites in human cells using Cas9 complexed with matched or mismatched sgRNAs. Unlike matched sgRNAs, mismatched sgRNAs were highly sensitive to chromatin states, suggesting that off-target but not on-target DNA cleavage is hindered by chromatin. We next performed Digenome-seq using cell-free chromatin DNA (now termed DIG-seq) and histone-free genomic DNA in parallel and found that only a subset of sites, cleaved in histone-free DNA, were cut in chromatin DNA, suggesting that chromatin can inhibit Cas9 off-target effects in favor of its genome-wide specificity in cells.
Collapse
Affiliation(s)
- Daesik Kim
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Jin-Soo Kim
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea.,Center for Genome Engineering, Institute for Basic Science, Seoul 08826, Republic of Korea
| |
Collapse
|
17
|
Abstract
The efficiency of genome editing with CRISPR-Cas9 can vary widely at different targets and in different cells. Some of this variability may be due to the inherent quality of different guide RNAs, but it may also depend on the cellular context of the genomic target DNA. In this report, we demonstrate that targets bound by nucleosomes are cut much less efficiently than targets from which nucleosomes are absent or have been depleted. This information can inform target selection, particularly in cases where cells are quiescent or nucleosome mobility is limited. Genome editing with CRISPR-Cas nucleases has been applied successfully to a wide range of cells and organisms. There is, however, considerable variation in the efficiency of cleavage and outcomes at different genomic targets, even within the same cell type. Some of this variability is likely due to the inherent quality of the interaction between the guide RNA and the target sequence, but some may also reflect the relative accessibility of the target. We investigated the influence of chromatin structure, particularly the presence or absence of nucleosomes, on cleavage by the Streptococcus pyogenes Cas9 protein. At multiple target sequences in two promoters in the yeast genome, we find that Cas9 cleavage is strongly inhibited when the DNA target is within a nucleosome. This inhibition is relieved when nucleosomes are depleted. Remarkably, the same is not true of zinc-finger nucleases (ZFNs), which cleave equally well at nucleosome-occupied and nucleosome-depleted sites. These results have implications for the choice of specific targets for genome editing, both in research and in clinical and other practical applications.
Collapse
|
18
|
Herbette M, Mercier M, Michal F, Cluet D, Burny C, Yvert G, Robert V, Palladino F. The C. elegans SET-2/SET1 histone H3 Lys4 (H3K4) methyltransferase preserves genome stability in the germline. DNA Repair (Amst) 2017; 57:139-150. [DOI: 10.1016/j.dnarep.2017.07.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 07/13/2017] [Accepted: 07/13/2017] [Indexed: 10/19/2022]
|