1
|
Johnson DE, Cui Z. Triggering Pyroptosis in Cancer. Biomolecules 2025; 15:348. [PMID: 40149884 PMCID: PMC11940180 DOI: 10.3390/biom15030348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 02/19/2025] [Accepted: 02/25/2025] [Indexed: 03/29/2025] Open
Abstract
Pyroptosis is an inflammatory programmed cell death recently identified as a crucial cellular process in various diseases, including cancers. Unlike other forms of cell death, canonical pyroptosis involves the specific cleavage of gasdermin by caspase-1, resulting in cell membrane damage and the release of the pro-inflammatory cytokines IL-1β and IL-18. Initially observed in innate immune cells responding to external pathogens or internal death signals, pyroptotic cell death has now been observed in numerous cell types. Recent studies have extensively explored different ways to trigger pyroptotic cell death in solid tumors, presenting a promising avenue for cancer treatment. This review outlines the mechanisms of both canonical and noncanonical pyroptosis pertinent to cancer and primarily focuses on various biomolecules that can induce pyroptosis in malignancies. This strategy aims not only to eliminate cancer cells but also to promote an improved tumor immune microenvironment. Furthermore, emerging research indicates that targeting pyroptotic pathways may improve the effectiveness of existing cancer treatments, making them more potent against resistant tumor types, offering new hope for overcoming treatment resistance in aggressive malignancies.
Collapse
Affiliation(s)
- Daniel E. Johnson
- Department of Otolaryngology—Head and Neck Surgery, University of California at San Francisco, San Francisco, CA 94143, USA;
- Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, San Francisco, CA 94143, USA
| | - Zhibin Cui
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, The State University of New York, Buffalo, NY 14214, USA
| |
Collapse
|
2
|
Xia L, Yan Z, Wei LS, Huijuan L, Hong JC, Na ML, Chun DX. Rational corticosteroids administration and antibiotic treatment is key to managing cutaneous anthrax. BMC Infect Dis 2024; 24:1225. [PMID: 39482596 PMCID: PMC11526683 DOI: 10.1186/s12879-024-09922-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 09/12/2024] [Indexed: 11/03/2024] Open
Abstract
BACKGROUND Anthrax is a global health concern, with cutaneous anthrax accounting for over 95% of cases and generally promising outcomes. Nonetheless, the absence of timely intervention can result in mortality rates of 10-40%. This research aims to explore the clinical presentations and phenotypic characteristics of cutaneous anthrax patients and evaluate the efficacy of various therapeutic approaches. METHODS A retrospective study was performed on 76 cutaneous anthrax patients identified at three hospitals from 2017 to 2022. Patients were categorized based on their hospital stay into two groups: those hospitalized for at least seven days and those for shorter durations. We assessed their clinical and phenotypic profiles, including symptoms, general health status, and laboratory findings, alongside treatment outcomes, focusing on corticosteroids therapy and antibiotic regimens. RESULTS The study encompassed 76 diagnosed individuals, predominantly young adult males (78.9%). A significant gender disparity was noted. Hormonal treatment markedly improved edema regression in patients (P < 0.002), highlighting its therapeutic value. The impact of various antibiotic treatments on disease progression differed significantly based on corticosteroids treatment status, with specific combinations showing more effectiveness in non-corticosteroids-treated patients. CONCLUSIONS The predominance of young male adults among cutaneous anthrax cases was observed, with corticosteroids treatment significantly reducing edema duration. In cases where corticosteroids therapy is not utilized, employing piperacillin-tazobactam alone or in combination with quinolones effectively shortens the illness duration, suggesting a tailored approach to treatment can enhance patient outcomes.
Collapse
Affiliation(s)
- Luo Xia
- Department of Infectious Diseases, General Hospital of Ningxia Medical University, 804 Shengli Street, Xingqing District, Yinchuan, Ningxia, 750004, China
| | - Zhou Yan
- Department of Infectious Diseases, General Hospital of Ningxia Medical University, 804 Shengli Street, Xingqing District, Yinchuan, Ningxia, 750004, China
| | - Liu Shuai Wei
- Department of Infectious Diseases, General Hospital of Ningxia Medical University, 804 Shengli Street, Xingqing District, Yinchuan, Ningxia, 750004, China
| | - Liu Huijuan
- Department of Infectious Diseases, General Hospital of Ningxia Medical University, 804 Shengli Street, Xingqing District, Yinchuan, Ningxia, 750004, China
| | - Jiang Cai Hong
- Department of Infectious Diseases, Wuzhong City People's Hospital, Wuzhong, 751100, Ningxia, China
| | - Ma Li Na
- Department of Infectious Diseases, General Hospital of Ningxia Medical University, 804 Shengli Street, Xingqing District, Yinchuan, Ningxia, 750004, China.
| | - Ding Xiang Chun
- Department of Infectious Diseases, General Hospital of Ningxia Medical University, 804 Shengli Street, Xingqing District, Yinchuan, Ningxia, 750004, China.
| |
Collapse
|
3
|
Liu X, Lieberman J. Inflammasome-independent pyroptosis. Curr Opin Immunol 2024; 88:102432. [PMID: 38875738 DOI: 10.1016/j.coi.2024.102432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 05/27/2024] [Accepted: 05/30/2024] [Indexed: 06/16/2024]
Abstract
Gasdermins are membrane pore-forming proteins that cause pyroptosis, an inflammatory cell death in which cells burst and release cytokines, chemokines, and other host alarm signals, such as ATP and HMGB1, which recruit and activate immune cells at sites of infection and danger. There are five gasdermins in humans - gasdermins A to E. Pyroptosis was first described in myeloid cells and mucosal epithelia, which express gasdermin D and activate it when cytosolic sensors of invasive infection or tissue damage assemble into large macromolecular structures, called inflammasomes. Inflammasomes recruit and activate inflammatory caspases (caspase 1, 4, 5, and 11), which cut gasdermin D to remove an inhibitory C-terminal domain, allowing the N-terminal domain to bind to membrane acidic lipids and oligomerize into pores. Recent studies have identified inflammasome-independent proteolytic pathways that activate gasdermin D and the other gasdermins. Here, we review inflammasome-independent pyroptosis pathways and what is known about their role in normal physiology and disease.
Collapse
Affiliation(s)
- Xing Liu
- Key Laboratory of RNA Science and Engineering, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Judy Lieberman
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
4
|
Liang X, Qin Y, Wu D, Wang Q, Wu H. Pyroptosis: a double-edged sword in lung cancer and other respiratory diseases. Cell Commun Signal 2024; 22:40. [PMID: 38225586 PMCID: PMC10790448 DOI: 10.1186/s12964-023-01458-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 12/23/2023] [Indexed: 01/17/2024] Open
Abstract
Pyroptosis is an active cell death process mediated by gasdermin family proteins including Gasdermin A (GSDMA), Gasdermin B (GSDMB), Gasdermin C (GSDMC), Gasdermin D (GSDMD), Gasdermin E (GSDME, DFNA5), and DFNB59. Emerging evidences have shown that pyroptosis contributes to many pulmonary diseases, especially lung cancer, and pneumonia. The exact roles of pyroptosis and gasdermin family proteins are tremendously intricate. Besides, there are evidences that pyroptosis contributes to these respiratory diseases. However, it often plays a dual role in these diseases which is a cause for concern and makes it difficult for clinical translation. This review will focus on the multifaceted roles of pyroptosis in respiratory diseases.
Collapse
Affiliation(s)
- Xiao Liang
- Department of Oncology, the Affiliated Jiangyin Hospital of Nantong University, 163# Shoushan Road, Jiangyin, Jiangsu, 214400, P. R. China
| | - Ya Qin
- Department of Oncology, the Affiliated Jiangyin Hospital of Nantong University, 163# Shoushan Road, Jiangyin, Jiangsu, 214400, P. R. China
| | - Dan Wu
- Department of Oncology, the Affiliated Jiangyin Hospital of Nantong University, 163# Shoushan Road, Jiangyin, Jiangsu, 214400, P. R. China
| | - Qiong Wang
- Department of Oncology, the Affiliated Jiangyin Hospital of Nantong University, 163# Shoushan Road, Jiangyin, Jiangsu, 214400, P. R. China.
| | - Hongshuai Wu
- Wuxi Key Laboratory of Biomaterials for Clinical Application, Department of Central Laboratory, the Affiliated Jiangyin Hospital of Nantong University, 163# Shoushan Road, Jiangyin, Jiangsu, 214400, P. R. China.
| |
Collapse
|
5
|
Greenwood CS, Wynosky-Dolfi MA, Beal AM, Booty LM. Gasdermins assemble; recent developments in bacteriology and pharmacology. Front Immunol 2023; 14:1173519. [PMID: 37266429 PMCID: PMC10230072 DOI: 10.3389/fimmu.2023.1173519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 05/02/2023] [Indexed: 06/03/2023] Open
Abstract
The discovery of gasdermin D (GSDMD) as the terminal executioner of pyroptosis provided a large piece of the cell death puzzle, whilst simultaneously and firmly putting the gasdermin family into the limelight. In its purest form, GSDMD provides a connection between the innate alarm systems to an explosive, inflammatory form of cell death to jolt the local environment into immunological action. However, the gasdermin field has moved rapidly and significantly since the original seminal work and novel functions and mechanisms have been recently uncovered, particularly in response to infection. Gasdermins regulate and are regulated by mechanisms such as autophagy, metabolism and NETosis in fighting pathogen and protecting host. Importantly, activators and interactors of the other gasdermins, not just GSDMD, have been recently elucidated and have opened new avenues for gasdermin-based discovery. Key to this is the development of potent and specific tool molecules, so far a challenge for the field. Here we will cover some of these recently discovered areas in relation to bacterial infection before providing an overview of the pharmacological landscape and the challenges associated with targeting gasdermins.
Collapse
Affiliation(s)
- Claudine S. Greenwood
- Chemical Biology, GSK, Stevenage, United Kingdom
- Pure and Applied Chemistry, University of Strathclyde, Glasgow, United Kingdom
| | | | - Allison M. Beal
- Immunology Research Unit, GSK, Philadelphia, PA, United States
| | - Lee M. Booty
- Immunology Network, GSK, Stevenage, United Kingdom
| |
Collapse
|
6
|
Current knowledge of pyroptosis in heart diseases. J Mol Cell Cardiol 2022; 171:81-89. [PMID: 35868567 DOI: 10.1016/j.yjmcc.2022.07.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 06/22/2022] [Accepted: 07/13/2022] [Indexed: 10/17/2022]
Abstract
Pyroptosis is a form of pro-inflammatory, necrotic cell death mediated by proteins of the gasdermin family. Various heart diseases, including myocardial ischemia/reperfusion injury, myocardial infarction, and heart failure, involve cardiomyocyte and non-myocyte pyroptosis. Cardiomyocyte pyroptosis also causes the release of pro-inflammatory cytokines. Recent studies have confirmed that pyroptosis is predominantly triggered by both the canonical and non-canonical inflammasome pathways, which independently facilitate caspase-1 or caspase-11/4/5 activation and gasdermin D (GSDMD) cleavage. Cardiac fibroblast and myeloid cell pyroptosis also contributes to the pathogenesis and development of heart diseases. This review summarizes the recent studies on pyroptosis in heart diseases and discusses the associated therapeutic targets.
Collapse
|
7
|
Gasdermin D and Beyond - Gasdermin-mediated Pyroptosis in Bacterial Infections. J Mol Biol 2021; 434:167409. [PMID: 34929200 DOI: 10.1016/j.jmb.2021.167409] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 12/13/2021] [Accepted: 12/13/2021] [Indexed: 12/21/2022]
Abstract
The discovery of pyroptosis and its subsequent implications in infection and immunity has uncovered a new angle of host-defence against pathogen assault. At its most simple, gasdermin-mediated pyroptosis in bacterial infection would be expected to remove pathogens from the relative safety of the cytosol or pathogen containing vacuole/phagosome whilst inducing a rapid and effective immune response. Differences in gasdermin-mediated pyroptosis between cell types, stimulation conditions, pathogen and even animal species, however, make things more complex. The excessive inflammation associated with the pathogen-induced gasdermin-mediated pyroptosis contributes to a downward spiral in sepsis. With no currently approved effective treatment options for sepsis understanding how gasdermin-mediated pyroptotic pathways are regulated provides an opportunity to identify novel therapeutic candidates against this complex disease. In this review we cover recent advances in the field of gasdermin-mediated pyroptosis with a focus on bacterial infection and sepsis models in the context of humans and other animal species. Importantly we also consider why there is considerable redundancy set into these ancient immune pathways.
Collapse
|
8
|
Programmed cell death in aortic aneurysm and dissection: A potential therapeutic target. J Mol Cell Cardiol 2021; 163:67-80. [PMID: 34597613 DOI: 10.1016/j.yjmcc.2021.09.010] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/07/2021] [Accepted: 09/23/2021] [Indexed: 12/20/2022]
Abstract
Rupture of aortic aneurysm and dissection (AAD) remains a leading cause of death. Progressive smooth muscle cell (SMC) loss is a crucial feature of AAD that contributes to aortic dysfunction and degeneration, leading to aortic aneurysm, dissection, and, ultimately, rupture. Understanding the molecular mechanisms of SMC loss and identifying pathways that promote SMC death in AAD are critical for developing an effective pharmacologic therapy to prevent aortic destruction and disease progression. Cell death is controlled by programmed cell death pathways, including apoptosis, necroptosis, pyroptosis, and ferroptosis. Although these pathways share common stimuli and triggers, each type of programmed cell death has unique features and activation pathways. A growing body of evidence supports a critical role for programmed cell death in the pathogenesis of AAD, and inhibitors of various types of programmed cell death represent a promising therapeutic strategy. This review discusses the different types of programmed cell death pathways and their features, induction, contributions to AAD development, and therapeutic potential. We also highlight the clinical significance of programmed cell death for further studies.
Collapse
|
9
|
Hachim MY, Khalil BA, Elemam NM, Maghazachi AA. Pyroptosis: The missing puzzle among innate and adaptive immunity crosstalk. J Leukoc Biol 2020; 108:323-338. [PMID: 32083338 DOI: 10.1002/jlb.3mir0120-625r] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 01/23/2020] [Accepted: 01/27/2020] [Indexed: 12/11/2022] Open
Abstract
Pyroptosis is a newly discovered programmed cell death with inflammasome formation. Pattern recognition receptors that identify repetitive motifs of prospective pathogens such as LPS of gram-negative bacteria are crucial to pyroptosis. Upon stimulation by pathogen-associated molecular patterns or damage-associated molecular patterns, proinflammatory cytokines, mainly IL-1 family members IL-1β and IL-18, are released through pyroptosis specific pore-forming protein, gasdermin D. Even though IL-1 family members are mainly involved in innate immunity, they can be factors in adaptive immunity. Given the importance of IL-1 family members in health and diseases, deciphering the role of pyroptosis in the regulation of innate and adaptive immunity is of great importance, especially with the recent progress in identifying the exact mechanism of such a pathway. In this review, we will focus on how the innate inflammatory mediators can regulate the adaptive immune system and vice versa via pyroptosis.
Collapse
Affiliation(s)
- Mahmood Y Hachim
- Department of Clinical Sciences, College of Medicine, and the Sharjah Institute for Medical Research (SIMR), University of Sharjah, Sharjah, United Arab Emirates
| | - Bariaa A Khalil
- Department of Clinical Sciences, College of Medicine, and the Sharjah Institute for Medical Research (SIMR), University of Sharjah, Sharjah, United Arab Emirates
| | - Noha M Elemam
- Department of Clinical Sciences, College of Medicine, and the Sharjah Institute for Medical Research (SIMR), University of Sharjah, Sharjah, United Arab Emirates
| | - Azzam A Maghazachi
- Department of Clinical Sciences, College of Medicine, and the Sharjah Institute for Medical Research (SIMR), University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
10
|
The Molecular Links between Cell Death and Inflammasome. Cells 2019; 8:cells8091057. [PMID: 31509938 PMCID: PMC6769855 DOI: 10.3390/cells8091057] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/07/2019] [Accepted: 09/09/2019] [Indexed: 12/17/2022] Open
Abstract
Programmed cell death pathways and inflammasome activation pathways can be genetically and functionally separated. Inflammasomes are specialized protein complexes that process pro-inflammatory cytokines, interleukin-1β (IL-1β), and IL-18 to bioactive forms for protection from a wide range of pathogens, as well as environmental and host-derived danger molecules. Programmed cell death has been extensively studied, and its role in the development, homeostasis, and control of infection and danger is widely appreciated. Apoptosis and the recently recognized necroptosis are the best-characterized forms of programmed death, and the interplay between them through death receptor signaling is also being studied. Moreover, growing evidence suggests that many of the signaling molecules known to regulate programmed cell death can also modulate inflammasome activation in a cell-intrinsic manner. Therefore, in this review, we will discuss the current knowledge concerning the role of the signaling molecules originally associated with programmed cell death in the activation of inflammasome and IL-1β processing.
Collapse
|
11
|
Abstract
The inflammasome is a multi-molecular platform crucial to the induction of an inflammatory response to cellular danger. Recognition in the cytoplasm of endogenously and exogenously derived ligands initiates conformational change in sensor proteins, such as NLRP3, that permits the subsequent rapid recruitment of adaptor proteins, like ASC, and the resulting assembly of a large-scale inflammatory signalling platform. The assembly process is driven by sensor-sensor interactions as well as sensor-adaptor and adaptor-adaptor interactions. The resulting complex, which can reach diameters of around 1 micron, has a variable composition and stoichiometry. The inflammasome complex functions as a platform for the proximity induced activation of effector caspases, such as caspase-1 and caspase-8. This ultimately leads to the processing of the inflammatory cytokines pro-IL1β and pro-IL18 into their active forms, along with the cleavage of Gasdermin D, a key activator of cell death via pyroptosis.
Collapse
|
12
|
Yu CH, Moecking J, Geyer M, Masters SL. Mechanisms of NLRP1-Mediated Autoinflammatory Disease in Humans and Mice. J Mol Biol 2017; 430:142-152. [PMID: 28733143 DOI: 10.1016/j.jmb.2017.07.012] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 07/06/2017] [Accepted: 07/14/2017] [Indexed: 01/25/2023]
Abstract
NLRP1 was the first NOD-like receptor described to form an inflammasome, recruiting ASC to activate caspase-1, which processes interleukin-1β and interleukin-18 to their active form. A wealth of new genetic information has now redefined our understanding of this innate immune sensor. Specifically, rare loss-of-function variants in the N-terminal pyrin domain indicate that this part of NLRP1 is autoinhibitory and normally acts to prevent a familial autoinflammatory skin disease associated with cancer. In the absence of a ligand to trigger human NLRP1, these mutations have now confirmed the requirement of NLRP1 autolytic cleavage within the FIIND domain, which had previously been implicated in NLRP1 activation. Autolytic cleavage generates a C-terminal fragment of NLRP1 containing the CARD domain which then forms an ASC-dependent inflammasome. The CARD domain as an inflammasome linker is consistent with the observation that under some conditions, particularly for mouse NLRP1, caspase-1 can be engaged directly, and although it is no longer processed, it is still capable of producing mature IL-1β. Additional rare variants in a linker region between the LRR and FIIND domains of NLRP1 also cause autoinflammatory disease in both humans and mice. This new genetic information is likely to provide for more mechanistic insight in the years to come, contributing to our understanding of how NLRP1 functions as an innate immune sensor of infection and predisposes to autoimmune or autoinflammatory diseases.
Collapse
Affiliation(s)
- Chien-Hsiung Yu
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia.
| | - Jonas Moecking
- Department of Structural Immunology, Institute of Innate Immunity, University of Bonn, 53127 Bonn, Germany
| | - Matthias Geyer
- Department of Structural Immunology, Institute of Innate Immunity, University of Bonn, 53127 Bonn, Germany
| | - Seth L Masters
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
13
|
Liu X, Lieberman J. A Mechanistic Understanding of Pyroptosis: The Fiery Death Triggered by Invasive Infection. Adv Immunol 2017; 135:81-117. [PMID: 28826530 DOI: 10.1016/bs.ai.2017.02.002] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Immune cells and skin and mucosal epithelial cells recognize invasive microbes and other signs of danger to sound alarms that recruit responder cells and initiate an immediate "innate" immune response. An especially powerful alarm is triggered by cytosolic sensors of invasive infection that assemble into multimolecular complexes, called inflammasomes, that activate the inflammatory caspases, leading to maturation and secretion of proinflammatory cytokines and pyroptosis, an inflammatory death of the infected cell. Work in the past year has defined the molecular basis of pyroptosis. Activated inflammatory caspases cleave Gasdermin D (GSDMD), a cytosolic protein in immune antigen-presenting cells and epithelia. Cleavage separates the autoinhibitory C-terminal fragment from the active N-terminal fragment, which moves to the cell membrane, binds to lipids on the inside of the cell membrane, and oligomerizes to form membrane pores that disrupt cell membrane integrity, causing death and leakage of small molecules, including the proinflammatory cytokines and GSDMD itself. GSDMD also binds to cardiolipin on bacterial membranes and kills the very bacteria that activate the inflammasome. GSDMD belongs to a family of poorly studied gasdermins, expressed in the skin and mucosa, which can also form membrane pores. Spontaneous mutations that disrupt the binding of the N- and C-terminal domains of other gasdermins are associated with alopecia and asthma. Here, we review recent studies that identified the roles of the inflammasome, inflammatory caspases, and GSDMD in pyroptosis and highlight some of the outstanding questions about their roles in innate immunity, control of infection, and sepsis.
Collapse
Affiliation(s)
- Xing Liu
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Judy Lieberman
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
14
|
Shi J, Gao W, Shao F. Pyroptosis: Gasdermin-Mediated Programmed Necrotic Cell Death. Trends Biochem Sci 2016; 42:245-254. [PMID: 27932073 DOI: 10.1016/j.tibs.2016.10.004] [Citation(s) in RCA: 2148] [Impact Index Per Article: 238.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 10/16/2016] [Accepted: 10/17/2016] [Indexed: 02/08/2023]
Abstract
Pyroptosis was long regarded as caspase-1-mediated monocyte death in response to certain bacterial insults. Caspase-1 is activated upon various infectious and immunological challenges through different inflammasomes. The discovery of caspase-11/4/5 function in sensing intracellular lipopolysaccharide expands the spectrum of pyroptosis mediators and also reveals that pyroptosis is not cell type specific. Recent studies identified the pyroptosis executioner, gasdermin D (GSDMD), a substrate of both caspase-1 and caspase-11/4/5. GSDMD represents a large gasdermin family bearing a novel membrane pore-forming activity. Thus, pyroptosis is redefined as gasdermin-mediated programmed necrosis. Gasdermins are associated with various genetic diseases, but their cellular function and mechanism of activation (except for GSDMD) are unknown. The gasdermin family suggests a new area of research on pyroptosis function in immunity, disease, and beyond.
Collapse
Affiliation(s)
- Jianjin Shi
- National Institute of Biological Sciences, Number 7 Science Park Road, Zhongguancun Life Science Park, Beijing 102206, China
| | - Wenqing Gao
- National Institute of Biological Sciences, Number 7 Science Park Road, Zhongguancun Life Science Park, Beijing 102206, China
| | - Feng Shao
- National Institute of Biological Sciences, Number 7 Science Park Road, Zhongguancun Life Science Park, Beijing 102206, China.
| |
Collapse
|
15
|
Zhao Y, Shao F. Diverse mechanisms for inflammasome sensing of cytosolic bacteria and bacterial virulence. Curr Opin Microbiol 2016; 29:37-42. [DOI: 10.1016/j.mib.2015.10.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 10/15/2015] [Accepted: 10/18/2015] [Indexed: 12/15/2022]
|
16
|
Abstract
Inflammasomes are cytosolic protein complexes that serve as platforms for the recruitment and activation of the pro-inflammatory CASPASE-1 protease. CASPASE-1 activation leads to processing and maturation of the cytokines interleukin-1β and interleukin-18 and a lytic form of cell death termed pyroptosis. Inflammasome assembly is initiated by cytosolic sensors in response to microbial infections. Many of these sensors, including NLRP1 (NLR family, pyrin domain containing 1), are described to form an inflammasome, but until recently, the mechanism of inflammasome activation and its physiological functions in host defense have remained unclear. In the last few years, important advances in our understanding of NLRP1 biology have been achieved. In this review, we discuss the activation of NLRP1 by various stimuli, including Bacillus anthracis lethal toxin, Toxoplasma gondii, muramyl dipeptide, and host intracellular ATP depletion. The role NLRP1 plays in pathogen recognition and resistance during infection is also discussed, as is the regulation of NLRP1 by host and viral proteins. We conclude by discussing the unexpected differences in the mechanism of NLRP1 inflammasome activation, as compared to the activation of other inflammasomes, such as the NAIP (NLR family, apoptosis inhibitory protein)/NLRC4 inflammasomes.
Collapse
Affiliation(s)
- Joseph Chavarría-Smith
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | | |
Collapse
|
17
|
Zhang C, Bi Y, Jin G, Gan H, Yu L. High and fluctuating glucose levels increase the expression and secretion of interleukin‑18 in mouse peritoneal macrophages. Mol Med Rep 2015; 12:2715-20. [PMID: 25955000 DOI: 10.3892/mmr.2015.3753] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 03/09/2015] [Indexed: 11/06/2022] Open
Abstract
Macrophages are involved in the progression of atherosclerosis by releasing pro-inflammatory cytokines. High levels of interleukin (IL)-18 are associated with an increased risk of developing diabetes and atherosclerosis. The present study aimed to investigate the association between IL-18, and high and fluctuating glucose levels in mouse peritoneal macrophages (MPMs), and to assess the involvement of the c-Jun N-terminal kinase (JNK) pathway in this association. The MPMs were exposed to 4, 8, 16, 24 and 32 mM glucose for 6 h, which was alternated to either 4/24 mM glucose every 1.5 h for 6 h, or to 32 mM glucose for 3, 6, 12 and 18 h. The expression and secretion levels of IL-18 were detected using reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and ELISA, respectively. High levels of glucose increased the expression and secretion levels of IL-18 in a dose-dependent manner (P<0.05, vs. 4 mM glucose). This increase was more important in the cells exposed to fluctuating 4/24 mM glucose every 1.5 h compared with the cells exposed to stable 24 mM glucose (RT-qPCR, 0.78 ± 0.05, vs. 0.66 ± 0.07; ELISA, 188.23 ± 20.32, vs. 143.16 ± 13.07 pg/ml; P<0.05). The expression and secretion levels of IL-18 increased 8 and 12 h following exposure to high-glucose, and then decreased at 18 h (P<0.05, vs. 3 h). Furthermore, SP600125, a JNK inhibitor, decreased the high-glucose-induced gene expression of IL-18 in a dose-dependent manner. Therefore, high and fluctuating levels of glucose may be associated with inflammation and diabetic atherosclerosis by regulating the expression levels of IL-18. The present study identified the JNK signaling pathway as one of the mechanisms underlying this association. Targeting IL-18 may be a novel therapeutic approach against diabetes-associated atherosclerosis.
Collapse
Affiliation(s)
- Chenchen Zhang
- Department of Endocrinology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233020, P.R. China
| | - Yaxin Bi
- Department of Endocrinology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233020, P.R. China
| | - Guoxi Jin
- Department of Endocrinology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233020, P.R. China
| | - Huaiyong Gan
- Department of Pathology, Bengbu Medical College, Bengbu, Anhui 233020, P.R. China
| | - Lei Yu
- Department of Endocrinology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233020, P.R. China
| |
Collapse
|
18
|
Monteleone M, Stow JL, Schroder K. Mechanisms of unconventional secretion of IL-1 family cytokines. Cytokine 2015; 74:213-8. [PMID: 25922276 DOI: 10.1016/j.cyto.2015.03.022] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 03/31/2015] [Indexed: 12/20/2022]
Abstract
One of the most poorly understood processes in cell biology is the peculiar ability of specific leaderless proteins to be secreted via ER/Golgi-independent mechanisms ('unconventional protein secretion'). One such leaderless protein is the major immune-activating cytokine, interleukin-1β (IL-1β). Unusual amongst cytokines, IL-1β is expressed in the cytosol as an inactive precursor protein. It requires maturation by the caspase-1 protease, which itself requires activation upon immune cell sensing of infection or cell stress. Despite 25 years of intensive research into IL-1β secretory mechanisms, how it exits the cell is still not well understood. Here we will review the various mechanisms by which macrophages have been proposed to secrete IL-1 family cytokines, and the potential involvement of caspase-1 therein. Since aberrant IL-1β production drives inherited and acquired human diseases (e.g. autoinflammatory diseases, arthritic diseases, gout, Alzheimer's disease), elucidation of the IL-1β secretory pathway may offer new therapeutic opportunities for treatment across this wide range of human conditions.
Collapse
Affiliation(s)
- Mercedes Monteleone
- Institute for Molecular Bioscience, The University of Queensland, St Lucia 4072, Australia
| | - Jennifer L Stow
- Institute for Molecular Bioscience, The University of Queensland, St Lucia 4072, Australia
| | - Kate Schroder
- Institute for Molecular Bioscience, The University of Queensland, St Lucia 4072, Australia.
| |
Collapse
|
19
|
Caspase-1 autoproteolysis is differentially required for NLRP1b and NLRP3 inflammasome function. Proc Natl Acad Sci U S A 2014; 111:17254-9. [PMID: 25404286 DOI: 10.1073/pnas.1415756111] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Inflammasomes are caspase-1-activating multiprotein complexes. The mouse nucleotide-binding domain and leucine rich repeat pyrin containing 1b (NLRP1b) inflammasome was identified as the sensor of Bacillus anthracis lethal toxin (LT) in mouse macrophages from sensitive strains such as BALB/c. Upon exposure to LT, the NLRP1b inflammasome activates caspase-1 to produce mature IL-1β and induce pyroptosis. Both processes are believed to depend on autoproteolysed caspase-1. In contrast to human NLRP1, mouse NLRP1b lacks an N-terminal pyrin domain (PYD), indicating that the assembly of the NLRP1b inflammasome does not require the adaptor apoptosis-associated speck-like protein containing a CARD (ASC). LT-induced NLRP1b inflammasome activation was shown to be impaired upon inhibition of potassium efflux, which is known to play a major role in NLRP3 inflammasome formation and ASC dimerization. We investigated whether NLRP3 and/or ASC were required for caspase-1 activation upon LT stimulation in the BALB/c background. The NLRP1b inflammasome activation was assessed in both macrophages and dendritic cells lacking either ASC or NLRP3. Upon LT treatment, the absence of NLRP3 did not alter the NLRP1b inflammasome activity. Surprisingly, the absence of ASC resulted in IL-1β cleavage and pyroptosis, despite the absence of caspase-1 autoprocessing activity. By reconstituting caspase-1/caspase-11(-/-) cells with a noncleavable or catalytically inactive mutant version of caspase-1, we directly demonstrated that noncleavable caspase-1 is fully active in response to the NLRP1b activator LT, whereas it is nonfunctional in response to the NLRP3 activator nigericin. Taken together, these results establish variable requirements for caspase-1 cleavage depending on the pathogen and the responding NLR.
Collapse
|
20
|
Jang J, Cho M, Lee HR, Cha K, Chun JH, Hong KJ, Park J, Rhie GE. Monoclonal antibody against the poly-gamma-D-glutamic acid capsule of Bacillus anthracis protects mice from enhanced lethal toxin activity due to capsule and anthrax spore challenge. Biochim Biophys Acta Gen Subj 2013. [PMID: 23201204 DOI: 10.1016/j.bbagen.2012.11.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
BACKGROUND The poly-gamma-D-glutamic acid (PGA) capsule, a major virulence factor of Bacillus anthracis, protects bacilli from immune surveillance and allows its unimpeded growth in the host. Recently, the importance of the PGA in the pathogenesis of anthrax infection has been reported. The PGA capsule is associated with lethal toxin (LT) in the blood of experimentally infected animals and enhances the cytotoxicity of LT. METHODS To investigate the role of anti-PGA Abs on progression of anthrax infection, two mouse anti-PGA mAbs with K(d) values of 0.8 microM and 2.6 microM respectively were produced and in silico three dimensional (3D) models of mAbs with their cognitive PGA antigen complex were analyzed. RESULTS Anti-PGA mAbs specifically bound encapsulated B. anthracis H9401 and showed opsonophagocytosis activity against the bacteria with complement. The enhancement effect of PGA on LT-mediated cytotoxicity was confirmed ex vivo using mouse bone marrow-derived macrophages and was effectively inhibited by anti-PGA mAb. Passive immunization of mAb completely protected mice from PGA-enhanced LT toxicity and partially rescued mice from anthrax spore challenges. 3D structure models of these mAbs and PGA complex support specific interactions between CDR and cognitive PGA. These results indicate that mouse mAb against PGA capsule prevents the progress of anthrax disease not only by eliminating the vegetative form of encapsulated B. anthracis but also by inhibiting the enhanced cytotoxic activity of LT by PGA through specific binding with PGA capsule antigen. GENERAL SIGNIFICANCE Our results suggest a potential role for PGA antibodies in preventing and treating anthrax infection.
Collapse
Affiliation(s)
- Jeyoun Jang
- Division of High-Risk Pathogen Research, Center for Infectious Diseases, National Institute of Health, 187 Osongsaengmyeong2-ro, Cheongwon-gun, Chungbuk 363-951, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Lee JKH, Pearson JD, Maser BE, Ingham RJ. Cleavage of the JunB transcription factor by caspases generates a carboxyl-terminal fragment that inhibits activator protein-1 transcriptional activity. J Biol Chem 2013; 288:21482-95. [PMID: 23749999 DOI: 10.1074/jbc.m113.485672] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The activator protein-1 (AP-1) family transcription factor, JunB, is an important regulator of proliferation, apoptosis, differentiation, and the immune response. In this report, we show that JunB is cleaved in a caspase-dependent manner in apoptotic anaplastic lymphoma kinase-positive, anaplastic large cell lymphoma cell lines and that ectopically expressed JunB is cleaved in murine RAW 264.7 macrophage cells treated with the NALP1b inflammasome activator, anthrax lethal toxin. In both cases, we identify aspartic acid 137 as the caspase cleavage site and demonstrate that JunB can be directly cleaved in vitro by multiple caspases at this site. Cleavage of JunB at aspartic acid 137 separates the N-terminal transactivation domain from the C-terminal DNA binding and dimerization domains, and we show that the C-terminal cleavage fragment retains both DNA binding activity and the ability to interact with AP-1 family transcription factors. Furthermore, this fragment interferes with the binding of full-length JunB to AP-1 sites and inhibits AP-1-dependent transcription. In summary, we have identified and characterized a novel mechanism of JunB post-translational modification and demonstrate that the C-terminal JunB caspase cleavage product functions as a potent inhibitor of AP-1-dependent transcription.
Collapse
Affiliation(s)
- Jason K H Lee
- Department of Medical Microbiology and Immunology, University of Alberta, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | | | | | | |
Collapse
|
22
|
Chemical genetics reveals a kinase-independent role for protein kinase R in pyroptosis. Nat Chem Biol 2013; 9:398-405. [PMID: 23603659 DOI: 10.1038/nchembio.1236] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Accepted: 03/21/2013] [Indexed: 12/15/2022]
Abstract
Formation of the inflammasome, a scaffolding complex that activates caspase-1, is important in numerous diseases. Pyroptotic cell death induced by anthrax lethal toxin (LT) is a model for inflammasome-mediated caspase-1 activation. We discovered 7-desacetoxy-6,7-dehydrogedunin (7DG) in a phenotypic screen as a small molecule that protects macrophages from LT-induced death. Using chemical proteomics, we identified protein kinase R (PKR) as the target of 7DG and show that RNAi knockdown of PKR phenocopies treatment with 7DG. Further, we show that PKR's role in ASC assembly and caspase-1 activation induced by several different inflammasome stimuli is independent of PKR's kinase activity, demonstrating that PKR has a previously uncharacterized role in caspase-1 activation and pyroptosis that is distinct from its reported kinase-dependent roles in apoptosis and inflammasome formation in lipopolysaccharide-primed cells. Remarkably, PKR has different roles in two distinct cell death pathways and has a broad role in inflammasome function relevant in other diseases.
Collapse
|
23
|
Weigel KJ, Rues L, Doyle EJ, Buchheit CL, Wood JG, Gallagher RJ, Kelly LE, Radel JD, Bradley KA, LeVine SM. Rapid vascular responses to anthrax lethal toxin in mice containing a segment of chromosome 11 from the CAST/Ei strain on a C57BL/6 genetic background. PLoS One 2012; 7:e40126. [PMID: 22792226 PMCID: PMC3390349 DOI: 10.1371/journal.pone.0040126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 06/01/2012] [Indexed: 11/29/2022] Open
Abstract
Host allelic variation controls the response to B. anthracis and the disease course of anthrax. Mouse strains with macrophages that are responsive to anthrax lethal toxin (LT) show resistance to infection while mouse strains with LT non-responsive macrophages succumb more readily. B6.CAST.11M mice have a region of chromosome 11 from the CAST/Ei strain (a LT responsive strain) introgressed onto a LT non-responsive C57BL/6J genetic background. Previously, B6.CAST.11M mice were found to exhibit a rapid inflammatory reaction to LT termed the early response phenotype (ERP), and displayed greater resistance to B. anthracis infection compared to C57BL/6J mice. Several ERP features (e.g., bloat, hypothermia, labored breathing, dilated pinnae vessels) suggested vascular involvement. To test this, Evan’s blue was used to assess vessel leakage and intravital microscopy was used to monitor microvascular blood flow. Increased vascular leakage was observed in lungs of B6.CAST.11M mice compared to C57BL/6J mice 1 hour after systemic administration of LT. Capillary blood flow was reduced in the small intestine mesentery without concomitant leukocyte emigration following systemic or topical application of LT, the latter suggesting a localized tissue mechanism in this response. Since LT activates the Nlrp1b inflammasome in B6.CAST.11M mice, the roles of inflammasome products, IL-1β and IL-18, were examined. Topical application to the mesentery of IL-1β but not IL-18 revealed pronounced slowing of blood flow in B6.CAST.11M mice that was not present in C57BL/6J mice. A neutralizing anti-IL-1β antibody suppressed the slowing of blood flow induced by LT, indicating a role for IL-1β in the response. Besides allelic differences controlling Nlrp1b inflammasome activation by LT observed previously, evidence presented here suggests that an additional genetic determinant(s) could regulate the vascular response to IL-1β. These results demonstrate that vessel leakage and alterations to blood flow are part of the rapid response in mice resistant to B. anthracis infection.
Collapse
Affiliation(s)
- Kelsey J. Weigel
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
- Rockhurst University, Kansas City, Missouri, United States of America
| | - Laura Rues
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
- Rockhurst University, Kansas City, Missouri, United States of America
| | - Edward J. Doyle
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
- Rockhurst University, Kansas City, Missouri, United States of America
| | - Cassandra L. Buchheit
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
- Rockhurst University, Kansas City, Missouri, United States of America
| | - John G. Wood
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
- Department of Surgery, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Ryan J. Gallagher
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Laura E. Kelly
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
- Rockhurst University, Kansas City, Missouri, United States of America
| | - Jeffrey D. Radel
- Department of Occupational Therapy Education, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Kenneth A. Bradley
- Department of Microbiology, Immunology & Molecular Genetics, University of California Los Angeles, Los Angeles, California, United States of America
| | - Steven M. LeVine
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
- * E-mail:
| |
Collapse
|
24
|
The poly-γ-D-glutamic acid capsule of Bacillus anthracis enhances lethal toxin activity. Infect Immun 2011; 79:3846-54. [PMID: 21690241 DOI: 10.1128/iai.01145-10] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The poly-γ-D-glutamic acid (PGA) capsule is one of the major virulence factors of Bacillus anthracis, which causes a highly lethal infectious disease. The PGA capsule disguises B. anthracis from immune surveillance and allows its unimpeded growth in the host. The PGA capsule recently was reported to be associated with lethal toxin (LT) in the blood of experimentally infected animals (M. H. Cho, et al., Infect. Immun. 78:387-392, 2010). The effect of PGA, either alone or in combination with LT, on macrophages, which play an important role in the progression of anthrax disease, has not been thoroughly investigated. In this study, we investigated the effect of PGA on LT cytotoxicity using the mouse macrophage cell line J774A.1. PGA produced a concentration-dependent enhancement of the cytotoxicity of LT on J774A.1 cells through an enhancement in the binding and accumulation of protective antigen to its receptors. The increase of LT activity was confirmed using Western blot analysis, which showed that the combination of PGA and LT produced a greater degree of degradation of mitogen-activated protein kinase kinases and an increased level of the activation of the proform of caspase-1 to its processed form compared to the effects of LT alone. In addition, mice that received a tail vein injection of both PGA and LT had a significantly increased rate of death compared to that of mice injected with LT alone. PGA had no effect when added to cultures or administered to mice in the absence of LT. These results emphasize the importance of PGA in the pathogenesis of anthrax infection.
Collapse
|
25
|
Xie T, Auth RD, Frucht DM. The effects of anthrax lethal toxin on host barrier function. Toxins (Basel) 2011; 3:591-607. [PMID: 22069727 PMCID: PMC3202839 DOI: 10.3390/toxins3060591] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Revised: 06/02/2011] [Accepted: 06/07/2011] [Indexed: 01/08/2023] Open
Abstract
The pathological actions of anthrax toxin require the activities of its edema factor (EF) and lethal factor (LF) enzyme components, which gain intracellular access via its receptor-binding component, protective antigen (PA). LF is a metalloproteinase with specificity for selected mitogen-activated protein kinase kinases (MKKs), but its activity is not directly lethal to many types of primary and transformed cells in vitro. Nevertheless, in vivo treatment of several animal species with the combination of LF and PA (termed lethal toxin or LT) leads to morbidity and mortality, suggesting that LT-dependent toxicity is mediated by cellular interactions between host cells. Decades of research have revealed that a central hallmark of this toxicity is the disruption of key cellular barriers required to maintain homeostasis. This review will focus on the current understanding of the effects of LT on barrier function, highlighting recent progress in establishing the molecular mechanisms underlying these effects.
Collapse
Affiliation(s)
- Tao Xie
- Laboratory of Cell Biology, Division of Monoclonal Antibodies, Office of Biotechnology Products, Office of Pharmaceutical Science, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Bethesda, MD 20892, USA.
| | | | | |
Collapse
|
26
|
Im SS, Yousef L, Blaschitz C, Liu JZ, Edwards RA, Young SG, Raffatellu M, Osborne TF. Linking lipid metabolism to the innate immune response in macrophages through sterol regulatory element binding protein-1a. Cell Metab 2011; 13:540-549. [PMID: 21531336 PMCID: PMC3090630 DOI: 10.1016/j.cmet.2011.04.001] [Citation(s) in RCA: 278] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Revised: 01/28/2011] [Accepted: 03/04/2011] [Indexed: 01/24/2023]
Abstract
We show that mice with a targeted deficiency in the gene encoding the lipogenic transcription factor SREBP-1a are resistant to endotoxic shock and systemic inflammatory response syndrome induced by cecal ligation and puncture (CLP). When macrophages from the mutant mice were challenged with bacterial lipopolysaccharide, they failed to activate lipogenesis as well as two hallmark inflammasome functions, activation of caspase-1 and secretion of IL-1β. We show that SREBP-1a activates not only genes required for lipogenesis in macrophages but also the gene encoding Nlrp1a, which is a core inflammasome component. Thus, SREBP-1a links lipid metabolism to the innate immune response, which supports our hypothesis that SREBPs evolved to regulate cellular reactions to external challenges that range from nutrient limitation and hypoxia to toxins and pathogens.
Collapse
Affiliation(s)
- Seung-Soon Im
- Metabolic Signaling and Disease Program, Sanford-Burnham Medical Research Institute, Orlando, Florida
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California
| | - Leyla Yousef
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California
| | - Christoph Blaschitz
- Department of Microbiology and Molecular Genetics and Institute for Immunology, University of California, Irvine, California
| | - Janet Z. Liu
- Department of Microbiology and Molecular Genetics and Institute for Immunology, University of California, Irvine, California
| | - Robert A. Edwards
- Department of Pathology and Laboratory Medicine and Institute for Immunology, University of California, Irvine California
| | - Stephen G. Young
- Department of Medicine and Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, California
| | - Manuela Raffatellu
- Department of Microbiology and Molecular Genetics and Institute for Immunology, University of California, Irvine, California
| | - Timothy F. Osborne
- Metabolic Signaling and Disease Program, Sanford-Burnham Medical Research Institute, Orlando, Florida
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California
| |
Collapse
|
27
|
Thomas J, Epshtein Y, Chopra A, Ordog B, Ghassemi M, Christman JW, Nattel S, Cook JL, Levitan I. Anthrax lethal factor activates K(+) channels to induce IL-1β secretion in macrophages. THE JOURNAL OF IMMUNOLOGY 2011; 186:5236-43. [PMID: 21421849 DOI: 10.4049/jimmunol.1001078] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Anthrax lethal toxin (LeTx) is a virulence factor of Bacilillus anthracis that is a bivalent toxin, containing lethal factor (LF) and protective Ag proteins, which causes cytotoxicity and altered macrophage function. LeTx exposure results in early K(+) efflux from macrophages associated with caspase-1 activation and increased IL-1β release. The mechanism of this toxin-induced K(+) efflux is unknown. The goals of the current study were to determine whether LeTx-induced K(+) efflux from macrophages is mediated by toxin effects on specific K(+) channels and whether altered K(+)-channel activity is involved in LeTx-induced IL-1β release. Exposure of macrophages to LeTx induced a significant increase in the activities of two types of K(+) channels that have been identified in mouse macrophages: Ba(2+)-sensitive inwardly rectifying K(+) (Kir) channels and 4-aminopyridine-sensitive outwardly rectifying voltage-gated K(+) (Kv) channels. LeTx enhancement of both Kir and Kv required the proteolytic activity of LF, because exposure of macrophages to a mutant LF-protein (LF(E687C)) combined with protective Ag protein had no effect on the currents. Furthermore, blocking Kir and Kv channels significantly decreased LeTx-induced release of IL-1β. In addition, retroviral transduction of macrophages with wild-type Kir enhanced LeTx-induced release of IL-1β, whereas transduction of dominant-negative Kir blocked LeTx-induced release of IL-1β. Activation of caspase-1 was not required for LeTx-induced activation of either of the K(+) channels. These data indicate that a major mechanism through which LeTx stimulates macrophages to release IL-1β involves an LF-protease effect that enhances Kir and Kv channel function during toxin stimulation.
Collapse
Affiliation(s)
- Johnson Thomas
- Section of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Osawa R, Williams KL, Singh N. The inflammasome regulatory pathway and infections: Role in pathophysiology and clinical implications. J Infect 2011; 62:119-29. [DOI: 10.1016/j.jinf.2010.10.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2010] [Revised: 09/28/2010] [Accepted: 10/05/2010] [Indexed: 01/16/2023]
|
29
|
Taxman DJ, Huang MTH, Ting JPY. Inflammasome inhibition as a pathogenic stealth mechanism. Cell Host Microbe 2010; 8:7-11. [PMID: 20638636 DOI: 10.1016/j.chom.2010.06.005] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Revised: 06/08/2010] [Accepted: 06/16/2010] [Indexed: 12/19/2022]
Abstract
The activation of inflammasomes containing NBD-LRR (NLRs) or non-NLRs is critical for effective host defense against microbial pathogens. Recent discoveries have uncovered a plethora of pathogenic strategies to inhibit inflammasome-mediated processing of IL-1beta and IL-18. We review recent evidence for viral and bacterial manipulation of the inflammasome, ranging from perturbation of caspase-1 activation to targeting of specific inflammasome components.
Collapse
Affiliation(s)
- Debra J Taxman
- Department of Microbiology and Immunology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7295, USA
| | | | | |
Collapse
|
30
|
Muehlbauer SM, Lima H, Goldman DL, Jacobson LS, Rivera J, Goldberg MF, Palladino MA, Casadevall A, Brojatsch J. Proteasome inhibitors prevent caspase-1-mediated disease in rodents challenged with anthrax lethal toxin. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 177:735-43. [PMID: 20595632 DOI: 10.2353/ajpath.2010.090828] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
NOD-like receptors (NLRs) and caspase-1 are critical components of innate immunity, yet their over-activation has been linked to a long list of microbial and inflammatory diseases, including anthrax. The Bacillus anthracis lethal toxin (LT) has been shown to activate the NLR Nalp1b and caspase-1 and to induce many symptoms of the anthrax disease in susceptible murine strains. In this study we tested whether it is possible to prevent LT-mediated disease by pharmacological inhibition of caspase-1. We found that caspase-1 and proteasome inhibitors blocked LT-mediated caspase-1 activation and cytolysis of LT-sensitive (Fischer and Brown-Norway) rat macrophages. The proteasome inhibitor NPI-0052 also prevented disease progression and death in susceptible Fischer rats and increased survival in BALB/c mice after LT challenge. In addition, NPI-0052 blocked rapid disease progression and death in susceptible Fischer rats and BALB/c mice challenged with LT. In contrast, Lewis rats, which harbor LT-resistant macrophages, showed no signs of caspase-1 activation after LT injection and did not exhibit rapid disease progression. Taken together, our findings indicate that caspase-1 activation is critical for rapid disease progression in rodents challenged with LT. Our studies indicate that pharmacological inhibition of NLR signaling and caspase-1 can be used to treat inflammatory diseases.
Collapse
Affiliation(s)
- Stefan M Muehlbauer
- Albert Einstein College of Medicine, Department of Microbiology and Immunology, Bronx, NY 10461, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Terra JK, Cote CK, France B, Jenkins AL, Bozue JA, Welkos SL, LeVine SM, Bradley KA. Cutting edge: resistance to Bacillus anthracis infection mediated by a lethal toxin sensitive allele of Nalp1b/Nlrp1b. THE JOURNAL OF IMMUNOLOGY 2009; 184:17-20. [PMID: 19949100 DOI: 10.4049/jimmunol.0903114] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Pathogenesis of Bacillus anthracis is associated with the production of lethal toxin (LT), which activates the murine Nalp1b/Nlrp1b inflammasome and induces caspase-1-dependent pyroptotic death in macrophages and dendritic cells. In this study, we investigated the effect of allelic variation of Nlrp1b on the outcome of LT challenge and infection by B. anthracis spores. Nlrp1b allelic variation did not alter the kinetics or pathology of end-stage disease induced by purified LT, suggesting that, in contrast to previous reports, macrophage lysis does not contribute directly to LT-mediated pathology. However, animals expressing a LT-sensitive allele of Nlrp1b showed an early inflammatory response to LT and increased resistance to infection by B. anthracis. Data presented here support a model whereby LT-mediated activation of Nlrp1b and subsequent lysis of macrophages is not a mechanism used by B. anthracis to promote virulence, but rather a protective host-mediated innate immune response.
Collapse
Affiliation(s)
- Jill K Terra
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Averette KM, Pratt MR, Yang Y, Bassilian S, Whitelegge JP, Loo JA, Muir TW, Bradley KA. Anthrax lethal toxin induced lysosomal membrane permeabilization and cytosolic cathepsin release is Nlrp1b/Nalp1b-dependent. PLoS One 2009; 4:e7913. [PMID: 19924255 PMCID: PMC2775945 DOI: 10.1371/journal.pone.0007913] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Accepted: 10/18/2009] [Indexed: 12/15/2022] Open
Abstract
NOD-like receptors (NLRs) are a group of cytoplasmic molecules that recognize microbial invasion or 'danger signals'. Activation of NLRs can induce rapid caspase-1 dependent cell death termed pyroptosis, or a caspase-1 independent cell death termed pyronecrosis. Bacillus anthracis lethal toxin (LT), is recognized by a subset of alleles of the NLR protein Nlrp1b, resulting in pyroptotic cell death of macrophages and dendritic cells. Here we show that LT induces lysosomal membrane permeabilization (LMP). The presentation of LMP requires expression of an LT-responsive allele of Nlrp1b, and is blocked by proteasome inhibitors and heat shock, both of which prevent LT-mediated pyroptosis. Further the lysosomal protease cathepsin B is released into the cell cytosol and cathepsin inhibitors block LT-mediated cell death. These data reveal a role for lysosomal membrane permeabilization in the cellular response to bacterial pathogens and demonstrate a shared requirement for cytosolic relocalization of cathepsins in pyroptosis and pyronecrosis.
Collapse
Affiliation(s)
- Kathleen M. Averette
- Department of Microbiology, Immunology & Molecular Genetics, University of California Los Angeles, Los Angeles, California, United States of America
| | - Matthew R. Pratt
- Laboratory of Synthetic Protein Chemistry, The Rockefeller University, New York, New York, United States of America
| | - Yanan Yang
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California, United States of America
| | - Sara Bassilian
- The Pasarow Mass Spectrometry Laboratory, The NPI-Semel Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Julian P. Whitelegge
- The Pasarow Mass Spectrometry Laboratory, The NPI-Semel Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Joseph A. Loo
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California, United States of America
| | - Tom W. Muir
- Laboratory of Synthetic Protein Chemistry, The Rockefeller University, New York, New York, United States of America
| | - Kenneth A. Bradley
- Department of Microbiology, Immunology & Molecular Genetics, University of California Los Angeles, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
33
|
Bacillus anthracis capsule activates caspase-1 and induces interleukin-1beta release from differentiated THP-1 and human monocyte-derived dendritic cells. Infect Immun 2009; 78:387-92. [PMID: 19737897 DOI: 10.1128/iai.00956-09] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The poly-gamma-d-glutamic acid (PGA) capsule is one of the major virulence factors of Bacillus anthracis, which causes a highly lethal infection. The antiphagocytic PGA capsule disguises the bacilli from immune surveillance and allows unimpeded growth of bacilli in the host. Recently, efforts have been made to include PGA as a component of anthrax vaccine; however, the innate immune response of PGA itself has been poorly investigated. In this study, we characterized the innate immune response elicited by PGA in the human monocytic cell line THP-1, which was differentiated into macrophages with phorbol 12-myristate 13-acetate (PMA) and human monocyte-derived dendritic cells (hMoDCs). PGA capsules were isolated from the culture supernatant of either the pXO1-cured strain of B. anthracis H9401 or B. licheniformis ATCC 9945a. PGA treatment of differentiated THP-1 cells and hMoDCs led to the specific extracellular release of interleukin-1beta (IL-1beta) in a dose-dependent manner. Evaluation of IL-1beta processing by Western blotting revealed that cleaved IL-1beta increased in THP-1 cells and hMoDCs after PGA treatment. Enhanced processing of IL-1beta directly correlated with increased activation of its upstream regulator, caspase-1, also known as IL-1beta-converting enzyme (ICE). The extracellular release of IL-1beta in response to PGA was ICE dependent, since the administration of an ICE inhibitor prior to PGA treatment blocked induction of IL-1beta. These results demonstrate that B. anthracis PGA elicits IL-1beta production through activation of ICE in PMA-differentiated THP-1 cells and hMoDCs, suggesting the potential for PGA as a therapeutic target for anthrax.
Collapse
|
34
|
Martin U, Scholler J, Gurgel J, Renshaw B, Sims JE, Gabel CA. Externalization of the leaderless cytokine IL-1F6 occurs in response to lipopolysaccharide/ATP activation of transduced bone marrow macrophages. THE JOURNAL OF IMMUNOLOGY 2009; 183:4021-30. [PMID: 19717513 DOI: 10.4049/jimmunol.0803301] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
An interesting trait shared by many members of the IL-1 cytokine family is the absence of a signal sequence that can direct the newly synthesized polypeptides to the endoplasmic reticulum. As a result, these cytokines accumulate intracellularly. Recent studies investigating IL-1beta export established that its release is facilitated via activation of an intracellular multiprotein complex termed the inflammasome. The purpose of the current study was to explore the mechanism by which murine IL-1F6 is released from bone marrow-derived macrophages (BMDMs) and to compare this mechanism to that used by IL-1beta. BMDMs were engineered to overexpress IL-1F6 by retroviral transduction; cells overexpressing GFP also were generated to provide a noncytokine comparator. The transduced cells constitutively expressed IL-1F6 and GFP, but they did not constitutively release these polypeptides to the medium. Enhanced release of IL-1F6 was achieved by treating with LPS followed by ATP-induced activation of the P2X(7) receptor; GFP also was released under these conditions. No obvious proteolytic cleavage of IL-1F6 was noted following P2X(7) receptor-induced release. Stimulus-induced release of IL-1F6 and GFP demonstrated comparable susceptibility to pharmacological modulation. Therefore, transduced IL-1F6 is released in parallel with endogenous mature IL-1beta from LPS/ATP-treated BMDMs, but this externalization process is not selective for cytokines as a noncytokine (GFP) shows similar behavior. These findings suggest that IL-1F6 can be externalized via a stimulus-coupled mechanism comparable to that used by IL-1beta, and they provide additional insight into the complex cellular processes controlling posttranslational processing of the IL-1 cytokine family.
Collapse
Affiliation(s)
- Unja Martin
- Department of Inflammation, Amgen, Seattle, WA 98119, USA
| | | | | | | | | | | |
Collapse
|
35
|
Moayeri M, Leppla SH. Cellular and systemic effects of anthrax lethal toxin and edema toxin. Mol Aspects Med 2009; 30:439-55. [PMID: 19638283 DOI: 10.1016/j.mam.2009.07.003] [Citation(s) in RCA: 175] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Accepted: 07/21/2009] [Indexed: 12/21/2022]
Abstract
Anthrax lethal toxin (LT) and edema toxin (ET) are the major virulence factors of anthrax and can replicate the lethality and symptoms associated with the disease. This review provides an overview of our current understanding of anthrax toxin effects in animal models and the cytotoxicity (necrosis and apoptosis) induced by LT in different cells. A brief reexamination of early historic findings on toxin in vivo effects in the context of our current knowledge is also presented.
Collapse
Affiliation(s)
- Mahtab Moayeri
- Bacterial Toxins and Therapeutics Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Building 33, Room 1W20B, Bethesda, MD 20892, USA.
| | | |
Collapse
|
36
|
Investigation of new dominant-negative inhibitors of anthrax protective antigen mutants for use in therapy and vaccination. Infect Immun 2009; 77:4679-87. [PMID: 19620345 DOI: 10.1128/iai.00264-09] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The lethal toxin (LeTx) of Bacillus anthracis plays a key role in the pathogenesis of anthrax. The protective antigen (PA) is a primary part of the anthrax toxin and forms LeTx by combination with lethal factor (LF). Phenylalanine-427 (F427) is crucial for PA function. This study was designed to discover potential novel therapeutic agents and vaccines for anthrax. This was done by screening PA mutants that were mutated at the F427 residue for a dominant-negative inhibitory (DNI) phenotype which was nontoxic but inhibited the toxicity of the wild-type LeTx. For this, PA residue F427 was first mutated to each of the other 19 naturally occurring amino acids. The cytotoxicity and DNI phenotypes of the mutated PA proteins were tested in the presence of 1 microg/ml LF in RAW264.7 cells and were shown to be dependent on the individual amino acid replacements. A total of 16 nontoxic mutants with various levels of DNI activity were identified in vitro. Among them, F427D and F427N mutants had the highest DNI activities in RAW264.7 cells. Both mutants inhibited LeTx intoxication in mice in a dose-dependent way. Furthermore, they induced a Th2-predominant immune response and protected mice against a challenge with five 50% lethal doses of LeTx. The protection was correlated mainly with a low level of interleukin-1 beta (IL-1 beta) and with high levels of PA-specific immunoglobulin G1, IL-6, and tumor necrosis factor alpha. Thus, PA DNI mutants, such as F427D and F427N mutants, may serve in the development of novel therapeutic agents and vaccines to fight B. anthracis infections.
Collapse
|
37
|
Levin TC, Wickliffe KE, Leppla SH, Moayeri M. Heat shock inhibits caspase-1 activity while also preventing its inflammasome-mediated activation by anthrax lethal toxin. Cell Microbiol 2008; 10:2434-46. [PMID: 18671821 DOI: 10.1111/j.1462-5822.2008.01220.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Anthrax lethal toxin (LT) rapidly kills macrophages from certain mouse strains in a mechanism dependent on the breakdown of unknown protein(s) by the proteasome, formation of the Nalp1b (NLRP1b) inflammasome and subsequent activation of caspase-1. We report that heat-shocking LT-sensitive macrophages rapidly protects them against cytolysis by inhibiting caspase-1 activation without upstream effects on LT endocytosis or cleavage of the toxin's known cytosolic substrates (mitogen-activated protein kinases). Heat shock protection against LT occurred through a mechanism independent of de novo protein synthesis, HSP90 activity, p38 activation or proteasome inhibition and was downstream of mitogen-activated protein kinase cleavage and degradation of an unknown substrate by the proteasome. The heat shock inhibition of LT-mediated caspase-1 activation was not specific to the Nalp1b (NLRP1b) inflammasome, as heat shock also inhibited Nalp3 (NLRP3) inflammasome-mediated caspase-1 activation in macrophages. We found that heat shock induced pro-caspase-1 association with a large cellular complex that could prevent its activation. Additionally, while heat-shocking recombinant caspase-1 did not affect its activity in vitro, lysates from heat-shocked cells completely inhibited recombinant active caspase-1 activity. Our results suggest that heat shock inhibition of active caspase-1 can occur independently of an inflammasome platform, through a titratable factor present within intact, functioning heat-shocked cells.
Collapse
Affiliation(s)
- Tera C Levin
- Bacterial Toxins and Therapeutics Section, Laboratory of Bacterial Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
38
|
Pelegrin P, Barroso-Gutierrez C, Surprenant A. P2X7 receptor differentially couples to distinct release pathways for IL-1beta in mouse macrophage. THE JOURNAL OF IMMUNOLOGY 2008; 180:7147-57. [PMID: 18490713 DOI: 10.4049/jimmunol.180.11.7147] [Citation(s) in RCA: 351] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The proinflammatory IL-1 cytokines IL-1alpha, IL-1beta, and IL-18 are key mediators of the acute immune response to injury and infection. Mechanisms underlying their cellular release remain unclear. Activation of purinergic P2X(7) receptors (P2X(7)R) by extracellular ATP is a key physiological inducer of rapid IL-1beta release from LPS-primed macrophage. We investigated patterns of ATP-mediated release of IL-1 cytokines from three macrophage types in attempts to provide direct evidence for or against distinct release mechanisms. We used peritoneal macrophage from P2X(7)R(-/-) mice and found that release of IL-1alpha, IL-18, as well as IL-1beta, by ATP resulted exclusively from activation of P2X(7)R, release of all these IL-1 cytokines involved pannexin-1 (panx1), and that there was both a panx1-dependent and -independent component to IL-1beta release. We compared IL-1-release patterns from LPS-primed peritoneal macrophage, RAW264.7 macrophage, and J774A.1 macrophage. We found RAW264.7 macrophage readily release pro-IL-1beta independently of panx1 but do not release mature IL-1beta because they do not express apoptotic speck-like protein with a caspase-activating recruiting domain and so have no caspase-1 inflammasome activity. We delineated two distinct release pathways: the well-known caspase-1 cascade mediating release of processed IL-1beta that was selectively blocked by inhibition of caspase-1 or panx1, and a calcium-independent, caspase-1/panx1-independent release of pro-IL-1beta that was selectively blocked by glycine. None of these release responses were associated with cell damage or cytolytic effects. This provides the first direct demonstration of a distinct signaling mechanism responsible for ATP-induced release of pro-IL-1beta.
Collapse
Affiliation(s)
- Pablo Pelegrin
- Faculty of Life Science, University of Manchester, Manchester, United Kingdom
| | | | | |
Collapse
|
39
|
Master SS, Rampini SK, Davis AS, Keller C, Ehlers S, Springer B, Timmins GS, Sander P, Deretic V. Mycobacterium tuberculosis prevents inflammasome activation. Cell Host Microbe 2008; 3:224-32. [PMID: 18407066 DOI: 10.1016/j.chom.2008.03.003] [Citation(s) in RCA: 302] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2007] [Revised: 11/27/2007] [Accepted: 03/11/2008] [Indexed: 12/14/2022]
Abstract
Mycobacterium tuberculosis (Mtb) parasitizes host macrophages and subverts host innate and adaptive immunity. Several cytokines elicited by Mtb are mediators of mycobacterial clearance or are involved in tuberculosis pathology. Surprisingly, interleukin-1beta (IL-1beta), a major proinflammatory cytokine, has not been implicated in host-Mtb interactions. IL-1beta is activated by processing upon assembly of the inflammasome, a specialized inflammatory caspase-activating protein complex. Here, we show that Mtb prevents inflammasome activation and IL-1beta processing. An Mtb gene, zmp1, which encodes a putative Zn(2+) metalloprotease, is required for this process. Infection of macrophages with zmp1-deleted Mtb triggered activation of the inflammasome, resulting in increased IL-1beta secretion, enhanced maturation of Mtb containing phagosomes, improved mycobacterial clearance by macrophages, and lower bacterial burden in the lungs of aerosol-infected mice. Thus, we uncovered a previously masked role for IL-1beta in the control of Mtb and a mycobacterial system that prevents inflammasome and, therefore, IL-1beta activation.
Collapse
Affiliation(s)
- Sharon S Master
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Xu L, Fang H, Frucht DM. Anthrax lethal toxin increases superoxide production in murine neutrophils via differential effects on MAPK signaling pathways. THE JOURNAL OF IMMUNOLOGY 2008; 180:4139-47. [PMID: 18322225 DOI: 10.4049/jimmunol.180.6.4139] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The combination of lethal factor and its receptor-binding partner, protective Ag, is termed lethal toxin (LT) and has critical pathogenic activity during infection with Bacillus anthracis. We herein report that anthrax LT binds and enters murine neutrophils, leading to the cleavage of mitogen-activated protein kinase kinase/MEK/MAPKK 1-4 and 6, but not mitogen-activated protein kinase kinase 5 and 7. Anthrax LT treatment of neutrophils disrupts signaling to downstream MAPK targets in response to TLR stimulation. Following anthrax LT treatment, ERK family and p38 phosphorylation are nearly completely blocked, but signaling to JNK family members persists in vitro and ex vivo. In contrast to previous reports involving human neutrophils, anthrax LT treatment of murine neutrophils increases their production of superoxide in response to PMA or TLR stimulation in vitro or ex vivo. Although this enhanced superoxide production correlates with effects due to the LT-induced blockade of ERK signaling, it requires JNK signaling that remains largely intact despite the activity of anthrax LT. These findings reveal a previously unrecognized mechanism through which anthrax LT supports a critical proinflammatory response of murine neutrophils.
Collapse
Affiliation(s)
- Lixin Xu
- Division of Monoclonal Antibodies, Office of Biotechnology Products, Office of Pharmaceutical Science, Center for Drug Evaluation and Research, US Food and Drug Administration, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
41
|
Kang TJ, Basu S, Zhang L, Thomas KE, Vogel SN, Baillie L, Cross AS. Bacillus anthracis spores and lethal toxin induce IL-1beta via functionally distinct signaling pathways. Eur J Immunol 2008; 38:1574-84. [PMID: 18493980 PMCID: PMC3681412 DOI: 10.1002/eji.200838141] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Previous reports suggested that lethal toxin (LT)-induced caspase-1 activity and/or IL-1beta accounted for Bacillus anthracis (BA) infection lethality. In contrast, we now report that caspase-1-mediated IL-1beta expression in response to BA spores is required for anti-BA host defenses. Caspase-1(-/-) and IL-1beta(-/-) mice are more susceptible than wild-type (WT) mice to lethal BA infection, are less able to kill BA both in vivo and in vitro, and addition of rIL-1beta to macrophages from these mice restored killing in vitro. Non-germinating BA spores induced caspase-1 activity, IL-1beta and nitric oxide, by which BA are killed in WT but not in caspase-1(-/-) mice, suggesting that the spore itself stimulated inflammatory responses. While spores induced IL-1beta in LT-susceptible and -resistant macrophages, LT induced IL-1beta only in LT-susceptible macrophages. Cooperation between MyD88-dependent and -independent signaling pathways was required for spore-induced, but not LT-induced, IL-1beta. While both spores and LT induced caspase-1 activity and IL-1beta, LT did not induce IL-1beta mRNA, and spores did not induce cell death. Thus different components of the same bacterium each induce IL-1beta by distinct signaling pathways. Whereas the spore-induced IL-1beta limits BA infection, LT-induced IL-1beta enables BA to escape host defenses.
Collapse
Affiliation(s)
- Tae Jin Kang
- Center for Vaccine Development, Department of Medicine, University of Maryland School of Medicine, Baltimore, USA
| | - Subhendu Basu
- Center for Vaccine Development, Department of Medicine, University of Maryland School of Medicine, Baltimore, USA
| | - Lei Zhang
- Center for Vaccine Development, Department of Medicine, University of Maryland School of Medicine, Baltimore, USA
| | - Karen E. Thomas
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, USA
| | - Stefanie N. Vogel
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, USA
| | - Les Baillie
- Medical Biotechnology Center, University of Maryland Biotechnology Institute, Baltimore, USA
| | - Alan S. Cross
- Center for Vaccine Development, Department of Medicine, University of Maryland School of Medicine, Baltimore, USA
| |
Collapse
|
42
|
In vivo efficacy of a phosphodiester TLR-9 aptamer and its beneficial effect in a pulmonary anthrax infection model. Cell Immunol 2008; 251:78-85. [PMID: 18495099 DOI: 10.1016/j.cellimm.2008.04.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2008] [Revised: 04/02/2008] [Accepted: 04/04/2008] [Indexed: 11/21/2022]
Abstract
Immunostimulatory oligonucleotide (ISS-ODN) used as adjuvants are commonly modified with phosphorothioate (PS). The PS backbone prevents nuclease degradation, but confers undesired side effects, including systemic cytokine release. Previously, R10-60, a phosphodiester (PO) ISS-ODN, was structurally optimized as an intracellular Toll-like receptor-9 agonist. Here intravenous, intradermal and intranasal administration of PO R10-60 elicit local or adaptive immune responses with minimal systemic effects compared to a prototypic PS ISS-ODN in mice. Furthermore, prophylactic intranasal administration of PO R10-60 significantly delayed death in mice exposed to respiratory anthrax comparable to the PS ISS-ODN. The pattern of cytokine release suggested that early IL-1beta production might contribute to this protective effect, which was replicated with recombinant IL-1beta injections during infection. Hence, the transient effects from a PO TLR-9 agonist may be beneficial for protection in a bacterial bioterrorism attack, by delaying the onset of systemic infection without the induction of a cytokine syndrome.
Collapse
|
43
|
Wickliffe KE, Leppla SH, Moayeri M. Killing of macrophages by anthrax lethal toxin: involvement of the N-end rule pathway. Cell Microbiol 2008; 10:1352-62. [PMID: 18266992 DOI: 10.1111/j.1462-5822.2008.01131.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Macrophages from certain inbred mouse strains are rapidly killed (< 90 min) by anthrax lethal toxin (LT). LT cleaves cytoplasmic MEK proteins at 20 min and induces caspase-1 activation in sensitive macrophages at 50-60 min, but the mechanism of LT-induced death is unknown. Proteasome inhibitors block LT-mediated caspase-1 activation and can protect against cell death, indicating that the degradation of at least one cellular protein is required for LT-mediated cell death. Proteins can be degraded by the proteasome via the N-end rule, in which a protein's stability is determined by its N-terminal residue. Using amino acid derivatives that act as inhibitors of this pathway, we show that the N-end rule is required for LT-mediated caspase-1 activation and cell death. We also found that bestatin methyl ester, an aminopeptidase inhibitor protects against LT in vitro and in vivo and that the different inhibitors of the protein degradation pathway act synergistically in protecting against LT. We identify c-IAP1, a mammalian member of the inhibitor of apoptosis protein (IAP) family, as a novel N-end rule substrate degraded in macrophages treated with LT. We also show that LT-induced c-IAP1 degradation is independent of the IAP-antagonizing proteins Smac/DIABLO and Omi/HtrA2, but dependent on caspases.
Collapse
Affiliation(s)
- Katherine E Wickliffe
- Bacterial Toxins and Therapeutics Section, Laboratory of Bacterial Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
44
|
Ha SD, Ng D, Pelech SL, Kim SO. Critical role of the phosphatidylinositol 3-kinase/Akt/glycogen synthase kinase-3 signaling pathway in recovery from anthrax lethal toxin-induced cell cycle arrest and MEK cleavage in macrophages. J Biol Chem 2007; 282:36230-9. [PMID: 17951252 DOI: 10.1074/jbc.m707622200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Anthrax lethal toxin (LeTx) is a virulence factor causing immune suppression and toxic shock of Bacillus anthracis infected host. It inhibits cytokine production and cell proliferation/differentiation in various immune cells. This study showed that a brief exposure of LeTx caused a continual MEK1 cleavage and prevented tumor necrosis factor-alpha (TNF) production in response to lipopolysaccharide (LPS) in non-proliferating cells such as human peripheral blood mononuclear cells or mouse primary peritoneal macrophages. In human monocytic cell lines U-937 and THP-1, LeTx induced cell cycle arrest in G0-G1 phase by rapid down-regulation of cyclin D1/D2 and checkpoint kinase 1 through MEK1 inhibition. However, THP-1 cells adaptively adjusted to LeTx and overrode cell cycle arrest by activating the phosphatidylinositol 3-kinase/Akt signaling pathway. Inhibitory Ser-9 phosphorylation of glycogen synthase kinase 3beta (GSK3beta) by Akt prevented proteasome-mediated cyclin D1 degradation and induced cell cycle progress in LeTx-intoxicated THP-1 cells. Recovery from cell cycle arrest was required before recovering from on-going MEK1 cleavage and suppression of TNF production. Furthermore, pretreatment with LeTx or the GSK3-specific inhibitor SB-216763, or transfection with dominant active mutant Akt or degradation-defected mutant cyclin D1 protected cells from LeTx-induced cell cycle arrest, on-going MEK1 cleavage and suppression of TNF production. These results indicate that modulation of phosphatidylinositol 3-kinase/Akt/GSK3beta signaling cascades can be beneficial for protecting or facilitating recovery from cellular LeTx intoxication in cells that depend on basal MEK1 activity for proliferation.
Collapse
Affiliation(s)
- Soon-Duck Ha
- Department of Microbiology and Immunology, Siebens-Drake Research Institute, University of Western Ontario, London, Ontario, Canada N6G 2V4
| | | | | | | |
Collapse
|
45
|
Persson J, Vance RE. Genetics-squared: combining host and pathogen genetics in the analysis of innate immunity and bacterial virulence. Immunogenetics 2007; 59:761-78. [PMID: 17874090 DOI: 10.1007/s00251-007-0248-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2007] [Accepted: 08/20/2007] [Indexed: 12/16/2022]
Abstract
The interaction of bacterial pathogens with their hosts' innate immune systems can be extremely complex and is often difficult to disentangle experimentally. Using mouse models of bacterial infections, several laboratories have successfully applied genetic approaches to identify novel host genes required for innate immune defense. In addition, a variety of creative bacterial genetic schemes have been developed to identify key bacterial genes involved in triggering or evading host immunity. In cases where both the host and pathogen are amenable to genetic manipulation, a combination of host and pathogen genetic approaches can be used. Focusing on bacterial infections of mice, this review summarizes the benefits and limitations of applying genetic analysis to the study of host-pathogen interactions. In particular, we consider how prokaryotic and eukaryotic genetic strategies can be combined, or "squared," to yield new insights in host-pathogen biology.
Collapse
|
46
|
Wickliffe KE, Leppla SH, Moayeri M. Anthrax lethal toxin-induced inflammasome formation and caspase-1 activation are late events dependent on ion fluxes and the proteasome. Cell Microbiol 2007; 10:332-43. [PMID: 17850338 PMCID: PMC2515708 DOI: 10.1111/j.1462-5822.2007.01044.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Anthrax lethal toxin (LT) is cytotoxic to macrophages from certain inbred mouse strains. The gene controlling macrophage susceptibility to LT is Nalp1b. Nalp1b forms part of the inflammasome, a multiprotein complex involved in caspase-1 activation and release of interleukin (IL)-1beta and IL-18. We confirm the role of caspase-1 in LT-mediated death by showing that caspase inhibitors differentially protected cells against LT, with the degree of protection corresponding to each compound's ability to inhibit caspase-1. Caspase-1 activation and cytokine processing and release were late events inhibited by elevated levels of KCl and sucrose, by potassium channel blockers, and by proteasome inhibitors, suggesting that inflammasome formation requires a protein-degradation event and occurs downstream of LT-mediated potassium efflux. In addition, IL-18 and IL-1beta release was dependent on cell death, indicating that caspase-1-mediated cytotoxicity is independent of these cytokines. Finally, inducing NALP3-inflammasome formation in LT-resistant macrophages did not sensitize cells to LT, suggesting that general caspase-1 activation cannot account for sensitivity to LT and that a Nalp1b-mediated event is specifically required for death. Our data indicate that inflammasome formation is a contributing, but not initiating, event in LT-mediated cytotoxicity and that earlier LT-mediated events leading to ion fluxes are required for death.
Collapse
Affiliation(s)
| | | | - Mahtab Moayeri
- Corresponding Author Dr. Mahtab Moayeri Building 33, Room 1W20B National Institutes of Health Bethesda, MD 20892 Phone: 301-496-1821 Fax: 301-480-0326
| |
Collapse
|
47
|
Freche B, Reig N, van der Goot FG. The role of the inflammasome in cellular responses to toxins and bacterial effectors. Semin Immunopathol 2007; 29:249-60. [PMID: 17805541 DOI: 10.1007/s00281-007-0085-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2007] [Accepted: 07/06/2007] [Indexed: 02/07/2023]
Abstract
Invading pathogens are recognized by mammalian cells through dedicated receptors found either at the cell surface or in the cytoplasm. These receptors, like the trans-membrane Toll-like Receptors (TLR) or the cytosolic Nod-like Receptors (NLR), initiate innate immunity after recognition of molecular patterns found in bacteria or viruses, such as LPS, flagellin, or double-stranded RNA. Recognition of molecules produced only by a specific pathogen, such as a viral envelop protein or a bacterial adhesin does not appear to occur. Bacterial protein toxins, however, might compose an intermediate class. Considering the diversity of toxins in terms of structure, it is unlikely that cells respond to them via specific molecular recognition. It rather appears that different classes of toxins trigger cellular changes that are sensed by the cells as danger signals, such as changes in cellular ion composition after membrane perforation by pore-forming toxins or type III secretion systems. The signaling pathways triggered through toxin-induced cell alterations will likely play a role in modulating host responses to virulent bacteria. We will here describe the few studied cases in which detection of the toxin by the host cell was addressed. The review will include not only toxins but also bacteria effectors secreted by the bacterium in to the host cell cytoplasm.
Collapse
Affiliation(s)
- Barbara Freche
- Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, Station 15, 1015, Lausanne, Switzerland
| | | | | |
Collapse
|
48
|
Ha SD, Ng D, Lamothe J, Valvano MA, Han J, Kim SO. Mitochondrial Proteins Bnip3 and Bnip3L Are Involved in Anthrax Lethal Toxin-induced Macrophage Cell Death. J Biol Chem 2007; 282:26275-83. [PMID: 17623653 DOI: 10.1074/jbc.m703668200] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Anthrax lethal toxin (LeTx) induces rapid cell death of RAW246.7 macrophages. We recently found that a small population of these macrophages is spontaneously and temporally refractory to LeTx-induced cytotoxicity. Analysis of genome-wide transcripts of a resistant clone before and after regaining LeTx sensitivity revealed that a reduction of two closely related mitochondrial proteins, Bcl-2/adenovirus E1B 19-kDa interacting protein 3 (Bnip3) and Bnip3-like (Bnip3L), correlates with LeTx resistance. Down-regulation of Bnip3 and Bnip3L was also found in "toxin-induced resistance" whereby sublethal doses of LeTx induce resistance to subsequent exposure to cytolytic toxin doses. The role of Bnip3 and Bnip3L in LeTx-induced cell death was confirmed by showing that overexpression of either Bnip3 or Bnip3L rendered the resistant cells susceptible to LeTx, whereas down-regulation of Bnip3 and Bnip3L in wild-type macrophages conferred resistance. The down-regulation of Bnip3 and Bnip3L mRNAs by LeTx occurred at both transcriptional and mRNA stability levels. Inhibition of the p38 pathway by lethal factor was responsible for the destabilization of Bnip3/Bnip3L mRNAs as confirmed by showing that p38 inhibitors stabilized Bnip3 and Bnip3L mRNAs and conferred resistance to LeTx cytotoxicity. Therefore, Bnip3/Bnip3L play a crucial role in LeTx-induced cytotoxicity, and down-regulation of Bnip3/Bnip3L is a mechanism of spontaneous or toxin-induced resistance of macrophages.
Collapse
Affiliation(s)
- Soon-Duck Ha
- Department of Microbiology and Immunology, Infectious Diseases Research Group, Siebens-Drake Research Institute, University of Western Ontario, London, Ontario N6G 2V4, Canada
| | | | | | | | | | | |
Collapse
|
49
|
Abstract
Infectious microbes face an unwelcoming environment in their mammalian hosts, which have evolved elaborate multicelluar systems for recognition and elimination of invading pathogens. A common strategy used by pathogenic bacteria to establish infection is to secrete protein factors that block intracellular signalling pathways essential for host defence. Some of these proteins also act as toxins, directly causing pathology associated with disease. Bacillus anthracis, the bacterium that causes anthrax, secretes two plasmid-encoded enzymes, LF (lethal factor) and EF (oedema factor), that are delivered into host cells by a third bacterial protein, PA (protective antigen). The two toxins act on a variety of cell types, disabling the immune system and inevitably killing the host. LF is an extraordinarily selective metalloproteinase that site-specifically cleaves MKKs (mitogen-activated protein kinase kinases). Cleavage of MKKs by LF prevents them from activating their downstream MAPK (mitogen-activated protein kinase) substrates by disrupting a critical docking interaction. Blockade of MAPK signalling functionally impairs cells of both the innate and adaptive immune systems and induces cell death in macrophages. EF is an adenylate cyclase that is activated by calmodulin through a non-canonical mechanism. EF causes sustained and potent activation of host cAMP-dependent signalling pathways, which disables phagocytes. Here I review recent progress in elucidating the mechanisms by which LF and EF influence host signalling and thereby contribute to disease.
Collapse
Affiliation(s)
- Benjamin E Turk
- Department of Pharmacology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA.
| |
Collapse
|
50
|
Gabel CA. P2 purinergic receptor modulation of cytokine production. Purinergic Signal 2007; 3:27-38. [PMID: 18404416 PMCID: PMC2096759 DOI: 10.1007/s11302-006-9034-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2005] [Accepted: 01/10/2006] [Indexed: 11/24/2022] Open
Abstract
Cytokines serve important functions in controlling host immunity. Cells involved in the synthesis of these polypeptide mediators have evolved highly regulated processes to ensure that production is carefully balanced. In inflammatory and immune disorders, however, mis-regulation of the production and/or activity of cytokines is recognized as a major contributor to the disease process, and therapeutics that target individual cytokines are providing very effective treatment options in the clinic. Leukocytes are the principle producers of a number of key cytokines, and these cells also express numerous members of the purinergic P2 receptor family. Studies in several cellular systems have provided evidence that P2 receptor modulation can affect cytokine production, and mechanistic features of this regulation have emerged. This review highlights three separate examples corresponding to (1) P2Y₆ receptor mediated impact on interleukin (IL)-8 production, (2) P2Y₁₁ receptor-mediated affects on IL-12/23 output, and (3) P2X₇ receptor mediated IL-1β posttranslational processing. These examples demonstrate important roles of purinergic receptors in the modulation of cytokine production. Extension of these cellular observations to in vivo situations may lead to new therapeutic strategies for treating cytokine-mediated diseases.
Collapse
Affiliation(s)
- Christopher A Gabel
- Department of Inflammation, Amgen, Inc., 1201 Amgen Court West, Seattle, WA, 98119, USA,
| |
Collapse
|