1
|
Kukreti A, Kotasthane AS, Tandon AL, Nekkanti A, Prasannakumar MK, Devanna P, Aravindaram K, Sreedevi K, Sushil SN, Manjunatha C. Hybrid de novo whole genome assembly of lipopeptide producing novel Bacillus thuringiensis strain NBAIR BtAr exhibiting antagonistic activity against Sclerotium rolfsii. Microb Pathog 2024; 195:106867. [PMID: 39168357 DOI: 10.1016/j.micpath.2024.106867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/08/2024] [Accepted: 08/16/2024] [Indexed: 08/23/2024]
Abstract
Bacillus thuringiensis Berliner is recognized as a predominant bioinsecticide but its antifungal potential has been relatively underexplored. A novel B. thuringiensis strain NBAIR BtAr was isolated and morphologically characterized using light and scanning electron microscopy, revealing presence of bipyramidal, cuboidal, and spherical parasporal crystals. The crude form of lipopeptides was extracted from NBAIR BtAr and assessed for its antagonistic activity in vitro, and demonstrated 100 % inhibition of Sclerotium rolfsii Sacc. at a minimum inhibitory concentration of 50 μL of the crude lipopeptide extract per mL of potato dextrose agar. To identify the antagonistic genes responsible, we performed whole genome sequencing of NBAIR BtAr, revealing the presence of circular chromosome of 5,379,913 bp and 175,362 bp plasmid with 36.06 % guanine-cytosine content and 5814 protein-coding sequences. Average nucleotide identity and whole genome phylogenetic analysis delineated the NBAIR BtAr strain as konkukian serovar. Gene ontology analysis revealed associations of 1474, 1323, and 1833 genes with biological processes, molecular function, and cellular components, respectively. Antibiotics & secondary metabolite analysis shell analysis of the whole genome yielded secondary metabolites biosynthetic gene clusters with 100 %, 85 %, 40 %, and 35 % similarity for petrobactin, bacillibactin, fengycin, and paenilamicin, respectively. Also, novel biosynthetic gene clusters, along with antimicrobial genes, including zwittermicin A, chitinase, and phenazines, were identified. Moreover, the presence of eight bacteriophage sequences, 18 genomic islands, insertion sequences, and one CRISPR region indicated prior occurrences of genetic exchange and thus improved competitive fitness of the strain. Overall, the whole genome sequence of NBAIR BtAr is presented, with its taxonomic classification and critical genetic attributes that contribute to its strong antagonistic activity against S. rolfsii.
Collapse
Affiliation(s)
- Aditya Kukreti
- Department of Plant Pathology, Indira Gandhi Krishi Vishwavidyalaya, Raipur, Chhattisgarh, 492 012, India; ICAR-National Bureau of Agricultural Insect Resources, Bengaluru, 560 024, India
| | - Anil Sudhakar Kotasthane
- Department of Plant Pathology, Indira Gandhi Krishi Vishwavidyalaya, Raipur, Chhattisgarh, 492 012, India
| | - Ashwarya Lalit Tandon
- Department of Plant Pathology, Indira Gandhi Krishi Vishwavidyalaya, Raipur, Chhattisgarh, 492 012, India
| | - Aarthi Nekkanti
- Department of Plant Pathology, Indira Gandhi Krishi Vishwavidyalaya, Raipur, Chhattisgarh, 492 012, India; ICAR-National Bureau of Agricultural Insect Resources, Bengaluru, 560 024, India
| | | | - Pramesh Devanna
- Agricultural Research Station, Gangavathi, University of Agricultural Sciences, Raichur, 583 227, India
| | - Kandan Aravindaram
- ICAR-National Bureau of Agricultural Insect Resources, Bengaluru, 560 024, India
| | - Kolla Sreedevi
- ICAR-National Bureau of Agricultural Insect Resources, Bengaluru, 560 024, India
| | - Satya Nand Sushil
- Department of Plant Pathology, Indira Gandhi Krishi Vishwavidyalaya, Raipur, Chhattisgarh, 492 012, India
| | - Channappa Manjunatha
- ICAR-National Bureau of Agricultural Insect Resources, Bengaluru, 560 024, India.
| |
Collapse
|
2
|
Alsenani TA, Viviani SL, Kumar V, Taracila MA, Bethel CR, Barnes MD, Papp-Wallace KM, Shields RK, Nguyen MH, Clancy CJ, Bonomo RA, van den Akker F. Structural Characterization of the D179N and D179Y Variants of KPC-2 β-Lactamase: Ω-Loop Destabilization as a Mechanism of Resistance to Ceftazidime-Avibactam. Antimicrob Agents Chemother 2022; 66:e0241421. [PMID: 35341315 PMCID: PMC9017313 DOI: 10.1128/aac.02414-21] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/23/2022] [Indexed: 11/20/2022] Open
Abstract
Klebsiella pneumoniae carbapenemases (KPC-2 and KPC-3) present a global clinical threat, as these β-lactamases confer resistance to carbapenems and oxyimino-cephalosporins. Recent clinically identified KPC variants with substitutions at Ambler position D179, located in the Ω loop, are resistant to the β-lactam/β-lactamase inhibitor combination ceftazidime-avibactam, but susceptible to meropenem-vaborbactam. To gain insights into ceftazidime-avibactam resistance conferred by D179N/Y variants of KPC-2, crystal structures of these variants were determined. The D179N KPC-2 structure revealed that the change of the carboxyl to an amide moiety at position 179 disrupted the salt bridge with R164 present in wild-type KPC-2. Additional interactions were disrupted in the Ω loop, causing a decrease in the melting temperature. Shifts originating from N179 were also transmitted toward the active site, including ∼1-Å shifts of the deacylation water and interacting residue N170. The structure of the D179Y KPC-2 β-lactamase revealed more drastic changes, as this variant exhibited disorder of the Ω loop, with other flanking regions also being disordered. We postulate that the KPC-2 variants can accommodate ceftazidime because the Ω loop is displaced in D179Y or can be more readily displaced in D179N KPC-2. To understand why the β-lactamase inhibitor vaborbactam is less affected by the D179 variants than avibactam, we determined the crystal structure of D179N KPC-2 in complex with vaborbactam, which revealed wild-type KPC-2-like vaborbactam-active site interactions. Overall, the structural results regarding KPC-2 D179 variants revealed various degrees of destabilization of the Ω loop that contribute to ceftazidime-avibactam resistance, possible substrate-assisted catalysis of ceftazidime, and meropenem and meropenem-vaborbactam susceptibility.
Collapse
Affiliation(s)
- T. A. Alsenani
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - S. L. Viviani
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - V. Kumar
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - M. A. Taracila
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - C. R. Bethel
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA
| | - M. D. Barnes
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA
| | - K. M. Papp-Wallace
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA
| | - R. K. Shields
- University of Pittsburgh, Department of Medicine, Division of Infectious Diseases, Pittsburgh, Pennsylvania, USA
| | - M. H. Nguyen
- University of Pittsburgh, Department of Medicine, Division of Infectious Diseases, Pittsburgh, Pennsylvania, USA
| | - C. J. Clancy
- University of Pittsburgh, Department of Medicine, Division of Infectious Diseases, Pittsburgh, Pennsylvania, USA
- Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, Pennsylvania, USA
| | - R. A. Bonomo
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Department of Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Senior Clinical Scientist Investigator, CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, Ohio, USA
| | - F. van den Akker
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| |
Collapse
|
3
|
Walter A, Friz S, Mayer C. Chitin, Chitin Oligosaccharide, and Chitin Disaccharide Metabolism of Escherichia coli Revisited: Reassignment of the Roles of ChiA, ChbR, ChbF, and ChbG. Microb Physiol 2021; 31:178-194. [PMID: 33794535 DOI: 10.1159/000515178] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 02/05/2021] [Indexed: 11/19/2022]
Abstract
Escherichia coli is unable to grow on polymeric and oligomeric chitin, but grows on chitin disaccharide (GlcNAc-GlcNAc; N,N'-diacetylchitobiose) and chitin trisaccharide (GlcNAc-GlcNAc-GlcNAc; N,N',N''-triacetylchitotriose) via expression of the chb operon (chbBCARFG). The phosphotransferase system (PTS) transporter ChbBCA facilitates transport of both saccharides across the inner membrane and their concomitant phosphorylation at the non-reducing end, intracellularly yielding GlcNAc 6-phosphate-GlcNAc (GlcNAc6P-GlcNAc) and GlcNAc6P-GlcNAc-GlcNAc, respectively. We revisited the intracellular catabolism of the PTS products, thereby correcting the reported functions of the 6-phospho-glycosidase ChbF, the monodeacetylase ChbG, and the transcriptional regulator ChbR. Intracellular accumulation of glucosamine 6P-GlcNAc (GlcN6P-GlcNAc) and GlcN6P-GlcNAc-GlcNAc in a chbF mutant unraveled a role for ChbG as a monodeacetylase that removes the N-acetyl group at the non-reducing end. Consequently, GlcN6P- but not GlcNAc6P-containing saccharides likely function as coactivators of ChbR. Furthermore, ChbF removed the GlcN6P from the non-reducing terminus of the former saccharides, thereby degrading the inducers of the chb operon and facilitating growth on the saccharides. Consequently, ChbF was unable to hydrolyze GlcNAc6P-residues from the non-reducing end, contrary to previous assumptions but in agreement with structural modeling data and with the unusual catalytic mechanism of the family 4 of glycosidases, to which ChbF belongs. We also refuted the assumption that ChiA is a bifunctional endochitinase/lysozyme ChiA, and show that it is unable to degrade peptidoglycans but acts as a bona fide chitinase in vitro and in vivo, enabling growth of E. coli on chitin oligosaccharides when ectopically expressed. Overall, this study revises our understanding of the chitin, chitin oligosaccharide, and chitin disaccharide metabolism of E. coli.
Collapse
Affiliation(s)
- Axel Walter
- Interfaculty Institute of Microbiology and Infection Medicine, Organismic Interactions/Glycobiology, Eberhard Karls Universität Tübingen, Tübingen, Germany
| | - Simon Friz
- Interfaculty Institute of Microbiology and Infection Medicine, Organismic Interactions/Glycobiology, Eberhard Karls Universität Tübingen, Tübingen, Germany
| | - Christoph Mayer
- Interfaculty Institute of Microbiology and Infection Medicine, Organismic Interactions/Glycobiology, Eberhard Karls Universität Tübingen, Tübingen, Germany
| |
Collapse
|
4
|
A comparative study of the evolution of cellobiose utilization in Escherichia coli and Shigella sonnei. Arch Microbiol 2016; 199:247-257. [PMID: 27695910 DOI: 10.1007/s00203-016-1299-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 09/05/2016] [Accepted: 09/24/2016] [Indexed: 10/20/2022]
Abstract
The chb operon of Escherichia coli is involved in the utilization of chitooligosaccharides. While acquisition of two classes of mutations leading to altered regulation of the chb operon is necessary to confer the ability to utilize the glucose disaccharide cellobiose to wild-type strains of E. coli, in the closely related organism Shigella sonnei, Cel+ mutants arise relatively faster, requiring only a single mutational event. In Type I mutants, the insertion of IS600 at -21 leads to ChbR regulator-independent, constitutive expression of the operon. In Type II mutants, the insertion of IS2/600 within the distal binding site of the negative regulator NagC leads to ChbR-dependent cellobiose-inducible expression of the operon. These studies underscore the significance of strain background, specifically the diversity of transposable elements, in the evolution of novel metabolic functions. Constitutive expression of the chb operon also enables utilization of the aromatic β-glucosides arbutin and salicin, implying that the chb structural genes are inherently promiscuous.
Collapse
|
5
|
Soysa HSM, Suginta W. Identification and Functional Characterization of a Novel OprD-like Chitin Uptake Channel in Non-chitinolytic Bacteria. J Biol Chem 2016; 291:13622-33. [PMID: 27226611 DOI: 10.1074/jbc.m116.728881] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Indexed: 11/06/2022] Open
Abstract
Chitoporin from the chitinolytic marine Vibrio has been characterized as a trimeric OmpC-like channel responsible for effective chitin uptake. In this study we describe the identification and characterization of a novel OprD-like chitoporin (so-called EcChiP) from Escherichia coli The gene was identified, cloned, and functionally expressed in the Omp-deficient E. coli BL21 (Omp8) Rosetta strain. On size exclusion chromatography, EcChiP had an apparent native molecular mass of 50 kDa, as predicted by amino acid sequencing and mass analysis, confirming that the protein is a monomer. Black lipid membrane reconstitution demonstrated that EcChiP could readily form stable, monomeric channels in artificial phospholipid membranes, with an average single channel conductance of 0.55 ± 0.01 nanosiemens and a slight preference for cations. Single EcChiP channels showed strong specificity, interacting with long chain chitooligosaccharides but not with maltooligosaccharides. Liposome swelling assays indicated the bulk permeation of neutral monosaccharides and showed the size exclusion limit of EcChiP to be ∼200-300 Da for small permeants that pass through by general diffusion while allowing long chain chitooligosaccharides to pass through by a facilitated diffusion process. Taking E. coli as a model, we offer the first evidence that non-chitinolytic bacteria can activate a quiescent ChiP gene to express a functional chitoporin, enabling them to take up chitooligosaccharides for metabolism as an immediate source of energy.
Collapse
Affiliation(s)
- H Sasimali M Soysa
- From the Biochemistry-Electrochemistry Research Unit and School of Chemistry, Institute of Science and
| | - Wipa Suginta
- From the Biochemistry-Electrochemistry Research Unit and School of Chemistry, Institute of Science and Center of Excellence in Advanced Functional Materials, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| |
Collapse
|
6
|
Mondal M, Nag D, Koley H, Saha DR, Chatterjee NS. The Vibrio cholerae extracellular chitinase ChiA2 is important for survival and pathogenesis in the host intestine. PLoS One 2014; 9:e103119. [PMID: 25244128 PMCID: PMC4170974 DOI: 10.1371/journal.pone.0103119] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 06/27/2014] [Indexed: 01/11/2023] Open
Abstract
In aquatic environments, Vibrio cholerae colonizes mainly on the chitinous surface of copepods and utilizes chitin as the sole carbon and nitrogen source. Of the two extracellular chitinases essential for chitin utilization, the expression of chiA2 is maximally up-regulated in host intestine. Recent studies indicate that several bacterial chitinases may be involved in host pathogenesis. However, the role of V. cholerae chitinases in host infection is not yet known. In this study, we provide evidence to show that ChiA2 is important for V. cholerae survival in intestine as well as in pathogenesis. We demonstrate that ChiA2 de-glycosylates mucin and releases reducing sugars like GlcNAc and its oligomers. Deglycosylation of mucin corroborated with reduced uptake of alcian blue stain by ChiA2 treated mucin. Next, we show that V. cholerae could utilize mucin as a nutrient source. In comparison to the wild type strain, ΔchiA2 mutant was 60-fold less efficient in growth in mucin supplemented minimal media and was also ∼6-fold less competent to survive when grown in the presence of mucin-secreting human intestinal HT29 epithelial cells. Similar results were also obtained when the strains were infected in mice intestine. Infection with the ΔchiA2 mutant caused ∼50-fold less fluid accumulation in infant mice as well as in rabbit ileal loop compared to the wild type strain. To see if the difference in survival of the ΔchiA2 mutant and wild type V. cholerae was due to reduced adhesion of the mutant, we monitored binding of the strains on HT29 cells. The initial binding of the wild type and mutant strain was similar. Collectively these data suggest that ChiA2 secreted by V. cholerae in the intestine hydrolyzed intestinal mucin to release GlcNAc, and the released sugar is successfully utilized by V. cholerae for growth and survival in the host intestine.
Collapse
Affiliation(s)
- Moumita Mondal
- Division of Biochemistry, National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Dhrubajyoti Nag
- Division of Bacteriology, National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Hemanta Koley
- Division of Bacteriology, National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Dhira Rani Saha
- Division of Electron Microscopy, National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Nabendu Sekhar Chatterjee
- Division of Biochemistry, National Institute of Cholera and Enteric Diseases, Kolkata, India
- * E-mail:
| |
Collapse
|
7
|
|
8
|
The chbG gene of the chitobiose (chb) operon of Escherichia coli encodes a chitooligosaccharide deacetylase. J Bacteriol 2012; 194:4959-71. [PMID: 22797760 DOI: 10.1128/jb.00533-12] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The chb operon of Escherichia coli is involved in the utilization of the β-glucosides chitobiose and cellobiose. The function of chbG (ydjC), the sixth open reading frame of the operon that codes for an evolutionarily conserved protein is unknown. We show that chbG encodes a monodeacetylase that is essential for growth on the acetylated chitooligosaccharides chitobiose and chitotriose but is dispensable for growth on cellobiose and chitosan dimer, the deacetylated form of chitobiose. The predicted active site of the enzyme was validated by demonstrating loss of function upon substitution of its putative metal-binding residues that are conserved across the YdjC family of proteins. We show that activation of the chb promoter by the regulatory protein ChbR is dependent on ChbG, suggesting that deacetylation of chitobiose-6-P and chitotriose-6-P is necessary for their recognition by ChbR as inducers. Strains carrying mutations in chbR conferring the ability to grow on both cellobiose and chitobiose are independent of chbG function for induction, suggesting that gain of function mutations in ChbR allow it to recognize the acetylated form of the oligosaccharides. ChbR-independent expression of the permease and phospho-β-glucosidase from a heterologous promoter did not support growth on both chitobiose and chitotriose in the absence of chbG, suggesting an additional role of chbG in the hydrolysis of chitooligosaccharides. The homologs of chbG in metazoans have been implicated in development and inflammatory diseases of the intestine, indicating that understanding the function of E. coli chbG has a broader significance.
Collapse
|
9
|
Jung YS, Cai M, Clore GM. Solution structure of the IIAChitobiose-IIBChitobiose complex of the N,N'-diacetylchitobiose branch of the Escherichia coli phosphotransferase system. J Biol Chem 2010; 285:4173-4184. [PMID: 19959833 PMCID: PMC2823556 DOI: 10.1074/jbc.m109.080937] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2009] [Revised: 11/30/2009] [Indexed: 11/06/2022] Open
Abstract
The solution structure of the IIA-IIB complex of the N,N'-diacetylchitobiose (Chb) transporter of the Escherichia coli phosphotransferase system has been solved by NMR. The active site His-89 of IIA(Chb) was mutated to Glu to mimic the phosphorylated state and the active site Cys-10 of IIB(Chb) was substituted by serine to prevent intermolecular disulfide bond formation. Binding is weak with a K(D) of approximately 1.3 mm. The two complementary interaction surfaces are largely hydrophobic, with the protruding active site loop (residues 9-16) of IIB(Chb) buried deep within the active site cleft formed at the interface of two adjacent subunits of the IIA(Chb) trimer. The central hydrophobic portion of the interface is surrounded by a ring of polar and charged residues that provide a relatively small number of electrostatic intermolecular interactions that serve to correctly align the two proteins. The conformation of the active site loop in unphosphorylated IIB(Chb) is inconsistent with the formation of a phosphoryl transition state intermediate because of steric hindrance, especially from the methyl group of Ala-12 of IIB(Chb). Phosphorylation of IIB(Chb) is accompanied by a conformational change within the active site loop such that its path from residues 11-13 follows a mirror-like image relative to that in the unphosphorylated state. This involves a transition of the phi/psi angles of Gly-13 from the right to left alpha-helical region, as well as smaller changes in the backbone torsion angles of Ala-12 and Met-14. The resulting active site conformation is fully compatible with the formation of the His-89-P-Cys-10 phosphoryl transition state without necessitating any change in relative translation or orientation of the two proteins within the complex.
Collapse
Affiliation(s)
- Young-Sang Jung
- From the Laboratory of Chemical Physics, NIDDK, National Institutes of Health, Bethesda, Maryland 20892
| | - Mengli Cai
- From the Laboratory of Chemical Physics, NIDDK, National Institutes of Health, Bethesda, Maryland 20892
| | - G Marius Clore
- From the Laboratory of Chemical Physics, NIDDK, National Institutes of Health, Bethesda, Maryland 20892.
| |
Collapse
|
10
|
Overgaard M, Johansen J, Møller-Jensen J, Valentin-Hansen P. Switching off small RNA regulation with trap-mRNA. Mol Microbiol 2009; 73:790-800. [PMID: 19682266 DOI: 10.1111/j.1365-2958.2009.06807.x] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Small non-coding regulatory RNAs in bacteria have been shown predominantly to be tightly regulated at the level of transcription initiation, and sRNAs that function by an antisense mechanism on trans-encoded target mRNAs have been shown or predicted to act stoichiometrically. Here we show that MicM, which silences the expression of an outer membrane protein, YbfM under most growth conditions, does not become destabilized by target mRNA overexpression, indicating that the small RNA regulator acts catalytically. Furthermore, our regulatory studies suggested that control of micM expression is unlikely to operate at the level of transcription initiation. By employing a highly sensitive genetic screen we uncovered a novel RNA-based regulatory principle in which induction of a trap-mRNA leads to selective degradation of a small regulatory RNA molecule, thereby abolishing the sRNA-based silencing of its cognate target mRNA. In the present case, antisense regulation by chb mRNA of the antisense regulator MicM by an extended complementary sequence element, results in induction of ybfM mRNA translation. This type of regulation is reminiscent of the regulation of microRNA activity through target mimicry that occurs in plants.
Collapse
Affiliation(s)
- Martin Overgaard
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark
| | | | | | | |
Collapse
|
11
|
Abstract
Escherichia coli and Salmonella enterica serovar Typhimurium exhibit a remarkable versatility in the usage of different sugars as the sole source of carbon and energy, reflecting their ability to make use of the digested meals of mammalia and of the ample offerings in the wild. Degradation of sugars starts with their energy-dependent uptake through the cytoplasmic membrane and is carried on further by specific enzymes in the cytoplasm, destined finally for degradation in central metabolic pathways. As variant as the different sugars are, the biochemical strategies to act on them are few. They include phosphorylation, keto-enol isomerization, oxido/reductions, and aldol cleavage. The catabolic repertoire for using carbohydrate sources is largely the same in E. coli and in serovar Typhimurium. Nonetheless, significant differences are found, even among the strains and substrains of each species. We have grouped the sugars to be discussed according to their first step in metabolism, which is their active transport, and follow their path to glycolysis, catalyzed by the sugar-specific enzymes. We will first discuss the phosphotransferase system (PTS) sugars, then the sugars transported by ATP-binding cassette (ABC) transporters, followed by those that are taken up via proton motive force (PMF)-dependent transporters. We have focused on the catabolism and pathway regulation of hexose and pentose monosaccharides as well as the corresponding sugar alcohols but have also included disaccharides and simple glycosides while excluding polysaccharide catabolism, except for maltodextrins.
Collapse
Affiliation(s)
- Christoph Mayer
- Fachbereich Biologie, Universität Konstanz, 78457 Konstanz, Germany
| | | |
Collapse
|
12
|
Tang C, Williams DC, Ghirlando R, Clore GM. Solution Structure of Enzyme IIAChitobiose from the N,N′-Diacetylchitobiose Branch of the Escherichia coli Phosphotransferase System. J Biol Chem 2005; 280:11770-80. [PMID: 15654077 DOI: 10.1074/jbc.m414300200] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The solution structure of trimeric Escherichia coli enzyme IIA(Chb) (34 kDa), a component of the N,N'-diacetylchitobiose/lactose branch of the phosphotransferase signal transduction system, has been determined by NMR spectroscopy. Backbone residual dipolar couplings were used to provide long range orientational restraints, and long range (|i - j| > or = 5 residues) nuclear Overhauser enhancement restraints were derived exclusively from samples in which at least one subunit was 15N/13C/2H/(Val-Leu-Ile)-methyl-protonated. Each subunit consists of a three-helix bundle. Hydrophobic residues lining helix 3 of each subunit are largely responsible for the formation of a parallel coiled-coil trimer. The active site histidines (His-89 from each subunit) are located in three symmetrically placed deep crevices located at the interface of two adjacent subunits (A and C, C and B, and B and A). Partially shielded from bulk solvent, structural modeling suggests that phosphorylated His-89 is stabilized by electrostatic interactions with the side chains of His-93 from the same subunit and Gln-91 from the adjacent subunit. Comparison with the x-ray structure of Lactobacillus lactis IIA(Lac) reveals some substantial structural differences, particularly in regard to helix 3, which exhibits a 40 degrees kink in IIA(Lac) versus a 7 degrees bend in IIA(Chb). This is associated with the presence of an unusually large (230-angstroms3) buried hydrophobic cavity at the trimer interface in IIA(Lac) that is reduced to only 45 angstroms3) in IIA(Chb).
Collapse
Affiliation(s)
- Chun Tang
- Laboratory of Chemical Physics, NIDDK, National Institutes of Health, Bethesda, Maryland 20892-0520, USA
| | | | | | | |
Collapse
|
13
|
Plumbridge J, Pellegrini O. Expression of the chitobiose operon of Escherichia coli is regulated by three transcription factors: NagC, ChbR and CAP. Mol Microbiol 2004; 52:437-49. [PMID: 15066032 DOI: 10.1111/j.1365-2958.2004.03986.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The chitobiose operon, chbBCARFG, encodes genes for the transport and degradation of the N-acetylglucosamine disaccharide, chitobiose. Chitobiose is transported by the phosphotransferase system (PTS) producing chitobiose-6P which is hydrolysed to GlcNAc-6P by the chbF gene product and then further degraded by the nagBA gene products. Expression of the chb operon is repressed by NagC, which regulates genes involved in amino sugar metabolism. The inducer for NagC is GlcNAc-6P. NagC binds to two sites separated by 115 bp and the transcription start point of the chb operon lies within the downstream NagC operator. In addition the chb operon encodes its own specific regulator, ChbR, an AraC-type dual repressor-activator, which binds to two direct repeats of 19 bp located between the two NagC sites. ChbR is necessary for transcription activation in the presence of chitobiose in vivo. Induction of the operon also requires CAP, which binds to a site upstream of the ChbR repeats. In the absence of chitobiose both NagC and ChbR act as repressors. Together these three factors cooperate in switching chb expression from the repressed to the activated state. The need for two specific inducing signals, one for ChbR to activate the expression of the operon and a second for NagC to relieve its repression, ensure that the chb operon is only induced when there is sufficient flux through the combined chb-nag metabolic pathway to activate expression of both the chb and nag operons.
Collapse
Affiliation(s)
- Jacqueline Plumbridge
- Institut de Biologie Physico-Chimique (CNRS UPR9073), 13, rue Pierre et Marie Curie, 75005 Paris, France.
| | | |
Collapse
|
14
|
Siebold C, Erni B. Intein-mediated cyclization of a soluble and a membrane protein in vivo: function and stability. Biophys Chem 2002; 96:163-71. [PMID: 12034438 DOI: 10.1016/s0301-4622(02)00012-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Cyclized subunits of the E. coli glucose transporter were produced in vivo by intein mediated trans-splicing. IIA(Glc) is a beta-sandwich protein, IICB(Glc) spans the membrane eight times. Genes encoding the circularly permuted precursors U(Cdelta)-IIA(Glc)-U(Ndelta) and U(Cdelta)-IICB(Glc)-U(Ndelta) were assembled from DNA fragments encoding the 3' and 5' segments of the recA intein of M. tuberculosis and crr and ptsG of E. coli, respectively. A 20-residues long, Ala-Pro rich linker peptide and/or a histidine tag were used to join the native N- and C-termini in the cyclized proteins. The cyclized proteins complemented growth of glucose auxotrophic strains. Purified, cyclized IIA(Glc) and IICB(Glc) had 100 and 25%, respectively, of wild-type glucose phosphotransferase activity. They had an increased electrophoretic mobility, which decreased upon linearization of the proteins with chymotrypsin. Cyclized IIA(Glc) displayed increased stability against temperature and GuHCl-induced unfolding (75 vs. 70 degrees C; 1.52 vs. 1.05 M).
Collapse
Affiliation(s)
- Christian Siebold
- Departement für Chemie und Biochemie, Universität Bern, Bern, Switzerland
| | | |
Collapse
|
15
|
Keyhani NO, Bacia K, Roseman S. The transport/phosphorylation of N,N'-diacetylchitobiose in Escherichia coli. Characterization of phospho-IIB(Chb) and of a potential transition state analogue in the phosphotransfer reaction between the proteins IIA(Chb) AND IIB(Chb). J Biol Chem 2000; 275:33102-9. [PMID: 10913119 DOI: 10.1074/jbc.m001045200] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Enzyme II permeases of the phosphoenolpyruvate:glycose phosphotransferase system comprise one to five separately encoded polypeptides, but most contain similar domains (IIA, IIB, and IIC). The phosphoryl group is transferred from one domain to another, with histidine as the phosphoryl acceptor in IIA and cysteine as the acceptor in certain IIB domains. IIB(Chb) is a phosphocarrier in the uptake/phosphorylation of the chitin disaccharide, (GlcNAc)(2) by Escherichia coli and is unusual because it is separately encoded and soluble. Both the crystal and solution structures of a IIB(Chb) mutant (C10S) have been reported. In the present studies, homogeneous phospho-IIB(Chb) was isolated, and the phosphoryl-Cys linkage was established by (31)P NMR spectroscopy. Rate constants for the hydrolysis of phospho-IIB(Chb) plotted versus pH gave the same shape peak reported for the model compound, butyl thiophosphate, but was shifted about 4 pH units. Evidence is presented for a stable complex between homogeneous Cys10SerIIB(Chb) (which cannot be phosphorylated) and phospho-IIA(Chb), but not with IIA(Chb). The complex (a tetramer (3)) contains equimolar quantities of the two proteins and has been chemically cross-linked. It appears to be an analogue of the transition state complex in the reaction: phospho-IIA(Chb) + IIB(Chb) <--> IIA(Chb) + phospho-IIB(Chb). This is apparently the first report of the isolation of a transition state analogue in a protein-protein phosphotransfer reaction.
Collapse
Affiliation(s)
- N O Keyhani
- Department of Biology and the McCollum-Pratt Institute, The Johns Hopkins University, Baltimore, Maryland 21218, USA
| | | | | |
Collapse
|
16
|
Keyhani NO, Wang LX, Lee YC, Roseman S. The chitin disaccharide, N,N'-diacetylchitobiose, is catabolized by Escherichia coli and is transported/phosphorylated by the phosphoenolpyruvate:glycose phosphotransferase system. J Biol Chem 2000; 275:33084-90. [PMID: 10913117 DOI: 10.1074/jbc.m001043200] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have previously reported that wild type strains of Escherichia coli grow on the chitin disaccharide N,N'-diacetylchitobiose, (GlcNAc)(2), as the sole source of carbon (Keyhani, N. O., and Roseman, S. (1997) Proc. Natl. Acad. Sci., U. S. A. 94, 14367-14371). A nonhydrolyzable analogue of (GlcNAc)(2,) methyl beta-N, N'-[(3)H]diacetylthiochitobioside ([(3)H]Me-TCB), was used to characterize the disaccharide transport process, which was found to be mediated by the phosphoenolpyruvate:glycose phosphotransferase system (PTS). Here and in the accompanying papers (Keyhani, N. O., Boudker, O., and Roseman, S. (2000) J. Biol. Chem. 275, 33091-33101; Keyhani, N. O., Bacia, K., and Roseman, S. (2000) J. Biol. Chem. 275, 33102-33109; Keyhani, N. O., Rodgers, M., Demeler, B., Hansen, J., and Roseman, S. (2000) J. Biol. Chem. 275, 33110-33115), we report that transport of [(3)H]Me-TCB and (GlcNAc)(2) involves a specific PTS Enzyme II complex, requires Enzyme I and HPr of the PTS, and results in the accumulation of the sugar derivative as a phosphate ester. The phosphoryl group is linked to the C-6 position of the GlcNAc residue at the nonreducing end of the disaccharide. The [(3)H]Me-TCB uptake system was induced only by (GlcNAc)(n), n = 2 or 3. The apparent K(m) of transport was 50-100 micrometer, and effective inhibitors of uptake included (GlcNAc)(n), n = 2 or 3, cellobiose, and other PTS sugars, i.e. glucose and GlcNAc. Presumably the PTS sugars inhibit by competing for PTS components. Kinetic properties of the transport system are described.
Collapse
Affiliation(s)
- N O Keyhani
- Department of Biology and the McCollum-Pratt Institute, The Johns Hopkins University, Baltimore, Maryland 21218, USA
| | | | | | | |
Collapse
|
17
|
Keyhani NO, Li XB, Roseman S. Chitin catabolism in the marine bacterium Vibrio furnissii. Identification and molecular cloning of a chitoporin. J Biol Chem 2000; 275:33068-76. [PMID: 10913115 DOI: 10.1074/jbc.m001041200] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Chitin catabolism by the marine bacterium Vibrio furnissii involves many genes and proteins, including two unique periplasmic hydrolases, a chitodextrinase and a beta-N-acetylglucosaminidase (Keyhani, N. O. , and Roseman, S. (1996) J. Biol. Chem. 271, 33414-33424 and 33425-33432). A specific chitoporin in the outer membrane may be required for these glycosidases to be accessible to extracellular chitooligosaccharides, (GlcNAc)(n), that are produced by chitinases. We report here the identification and molecular cloning of such a porin. An outer membrane protein, OMP (apparent molecular mass 40 kDa) was expressed when V. furnissii was induced by (GlcNAc)(n), n = 2-6, but not by GlcNAc or other sugars. Based on the N-terminal sequence of OMP, oligonucleotides were synthesized and used to clone the gene, chiP. The deduced amino acid sequence of ChiP is similar to several bacterial porins; OMP is a processed form of ChiP. In Escherichia coli, two recombinant proteins were observed, corresponding to processed and unprocessed forms of ChiP. A null mutant of chiP was constructed in V. furnissii. In contrast to the parental strain, the mutant did not grow on (GlcNAc)(3) and transported a nonmetabolizable analogue of (GlcNAc)(2) at a reduced rate. These results imply that ChiP is a specific chitoporin.
Collapse
Affiliation(s)
- N O Keyhani
- Department of Biology and the McCollum-Pratt Institute, The Johns Hopkins University, Baltimore, Maryland 21218, USA
| | | | | |
Collapse
|
18
|
Keyhani N, Rodgers ME, Demeler B, Hansen JC, Roseman S. Analytical sedimentation of the IIAChb and IIBChb proteins of the Escherichia coli N,N'-diacetylchitobiose phosphotransferase system. Demonstration of a model phosphotransfer transition state complex. J Biol Chem 2000; 275:33110-5. [PMID: 10913122 DOI: 10.1074/jbc.m001717200] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The phosphoenolpyruvate:glycose transferase system (PTS) is a prototypic signaling system responsible for the vectorial uptake and phosphorylation of carbohydrate substrates. The accompanying papers describe the proteins and product of the Escherichia coli N, N-diacetylchitobiose ((GlcNAc)(2)) PTS-mediated permease. Unlike most PTS transporters, the Chb system is composed of two soluble proteins, IIA(Chb) and IIB(Chb), and one transmembrane receptor (IIC(Chb)). The oligomeric states of PTS permease proteins and phosphoproteins have been difficult to determine. Using analytical ultracentrifugation, both dephospho and phosphorylated IIA(Chb) are shown to exist as stable dimers, whereas IIB(Chb), phospho-IIB(Chb) and the mutant Cys10SerIIB(Chb) are monomers. The mutant protein Cys10SerIIB(Chb) is unable to accept phosphate from phospho-IIA(Chb) but forms a stable higher order complex with phospho-IIA(Chb) (but not with dephospho-IIA(Chb)). The stoichiometry of proteins in the purified complex was determined to be 1:1, indicating that two molecules of Cys10SerIIB(Chb) are associated with one phospho-IIA(Chb) dimer in the complex. The complex appears to be a transition state analogue in the phosphotransfer reaction between the proteins. A model is presented that describes the concerted assembly and disassembly of IIA(Chb)-IIB(Chb) complexes contingent on phosphorylation-dependent conformational changes, especially of IIA(Chb).
Collapse
Affiliation(s)
- N Keyhani
- Department of Biology and McCollum-Pratt Institute, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | | | | | | | | |
Collapse
|
19
|
Park JK, Keyhani NO, Roseman S. Chitin catabolism in the marine bacterium Vibrio furnissii. Identification, molecular cloning, and characterization of A N, N'-diacetylchitobiose phosphorylase. J Biol Chem 2000; 275:33077-83. [PMID: 10913116 DOI: 10.1074/jbc.m001042200] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The major product of bacterial chitinases is N,N'-diacetylchitobiose or (GlcNAc)(2). We have previously demonstrated that (GlcNAc)(2) is taken up unchanged by a specific permease in Vibrio furnissii (unlike Escherichia coli). It is generally held that marine Vibrios further metabolize cytoplasmic (GlcNAc)(2) by hydrolyzing it to two GlcNAcs (i.e. a "chitobiase "). Here we report instead that V. furnissii expresses a novel phosphorylase. The gene, chbP, was cloned into E. coli; the enzyme, ChbP, was purified to apparent homogeneity, and characterized kinetically. The DNA sequence indicates that chbP encodes an 89-kDa protein. The enzymatic reaction was characterized as follows. (GlcNAc)(2)+P(i) GlcNAc-alpha-1-P+GlcNAc K'(cq)=1.0+/-0.2 Reaction 1 The K(m) values for the four substrates were in the range 0.3-1 mm. p-Nitrophenyl-(GlcNAc)(2) was cleaved at 8.5% the rate of (GlcNAc)(2), and p-nitrophenyl (PNP)-GlcNAc was 36% as active as GlcNAc in the reverse direction. All other compounds tested displayed </=1% of the activity of the indicated substrates including: for phosphorolysis, higher chitin oliogsaccharides, (GlcNAc)(n), n = 3-5, cellobiose, PNP-GlcNAc, and PNP-(GlcNAc)(3); for synthesis, (GlcNAc)(n) (n = 2-5), glucose, etc. (GlcNAc)(2) is a major regulator of the chitin catabolic cascade. Conceivably GlcNAc-alpha-1-P plays a similar but different role in regulation.
Collapse
Affiliation(s)
- J K Park
- Department of Biology and the McCollum-Pratt Institute, The Johns Hopkins University, Baltimore, Maryland 21218, USA
| | | | | |
Collapse
|