1
|
Hiron TK, Aguiar J, Williams JM, Falcone S, Norman PA, Elliott J, Fowkes RC, Syme HM, Davison LJ. Transcriptomic analysis reveals a critical role for activating G sα mutations in spontaneous feline hyperthyroidism. Sci Rep 2024; 14:28749. [PMID: 39567583 PMCID: PMC11579033 DOI: 10.1038/s41598-024-79564-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 11/11/2024] [Indexed: 11/22/2024] Open
Abstract
Feline hyperthyroidism (FHT) is a debilitating disease affecting > 10% of elderly cats. It is generally characterised by chronic elevation of thyroid hormone in the absence of circulating TSH. Understanding of the molecular pathogenesis of FHT is currently limited. However, FHT shares clinical and histopathological similarities with human toxic multinodular goitre, which has been associated with activating mutations in TSH receptor (TSHR) and Gsα encoding genes. Using RNA-seq transcriptomic analysis of thyroid tissue from hyperthyroid and euthyroid cats, we identified differentially expressed genes and dysregulated pathways in FHT, many of which are downstream of TSHR. In addition, we detected missense variants in thyroid RNA-seq reads that alter the structure of both TSHR and Gsα. All FHT-associated mutations were absent in germline sequence from paired blood samples. Only a small number of hyperthyroid cats demonstrated TSHR variation, however all thyroids from advanced cases of FHT carried at least one missense variant affecting Gsα. The activating nature of the acquired Gsα mutations was demonstrated by increased cAMP production in vitro. These data indicate that constitutive activation of signalling downstream of TSHR is central to the TSH-independent production of thyroid hormone in FHT, offering a novel therapeutic target pathway in this common disease.
Collapse
Affiliation(s)
- Thomas K Hiron
- Department of Clinical Science and Services, The Royal Veterinary College, Hertfordshire, AL9 7TA, UK
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, UK
| | - Joana Aguiar
- Department of Clinical Science and Services, The Royal Veterinary College, Hertfordshire, AL9 7TA, UK
- Dick White Referrals, Station Farm, London Road, Six Mile Bottom, Cambridgeshire, CB8 0UH, UK
| | - Jonathan M Williams
- Department of Pathobiology and Population Sciences, The Royal Veterinary College, Hertfordshire, AL9 7TA, UK
| | - Sara Falcone
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, UK
| | - Paul A Norman
- Department of Clinical Science and Services, The Royal Veterinary College, Hertfordshire, AL9 7TA, UK
| | - Jonathan Elliott
- Department of Comparative Biomedical Science, The Royal Veterinary College, London, NW1 0TU, UK
| | - Robert C Fowkes
- Department of Comparative Biomedical Science, The Royal Veterinary College, London, NW1 0TU, UK
- Department of Small Animal Clinical Sciences, Michigan State University College of Veterinary Medicine, East Lansing, MI, 48824, USA
| | - Harriet M Syme
- Department of Clinical Science and Services, The Royal Veterinary College, Hertfordshire, AL9 7TA, UK
| | - Lucy J Davison
- Department of Clinical Science and Services, The Royal Veterinary College, Hertfordshire, AL9 7TA, UK.
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, UK.
| |
Collapse
|
2
|
Li J, Qin Z, Li Y, Huang B, Xiao Q, Chen P, Luo Y, Zheng W, Zhang T, Zhang Z. Phosphorylation of IDH1 Facilitates Progestin Resistance in Endometrial Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2310208. [PMID: 38582508 PMCID: PMC11187910 DOI: 10.1002/advs.202310208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 03/19/2024] [Indexed: 04/08/2024]
Abstract
The progestin regimen is one of the main therapeutic strategies for women with endometrial cancer who undergo conservative management. Although many patients respond well to initial therapy, progestin-refractory disease inevitably emerges, and the molecular basis underlying progestin resistance has not been comprehensively elucidated. Herein, they demonstrated progestin results in p38-dependent IDH1 Thr 77 phosphorylation (pT77-IDH1). pT77-IDH1 translocates into the nucleus and is recruited to chromatin through its interaction with OCT6. IDH1-produced α-ketoglutarate (αKG) then facilitates the activity of OCT6 to promote focal adhesion related target gene transcription to confer progestin resistance. Pharmacological inhibition of p38 or focal adhesion signaling sensitizes endometrial cancer cells to progestin in vivo. The study reveals p38-dependent pT77-IDH1 as a key mediator of progestin resistance and a promising target for improving the efficacy of progestin therapy.
Collapse
Affiliation(s)
- Jingjie Li
- Precision Research Center for Refractory DiseasesShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai201620China
| | - Zuoshu Qin
- Precision Research Center for Refractory DiseasesShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai201620China
| | - Yunqi Li
- Shanghai Institute of HematologyState Key Laboratory of Medical GenomicsNational Research Center for Translational MedicineRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Baozhu Huang
- Precision Research Center for Refractory DiseasesShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai201620China
| | - Qimeng Xiao
- Precision Research Center for Refractory DiseasesShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai201620China
| | - Peiqin Chen
- Precision Research Center for Refractory DiseasesShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai201620China
| | - Yifan Luo
- Precision Research Center for Refractory DiseasesShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai201620China
| | - Wenxin Zheng
- Department of PathologyUniversity of Texas Southwestern Medical CenterDallasTX75390USA
- Department of Obstetrics and GynecologyUniversity of Texas Southwestern Medical CenterDallasTX75390USA
- Simon Comprehensive Cancer CenterUniversity of Texas Southwestern Medical CenterDallasTX75390USA
| | - Tao Zhang
- Department of OrthopedicsShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai200080China
| | - Zhenbo Zhang
- Precision Research Center for Refractory DiseasesShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai201620China
- Reproductive Medicine CenterDepartment of Obstetrics and GynecologyTongji hospitalSchool of MedicineTongji UniversityShanghai200065China
| |
Collapse
|
3
|
Du Y, Chen C, Zhou G, Cai Z, Man Q, Liu B, Wang WC. Perfluorooctanoic acid disrupts thyroid-specific genes expression and regulation via the TSH-TSHR signaling pathway in thyroid cells. ENVIRONMENTAL RESEARCH 2023; 239:117372. [PMID: 37827365 DOI: 10.1016/j.envres.2023.117372] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/08/2023] [Accepted: 10/09/2023] [Indexed: 10/14/2023]
Abstract
Perfluorooctanoic acid (PFOA) is a highly persistent and widespread chemical in the environment with endocrine disruption effects. Although it has been reported that PFOA can affect multiple aspects of thyroid function, the exact mechanism by which it reduces thyroxine levels has not yet been elucidated. In this study, FRTL-5 rat thyroid follicular cells were used as a model to study the toxicity of PFOA to the genes related to thyroid hormone synthesis and their regulatory network. Our results reveal that PFOA interfered with the phosphorylation of the cyclic adenosine monophosphate (cAMP)-response element binding protein (CREB) induced by thyroid-stimulating hormone (TSH), as well as the transcription levels of paired box 8 (PAX8), thyroid transcription factor 1 (TTF1), sodium/iodide cotransporter (NIS), thyroglobulin (TG), and thyroid peroxidase (TPO). However, the above outcomes can be alleviated by enhancing cAMP production with forskolin treatment. Further investigations showed that PFOA reduced the mRNA level of TSH receptor (TSHR) and impaired its N-glycosylation, suggesting that PFOA has disrupting effects on both transcriptional regulation and post-translational regulation. In addition, PFOA increased endoplasmic reticulum (ER) stress and decreased ER mass in FRTL-5 cells. Based on these findings, it can be inferred that PFOA disrupts the TSH-activated cAMP signaling pathway by inhibiting TSHR expression and its N-glycosylation. We propose that this mechanism may contribute to the decrease in thyroid hormone levels caused by PFOA. Our study sheds light on the molecular mechanism by which PFOA can disrupt thyroid function and provides new insights and potential targets for interventions to counteract the disruptive effects of PFOA.
Collapse
Affiliation(s)
- Yatao Du
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200292, China
| | - Chaojie Chen
- Institute of Biothermal Science and Technology, University of Shanghai for Science and Technology, Shanghai, 200093, China; The Base of Achievement Transformation, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai, 200438, China
| | - Guangdi Zhou
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200292, China
| | - Zhenzhen Cai
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200292, China; Department of Clinical Laboratory, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, China
| | - Qiuhong Man
- Department of Clinical Laboratory, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, China.
| | - Baolin Liu
- Institute of Biothermal Science and Technology, University of Shanghai for Science and Technology, Shanghai, 200093, China; Shanghai Co-innovation Center for Energy Therapy of Tumors, Shanghai, 200093, China.
| | - Weiye Charles Wang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200292, China.
| |
Collapse
|
4
|
Thyroid-Stimulating Hormone Inhibits Insulin Receptor Substrate-1 Expression and Tyrosyl Phosphorylation in 3T3-L1 Adipocytes by Increasing NF-κB DNA-Binding Activity. DISEASE MARKERS 2022; 2022:7553670. [PMID: 35320949 PMCID: PMC8938072 DOI: 10.1155/2022/7553670] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/21/2022] [Accepted: 02/24/2022] [Indexed: 02/04/2023]
Abstract
Background. Abundant evidence indicates that thyroid-stimulating hormone (TSH) levels are associated with insulin resistance in adipocytes. However, the potential mechanism of the association remains uncertain. The objective of this study was to determine the potential role of TSH in the suppression of insulin receptor substrate-1 (IRS-1) expression and IRS-1 tyrosyl phosphorylation, which might contribute to insulin resistance. Methods. Mouse 3T3-L1 preadipocytes were differentiated into adipocytes. After treatment with 0.01, 0.1, and 1.0 mIU/ml bovine TSH, the TNF-α concentration in the medium was determined by enzyme-linked immunosorbent assay (ELISA). Nuclear factor-kappa B (NF-κB) DNA-binding activity was quantified by electrophoretic mobility shift assay (EMSA). IRS-1 levels in adipocytes were quantified by Western blotting, and tyrosine phosphorylation was measured by immunoprecipitation. Results. TSH induced TNF-α secretion in a dose-dependent manner. There was a significant positive correlation between NF-κB DNA-binding activity and TNF-α secretion. This effect and correlation were weakened by BAY 11-7082 (a nuclear NF-κB inhibitor) and H89 (an inhibitor of cyclic adenosine monophosphate- (cAMP-) dependent protein kinase A (PKA)). Treatment of cultured adipocytes with TSH inhibited insulin-stimulated IRS-1 tyrosyl phosphorylation but promoted TSH-dependent secretion of TNF-α and activation of NF-κB DNA-binding activity. The effects of TSH were significantly inhibited by BAY 11-7082 and H89 and were completely blocked by the TNF-α antagonist WP9QY. Conclusion. TSH inhibited IRS-1 protein expression and tyrosyl phosphorylation in 3T3-L1 adipocytes by stimulating TNF-α production via promotion of NF-κB DNA-binding activity. TSH might play a pivotal role in the development of insulin resistance.
Collapse
|
5
|
Oh JM, Ahn BC. Molecular mechanisms of radioactive iodine refractoriness in differentiated thyroid cancer: Impaired sodium iodide symporter (NIS) expression owing to altered signaling pathway activity and intracellular localization of NIS. Theranostics 2021; 11:6251-6277. [PMID: 33995657 PMCID: PMC8120202 DOI: 10.7150/thno.57689] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 03/22/2021] [Indexed: 12/16/2022] Open
Abstract
The advanced, metastatic differentiated thyroid cancers (DTCs) have a poor prognosis mainly owing to radioactive iodine (RAI) refractoriness caused by decreased expression of sodium iodide symporter (NIS), diminished targeting of NIS to the cell membrane, or both, thereby decreasing the efficacy of RAI therapy. Genetic aberrations (such as BRAF, RAS, and RET/PTC rearrangements) have been reported to be prominently responsible for the onset, progression, and dedifferentiation of DTCs, mainly through the activation of mitogen-activated protein kinase (MAPK) and phosphoinositide 3-kinase (PI3K)/AKT signaling pathways. Eventually, these alterations result in a lack of NIS and disabling of RAI uptake, leading to the development of resistance to RAI therapy. Over the past decade, promising approaches with various targets have been reported to restore NIS expression and RAI uptake in preclinical studies. In this review, we summarized comprehensive molecular mechanisms underlying the dedifferentiation in RAI-refractory DTCs and reviews strategies for restoring RAI avidity by tackling the mechanisms.
Collapse
|
6
|
Boutin A, Gershengorn MC, Neumann S. β-Arrestin 1 in Thyrotropin Receptor Signaling in Bone: Studies in Osteoblast-Like Cells. Front Endocrinol (Lausanne) 2020; 11:312. [PMID: 32508750 PMCID: PMC7251030 DOI: 10.3389/fendo.2020.00312] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 04/24/2020] [Indexed: 12/20/2022] Open
Abstract
A direct action of thyrotropin (TSH, thyroid-stimulating hormone) on bone precursors in humans is controversial. Studies in rodent models have provided conflicting findings. We used cells derived from a moderately differentiated osteosarcoma stably overexpressing human TSH receptors (TSHRs) as a model of osteoblast precursors (U2OS-TSHR cells) to investigate TSHR-mediated effects in bone differentiation in human cells. We review our findings that (1) TSHR couples to several different G proteins to induce upregulation of genes associated with osteoblast activity-interleukin 11 (IL-11), osteopontin (OPN), and alkaline phosphatase (ALPL) and that the kinetics of the induction and the G protein-mediated signaling pathways involved were different for these genes; (2) TSH can stimulate β-arrestin-mediated signal transduction and that β-arrestin 1 in part mediates TSH-induced pre-osteoblast differentiation; and (3) TSHR/insulin-like growth factor 1 (IGF1) receptor (IGF1R) synergistically increased OPN secretion by TSH and IGF1 and that this crosstalk was mediated by physical association of these receptors in a signaling complex that uses β-arrestin 1 as a scaffold. These findings were complemented using a novel β-arrestin 1-biased agonist of TSHR. We conclude that TSHR can signal via several transduction pathways leading to differentiation of this model system of human pre-osteoblast cells and, therefore, that TSH can directly regulate these bone cells.
Collapse
|
7
|
Fargesin inhibits melanin synthesis in murine malignant and immortalized melanocytes by regulating PKA/CREB and P38/MAPK signaling pathways. J Dermatol Sci 2019; 94:213-219. [PMID: 30956031 DOI: 10.1016/j.jdermsci.2019.03.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 03/21/2019] [Accepted: 03/24/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND Fargesin is commonly used in the treatment of allergic rhinitis, inflammation, sinusitis and headache. OBJECTIVE The aim of the study is to investigate a new function of fargesin against melanin production and its underlying molecular mechanism. METHODS B16F10 mouse melanoma cells, Melan-a and human epidermal melanocytes were treated with different concentrations of fargesin for the indicated time. The extracellular and cellular melanin content was detected by spectrometry at 490 nm and 405 nm, respectively. RT-qPCR and Western blot analysis were used to exam the expression of melanogenic enzymes and the activities of PKA/CREB and p38 MAPK pathway components. Zebrafish was used as an in vivo model for studying the function of fargesin in regulating melanogenesis. RESULTS Fargesin effectively inhibited melanin production at moderate dose in mouse B16F10 melanoma cells, normal melanocyte cell lines and zebrafish. The expression of microphthalmia-associated transcription factor (MITF), its downstream melanogenic enzymes and tyrosinase activity were also strongly reduced by fargesin. Moreover, the increase of melanin production induced by UVB and forskolin could be fully reversed by fargesin treatment. Fargesin also effectively inhibited the activation of PKA/CREB and p38 MAPK as well as their interactions, which in turn is responsible for the expression of MITF and melanogenic enzymes. CONCLUSIONS These results show that fargesin can function as an anti-melanogenic agent, at least in part, by inhibiting PKA/CREB and p38/MAPK signaling pathways. Therefore, fargesin and its derivatives may potentially be used for preventing hyperpigmentation disorders in the future.
Collapse
|
8
|
Jia W, Li Z, Chen J, Sun L, Liu C, Wang S, Chi J, Niu J, Lai H. TIPE2 acts as a biomarker for tumor aggressiveness and suppresses cell invasiveness in papillary thyroid cancer (PTC). Cell Biosci 2018; 8:49. [PMID: 30186591 PMCID: PMC6119276 DOI: 10.1186/s13578-018-0247-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 08/27/2018] [Indexed: 12/17/2022] Open
Abstract
Background Tumor necrosis factor (TNF)-alpha-induced protein 8-like 2 (TIPE2 or TNFAIP8L2) is a newly described negative immune regulator and is closely associated with various tumors. However, the expression and roles of TIPE2 in PTC is unknown. Results In the present study, TIPE2 upregulation in PTC tissues was found to be negatively associated with tumor size, capsule infiltration, peripheral infiltration and tumor T stage, which could be used to predict tumor invasiveness. TIPE2 overexpression significantly suppressed the viability, proliferation, migration and invasion of PTC cells. Moreover, TIPE2 suppressed tumor invasiveness by inhibiting Rac1, leading to decreased expression of uPA and MMP9. Conclusions These results indicate that TIPE2 is a potential biomarker for predicting tumor aggressiveness and suppresses tumor invasiveness in a Rac1-dependent manner. Electronic supplementary material The online version of this article (10.1186/s13578-018-0247-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wenyu Jia
- 1Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong People's Republic of China.,Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong People's Republic of China
| | - Zequn Li
- 3Department of General Surgery, Affiliated Hospital of Qingdao University, Qingdao, Shandong People's Republic of China
| | - Junyu Chen
- 4Department of Endocrinology, Qilu Hospital of Shandong University, 107# Wenhua Xi Road, Jinan, 250012 Shandong People's Republic of China
| | - Lei Sun
- 4Department of Endocrinology, Qilu Hospital of Shandong University, 107# Wenhua Xi Road, Jinan, 250012 Shandong People's Republic of China
| | - Chuanqian Liu
- 5Department of Traditional Chinese Medicine, The First People's Hospital of Jining, Jining, Shandong People's Republic of China
| | - Shaping Wang
- Clinical Laboratory, Weihai Wendeng Central Hospital, Weihai, Shandong People's Republic of China
| | - Jingwei Chi
- 7Key Laboratory of Thyroid Disease, Affiliated Hospital of Qingdao University, Qingdao, Shandong People's Republic of China
| | - Jun Niu
- 8Department of General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong People's Republic of China
| | - Hong Lai
- 4Department of Endocrinology, Qilu Hospital of Shandong University, 107# Wenhua Xi Road, Jinan, 250012 Shandong People's Republic of China
| |
Collapse
|
9
|
Lyu J, Imachi H, Yoshimoto T, Fukunaga K, Sato S, Ibata T, Kobayashi T, Dong T, Yonezaki K, Yamaji N, Kikuchi F, Iwama H, Ishikawa R, Haba R, Sugiyama Y, Zhang H, Murao K. Thyroid stimulating hormone stimulates the expression of glucose transporter 2 via its receptor in pancreatic β cell line, INS-1 cells. Sci Rep 2018; 8:1986. [PMID: 29386586 PMCID: PMC5792451 DOI: 10.1038/s41598-018-20449-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 01/17/2018] [Indexed: 12/30/2022] Open
Abstract
Thyroid stimulating hormone (TSH) stimulates the secretion of thyroid hormones by binding the TSH receptor (TSHR). TSHR is well-known to be expressed in thyroid tissue, excepting it, TSHR has also been expressed in many other tissues. In this study, we have examined the expression of TSHR in rat pancreatic islets and evaluated the role of TSH in regulating pancreas-specific gene expression. TSHR was confirmed to be expressed in rodent pancreatic islets and its cell line, INS-1 cells. TSH directly affected the glucose uptake in INS cells by up-regulating the expression of GLUT2, and furthermore this process was blocked by SB203580, the specific inhibitor of the p38 MAPK signaling pathway. Similarly, TSH stimulated GLUT2 promoter activity, while both a dominant-negative p38MAPK α isoform (p38MAPK α-DN) and the specific inhibitor for p38MAPK α abolished the stimulatory effect of TSH on GLUT2 promoter activity. Finally, INS-1 cells treated with TSH showed increased protein level of glucokinase and enhanced glucose-stimulated insulin secretion. Together, these results confirm that TSHR is expressed in INS-1 cells and rat pancreatic islets, and suggest that activation of the p38MAPK α might be required for TSH-induced GLUT2 gene transcription in pancreatic β cells.
Collapse
Affiliation(s)
- Jingya Lyu
- Department of Endocrinology and Metabolism, Faculty of Medicine, Kagawa University, 1750-1, Miki-cho, Kita-gun, Kagawa, 761-0793, Japan.,Department of Cell Biology, Medical College of Soochow University, Jiangsu Key Laboratory of Stem Cell Research, Ren Ai Road 199, Suzhou Industrial Park, Suzhou, 215123, China
| | - Hitomi Imachi
- Department of Endocrinology and Metabolism, Faculty of Medicine, Kagawa University, 1750-1, Miki-cho, Kita-gun, Kagawa, 761-0793, Japan
| | - Takuo Yoshimoto
- Department of Endocrinology and Metabolism, Faculty of Medicine, Kagawa University, 1750-1, Miki-cho, Kita-gun, Kagawa, 761-0793, Japan
| | - Kensaku Fukunaga
- Department of Endocrinology and Metabolism, Faculty of Medicine, Kagawa University, 1750-1, Miki-cho, Kita-gun, Kagawa, 761-0793, Japan
| | - Seisuke Sato
- Department of Endocrinology and Metabolism, Faculty of Medicine, Kagawa University, 1750-1, Miki-cho, Kita-gun, Kagawa, 761-0793, Japan
| | - Tomohiro Ibata
- Department of Endocrinology and Metabolism, Faculty of Medicine, Kagawa University, 1750-1, Miki-cho, Kita-gun, Kagawa, 761-0793, Japan
| | - Toshihiro Kobayashi
- Department of Endocrinology and Metabolism, Faculty of Medicine, Kagawa University, 1750-1, Miki-cho, Kita-gun, Kagawa, 761-0793, Japan
| | - Tao Dong
- Department of Endocrinology and Metabolism, Faculty of Medicine, Kagawa University, 1750-1, Miki-cho, Kita-gun, Kagawa, 761-0793, Japan
| | - Kazuko Yonezaki
- Department of Endocrinology and Metabolism, Faculty of Medicine, Kagawa University, 1750-1, Miki-cho, Kita-gun, Kagawa, 761-0793, Japan
| | - Nao Yamaji
- Department of Endocrinology and Metabolism, Faculty of Medicine, Kagawa University, 1750-1, Miki-cho, Kita-gun, Kagawa, 761-0793, Japan
| | - Fumi Kikuchi
- Department of Endocrinology and Metabolism, Faculty of Medicine, Kagawa University, 1750-1, Miki-cho, Kita-gun, Kagawa, 761-0793, Japan
| | - Hisakazu Iwama
- Life Science Research Center, Kagawa University, 1750-1, Miki-cho, Kita-gun, Kagawa, 761-0793, Japan
| | - Ryou Ishikawa
- Department of Diagnostic Pathology, Kagawa University Hospital, 1750-1, Miki-cho, Kita-gun, Kagawa, 761-0793, Japan
| | - Reiji Haba
- Department of Diagnostic Pathology, Kagawa University Hospital, 1750-1, Miki-cho, Kita-gun, Kagawa, 761-0793, Japan
| | - Yasunori Sugiyama
- Department of Life Sciences, Faculty of Agriculture, Kagawa University, 2393, Miki-cho, Kita-gun, Kagawa, 761-0795, Japan
| | - Huanxiang Zhang
- Department of Cell Biology, Medical College of Soochow University, Jiangsu Key Laboratory of Stem Cell Research, Ren Ai Road 199, Suzhou Industrial Park, Suzhou, 215123, China.
| | - Koji Murao
- Department of Endocrinology and Metabolism, Faculty of Medicine, Kagawa University, 1750-1, Miki-cho, Kita-gun, Kagawa, 761-0793, Japan.
| |
Collapse
|
10
|
Wagner AP, Chinnathambi S, Titze IR, Sander EA. Vibratory stimulation enhances thyroid epithelial cell function. Biochem Biophys Rep 2016; 8:376-381. [PMID: 28955979 PMCID: PMC5614476 DOI: 10.1016/j.bbrep.2016.10.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 10/11/2016] [Accepted: 10/13/2016] [Indexed: 02/06/2023] Open
Abstract
The tissues of the body are routinely subjected to various forms of mechanical vibration, the frequency, amplitude, and duration of which can contribute both positively and negatively to human health. The vocal cords, which are in close proximity to the thyroid, may also supply the thyroid with important mechanical signals that modulate hormone production via mechanical vibrations from phonation. In order to explore the possibility that vibrational stimulation from vocalization can enhance thyroid epithelial cell function, FRTL-5 rat thyroid cells were subjected to either chemical stimulation with thyroid stimulating hormone (TSH), mechanical stimulation with physiological vibrations, or a combination of the two, all in a well-characterized, torsional rheometer-bioreactor. The FRTL-5 cells responded to mechanical stimulation with significantly (p<0.05) increased metabolic activity, significantly (p<0.05) increased ROS production, and increased gene expression of thyroglobulin and sodium-iodide symporter compared to un-stimulated controls, and showed an equivalent or greater response than TSH only stimulated cells. Furthermore, the combination of TSH and oscillatory motion produced a greater response than mechanical or chemical stimulation alone. Taken together, these results suggest that mechanical vibrations could provide stimulatory cues that help maintain thyroid function. Thyroid epithelial cells responded to mechanical vibrations similar to those from vocalization. This response was equivalent or greater compared to chemical stimulation. The combination of mechanical and chemical stimulation was synergistic. It may be possible to influence thyroid function with mechanical vibrations.
Collapse
Affiliation(s)
- A P Wagner
- Department of Biomedical Engineering, University of Iowa, IA, USA
| | - S Chinnathambi
- Department of Biomedical Engineering, University of Iowa, IA, USA
| | - I R Titze
- Department of Communication Sciences and Disorders, University of Iowa, IA, USA.,National Center for Voice and Speech, University of Utah, Salt Lake City, UT, USA
| | - E A Sander
- Department of Biomedical Engineering, University of Iowa, IA, USA
| |
Collapse
|
11
|
Boutin A, Neumann S, Gershengorn MC. Multiple Transduction Pathways Mediate Thyrotropin Receptor Signaling in Preosteoblast-Like Cells. Endocrinology 2016; 157:2173-81. [PMID: 26950201 PMCID: PMC4870888 DOI: 10.1210/en.2015-2040] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 03/01/2016] [Indexed: 12/20/2022]
Abstract
It has been shown that the TSH receptor (TSHR) couples to a number of different signaling pathways, although the Gs-cAMP pathway has been considered primary. Here, we measured the effects of TSH on bone marker mRNA and protein expression in preosteoblast-like U2OS cells stably expressing TSHRs. We determined which signaling cascades are involved in the regulation of IL-11, osteopontin (OPN), and alkaline phosphatase (ALPL). We demonstrated that TSH-induced up-regulation of IL-11 is primarily mediated via the Gs pathway as IL-11 was up-regulated by forskolin (FSK), an adenylyl cyclase activator, and inhibited by protein kinase A inhibitor H-89 and by silencing of Gαs by small interfering RNA. OPN levels were not affected by FSK, but its up-regulation was inhibited by TSHR/Gi-uncoupling by pertussis toxin. Pertussis toxin decreased p38 MAPK kinase phosphorylation, and a p38 inhibitor and small interfering RNA knockdown of p38α inhibited OPN induction by TSH. Up-regulation of ALPL expression required high doses of TSH (EC50 = 395nM), whereas low doses (EC50 = 19nM) were inhibitory. FSK-stimulated cAMP production decreased basal ALPL expression, whereas protein kinase A inhibition by H-89 and silencing of Gαs increased basal levels of ALPL. Knockdown of Gαq/11 and a protein kinase C inhibitor decreased TSH-stimulated up-regulation of ALPL, whereas a protein kinase C activator increased ALPL levels. A MAPK inhibitor and silencing of ERK1/2 inhibited TSH-stimulated ALPL expression. We conclude that TSH regulates expression of different bone markers via distinct signaling pathways.
Collapse
Affiliation(s)
- Alisa Boutin
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | - Susanne Neumann
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | - Marvin C Gershengorn
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
12
|
Carlsen I, Frøkiær J, Nørregaard R. Quercetin attenuates cyclooxygenase-2 expression in response to acute ureteral obstruction. Am J Physiol Renal Physiol 2015; 308:F1297-305. [PMID: 25810437 DOI: 10.1152/ajprenal.00514.2014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 03/16/2015] [Indexed: 11/22/2022] Open
Abstract
Unilateral ureteral obstruction (UUO) is associated with increased hydrostatic pressure, inflammation, and oxidative stress in the renal parenchyma. Previous studies have demonstrated marked cyclooxygenase (COX)-2 induction in renal medullary interstitial cells (RMICs) in response to UUO. The aim of the present study was to evaluate the effect of quercetin, a naturally occurring antioxidant, on COX-2 induction in vivo and in vitro. Rats subjected to 24 h of UUO were treated intraperitoneally with quercetin (50 mg·kg(-1)·day(-1)). Quercetin partly prevented COX-2 induction in the renal inner medulla in response to UUO. Moreover, RMICs exposed to conditions associated with obstruction, inflammation (produced by IL-1β), oxidative stress (produced by H2O2), and mechanical stress (produced by stretch) showed increased COX-2 expression. Interestingly, quercetin reduced COX-2 induction in RMICs subjected to stretched. Similarly, PGE2 production was markedly increased in RMICs exposed to stretch and was reversed to control levels by quercetin treatment. Furthermore, stretch-induced phosphorylation of ERK1/2 was blocked by quercetin, and inhibition of ERK1/2 attenuated stretch-induced COX-2 induction in RMICs. These results indicate that quercetin attenuated the induction of COX-2 expression and activity in RMICs exposed to mechanical stress as a consequence of acute UUO and that the MAPK ERK1/2 pathway might be involved in this quercetin-mediated reduction in COX-2.
Collapse
Affiliation(s)
- Inge Carlsen
- Department of Clinical Medicine, Aarhus University, Aarhus University Hospital, Aarhus, Denmark
| | - Jørgen Frøkiær
- Department of Clinical Medicine, Aarhus University, Aarhus University Hospital, Aarhus, Denmark
| | - Rikke Nørregaard
- Department of Clinical Medicine, Aarhus University, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
13
|
Lakshmanan A, Doseff AI, Ringel MD, Saji M, Rousset B, Zhang X, Jhiang SM. Apigenin in combination with Akt inhibition significantly enhances thyrotropin-stimulated radioiodide accumulation in thyroid cells. Thyroid 2014; 24:878-87. [PMID: 24400871 PMCID: PMC4026312 DOI: 10.1089/thy.2013.0614] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
BACKGROUND Selectively increased radioiodine accumulation in thyroid cells by thyrotropin (TSH) allows targeted treatment of thyroid cancer. However, the extent of TSH-stimulated radioiodine accumulation in some thyroid tumors is not sufficient to confer therapeutic efficacy. Hence, it is of clinical importance to identify novel strategies to selectively further enhance TSH-stimulated thyroidal radioiodine accumulation. METHODS PCCl3 rat thyroid cells, PCCl3 cells overexpressing BRAF(V600E), or primary cultured tumor cells from a thyroid cancer mouse model, under TSH stimulation were treated with various reagents for 24 hours. Cells were then subjected to radioactive iodide uptake, kinetics, efflux assays, and protein extraction followed by Western blotting against selected antibodies. RESULTS We previously reported that Akt inhibition increased radioiodine accumulation in thyroid cells under chronic TSH stimulation. Here, we identified Apigenin, a plant-derived flavonoid, as a reagent to further enhance the iodide influx rate increased by Akt inhibition in thyroid cells under acute TSH stimulation. Akt inhibition is permissive for Apigenin's action, as Apigenin alone had little effect. This action of Apigenin requires p38 MAPK activity but not PKC-δ. The increase in radioiodide accumulation by Apigenin with Akt inhibition was also observed in thyroid cells expressing BRAF(V600E) and in primary cultured thyroid tumor cells from TRβ(PV/PV) mice. CONCLUSION Taken together, Apigenin may serve as a dietary supplement in combination with Akt inhibitors to enhance therapeutic efficacy of radioiodine for thyroid cancer.
Collapse
Affiliation(s)
- Aparna Lakshmanan
- Molecular, Cellular and Developmental Biology Graduate Program, The Ohio State University, Columbus, Ohio
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, Ohio
| | - Andrea I. Doseff
- Molecular, Cellular and Developmental Biology Graduate Program, The Ohio State University, Columbus, Ohio
- Department of Internal Medicine, The Ohio State University, Columbus, Ohio
| | - Matthew D. Ringel
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, Ohio
| | - Motoyasu Saji
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, Ohio
| | - Bernard Rousset
- Cancer Research Center of Lyon (INSERM U1052/CNRS UMR 5286), Federation of Health Research of Eastern Lyon (CNRS UMS 3453/INSERM US7 Louis Léopold Oller), Lyon, France
| | - Xiaoli Zhang
- Center for Biostatistics, The Ohio State University, Columbus, Ohio
| | - Sissy M. Jhiang
- Molecular, Cellular and Developmental Biology Graduate Program, The Ohio State University, Columbus, Ohio
- Department of Internal Medicine, The Ohio State University, Columbus, Ohio
| |
Collapse
|
14
|
Boutin A, Eliseeva E, Gershengorn MC, Neumann S. β-Arrestin-1 mediates thyrotropin-enhanced osteoblast differentiation. FASEB J 2014; 28:3446-55. [PMID: 24723693 DOI: 10.1096/fj.14-251124] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Thyrotropin (TSH) activation of the TSH receptor (TSHR), a 7-transmembrane-spanning receptor (7TMR), may have osteoprotective properties by direct effects on bone. TSHR activation by TSH phosphorylates protein kinases AKT1, p38α, and ERK1/2 in some cells. We found TSH-induced phosphorylation of these kinases in 2 cell lines engineered to express TSHRs, human embryonic kidney HEK-TSHR cells and human osteoblastic U2OS-TSHR cells. In U2OS-TSHR cells, TSH up-regulated pAKT1 (7.1±0.5-fold), p38α (2.9±0.4-fold), and pERK1/2 (3.1±0.2-fold), whereas small molecule TSHR agonist C2 had no or little effect on pAKT1 (1.8±0.08-fold), p38α (1.2±0.09-fold), and pERK1/2 (1.6±0.19-fold). Furthermore, TSH increased expression of osteoblast marker genes ALPL (8.2±4.6-fold), RANKL (21±5.9-fold), and osteopontin (OPN; 17±5.3-fold), whereas C2 had little effect (ALPL, 1.7±0.5-fold; RANKL, 1.3±0.6-fold; and OPN, 2.2±0.7-fold). β-Arrestin-1 and -2 can mediate activatory signals by 7TMRs. TSH stimulated translocation of β-arrestin-1 and -2 to TSHR, whereas C2 failed to translocate either β-arrestin. Down-regulation of β-arrestin-1 by siRNA inhibited TSH-stimulated phosphorylation of ERK1/2, p38α, and AKT1, whereas down-regulation of β-arrestin-2 increased phosphorylation of AKT1 in both cell types and of ERK1/2 in HEK-TSHR cells. Knockdown of β-arrestin-1 inhibited TSH-stimulated up-regulation of mRNAs for OPN by 87 ± 1.7% and RANKL by 73 ± 2.4%, and OPN secretion by 74 ± 10%. We conclude that TSH enhances osteoblast differentiation in U2OS cells that is, in part, caused by activatory signals mediated by β-arrestin-1.
Collapse
Affiliation(s)
- Alisa Boutin
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Elena Eliseeva
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Marvin C Gershengorn
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Susanne Neumann
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
15
|
Agarwal R, Agarwal P. Newer targets for modulation of intraocular pressure: focus on adenosine receptor signaling pathways. Expert Opin Ther Targets 2014; 18:527-39. [DOI: 10.1517/14728222.2014.888416] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
16
|
Khan MS, Pandith AA, Azad N, Hussain MU, Masoodi SR, Wani KA, Andrabi KI, Mudassar S. Impact of molecular alterations of BRAF in the pathogenesis of thyroid cancer. Mutagenesis 2014; 29:131-7. [PMID: 24442520 DOI: 10.1093/mutage/get066] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BRAF alterations represent a novel indicator of the progression and aggressiveness of thyroid carcinogenesis. So, the main aim of the study was to elucidate the involvement of BRAF gene mutations and its expression in Kashmiri (North India) patients and investigate their association with clinico-pathological characteristics. Mutational analysis of BRAF gene was performed by polymerase chain reaction followed by DNA sequencing, whereas analysis of BRAF protein expression was done by western blotting. Overall mutations in BRAF was found to be 25% (15 of 60) and all of them were transversions (T>A) affecting codon 600 (valine to glutamine), restricted only to papillary thyroid cancer and well-differentiated grade. Patients with well-differentiated disease and in particular elevated thyroid-stimulating hormone levels were significantly associated with BRAF mutations (P < 0.05). Overall, 90% (54 of 60) of thyroid cancer cases showed increased expression of BRAF and non-smokers being significantly associated with BRAF over-expression. Totally, 86.7% (13 of 15) of BRAF mutation-positive patients were having over-expression of BRAF protein, whereas 91.2% (41 of 45) of patients with wild-type BRAF status were having over-expressed BRAF protein (P > 0.05). We conclude that both mutational events as well as over-expression of BRAF gene is highly implicated in pathogenesis of thyroid cancer and the BRAF protein over-expression is independent of the BRAF mutational status of thyroid cancer patients.
Collapse
|
17
|
Romero N, Dumur CI, Martinez H, García IA, Monetta P, Slavin I, Sampieri L, Koritschoner N, Mironov AA, De Matteis MA, Alvarez C. Rab1b overexpression modifies Golgi size and gene expression in HeLa cells and modulates the thyrotrophin response in thyroid cells in culture. Mol Biol Cell 2013; 24:617-32. [PMID: 23325787 PMCID: PMC3583665 DOI: 10.1091/mbc.e12-07-0530] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
An increase in Rab1b levels induces changes in Golgi size and in gene expression. These Rab1b-dependent changes require the activity of p38 mitogen-activated protein kinase and the cAMP-responsive element binding protein consensus binding. The results show a Rab1b increase in secretory cells after stimulation and suggest that this increase is required to elicit a secretory response. Rab1b belongs to the Rab-GTPase family that regulates membrane trafficking and signal transduction systems able to control diverse cellular activities, including gene expression. Rab1b is essential for endoplasmic reticulum–Golgi transport. Although it is ubiquitously expressed, its mRNA levels vary among different tissues. This work aims to characterize the role of the high Rab1b levels detected in some secretory tissues. We report that, in HeLa cells, an increase in Rab1b levels induces changes in Golgi size and gene expression. Significantly, analyses applied to selected genes, KDELR3, GM130 (involved in membrane transport), and the proto-oncogene JUN, indicate that the Rab1b increase acts as a molecular switch to control the expression of these genes at the transcriptional level, resulting in changes at the protein level. These Rab1b-dependent changes require the activity of p38 mitogen-activated protein kinase and the cAMP-responsive element-binding protein consensus binding site in those target promoter regions. Moreover, our results reveal that, in a secretory thyroid cell line (FRTL5), Rab1b expression increases in response to thyroid-stimulating hormone (TSH). Additionally, changes in Rab1b expression in FRTL5 cells modify the specific TSH response. Our results show, for the first time, that changes in Rab1b levels modulate gene transcription and strongly suggest that a Rab1b increase is required to elicit a secretory response.
Collapse
Affiliation(s)
- Nahuel Romero
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Nazar M, Nicola JP, Vélez ML, Pellizas CG, Masini-Repiso AM. Thyroid peroxidase gene expression is induced by lipopolysaccharide involving nuclear factor (NF)-κB p65 subunit phosphorylation. Endocrinology 2012; 153:6114-25. [PMID: 23064013 DOI: 10.1210/en.2012-1567] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Thyroid peroxidase (TPO), a tissue-specific enzyme expressed in differentiated thyroid follicular cells, is a major antigen that has been linked to autoimmune thyroid disease. We have previously reported the functional expression of the lipopolysaccharide (LPS) receptor Toll-like receptor 4 on thyroid follicular cells. Here we investigated the effect of LPS in TPO expression and analyzed the mechanisms involved. We found a dose-dependent enhancement of TSH-induced TPO expression in response to LPS stimulation. EMSAs demonstrated that LPS treatment increased thyroid transcription factor-1 and -2 binding to the B and Z regions of TPO promoter, respectively. Moreover, LPS increased TSH-stimulated TPO promoter activity. Using bioinformatic analysis, we identified a conserved binding site for transcription nuclear factor-κB (NF-κB) in the TPO promoter. Chemical inhibition of NF-κB signaling and site-directed mutagenesis of the identified κB-cis-acting element abolished LPS stimulation. Furthermore, chromatin immunoprecipitation assays confirmed that TPO constitutes a novel NF-κB p65 subunit target gene in response to LPS. Additionally, our results indicate that p65 phosphorylation of serine 536 constitutes an essential step in the p65-dependent, LPS-induced transcriptional expression of TPO. In conclusion, here we demonstrated that LPS increases TPO expression, suggesting a novel mechanism involved in the regulation of a major thyroid autoantigen. Our results provide new insights into the potential effects of infectious processes on thyroid homeostasis.
Collapse
Affiliation(s)
- Magalí Nazar
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, Consejo Nacional de Investigaciones Científicas y Técnicas, Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, 5000 Córdoba, Argentina
| | | | | | | | | |
Collapse
|
19
|
Kogai T, Brent GA. The sodium iodide symporter (NIS): regulation and approaches to targeting for cancer therapeutics. Pharmacol Ther 2012; 135:355-70. [PMID: 22750642 DOI: 10.1016/j.pharmthera.2012.06.007] [Citation(s) in RCA: 132] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Accepted: 06/19/2012] [Indexed: 01/21/2023]
Abstract
Expression of the sodium iodide symporter (NIS) is required for efficient iodide uptake in thyroid and lactating breast. Since most differentiated thyroid cancer expresses NIS, β-emitting radioactive iodide is routinely utilized to target remnant thyroid cancer and metastasis after total thyroidectomy. Stimulation of NIS expression by high levels of thyroid-stimulating hormone is necessary to achieve radioiodide uptake into thyroid cancer that is sufficient for therapy. The majority of breast cancer also expresses NIS, but at a low level insufficient for radioiodine therapy. Retinoic acid is a potent NIS inducer in some breast cancer cells. NIS is also modestly expressed in some non-thyroidal tissues, including salivary glands, lacrimal glands and stomach. Selective induction of iodide uptake is required to target tumors with radioiodide. Iodide uptake in mammalian cells is dependent on the level of NIS gene expression, but also successful translocation of NIS to the cell membrane and correct insertion. The regulatory mechanisms of NIS expression and membrane insertion are regulated by signal transduction pathways that differ by tissue. Differential regulation of NIS confers selective induction of functional NIS in thyroid cancer cells, as well as some breast cancer cells, leading to more efficient radioiodide therapy for thyroid cancer and a new strategy for breast cancer therapy. The potential for systemic radioiodide treatment of a range of other cancers, that do not express endogenous NIS, has been demonstrated in models with tumor-selective introduction of exogenous NIS.
Collapse
Affiliation(s)
- Takahiko Kogai
- Molecular Endocrinology Laboratory, VA Greater Los Angeles Healthcare System, Departments of Medicine and Physiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90073, USA.
| | | |
Collapse
|
20
|
Kogai T, Liu YY, Mody K, Shamsian DV, Brent GA. Regulation of sodium iodide symporter gene expression by Rac1/p38β mitogen-activated protein kinase signaling pathway in MCF-7 breast cancer cells. J Biol Chem 2011; 287:3292-300. [PMID: 22157753 DOI: 10.1074/jbc.m111.315523] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Activation of p38 MAPK is a key pathway for cell proliferation and differentiation in breast cancer and thyroid cells. The sodium/iodide symporter (NIS) concentrates iodide in the thyroid and lactating breast. All-trans-retinoic acid (tRA) markedly induces NIS activity in some breast cancer cell lines and promotes uptake of β-emitting radioiodide (131)I sufficient for targeted cytotoxicity. To identify a signal transduction pathway that selectively stimulates NIS expression, we investigated regulation by the Rac1-p38 signaling pathway in MCF-7 breast cancer cells and compared it with regulation in FRTL-5 rat thyroid cells. Loss of function experiments with pharmacologic inhibitors and small interfering RNA, as well as RT-PCR analysis of p38 isoforms, demonstrated the requirement of Rac1, MAPK kinase 3B, and p38β for the full expression of NIS in MCF-7 cells. In contrast, p38α was critical for NIS expression in FRTL-5 cells. Treatment with tRA or overexpression of Rac1 induced the phosphorylation of p38 isoforms, including p38β. A dominant negative mutant of Rac1 abolished tRA-induced phosphorylation in MCF-7 cells. Overexpression of p38β or Rac1 significantly enhanced (1.9- and 3.9-fold, respectively), the tRA-stimulated NIS expression in MCF-7 cells. This study demonstrates differential regulation of NIS by distinct p38 isoforms in breast cancer cells and thyroid cells. Targeting isoform-selective activation of p38 may enhance NIS induction, resulting in higher efficacy of (131)I concentration and treatment of breast cancer.
Collapse
Affiliation(s)
- Takahiko Kogai
- Molecular Endocrinology Laboratory, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California 90073, USA.
| | | | | | | | | |
Collapse
|
21
|
Balzan S, Carpi A, Evangelista M, Nicolini G, Pollastri A, Bottoni A, Iervasi G. Acute effect of TSH on oxygenation state and volume of erythrocytes from subjects thyroidectomized for differentiated thyroid carcinoma. Biomed Pharmacother 2011; 65:381-4. [PMID: 21742463 DOI: 10.1016/j.biopha.2011.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Accepted: 03/01/2011] [Indexed: 10/18/2022] Open
Abstract
We previously reported the presence in the membrane erythrocyte of a TSH receptor (TSHR), a G-protein coupled receptor, which responds to TSH with increased cAMP level. Since there is evidence for a role of G protein receptors as oxygen sensor(s) implicated in cell volume regulation, we hypothesized that erythrocyte TSHR, by TSH stimulation, could modify the erythrocyte volume and the oxygenation state of erythrocytes. We determined the effect of TSH on the gas analysis in 35 thyroidectomized patients for stage I differentiated thyroid cancer enrolled for recombinant human thyroid-stimulating hormone (rhTSH) test during chronic treatment with synthetic l-thyroxine. Moreover, we explored the influence of TSH on the shape of erythrocytes. Venous blood-gas analysis before and after TSH were determined with a pH/blood gas electrolyte and 682 CO-Oxymeter. In a subgroup of subjects (n=10), the isolated red blood cells (RBC) were analyzed by flow cytometry for morphological changes. After TSH stimulation, we found a significant decrease in PCO(2) (P<0.001), an increase in pH (P<0.01) and an increase of % O(2)-Hb (P<0.05) and pO(2) (P<0.05). By flow cytometry, the erythrocytes after TSH showed a significant enrichment on the mean number in the selected region R1 corresponding to bigger volumes (P<0.05, n=10). Finally, by contrast phase microscopy, when the cell area was measured, a mean increased volume was observed in erythrocytes after TSH compared to the basal before TSH (P<0.05). In conclusion, our results indicate that acute stimulation of TSH by rhTSH modifies the oxygenation state and volume of erythrocyte.
Collapse
Affiliation(s)
- Silvana Balzan
- Institute of Clinical Physiology, CNR, via Moruzzi 1, Pisa 56124, Italy.
| | | | | | | | | | | | | |
Collapse
|
22
|
Hingorani M, Spitzweg C, Vassaux G, Newbold K, Melcher A, Pandha H, Vile R, Harrington K. The biology of the sodium iodide symporter and its potential for targeted gene delivery. Curr Cancer Drug Targets 2010; 10:242-67. [PMID: 20201784 DOI: 10.2174/156800910791054194] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2009] [Accepted: 02/16/2010] [Indexed: 12/12/2022]
Abstract
The sodium iodide symporter (NIS) is responsible for thyroidal, salivary, gastric, intestinal and mammary iodide uptake. It was first cloned from the rat in 1996 and shortly thereafter from human and mouse tissue. In the intervening years, we have learned a great deal about the biology of NIS. Detailed knowledge of its genomic structure, transcriptional and post-transcriptional regulation and pharmacological modulation has underpinned the selection of NIS as an exciting approach for targeted gene delivery. A number of in vitro and in vivo studies have demonstrated the potential of using NIS gene therapy as a means of delivering highly conformal radiation doses selectively to tumours. This strategy is particularly attractive because it can be used with both diagnostic (99mTc, 125I, 124I)) and therapeutic (131I, 186Re, 188Re, 211At) radioisotopes and it lends itself to incorporation with standard treatment modalities, such as radiotherapy or chemoradiotherapy. In this article, we review the biology of NIS and discuss its development for gene therapy.
Collapse
Affiliation(s)
- Mohan Hingorani
- The Institute of Cancer Research, 237 Fulham Road, London SW36JB, UK
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Balzan S, Del Carratore R, Nicolini G, Forini F, Lubrano V, Simili M, Benedetti PA, Iervasi G. TSH induces co-localization of TSH receptor and Na/K-ATPase in human erythrocytes. Cell Biochem Funct 2009; 27:259-63. [PMID: 19466745 DOI: 10.1002/cbf.1567] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Thyroid stimulating hormone (TSH) binds to a specific TSH receptor (TSHR) which activates adenylate cyclase and increases cAMP levels in thyroidal cells. Recent studies have reported the presence of TSH receptor in several extra-thyroidal cell types, including erythrocytes. We have previously suggested that TSH is able to influence the erythrocyte Na/K-ATPase ouabain binding properties through a receptor mediated mechanism. The direct interaction of TSH receptor with the Na/K-pump and a functional role of TSHR in erythrocytes was not demonstrated. The interaction of TSH receptor with Na/K-pump and a TSHR functional role are not yet demonstrated in erythrocytes. In this study, we examined the interaction between the two receptors after TSH treatment using immunofluorescence coupled to confocal microscopy and a co-immunoprecipitation technique. The cAMP dependent signalling after TSH treatment was measured to verify TSHR functionality. We found that TSH receptor and Na/K-ATPase are localized on the membranes of both erythrocytes and erythrocyte ghosts; TSH receptor responds to TSH treatment by increasing intracellular cAMP levels from two to tenfold. In ghost membranes TSH treatment enhances up to three fold co-localization of TSHR with Na/K-ATPase and co-immunoprecipitation confirms their direct physical interaction. In conclusion our results are compatible with the existence, in erythrocytes, of a functional TSHR that interacts with Na/K-ATPase after TSH treatment, thus suggesting a novel cell signalling pathway, potentially active in local circulatory control.
Collapse
|
24
|
Gao X, Xing D. Molecular mechanisms of cell proliferation induced by low power laser irradiation. J Biomed Sci 2009; 16:4. [PMID: 19272168 PMCID: PMC2644974 DOI: 10.1186/1423-0127-16-4] [Citation(s) in RCA: 313] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2008] [Accepted: 01/12/2009] [Indexed: 02/07/2023] Open
Abstract
Low power laser irradiation (LPLI) promotes proliferation of multiple cells, which (especially red and near infrared light) is mainly through the activation of mitochondrial respiratory chain and the initiation of cellular signaling. Recently, the signaling proteins involved in LPLI-induced proliferation merit special attention, some of which are regulated by mitochondrial signaling. Hepatocyte growth factor receptor (c-Met), a member of tyrosine protein kinase receptors (TPKR), is phosphorylated during LPLI-induced proliferation, but tumor necrosis factor alpha (TNF-alpha) receptor has not been affected. Activated TPKR could activate its downstream signaling elements, like Ras/Raf/MEK/ERK, PI3K/Akt/eIF4E, PI3K/Akt/eNOS and PLC-gamma/PKC pathways. Other two pathways, DeltaPsim/ATP/cAMP/JNK/AP-1 and ROS/Src, are also involved in LPLI-induced proliferation. LPLI-induced cell cycle progression can be regulated by the activation or elevated expressions of cell cycle-specific proteins. Furthermore, LPLI induces the synthesis or release of many molecules, like growth factors, interleukins, inflammatory cytokines and others, which are related to promotive effects of LPLI.
Collapse
Affiliation(s)
- Xuejuan Gao
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, South China Normal University, Guangzhou 510631, PR China
| | - Da Xing
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, South China Normal University, Guangzhou 510631, PR China
| |
Collapse
|
25
|
Gong K, Li Z, Xu M, Du J, Lv Z, Zhang Y. A novel protein kinase A-independent, beta-arrestin-1-dependent signaling pathway for p38 mitogen-activated protein kinase activation by beta2-adrenergic receptors. J Biol Chem 2008; 283:29028-36. [PMID: 18678875 PMCID: PMC2662007 DOI: 10.1074/jbc.m801313200] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2008] [Revised: 07/28/2008] [Indexed: 01/14/2023] Open
Abstract
A growing body of evidence has demonstrated that p38 mitogen-activated protein kinase (MAPK) has a crucial role in various physiological and pathological processes mediated by beta(2)-adrenergic receptors (beta(2)-ARs). However, the detailed mechanism of beta(2)-ARs-induced p38 MAPK activation has not yet been fully defined. The present study demonstrates a novel kinetic model of p38 MAPK activation induced by beta(2)-ARs in human embryonic kidney 293A cells. The beta(2)-AR agonist isoproterenol induced a time-dependent biphasic phosphorylation of p38 MAPK: the early phase peaked at 10 min, and was followed by a delayed phase that appeared at 90 min and was sustained for 6 h. Interestingly, inhibition of the cAMP/protein kinase A (PKA) pathway failed to affect the early phosphorylation but abolished the delayed activation. By contrast, silencing of beta-arrestin-1 expression by small interfering RNA inhibited the early phase activation of p38 MAPK. Furthermore, the NADPH oxidase complex is a downstream target of beta-arrestin-1, as evidenced by the fact that isoproterenol-induced Rac1 activation was also suppressed by beta-arrestin-1 knockdown. In addition, early phase activation of p38 MAPK was prevented by inactivation of Rac1 and NADPH oxidase by pharmacological inhibitors, overexpression of a dominant negative mutant of Rac1, and p47(phox) knockdown by RNA interference. Of note, we demonstrated that only early activation of p38 MAPK is involved in isoproterenol-induced F-actin rearrangement. Collectively, these data suggest that the classic cAMP/PKA pathway is responsible for the delayed activation, whereas a beta-arrestin-1/Rac1/NADPH oxidase-dependent signaling is a heretofore unrecognized mechanism for beta(2)-AR-mediated early activation of p38 MAPK.
Collapse
Affiliation(s)
- Kaizheng Gong
- Institute of Vascular Medicine, Peking University Third Hospital and Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing 100191, China
| | | | | | | | | | | |
Collapse
|
26
|
Trichosanthin suppresses HeLa cell proliferation through inhibition of the PKC/MAPK signaling pathway. Cell Biol Toxicol 2008; 25:479-88. [PMID: 18751959 DOI: 10.1007/s10565-008-9102-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2008] [Accepted: 08/01/2008] [Indexed: 10/21/2022]
Abstract
Trichosanthin (TCS) possesses a broad spectrum of biological and pharmacological activities, including anti-tumor activities. Our previous studies have shown that TCS inhibits HeLa cell proliferation by activating the apoptotic pathway. In particular, the transcriptional factor cAMP response element binding (CREB) protein plays a pivotal role in apoptotic HeLa cells. However, no information, to date, is available about the signaling pathways involved in the inhibition of cell proliferation induced by TCS. The present study showed that PKA and PKC activities were significantly inhibited by TCS treatment. However, specific inhibitor of PKA activity failed to affect the inhibition of HeLa cell proliferation induced by TCS, even in the presence of cAMP agonists. In contrast, PKC activator/inhibitor significantly attenuated/enhanced the inhibitory effect of TCS on cell proliferation. In particular, the reversed effect of cAMP agonist on cell proliferation was partly prevented by PKC, ERK1/2, and p38 MAPK blockade. Consistent with these results, the reversed effect of cAMP agonists on CREB phosphorylation was significantly decreased by inhibitors of these kinases, but not PKA inhibitor. Therefore, our results suggested that HeLa cell proliferation was inhibited by TCS via suppression of PKC/MAPK signaling pathway.
Collapse
|
27
|
Hu WP, Tsai FY, Yu HS, Sung PJ, Chang LS, Wang JJ. Induction of apoptosis by DC-81-indole conjugate agent through NF-kappaB and JNK/AP-1 pathway. Chem Res Toxicol 2008; 21:1330-6. [PMID: 18512966 DOI: 10.1021/tx700394h] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
DC-81, an antitumor antibiotic produced by Streptomyces species, belongs to the pyrrolo[2,1- c][1,4]benzodiazepine (PBD) family, which are potent inhibitors of nucleic acid synthesis. We previously reported an efficient synthesis of PBD hybrids linked with indole carboxylates. Recently, we have also shown that a PBD hybrid (IN6CPBD) agent can activate the apoptotic pathway mediated by mitochondria. In this study, we will examine the transcription factors nuclear factor-kappaB (NF-kappaB) and activator protein-1 (AP-1) that functionally regulate cell proliferation, transformation, and apoptosis. To investigate the IN6CPBD-induced alterations in NF-kappaB and AP-1 activity that involve cell cycle regulation, we exposed human melanoma A375 cells to different concentrations of IN6CPBD. Our data revealed that treatment of A375 cells with IN6CPBD resulted in a marked loss of cells from the G2/M phase of the cell cycle and an increase in Ca (2+) and cAMP and promoted phosphorylation of Jun N-terminal kinase (JNK) expression. By using the luciferase reporter assay, the NF-kappaB activities were decreased; however, AP-1 activity was further enhanced after A375 cells were treated with graded concentrations of IN6CPBD. Blockade of NF-kappaB or JNK activity further enhanced caspase-3 substrate PARP cleavage and subsequent apoptotic cell death.
Collapse
Affiliation(s)
- Wan-Ping Hu
- Faculty of Biotechnology, College of Life Science, Department of Dermatology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | | | | | | | | | | |
Collapse
|
28
|
Tang J, Chen J, Ramanjaneya M, Punn A, Conner AC, Randeva HS. The signalling profile of recombinant human orexin-2 receptor. Cell Signal 2008; 20:1651-61. [PMID: 18599270 DOI: 10.1016/j.cellsig.2008.05.010] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2008] [Revised: 05/12/2008] [Accepted: 05/21/2008] [Indexed: 11/16/2022]
Abstract
Orexin-A and orexin-B orchestrate their diverse central and peripheral effects via two G-protein coupled receptors, OX1R and OX2R, which activate multiple G-proteins. In many tissues, orexins activate extracellular signal-regulated kinase (ERK(1/2)) and p38 mitogen-activated protein kinase (MAPK); however, the mechanism by which OX2R alone mediates MAPK activation is not understood. This study describes the intracellular signalling pathways involved in OX2R-mediated ERK(1/2) and p38 MAPK activation. In HEK-293 cells stably over-expressing recombinant human OX2R, orexin-A/B resulted in a rapid, dose and time dependent increase in activation of ERK(1/2) and p38 MAPK, with maximal activation at 10 min for ERK(1/2) and 30 min for p38 MAPK. Using dominant-negative G-proteins and selective inhibitors of intracellular signalling cascades, we determined that orexin-A and orexin-B induced ERK(1/2) and p38 MAPK activation through multiple G-proteins and different intracellular signalling pathways. ERK(1/2) activation involves Gq/phospholipase C (PLC)/protein kinase C (PKC), Gs/adenylyl cyclase (AC)/cAMP/protein kinase A (PKA) and Gi cascades; however, the Gq/PLC/PKC pathway, as well as PKA is not required for OX2R-mediated p38 MAPK activation. Interestingly, orexin-B-induced ERK(1/2) activation is predominantly mediated through the Gq/PLC/PKC pathway. In conclusion, this is the first comprehensive signalling study of the human OX2R recombinant receptor, showing ERK(1/2) and p38 MAPK activation are regulated by differential signalling pathways in HEK-293 cells, and that the ERK(1/2) activation is severely affected by naturally occurring mutants associated with narcolepsy. Moreover, it is evident that the human OX2R has ligand specific effects, with orexin-B being more potent in this transfected system and this distinct modulation of the MAPKs through OX2R, may translate to the regulation of diverse biological actions of orexins.
Collapse
Affiliation(s)
- Jiyou Tang
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| | | | | | | | | | | |
Collapse
|
29
|
Kogai T, Ohashi E, Jacobs MS, Sajid-Crockett S, Fisher ML, Kanamoto Y, Brent GA. Retinoic acid stimulation of the sodium/iodide symporter in MCF-7 breast cancer cells is mediated by the insulin growth factor-I/phosphatidylinositol 3-kinase and p38 mitogen-activated protein kinase signaling pathways. J Clin Endocrinol Metab 2008; 93:1884-92. [PMID: 18319322 PMCID: PMC2386284 DOI: 10.1210/jc.2007-1627] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
CONTEXT All-trans retinoic acid (tRA) induces differentiation in MCF-7 breast cancer cells, stimulates sodium/iodide symporter (NIS) gene expression, and inhibits cell proliferation. Radioiodine administration after systemic tRA treatment has been proposed as an approach to image and treat some differentiated breast cancer. OBJECTIVE The objective of this work was to study the relative role of genomic and nongenomic pathways in tRA stimulation of NIS expression in MCF-7 cells. DESIGN We inspected the human NIS gene locus for retinoic acid-responsive elements and tested them for function. The effects of signal transduction pathway inhibitors were also tested in tRA-treated MCF-7 cells and TSH-stimulated FRTL-5 rat thyroid cells, followed by iodide uptake assay, quantitative RT-PCR of NIS, and cell cycle phase analysis. RESULTS Multiple retinoic acid response elements around the NIS locus were identified by sequence inspection, but none of them was a functional tRA-induced element in MCF-7 cells. Inhibitors of the IGF-I receptor, Janus kinase, and phosphatidylinositol 3-kinase (PI3K), significantly reduced NIS mRNA expression and iodide uptake in tRA-stimulated MCF-7 cells but not FRTL-5 cells. An inhibitor of p38 MAPK significantly reduced iodide uptake in both tRA-stimulated MCF-7 cells and TSH-stimulated FRTL-5 cells. IGF-I and PI3K inhibitors did not significantly reduce the basal NIS mRNA expression in MCF-7 cells. Despite the chronic inhibitory effects on cell proliferation, tRA did not reduce the S-phase distribution of MCF-7 cells during the period of NIS induction. CONCLUSION The IGF-I receptor/PI3K pathway mediates tRA-stimulated NIS expression in MCF-7 but not FRTL-5 thyroid cells.
Collapse
Affiliation(s)
- Takahiko Kogai
- Molecular Endocrinology Laboratory, VA Greater Los Angeles Healthcare System, 11301 Wilshire Boulevard, Los Angeles, CA 90073, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Bailey L, Kuroyanagi Y, Franco-Penteado CF, Conran N, Costa FF, Ausenda S, Cappellini MD, Ikuta T. Expression of the gamma-globin gene is sustained by the cAMP-dependent pathway in beta-thalassaemia. Br J Haematol 2007; 138:382-95. [PMID: 17614826 DOI: 10.1111/j.1365-2141.2007.06673.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The present study found that the cyclic adenosine monophosphate (cAMP)-dependent pathway efficiently induced gamma-globin expression in adult erythroblasts, and this pathway plays a role in gamma-globin gene (HBG) expression in beta-thalassaemia. Expression of HBG mRNA increased to about 46% of non-HBA mRNA in adult erythroblasts treated with forskolin, while a cyclic guanosine monophosphate (cGMP) analogue induced HBG mRNA to levels <20% of non-HBA mRNA. In patients with beta-thalassaemia intermedia, cAMP levels were elevated in both red blood cells and nucleated erythroblasts but no consistent elevation was found with cGMP levels. The transcription factor cAMP response element binding protein (CREB) was phosphorylated in nucleated erythroblasts and its phosphorylation levels correlated with HBG mRNA levels of the patients. Other signalling molecules, such as mitogen-activated protein kinases and signal transducers and activators of transcription proteins, were phosphorylated at variable levels and showed no correlations with the HBG mRNA levels. Plasma levels of cytokines, such as erythropoietin, stem cell factor and transforming growth factor-beta were increased in patients, and these cytokines induced both HBG mRNA expression and CREB phosphorylation. These results demonstrate that the cAMP-dependent pathway, the activity of which is augmented by multiple cytokines, plays a role in regulating HBG expression in beta-thalassaemia.
Collapse
Affiliation(s)
- Lakiea Bailey
- Department of Medicine, Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, GA, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Hu WP, Wang JJ, Yu CL, Lan CCE, Chen GS, Yu HS. Helium-neon laser irradiation stimulates cell proliferation through photostimulatory effects in mitochondria. J Invest Dermatol 2007; 127:2048-57. [PMID: 17446900 DOI: 10.1038/sj.jid.5700826] [Citation(s) in RCA: 160] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Previous reports have shown that cellular functions could be influenced by visual light (400-700 nm). Recent evidence indicates that cellular proliferation could be triggered by the interaction of a helium-neon laser (He-Ne laser, 632.8 nm) with the mitochondrial photoacceptor-cytochrome c oxidase. Our previous studies demonstrated that He-Ne irradiation induced an increase in cell proliferation, but not migration, in the melanoma cell line A2058 cell. The aim of this study was to investigate the underlying mechanisms involved in photostimulatory effects induced by an He-Ne laser. Using the A2058 cell as a model for cell proliferation, the photobiologic effects induced by an He-Ne laser were studied. He-Ne irradiation immediately induced an increase in mitochondrial membrane potential (delta psi(mt)), ATP, and cAMP via enhanced cytochrome c oxidase activity and promoted phosphorylation of Jun N-terminal kinase (JNK)/activator protein-1 (AP-1) expressions. He-Ne irradiation-induced A2058 cell proliferation was significantly abrogated by the addition of delta psi(mt) and JNK inhibitors. Moreover, treatment with an He-Ne laser resulted in delayed effects on IL-8 and transforming growth factor-beta1 release from A2058 cells. These results suggest that He-Ne irradiation elicits photostimulatory effects in mitochondria processes, which involve JNK/AP-1 activation and enhanced growth factor release, and ultimately lead to A2058 cell proliferation.
Collapse
Affiliation(s)
- Wan-Ping Hu
- Faculty of Biotechnology and Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | | | | | | | | | | |
Collapse
|
32
|
Leal ALRC, Pantaleão TU, Moreira DG, Marassi MP, Pereira VS, Rosenthal D, Corrêa da Costa VM. Hypothyroidism and hyperthyroidism modulates Ras-MAPK intracellular pathway in rat thyroids. Endocrine 2007; 31:174-8. [PMID: 17873330 DOI: 10.1007/s12020-007-0029-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2007] [Revised: 05/04/2007] [Accepted: 05/14/2007] [Indexed: 11/30/2022]
Abstract
Thyrotrophin induces proliferation and function in thyroid cells acting through a seven transmembrane G protein-coupled receptor. The proliferative pathways induced by thyrotropin (TSH) in thyrocytes in vivo are not completely understood yet. The aim of this work is to evaluate if Ras can be induced by TSH in rat thyroids, and whether extracellular regulated kinase (ERK) may be involved in the subsequent intracellular signalling cascade. We induced hypothyroidism in Wistar rats by methimazole (MMI) treatment (0.03% in the drinking water for 21 days). A subset of the hypothyroid rats received T4 (1 microg/100 g bw) during the last 10 days of MMI treatment. Hyperthyroidism was induced by subcutaneous injections of T4 (10 microg/100 g bw) during 10 days in another group of rats. Our data show that in the hypothyroid rats there is a clear positive Ras modulation, but a decrease in pERK. In contrast, thyroidal pERK increases in T4-induced hyperthyroidism, but without any change in RAS, although these changes did not reach statistical significance. Thus, while the rat thyroid proliferation induced by TSH may involve an increase in RAS signalling, the subsequent cascade does not involve ERK phosphorilation, which in fact, increases during T4-induced hyperthyroidism.
Collapse
Affiliation(s)
- Anna Lúcia R C Leal
- Laboratório de Fisiologia Endócrina, Instituto de Biofísica Carlos Chagas Filho, UFRJ, CCS-bloco G, Rio de Janeiro, 21949-900, Brazil
| | | | | | | | | | | | | |
Collapse
|
33
|
Pomérance M, Quillard J, Chantoux F, Young J, Blondeau JP. High-level expression, activation, and subcellular localization of p38-MAP kinase in thyroid neoplasms. J Pathol 2006; 209:298-306. [PMID: 16583356 DOI: 10.1002/path.1975] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The p38 family of MAP kinases (p38-MAPKs) is involved in regulating the proliferation, survival, and migration of various cancer cells. The present study has investigated the expression, subcellular localization, phosphorylation, and activity of p38-MAPKs in normal and tumoural human thyroid tissues and in thyroid cell lines. The expression and nucleo-cytosolic compartmentalization of the alpha-isoform of p38-MAPKs (p38alpha-MAPK) were studied by western blotting in the WRO and B-CPAP cell lines, which are derived from human follicular and papillary thyroid carcinomas, respectively, and in the non-transformed rat thyroid cell lines FRTL-5 and PCCL3. Immunohistochemistry was used to study the expression and subcellular localization of p38alpha-MAPK, and of the phosphorylated forms of p38-MAPKs (P-p38-MAPKs) in human toxic adenomas (TAs), follicular adenomas (FAs), papillary thyroid carcinomas (PTCs), and follicular thyroid carcinomas (FTCs). The activity of p38-MAPKs in PTCs and FTCs was revealed by immunohistochemical detection of their typical phosphorylated substrate, MAPK-activated protein kinase 2/3 (MK2/3). p38alpha-MAPK was expressed in all cell lines and this expression was restricted to the cytosolic compartment. p38 MAPK activity was involved in regulating DNA synthesis in B-CPAP cells. p38alpha-MAPK and P-p38-MAPKs were strongly expressed in PTC and FTC cells, although only in the cytoplasm, whereas they were only very weakly expressed in FA cells, and absent in adjacent normal tissues. They were also expressed at a high level in TAs, but they were found in both nucleus and cytoplasm. Finally, phospho-MK2/3 immunostaining followed very similar patterns to those of p38alpha-MAPK and P-p38-MAPKs in PTCs and FTCs. Taken together, these results show for the first time that the p38-MAPK signalling cascade is functional in two types of differentiated carcinoma of the thyroid. The observation that p38-MAPK hyper-expression occurs in FTC, but not in FA, may provide an additional diagnostic tool for malignancy in some thyroid nodules.
Collapse
Affiliation(s)
- M Pomérance
- INSERM U486, Transduction Hormonale & Régulation Cellulaire, Châtenay-Malabry, F-92296, France.
| | | | | | | | | |
Collapse
|
34
|
Gilbert JA, Gianoukakis AG, Salehi S, Moorhead J, Rao PV, Khan MZ, McGregor AM, Smith TJ, Banga JP. Monoclonal pathogenic antibodies to the thyroid-stimulating hormone receptor in Graves' disease with potent thyroid-stimulating activity but differential blocking activity activate multiple signaling pathways. THE JOURNAL OF IMMUNOLOGY 2006; 176:5084-92. [PMID: 16585606 DOI: 10.4049/jimmunol.176.8.5084] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The thyroid target Ag for disease-inducing autoantibodies in Graves' disease is the receptor for thyroid-stimulating hormone (TSH), but little is known about the molecular basis of this pathogenic Ab response. We describe the characteristics of two high- affinity mAbs developed from an experimental murine model of hyperthyroid Graves' disease that exhibit potent thyroid-stimulating activity. Nanogram concentrations of the IgG mAbs KSAb1 and KSAb2 and their Fab induce full stimulation of the TSH receptor that is matched by the ligand TSH and, thus, act as full agonists for the receptor. However, KSAb1 and KSAb2 display differential activities in their ability to block TSH-mediated stimulation of the receptor, indicating subtle differences in their biological properties. In displacement studies, IgG and Fabs of KSAb1 and KSAb2 compete with Graves' disease autoantibodies as well as thyroid-blocking Abs present in some hypothyroid patients, indicating a close relationship between these autoimmune determinants on the receptor. In passive transfer studies, single injections of microgram quantities of KSAb1 or KSAb2 IgG led to rapid elevation of serum thyroxine and a hyperthyroid state that was maintained for a number of days. The thyroid glands showed evidence of cell necrosis, but there was no accompanying mononuclear cell infiltrate. In studying their receptor activation pathways, both KSAb1 and KSAb2 provoked phosphorylation of the intracellular ERK1/2 pathway in primary thyrocytes, indicating that multiple signaling pathways may participate in the pathogenesis of Graves' disease. In summary, our findings emphasize the similarities of the experimental mouse model in reproducing the human disorder and provide improved means for characterizing the molecular basis of this pathogenic response.
Collapse
Affiliation(s)
- Jacqueline A Gilbert
- King's College London, Division of Gene and Cell Based Therapy, King's College School of Medicine, London, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Gerlo S, Verdood P, Hooghe-Peters EL, Kooijman R. Multiple cAMP-induced signaling cascades regulate prolactin expression in T cells. Cell Mol Life Sci 2006; 63:92-9. [PMID: 16378242 PMCID: PMC2792358 DOI: 10.1007/s00018-005-5433-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Beside its pivotal role in reproduction, the pituitary hormone prolactin (PRL) has been attributed an immunomodulatory function. Here we report that cAMP is an important stimulator of PRL transcription in primary human T lymphocytes. Inhibition of both protein kinase A (PKA) and p38 MAPK partially abrogated cAMP-induced PRL expression. In addition, cAMP-induced phosphorylation of p38 was shown to occur independently of PKA and could be mimicked by a methylated cAMP analogue which specifically activates the recently discovered cAMP receptor EPAC (exchange protein directly activated by cAMP). Our findings suggest that cAMP induces PRL expression in T lymphocytes via cooperation of at least two different signaling pathways: a PKA-dependent pathway leading to the phosphorylation of cAMP response element-binding protein, and a PKA-independent pathway leading to p38 phosphorylation.
Collapse
Affiliation(s)
- S. Gerlo
- Neuroendocrine Immunology Research Group, Department of Pharmacology, Free University of Brussels (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium
| | - P. Verdood
- Neuroendocrine Immunology Research Group, Department of Pharmacology, Free University of Brussels (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium
| | - E. L. Hooghe-Peters
- Neuroendocrine Immunology Research Group, Department of Pharmacology, Free University of Brussels (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium
| | - R. Kooijman
- Neuroendocrine Immunology Research Group, Department of Pharmacology, Free University of Brussels (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium
| |
Collapse
|
36
|
Hokari R, Lee H, Crawley SC, Yang SC, Gum JR, Miura S, Kim YS. Vasoactive intestinal peptide upregulates MUC2 intestinal mucin via CREB/ATF1. Am J Physiol Gastrointest Liver Physiol 2005; 289:G949-59. [PMID: 16227528 DOI: 10.1152/ajpgi.00142.2005] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
VIP exerts a spectrum of effects as a potent anti-inflammatory factor. In addition, VIP increases expression of MUC2, a major intestinal secretory mucin. We therefore investigated the effects of VIP on the promoter activity of the 5'-flanking region of the MUC2 gene. VIP activated MUC2 transcription in human colonic epithelial cells via cAMP signaling to ERK and p38. cAMP/Epac/Rap1/B-Raf signaling was not involved in MUC2 reporter activation. Furthermore, activation of MUC2 transcription was independent of many of the reported downstream effectors of G protein-coupled receptors, such as PKC, Ras, Raf, Src, calcium, and phosphoinositide 3-kinase. VIP induced cAMP response element-binding protein (CREB)/ATF1 phosphorylation, and this was prevented by treatment with inhibitors of either MEK or p38 and by PKA and MSK1 inhibitor H89. CREB/ATF1 and c-Jun were shown to bind to an oligonucleotide encompassing a distal, conserved CREB/AP1 site in the 5'-flanking region of the MUC2 gene, and this cis element was shown to mediate promoter reporter activation by VIP. This study has identified a new, functional cis element within the MUC2 promoter and also a new pathway regulating MUC2 expression, thus providing further insight into the molecular mechanism of VIP action in the colon. These findings are relevant to the normal biology of the colonic mucosa as well as to the development of VIP as a therapeutic agent for treatment of inflammatory bowel disease.
Collapse
Affiliation(s)
- Ryota Hokari
- Gastrointestinal Research Laboratory, Veterans' Affairs Medical Center, 4150 Clement St., San Francisco, CA 94121, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Bezerra MGT, Latronico AC, Fragoso MCBV. [Endocrine tumors associated to protein Gsalpha/Gi2alpha mutations]. ARQUIVOS BRASILEIROS DE ENDOCRINOLOGIA E METABOLOGIA 2005; 49:784-90. [PMID: 16444361 DOI: 10.1590/s0004-27302005000500019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Many oncogenic mutations promote tumor growth by inducing autonomous activity of proteins that normally transmit proliferative signal initiated by extracellular factors. G proteins are a family of guanine nucleotide binding proteins, which are structurally homologous and widely distributed in eukaryotic cells. They are composed of three different subunits (alpha, beta e gamma). The alpha subunit, which contains the guanine nucleotide-binding site, is unique to each G protein. The G proteins couple an array of seven transmembrane receptors at the cell surface with a variety of intracellular effectors, which produce second messenger molecules. A subset of endocrine tumors, such as GH- or ACTH-secreting pituitary adenomas, functioning thyroid adenomas, adrenocortical and gonadal tumors were associated with somatic activating mutations in the highly conserved codons of the Gs (Arg201 and Gln227) and Gi (Arg179 and Gln205) proteins. These findings indicated that the G proteins play a role as oncogenes, contributing with the human endocrine tumorigenesis.
Collapse
|
38
|
Ahn YH, Jung JM, Hong SH. 8-Chloro-cyclic AMP-induced growth inhibition and apoptosis is mediated by p38 mitogen-activated protein kinase activation in HL60 cells. Cancer Res 2005; 65:4896-901. [PMID: 15930311 DOI: 10.1158/0008-5472.can-04-3122] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
8-Chloro-cyclic AMP (8-Cl-cAMP), which is known to induce growth inhibition, apoptosis, and differentiation in various cancer cell lines, has been studied as a putative anticancer drug. However, the mechanism of anticancer activities of 8-Cl-cAMP has not been fully understood. Previously, we reported that the 8-Cl-cAMP-induced growth inhibition is mediated by protein kinase C (PKC) activation. In this study, we found that p38 mitogen-activated protein kinase (MAPK) also plays important roles during the 8-Cl-cAMP-induced growth inhibition and apoptosis. SB203580 (a p38-specific inhibitor) recovered the 8-Cl-cAMP-induced growth inhibition and apoptosis, whereas other MAPK inhibitors, such as PD98059 (an extracellular signal-regulated kinase-specific inhibitor) and SP600125 (a c-Jun NH2-terminal kinase-specific inhibitor), had no effect. The phosphorylation (activation) of p38 MAPK was increased in a time-dependent manner after 8-Cl-cAMP treatment. Furthermore, SB203580 was able to block PKC activation induced by 8-Cl-cAMP. However, PKC inhibitor (GF109203x) could not attenuate p38 activation, indicating that p38 MAPK activation is upstream of PKC activation during the 8-Cl-cAMP-induced growth inhibition. 8-Chloro-adenosine, a metabolite of 8-Cl-cAMP, also activated p38 MAPK and this activation was blocked by adenosine kinase inhibitor. These results suggest that 8-Cl-cAMP exerts its anticancer activity through p38 MAPK activation and the metabolite(s) of 8-Cl-cAMP mediates this process.
Collapse
Affiliation(s)
- Young-Ho Ahn
- School of Biological Sciences, Institute of Molecular Biology and Genetics, and Interdisciplinary Graduate Program in Genetic Engineering, Seoul National University, Seoul, Korea
| | | | | |
Collapse
|
39
|
Corrèze C, Blondeau JP, Pomérance M. p38 mitogen-activated protein kinase contributes to cell cycle regulation by cAMP in FRTL-5 thyroid cells. Eur J Endocrinol 2005; 153:123-33. [PMID: 15994754 DOI: 10.1530/eje.1.01942] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
OBJECTIVE Thyrotropin activates the cAMP pathway in thyroid cells, and stimulates cell cycle progression in cooperation with insulin or insulin-like growth factor-I. Because p38 mitogen-activated protein kinases (p38 MAPKs) were stimulated by cAMP in the FRTL-5 rat thyroid cell line, we investigated (i) the effect of the specific inhibition of p38 MAPKs on FRTL-5 cell proliferation and (ii) the mechanism of action of p38 MAPKs on cell cycle control, by studying the expression and/or the activity of several cell cycle regulatory proteins in FRTL-5 cells. METHODS DNA synthesis was monitored by incorporation of [(3)H]thymidine into DNA and the cell cycle distribution was assessed by fluorescence-activated cell sorter analysis. Expression of cell cycle regulatory proteins was determined by Western blot analysis. Cyclin-dependent kinase 2 (Cdk2) activity associated to cyclin E was immunoprecipitated and was measured by an in vitro kinase assay. RESULTS SB203580, an inhibitor of alpha and beta isoforms of p38 MAPKs, but not its inactive analog SB202474, inhibited DNA synthesis and the G1-S transition induced by forskolin plus insulin. SB203580 inhibited specifically p38 MAPK activity but not other kinase activities such as Akt and p70-S6 kinase. Treatment of FRTL-5 cells with SB203580 decreased total and cyclin E-associated Cdk2 kinase activity stimulated with forskolin and insulin. However, inhibition of p38 MAPKs by SB203580 was without effect on total cyclin E and Cdk2 levels. The decrease in Cdk2 kinase activity caused by SB203580 treatment was not due to an increased expression of p21(Cip1) or p27(Kip1) inhibitory proteins. In addition, SB203580 affected neither Cdc25A phosphatase expression nor Cdk2 Tyr-15 phosphorylation. Inhibition of p38 MAPKs decreased Cdk2-cyclin E activation by regulating the subcellular localization of Cdk2 and its phosphorylation on Thr-160. CONCLUSIONS These results indicate that p38 MAPK activity is involved in the regulation of cell cycle progression in FRTL-5 thyroid cells, at least in part by increasing nuclear Cdk2 activity.
Collapse
Affiliation(s)
- C Corrèze
- Uniteé 486 INSERM-PARIS XI, Transduction Hormonale et Régulation Cellulaire, Faculté de Pharmacie, 92296 Châtenay-Malabry, France
| | | | | |
Collapse
|
40
|
Jeon S, Kim S, Kim E, Lee JE, Kim SJ, Juhnn YS, Kim YS, Bae CD, Park J. Chloride Conductance Is Required for the Protein Kinase A and Rac1-dependent Phosphorylation of Moesin at Thr-558 by KCl in PC12 Cells. J Biol Chem 2005; 280:12181-9. [PMID: 15634677 DOI: 10.1074/jbc.m408253200] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Moesin is a member of the ERM family, a family of cross-linkers between the plasma membrane and the actin cytoskeleton, which are known to be activated by phosphorylation. Previously, we reported the RhoA and Rho kinase-dependent phosphorylation of moesin at Thr-558 in hippocampal neuronal cells by glutamate. Here we studied the induction of moesin phosphorylation by KCl (60 mm) in PC12 cells. Moesin phosphorylation at Thr-558 was increased after 2 min of KCl treatment, peaked at 5 min, and returned to the basal level by 60 min. KCl also activated Rac1, but not RhoA, in PC12 cells, and KCl-induced moesin phosphorylation was suppressed in dominant negative Rac1 (N17 Rac1)-expressed cells. The inhibition of protein kinase A (PKA), known as an upstream kinase of Rac1, abolished Rac1 activation and moesin phosphorylation by KCl. Interestingly, the phosphorylation of moesin by KCl was independent of KCl-induced membrane depolarization and calcium influx but was dependent on KCl-induced chloride conductance. 60 mm KCl induced chloride conductance in PC12 cells, and pretreatment with Cl- channel blocker abolished Rac1 activation and moesin phosphorylation by KCl. These results suggest that the phosphorylation of moesin at Thr-558 in PC12 cells by KCl treatment is PKA- and Rac1-dependent and that KCl-induced chloride conductance is involved in the activation of this signaling system.
Collapse
Affiliation(s)
- Songhee Jeon
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, and Center for Neuronal Cell Excitability Research, Sungkyunkwan University School of Medicine, Suwon 440-746, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Aversano M, Caiazzo P, Iorio G, Ponticiello L, Laganá B, Leccese F. Improvement of chronic idiopathic urticaria with L-thyroxine: a new TSH role in immune response? Allergy 2005; 60:489-93. [PMID: 15727581 DOI: 10.1111/j.1398-9995.2005.00723.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND The association between chronic idiopathic urticaria (CIU) and autoimmune thyroiditis (AT) is known, as well as major prevalence of antithyroid antibodies in the allergical subjects and other autoimmune diseases. We have evaluated the effects of l-thyroxine on clinical symptoms of CIU in AT patients suggesting the hypothesis of a new thyroid-stimulating hormone (TSH) role in immune system. METHODS In 20 female patients with CIU + AT, both hypothyroid and euthyroid, we have investigated the therapeutic effects of l-thyroxine dosed to suppress the TSH. Free-T3, Free-T4, TSH, antithyroperoxidase and antithyroglobulin antibodies, total immunoglobulin (Ig)E, Rheuma test and eritro-sedimentation rate were monitored during treatment. RESULTS In 16 patients a strong decrease of urticaria symptoms has happened after 12 weeks. The TPO Ab and HTG Ab clearly decreased in 14 patients. Furthermore, in two patients with rheumatoid arthritis and in two patients with pollen allergy a strong decrease of rheuma test titer and total IgE has happened. CONCLUSION The reason of AT is associated to CIU and others allergical and autoimmune diseases is poorly known. The exclusive hormonal therapy reduces the symptoms of CIU and inflammatory response in many chronic diseases associated to AT. We suggest a stimulatory effect of TSH able to produce considerable changes of the immune response and immune tolerance in patients with AT causing target organs damage. The causal mechanism involves immune, nervous and endocrine system, sharing a common set of hormones, cytokines and receptors, in a unique totally integrated loop (the neuro-immuno-endocrine axis).
Collapse
Affiliation(s)
- M Aversano
- Endocrinology Unit ASL NA3, Naples, Italy
| | | | | | | | | | | |
Collapse
|
42
|
Gerlo S, Verdood P, Hooghe-Peters EL, Kooijman R. Multiple, PKA-dependent and PKA-independent, signals are involved in cAMP-induced PRL expression in the eosinophilic cell line Eol-1. Cell Signal 2005; 17:901-9. [PMID: 15763432 DOI: 10.1016/j.cellsig.2004.11.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2004] [Revised: 11/10/2004] [Accepted: 11/10/2004] [Indexed: 11/21/2022]
Abstract
Besides its pivotal role in reproduction, the polypeptide hormone prolactin (PRL) has been attributed an immunomodulatory function. Extrapituitary PRL expression is regulated differently from that in the pituitary, due to the use of an alternative promoter. In leukocytes, cAMP is an important regulator of PRL expression. We report that in the human eosinophilic cell line Eol-1, cAMP-induced PRL expression is partially abrogated by two protein kinase A (PKA) inhibitors (H89, PKI) and by the p38 inhibitor SB203580. Phosphorylation of p38 was PKA-independent and could be stimulated by a methylated cAMP analogue, which specifically activates the exchange factor directly activated by cAMP (EPAC). Furthermore, cAMP induced a PKA-dependent phosphorylation of cAMP-responsive element binding protein (CREB). We postulate that cAMP induces PRL expression via two different signalling pathways: a PKA-dependent pathway leading to the phosphorylation of CREB, and a PKA-independent pathway leading to the phosphorylation of p38.
Collapse
Affiliation(s)
- Sarah Gerlo
- Laboratory of Neuroendocrine Immunology, Department of Pharmacology, Free University of Brussels (VUB), Laarbeeklaan 103, B-1090 Brussels, Belgium.
| | | | | | | |
Collapse
|
43
|
Nishihara H, Hwang M, Kizaka-Kondoh S, Eckmann L, Insel PA. Cyclic AMP promotes cAMP-responsive element-binding protein-dependent induction of cellular inhibitor of apoptosis protein-2 and suppresses apoptosis of colon cancer cells through ERK1/2 and p38 MAPK. J Biol Chem 2004; 279:26176-83. [PMID: 15078890 DOI: 10.1074/jbc.m313346200] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
We recently reported that cAMP suppresses apoptosis in colon cancer cells and induces cellular inhibitor of apoptosis protein-2 (c-IAP2) via a cAMP-responsive element (CRE), suggesting a mechanism for chemoprevention of colon cancer by non-steroidal anti-inflammatory drugs. In this study, we used T84 human colon cancer cells to define the pathway by which increases in cAMP induce c-IAP2 expression. Treatment with several different cAMP agonists stimulated phosphorylation of CRE-binding protein (CREB) and activated expression of c-IAP2 in a CREB-dependent manner. Studies with pharmacological inhibitors revealed that cAMP-dependent phosphorylation of CREB required activation of ERK1/2 and p38 MAPK but was largely independent of protein kinase A. Immunoblots and transcriptional reporter assays using specific inhibitors, as well as expression of constitutively active forms of MEK1 and MKK3, showed that c-IAP2 induction by cAMP is regulated predominantly through ERK1/2 and p38 MAPK and suggested involvement of p90 ribosomal protein S6 kinase and mitogen and stress response kinase-1 as well. Consistent with those results, we found that cAMP-dependent suppression of apoptosis was blocked by treatment with inhibitors of ERK1/2 and p38 MAPK. We conclude that cAMP can induce c-IAP2 expression in colon cancer cells through CREB phosphorylation and CRE-dependent transcription in a manner that involves activation of ERK1/2 and p38 MAPK. These results emphasize that activation of kinases other than protein kinase A can mediate the actions of agents that increase cAMP, particularly in the regulation of CREB-dependent events.
Collapse
Affiliation(s)
- Hiroshi Nishihara
- Department of Pharmacology, University of California, San Diego, La Jolla, California 92093-0636, USA
| | | | | | | | | |
Collapse
|
44
|
Mao X, Bravo IG, Cheng H, Alonso A. Multiple independent kinase cascades are targeted by hyperosmotic stress but only one activates stress kinase p38. Exp Cell Res 2004; 292:304-11. [PMID: 14697338 DOI: 10.1016/j.yexcr.2003.09.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In this report, we analyse the effects of osmotic shock on signal transduction in CHO cells. We demonstrate that at least three different kinase cascades are switched on upon osmotic shock, namely PKA, AMPK, and MLTK. Whereas PKA from cells treated with forskolin activated stress kinase p38, PKA from cells treated with sorbitol did not activate p38, although the enzyme is activated in both cases as analysed in vitro using a specific peptide target. Further, osmolar shock activated AMPK but treatment of the cells with the AMPK activator 5-amino-4-imidazolecarboxamide (AICAr) did not result in p38 activation, strongly suggesting that AMPK is not involved in stress kinase activation. Transfection of CHO cells with dominant negative recombinants of MLTKalpha resulted in inhibition of sorbitol-mediated p38 activation, indicating that the mixed-lineage kinase is involved in the activation of p38 by sorbitol. Finally, in CHO cells overexpressing wild-type MLTKalpha, no activation of AMPK of PKA could be demonstrated, indicating that the activated kinase cascades are not involved in a cross-talk process.
Collapse
Affiliation(s)
- Xiaohong Mao
- Deutsches Krebsforschungszentrum, Im Neuenheimer Feld-242, 69120 Heidelberg, Germany
| | | | | | | |
Collapse
|
45
|
Bell A, Gagnon A, Sorisky A. TSH stimulates IL-6 secretion from adipocytes in culture. Arterioscler Thromb Vasc Biol 2004; 23:e65-6. [PMID: 14672881 DOI: 10.1161/01.atv.0000102520.84030.a1] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
46
|
Affiliation(s)
- Nicholas J Sarlis
- Department of Endocrine Neoplasia & Hormonal Disorders, The University of Texas--M. D. Anderson Cancer Center, Houston, Texas 77082, USA
| | | |
Collapse
|
47
|
Schulte G, Fredholm BB. The G(s)-coupled adenosine A(2B) receptor recruits divergent pathways to regulate ERK1/2 and p38. Exp Cell Res 2003; 290:168-76. [PMID: 14516797 DOI: 10.1016/s0014-4827(03)00324-0] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Adenosine A(2B) receptors have been suggested to influence cell differentiation and proliferation. Human adenosine A(2B) receptors expressed in Chinese hamster ovary cells mediate phosphorylation and activation of the extracellular signal-regulated kinase (ERK1/2). Already low concentrations of agonists such as 5'-N-ethylcarboxamidoadenosine (NECA) are effective. Phosphorylation of the stress-activated protein kinase p38 was also potently induced by NECA (EC(50) 18.5 nM). These NECA-induced effects were mimicked by forskolin and 8-Br-cAMP. Inhibition of cAMP-dependent protein kinase (PKA) using H89 (N-[2-((p-bromocinnamyl)amino)ethyl]-5-isoquinolinesulfonamide)) blocked phosphorylation of the cAMP response element-binding protein (CREB) and p38, but did not decrease NECA-induced ERK1/2 phosphorylation. NECA activated the small GTPase Rap1, and this was also not blocked by H89. Inhibition of phosphatidylinositol-3'-kinase (PI3K) by wortmannin inhibited adenosine A(2B) receptor-mediated ERK1/2 phosphorylation and activation of Rap1, without affecting CREB and p38 phosphorylation. A(2B) receptor-stimulated protein kinase B phosphorylation was sensitive to wortmannin, but not to H89. Thus, stimulation of adenosine A(2B) receptors activates both ERK1/2 and p38 via cAMP, but the downstream pathways are markedly different. ERK1/2 activation was dependent on PI3K but not on PKA. p38 activation by NECA was instead independent of PI3K but required cAMP and PKA. The potent activation of both MAPKs suggests a physiological role.
Collapse
Affiliation(s)
- Gunnar Schulte
- Department of Physiology and Pharmacology, Karolinska Institutet, S-171 77 Stockholm, Sweden.
| | | |
Collapse
|
48
|
Gadal F, Bozic C, Pillot-Brochet C, Malinge S, Wagner S, Le Cam A, Buffat L, Crepin M, Iris F. Integrated transcriptome analysis of the cellular mechanisms associated with Ha-ras-dependent malignant transformation of the human breast epithelial MCF7 cell line. Nucleic Acids Res 2003; 31:5789-804. [PMID: 14500842 PMCID: PMC206462 DOI: 10.1093/nar/gkg762] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
To understand the cellular mechanisms of malignant transformation induced by constitutive activation of the ras oncogene (Ha-ras), we used a subtractive hybridization method (VGID) together with an integrative analytical procedure based upon literature databases in the form of extensive interaction graphs. We found 166 over- and under-expressed genes which, in the human MCF7-ras breast epithelial cell line, are involved in the different aspects of tumoral transformation such as defined signaling pathways, cellular growth, protection against apoptosis, extracellular matrix and cytoskeleton remodeling. Integrative analysis led to the construction of a physiological model defining cross-talk and signaling pathway alterations which explicitly suggested mechanisms directly involved in tumor progression. The model further suggested points and means of intervention which could induce cell death in Ha-ras-transformed cells specifically. These hypotheses were directly tested in vitro and found to be largely correct, hence indicating that these new analytical and technological approaches allow the discovery of pathology-associated cellular mechanisms and physiologically defined targets leading to phenotype-specific pharmacological interventions.
Collapse
Affiliation(s)
- Franck Gadal
- Unité Inserm U 553, Hôpital St Louis, 75010 Paris, France and Université Paris 13, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
The purine nucleoside adenosine acts via four distinct adenosine receptor subtypes: the adenosine A(1), A(2A), A(2B), and A(3) receptor. They are all G protein-coupled receptors (GPCR) coupling to classical second messenger pathways such as modulation of cAMP production or the phospholipase C (PLC) pathway. In addition, they couple to mitogen-activated protein kinases (MAPK), which could give them a role in cell growth, survival, death and differentiation. Although each of the adenosine receptors can activate one or more of the MAPKs, the mechanisms appear to differ substantially, both between receptor subtypes in the same cell type and between the same receptor in different cell types.
Collapse
Affiliation(s)
- Gunnar Schulte
- Department of Physiology and Pharmacology, Karolinska Institutet, S-171 77, Stockholm, Sweden.
| | | |
Collapse
|
50
|
Jain SK, Kannan K, Lim G, Matthews-Greer J, McVie R, Bocchini JA. Elevated blood interleukin-6 levels in hyperketonemic type 1 diabetic patients and secretion by acetoacetate-treated cultured U937 monocytes. Diabetes Care 2003; 26:2139-43. [PMID: 12832326 DOI: 10.2337/diacare.26.7.2139] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Diabetic patients have elevated blood levels of interleukin-6 (IL-6), which is known to increase inflammation and the development of vascular disease and atherosclerosis. This study examined the hypothesis that ketosis increases the circulating levels of IL-6 in type 1 diabetic patients as well as the secretion of IL-6 in vitro in a cell culture model using U937 monocytes. RESEARCH DESIGN AND METHODS Fasting blood was obtained from type 1 diabetic patients and healthy siblings. To examine the effect of ketosis, U937 monocytes were cultured with ketone bodies (acetoacetate [AA], beta-hydroxybutyrate [BHB]) in the presence or absence of high glucose levels in the medium at 37 degrees C for 24 h. IL-6 was determined by the sandwich enzyme-linked immunosorbent assay method, and intracellular reactive oxygen species (ROS) generation was detected using dihydroethidium dye. RESULTS The blood level of IL-6 was higher in hyperketonemic (HK) diabetic patients than in normoketonemic (NK) diabetic patients (P < 0.05) and normal control subjects (P < 0.05). There was a significant correlation between ketosis and IL-6 levels (r = 0.36, P < 0.04, n = 34) in the blood of diabetic patients. Cell culture studies found that exogenous addition of the ketone body AA, but not BHB, increases IL-6 secretion and ROS generation in U937 cells. N-acetylcysteine (NAC) prevented the IL-6 secretion in acetoacetate-treated U937 monocytes. CONCLUSIONS This study demonstrates that hyperketonemia increases IL-6 levels in the blood of type 1 diabetic patients and that NAC can inhibit IL-6 secretion by U937 monocytic cells cultured in a ketotic medium.
Collapse
Affiliation(s)
- Sushil K Jain
- Department of Pediatrics, Louisiana State University Health Sciences Center, Shreveport, Louisiana 71130, USA.
| | | | | | | | | | | |
Collapse
|