1
|
Parrot C, Moulinier L, Bernard F, Hashem Y, Dupuy D, Sissler M. Peculiarities of aminoacyl-tRNA synthetases from trypanosomatids. J Biol Chem 2021; 297:100913. [PMID: 34175310 PMCID: PMC8319005 DOI: 10.1016/j.jbc.2021.100913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/17/2021] [Accepted: 06/22/2021] [Indexed: 10/28/2022] Open
Abstract
Trypanosomatid parasites are responsible for various human diseases, such as sleeping sickness, animal trypanosomiasis, or cutaneous and visceral leishmaniases. The few available drugs to fight related parasitic infections are often toxic and present poor efficiency and specificity, and thus, finding new molecular targets is imperative. Aminoacyl-tRNA synthetases (aaRSs) are essential components of the translational machinery as they catalyze the specific attachment of an amino acid onto cognate tRNA(s). In trypanosomatids, one gene encodes both cytosolic- and mitochondrial-targeted aaRSs, with only three exceptions. We identify here a unique specific feature of aaRSs from trypanosomatids, which is that most of them harbor distinct insertion and/or extension sequences. Among the 26 identified aaRSs in the trypanosome Leishmania tarentolae, 14 contain an additional domain or a terminal extension, confirmed in mature mRNAs by direct cDNA nanopore sequencing. Moreover, these RNA-Seq data led us to address the question of aaRS dual localization and to determine splice-site locations and the 5'-UTR lengths for each mature aaRS-encoding mRNA. Altogether, our results provided evidence for at least one specific mechanism responsible for mitochondrial addressing of some L. tarentolae aaRSs. We propose that these newly identified features of trypanosomatid aaRSs could be developed as relevant drug targets to combat the diseases caused by these parasites.
Collapse
Affiliation(s)
- Camila Parrot
- ARNA - UMR5320 CNRS - U1212 INSERM, Université de Bordeaux, IECB, Pessac, France
| | - Luc Moulinier
- CSTB Complex Systems and Translational Bioinformatics, ICube laboratory and Strasbourg Federation of Translational Medicine (FMTS), CNRS, Université de Strasbourg, Strasbourg, France
| | - Florian Bernard
- ARNA - UMR5320 CNRS - U1212 INSERM, Université de Bordeaux, IECB, Pessac, France
| | - Yaser Hashem
- ARNA - UMR5320 CNRS - U1212 INSERM, Université de Bordeaux, IECB, Pessac, France
| | - Denis Dupuy
- ARNA - UMR5320 CNRS - U1212 INSERM, Université de Bordeaux, IECB, Pessac, France
| | - Marie Sissler
- ARNA - UMR5320 CNRS - U1212 INSERM, Université de Bordeaux, IECB, Pessac, France.
| |
Collapse
|
2
|
Yu YC, Han JM, Kim S. Aminoacyl-tRNA synthetases and amino acid signaling. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1868:118889. [PMID: 33091505 DOI: 10.1016/j.bbamcr.2020.118889] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/05/2020] [Accepted: 10/10/2020] [Indexed: 12/13/2022]
Abstract
Aminoacyl-tRNA synthetases (ARSs) are a family of evolutionarily conserved housekeeping enzymes used for protein synthesis that have pivotal roles in the ligation of tRNA with their cognate amino acids. Recent advances in the structural and functional studies of ARSs have revealed many previously unknown biological functions beyond the classical catalytic roles. Sensing the sufficiency of intracellular nutrients such as amino acids, ATP, and fatty acids is a crucial aspect for every living organism, and it is closely connected to the regulation of diverse cellular physiologies. Notably, among ARSs, leucyl-tRNA synthetase 1 (LARS1) has been identified to perform specifically as a leucine sensor upstream of the amino acid-sensing pathway and thus participates in the coordinated control of protein synthesis and autophagy for cell growth. In addition to LARS1, other types of ARSs are also likely involved in the sensing and signaling of their cognate amino acids inside cells. Collectively, this review focuses on the mechanisms of ARSs interacting within amino acid signaling and proposes the possible role of ARSs as general intracellular amino acid sensors.
Collapse
Affiliation(s)
- Ya Chun Yu
- Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon 21983, South Korea
| | - Jung Min Han
- Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon 21983, South Korea; Department of Integrated OMICS for Biomedical Science, Yonsei University, Seoul 03722, South Korea.
| | - Sunghoon Kim
- Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon 21983, South Korea; Medicinal Bioconvergence Research Center, College of Pharmacy and College of Medicine, Gangnam Severance Hospital, Yonsei University, South Korea.
| |
Collapse
|
3
|
Abstract
Aminoacyl-tRNA synthetases (AARSs) are essential enzymes that specifically aminoacylate one tRNA molecule by the cognate amino acid. They are a family of twenty enzymes, one for each amino acid. By coupling an amino acid to a specific RNA triplet, the anticodon, they are responsible for interpretation of the genetic code. In addition to this translational, canonical role, several aminoacyl-tRNA synthetases also fulfill nontranslational, moonlighting functions. In mammals, nine synthetases, those specific for amino acids Arg, Asp, Gln, Glu, Ile, Leu, Lys, Met and Pro, associate into a multi-aminoacyl-tRNA synthetase complex, an association which is believed to play a key role in the cellular organization of translation, but also in the regulation of the translational and nontranslational functions of these enzymes. Because the balance between their alternative functions rests on the assembly and disassembly of this supramolecular entity, it is essential to get precise insight into the structural organization of this complex. The high-resolution 3D-structure of the native particle, with a molecular weight of about 1.5 MDa, is not yet known. Low-resolution structures of the multi-aminoacyl-tRNA synthetase complex, as determined by cryo-EM or SAXS, have been reported. High-resolution data have been reported for individual enzymes of the complex, or for small subcomplexes. This review aims to present a critical view of our present knowledge of the aminoacyl-tRNA synthetase complex in 3D. These preliminary data shed some light on the mechanisms responsible for the balance between the translational and nontranslational functions of some of its components.
Collapse
Affiliation(s)
- Marc Mirande
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 1 avenue de la Terrasse, 91190, Gif-sur-Yvette, Paris, France.
| |
Collapse
|
4
|
Rémion A, Khoder-Agha F, Cornu D, Argentini M, Redeker V, Mirande M. Identification of protein interfaces within the multi-aminoacyl-tRNA synthetase complex: the case of lysyl-tRNA synthetase and the scaffold protein p38. FEBS Open Bio 2016; 6:696-706. [PMID: 27398309 PMCID: PMC4932449 DOI: 10.1002/2211-5463.12074] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 03/23/2016] [Accepted: 04/19/2016] [Indexed: 11/06/2022] Open
Abstract
Human cytoplasmic lysyl-tRNA synthetase (LysRS) is associated within a multi-aminoacyl-tRNA synthetase complex (MSC). Within this complex, the p38 component is the scaffold protein that binds the catalytic domain of LysRS via its N-terminal region. In addition to its translational function when associated to the MSC, LysRS is also recruited in nontranslational roles after dissociation from the MSC. The balance between its MSC-associated and MSC-dissociated states is essential to regulate the functions of LysRS in cellular homeostasis. With the aim of understanding the rules that govern association of LysRS in the MSC, we analyzed the protein interfaces between LysRS and the full-length version of p38, the scaffold protein of the MSC. In a previous study, the cocrystal structure of LysRS with a N-terminal peptide of p38 was reported [Ofir-Birin Y et al. (2013) Mol Cell 49, 30-42]. In order to identify amino acid residues involved in interaction of the two proteins, the non-natural, photo-cross-linkable amino acid p-benzoyl-l-phenylalanine (Bpa) was incorporated at 27 discrete positions within the catalytic domain of LysRS. Among the 27 distinct LysRS mutants, only those with Bpa inserted in place of Lys356 or His364 were cross-linked with p38. Using mass spectrometry, we unambiguously identified the protein interface of the cross-linked complex and showed that Lys356 and His364 of LysRS interact with the peptide from Pro8 to Arg26 in native p38, in agreement with the published cocrystal structure. This interface, which in LysRS is located on the opposite side of the dimer to the site of interaction with its tRNA substrate, defines the core region of the MSC. The residues identified herein in human LysRS are not conserved in yeast LysRS, an enzyme that does not associate within the MSC, and contrast with the residues proposed to be essential for LysRS:p38 association in the earlier work.
Collapse
Affiliation(s)
- Azaria Rémion
- Laboratoire d'Enzymologie et Biochimie Structurales (LEBS) CNRS Gif-sur-Yvette France
| | - Fawzi Khoder-Agha
- Laboratoire d'Enzymologie et Biochimie Structurales (LEBS) CNRS Gif-sur-Yvette France; Institute for Integrative Biology of the Cell (I2BC) CEACNRS Univ. Paris-Sud, Université Paris-Saclay Gif-sur-Yvette France
| | - David Cornu
- Service d'identification et de Caractérisation des Protéines par Spectrométrie de Masse (SICaPS) CEA CNRS Univ. Paris-Sud, Université Paris-Saclay Gif-sur-Yvette France
| | - Manuela Argentini
- Service d'identification et de Caractérisation des Protéines par Spectrométrie de Masse (SICaPS) CEA CNRS Univ. Paris-Sud, Université Paris-Saclay Gif-sur-Yvette France
| | - Virginie Redeker
- Laboratoire d'Enzymologie et Biochimie Structurales (LEBS) CNRSGif-sur-Yvette France; Service d'identification et de Caractérisation des Protéines par Spectrométrie de Masse (SICaPS) CEACNRS Univ. Paris-Sud, Université Paris-Saclay Gif-sur-Yvette France; Present address: Paris-Saclay Institute of Neuroscience (Neuro-PSI) CNRS 1 avenue de la Terrasse 91190 Gif-sur-Yvette France
| | - Marc Mirande
- Laboratoire d'Enzymologie et Biochimie Structurales (LEBS) CNRS Gif-sur-Yvette France; Institute for Integrative Biology of the Cell (I2BC) CEACNRS Univ. Paris-Sud, Université Paris-Saclay Gif-sur-Yvette France
| |
Collapse
|
5
|
Ognjenović J, Wu J, Matthies D, Baxa U, Subramaniam S, Ling J, Simonović M. The crystal structure of human GlnRS provides basis for the development of neurological disorders. Nucleic Acids Res 2016; 44:3420-31. [PMID: 26869582 PMCID: PMC4838373 DOI: 10.1093/nar/gkw082] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 02/01/2016] [Indexed: 11/25/2022] Open
Abstract
Cytosolic glutaminyl-tRNA synthetase (GlnRS) is the singular enzyme responsible for translation of glutamine codons. Compound heterozygous mutations in GlnRS cause severe brain disorders by a poorly understood mechanism. Herein, we present crystal structures of the wild type and two pathological mutants of human GlnRS, which reveal, for the first time, the domain organization of the intact enzyme and the structure of the functionally important N-terminal domain (NTD). Pathological mutations mapping in the NTD alter the domain structure, and decrease catalytic activity and stability of GlnRS, whereas missense mutations in the catalytic domain induce misfolding of the enzyme. Our results suggest that the reduced catalytic efficiency and a propensity of GlnRS mutants to misfold trigger the disease development. This report broadens the spectrum of brain pathologies elicited by protein misfolding and provides a paradigm for understanding the role of mutations in aminoacyl-tRNA synthetases in neurological diseases.
Collapse
Affiliation(s)
- Jana Ognjenović
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Jiang Wu
- Department of Microbiology and Molecular Genetics, The University of Texas, Health Science Center at Houston, Houston, TX 77030, USA
| | - Doreen Matthies
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ulrich Baxa
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sriram Subramaniam
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jiqiang Ling
- Department of Microbiology and Molecular Genetics, The University of Texas, Health Science Center at Houston, Houston, TX 77030, USA
| | - Miljan Simonović
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607, USA
| |
Collapse
|
6
|
Aminoacyl-tRNA synthetase complexes in evolution. Int J Mol Sci 2015; 16:6571-94. [PMID: 25807264 PMCID: PMC4394549 DOI: 10.3390/ijms16036571] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 02/17/2015] [Accepted: 03/11/2015] [Indexed: 11/23/2022] Open
Abstract
Aminoacyl-tRNA synthetases are essential enzymes for interpreting the genetic code. They are responsible for the proper pairing of codons on mRNA with amino acids. In addition to this canonical, translational function, they are also involved in the control of many cellular pathways essential for the maintenance of cellular homeostasis. Association of several of these enzymes within supramolecular assemblies is a key feature of organization of the translation apparatus in eukaryotes. It could be a means to control their oscillation between translational functions, when associated within a multi-aminoacyl-tRNA synthetase complex (MARS), and nontranslational functions, after dissociation from the MARS and association with other partners. In this review, we summarize the composition of the different MARS described from archaea to mammals, the mode of assembly of these complexes, and their roles in maintenance of cellular homeostasis.
Collapse
|
7
|
Xu H, Malinin NL, Awasthi N, Schwarz RE, Schwarz MA. The N terminus of pro-endothelial monocyte-activating polypeptide II (EMAP II) regulates its binding with the C terminus, arginyl-tRNA synthetase, and neurofilament light protein. J Biol Chem 2015; 290:9753-66. [PMID: 25724651 DOI: 10.1074/jbc.m114.630533] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Indexed: 12/17/2022] Open
Abstract
Pro-endothelial monocyte-activating polypeptide II (EMAP II), one component of the multi-aminoacyl tRNA synthetase complex, plays multiple roles in physiological and pathological processes of protein translation, signal transduction, immunity, lung development, and tumor growth. Recent studies have determined that pro-EMAP II has an essential role in maintaining axon integrity in central and peripheral neural systems where deletion of the C terminus of pro-EMAP II has been reported in a consanguineous Israeli Bedouin kindred suffering from Pelizaeus-Merzbacher-like disease. We hypothesized that the N terminus of pro-EMAP II has an important role in the regulation of protein-protein interactions. Using a GFP reporter system, we defined a putative leucine zipper in the N terminus of human pro-EMAP II protein (amino acid residues 1-70) that can form specific strip-like punctate structures. Through GFP punctum analysis, we uncovered that the pro-EMAP II C terminus (amino acids 147-312) can repress GFP punctum formation. Pulldown assays confirmed that the binding between the pro-EMAP II N terminus and its C terminus is mediated by a putative leucine zipper. Furthermore, the pro-EMAP II 1-70 amino acid region was identified as the binding partner of arginyl-tRNA synthetase, a polypeptide of the multi-aminoacyl tRNA synthetase complex. We also determined that the punctate GFP pro-EMAP II 1-70 amino acid aggregate colocalizes and binds to the neurofilament light subunit protein that is associated with pathologic neurofilament network disorganization and degeneration of motor neurons. These findings indicate the structure and binding interaction of pro-EMAP II protein and suggest a role of this protein in pathological neurodegenerative diseases.
Collapse
Affiliation(s)
- Haiming Xu
- From the Department of Pediatrics, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390 and
| | - Nikolay L Malinin
- the Indiana University School of Medicine, South Bend, Indiana 46617
| | - Niranjan Awasthi
- the Indiana University School of Medicine, South Bend, Indiana 46617
| | | | - Margaret A Schwarz
- From the Department of Pediatrics, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390 and the Indiana University School of Medicine, South Bend, Indiana 46617
| |
Collapse
|
8
|
Structure of the ArgRS-GlnRS-AIMP1 complex and its implications for mammalian translation. Proc Natl Acad Sci U S A 2014; 111:15084-9. [PMID: 25288775 DOI: 10.1073/pnas.1408836111] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In higher eukaryotes, one of the two arginyl-tRNA synthetases (ArgRSs) has evolved to have an extended N-terminal domain that plays a crucial role in protein synthesis and cell growth and in integration into the multisynthetase complex (MSC). Here, we report a crystal structure of the MSC subcomplex comprising ArgRS, glutaminyl-tRNA synthetase (GlnRS), and the auxiliary factor aminoacyl tRNA synthetase complex-interacting multifunctional protein 1 (AIMP1)/p43. In this complex, the N-terminal domain of ArgRS forms a long coiled-coil structure with the N-terminal helix of AIMP1 and anchors the C-terminal core of GlnRS, thereby playing a central role in assembly of the three components. Mutation of AIMP1 destabilized the N-terminal helix of ArgRS and abrogated its catalytic activity. Mutation of the N-terminal helix of ArgRS liberated GlnRS, which is known to control cell death. This ternary complex was further anchored to AIMP2/p38 through interaction with AIMP1. These findings demonstrate the importance of interactions between the N-terminal domains of ArgRS and AIMP1 for the catalytic and noncatalytic activities of ArgRS and for the assembly of the higher-order MSC protein complex.
Collapse
|
9
|
Hadd A, Perona JJ. Coevolution of specificity determinants in eukaryotic glutamyl- and glutaminyl-tRNA synthetases. J Mol Biol 2014; 426:3619-33. [PMID: 25149203 DOI: 10.1016/j.jmb.2014.08.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 07/10/2014] [Accepted: 08/07/2014] [Indexed: 11/30/2022]
Abstract
The glutaminyl-tRNA synthetase (GlnRS) enzyme, which pairs glutamine with tRNA(Gln) for protein synthesis, evolved by gene duplication in early eukaryotes from a nondiscriminating glutamyl-tRNA synthetase (GluRS) that aminoacylates both tRNA(Gln) and tRNA(Glu) with glutamate. This ancient GluRS also separately differentiated to exclude tRNA(Gln) as a substrate, and the resulting discriminating GluRS and GlnRS further acquired additional protein domains assisting function in cis (the GlnRS N-terminal Yqey domain) or in trans (the Arc1p protein associating with GluRS). These added domains are absent in contemporary bacterial GlnRS and GluRS. Here, using Saccharomyces cerevisiae enzymes as models, we find that the eukaryote-specific protein domains substantially influence amino acid binding, tRNA binding and aminoacylation efficiency, but they play no role in either specific nucleotide readout or discrimination against noncognate tRNA. Eukaryotic tRNA(Gln) and tRNA(Glu) recognition determinants are found in equivalent positions and are mutually exclusive to a significant degree, with key nucleotides located adjacent to portions of the protein structure that differentiated during the evolution of archaeal nondiscriminating GluRS to GlnRS. These findings provide important corroboration for the evolutionary model and suggest that the added eukaryotic domains arose in response to distinctive selective pressures associated with the greater complexity of the eukaryotic translational apparatus. We also find that the affinity of GluRS for glutamate is significantly increased when Arc1p is not associated with the enzyme. This is consistent with the lower concentration of intracellular glutamate and the dissociation of the Arc1p:GluRS complex upon the diauxic shift to respiratory conditions.
Collapse
Affiliation(s)
- Andrew Hadd
- Department of Biochemistry and Molecular Biology, Oregon Health and Sciences University, 3181 Southwest Sam Jackson Park Road, Portland, OR 97239, USA
| | - John J Perona
- Department of Biochemistry and Molecular Biology, Oregon Health and Sciences University, 3181 Southwest Sam Jackson Park Road, Portland, OR 97239, USA; Department of Chemistry, Portland State University, PO Box 751, Portland, OR 97207, USA.
| |
Collapse
|
10
|
Lee SW, Kim G, Kim S. Aminoacyl-tRNA synthetase-interacting multi-functional protein 1/p43: an emerging therapeutic protein working at systems level. Expert Opin Drug Discov 2013; 3:945-57. [PMID: 23484969 DOI: 10.1517/17460441.3.8.945] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
BACKGROUND Drug discovery programs are based on the presumption of one drug-one action-one disease, which is frustrated by the complexity of biological systems. Because the aberration of a single gene often leads to multiple pathological symptoms, we should understand the functional network of the disease-related proteins to develop effective therapy. OBJECTIVES To describe how activities of proteins are reflected in phenotypes and their pathological implications using aminoacyl-tRNA synthetase-interacting multi-functional protein 1 (AIMP1). METHODS The physiological activities of AIMP1 are unveiled through in vitro approaches and in vivo phenotyptic investigation. Bioinformatics tool was used to combine all AIMP1-target proteins. CONCLUSION Although a cytosolic protein, AIMP1 can be secreted as a cytokine to control immune response, angiogenesis and wound healing, and as a glucagon-like hormone for glucose homeostasis. It is involved in the regulation of autoimmune control and TGF-β signaling within the cells. AIMP1-deficient mice developed multiple phenotypes in immune systems, metabolism and body growth. The therapeutic potential of this multi-functional protein with associated biological activities are discussed.
Collapse
Affiliation(s)
- Sang Won Lee
- Seoul National University of Education, Department of Science and Technology Education for Life, 1650, Seocho-dong, Seocho-gu, Seoul 137-742, Korea
| | | | | |
Collapse
|
11
|
Godinic-Mikulcic V, Jaric J, Hausmann CD, Ibba M, Weygand-Durasevic I. An archaeal tRNA-synthetase complex that enhances aminoacylation under extreme conditions. J Biol Chem 2010; 286:3396-404. [PMID: 21098026 DOI: 10.1074/jbc.m110.168526] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Aminoacyl-tRNA synthetases (aaRSs) play an integral role in protein synthesis, functioning to attach the correct amino acid with its cognate tRNA molecule. AaRSs are known to associate into higher-order multi-aminoacyl-tRNA synthetase complexes (MSC) involved in archaeal and eukaryotic translation, although the precise biological role remains largely unknown. To gain further insights into archaeal MSCs, possible protein-protein interactions with the atypical Methanothermobacter thermautotrophicus seryl-tRNA synthetase (MtSerRS) were investigated. Yeast two-hybrid analysis revealed arginyl-tRNA synthetase (MtArgRS) as an interacting partner of MtSerRS. Surface plasmon resonance confirmed stable complex formation, with a dissociation constant (K(D)) of 250 nM. Formation of the MtSerRS·MtArgRS complex was further supported by the ability of GST-MtArgRS to co-purify MtSerRS and by coelution of the two enzymes during gel filtration chromatography. The MtSerRS·MtArgRS complex also contained tRNA(Arg), consistent with the existence of a stable ribonucleoprotein complex active in aminoacylation. Steady-state kinetic analyses revealed that addition of MtArgRS to MtSerRS led to an almost 4-fold increase in the catalytic efficiency of serine attachment to tRNA, but had no effect on the activity of MtArgRS. Further, the most pronounced improvements in the aminoacylation activity of MtSerRS induced by MtArgRS were observed under conditions of elevated temperature and osmolarity. These data indicate that formation of a complex between MtSerRS and MtArgRS provides a means by which methanogenic archaea can optimize an early step in translation under a wide range of extreme environmental conditions.
Collapse
Affiliation(s)
- Vlatka Godinic-Mikulcic
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, HR-10000 Zagreb, Croatia
| | | | | | | | | |
Collapse
|
12
|
Guo M, Schimmel P, Yang XL. Functional expansion of human tRNA synthetases achieved by structural inventions. FEBS Lett 2009; 584:434-42. [PMID: 19932696 DOI: 10.1016/j.febslet.2009.11.064] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2009] [Revised: 11/17/2009] [Accepted: 11/17/2009] [Indexed: 02/06/2023]
Abstract
Known as an essential component of the translational apparatus, the aminoacyl-tRNA synthetase family catalyzes the first step reaction in protein synthesis, that is, to specifically attach each amino acid to its cognate tRNA. While preserving this essential role, tRNA synthetases developed other roles during evolution. Human tRNA synthetases, in particular, have diverse functions in different pathways involving angiogenesis, inflammation and apoptosis. The functional diversity is further illustrated in the association with various diseases through genetic mutations that do not affect aminoacylation or protein synthesis. Here we review the accumulated knowledge on how human tRNA synthetases used structural inventions to achieve functional expansions.
Collapse
Affiliation(s)
- Min Guo
- The Skaggs Institute for Chemical Biology, Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
13
|
He R, Zu LD, Yao P, Chen X, Wang ED. Two non-redundant fragments in the N-terminal peptide of human cytosolic methionyl-tRNA synthetase were indispensable for the multi-synthetase complex incorporation and enzyme activity. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2008; 1794:347-54. [PMID: 19064003 DOI: 10.1016/j.bbapap.2008.11.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2008] [Revised: 11/03/2008] [Accepted: 11/04/2008] [Indexed: 10/21/2022]
Abstract
In human cytoplasm, nine aminoacyl-tRNA synthetases (aaRSs) and three protein factors form a multi-synthetase complex (MSC). Human cytosolic methionyl-tRNA synthetase (hcMetRS) is a component of the MSC. Sequence alignment revealed that hcMetRS has an N-terminal extension of 267 amino acid residues. This extension can be divided into three sub-domains: GST-like, GN, and GC sub-domains. The effect of each sub-domain in the N-terminal extension of hcMetRS on enzymatic activity and incorporation into the MSC was studied. The results of cellular assay showed that the GST-like sub-domain was responsible for the incorporation of hcMetRS into the MSC. The entire N-terminal extension of hcMetRS is indispensable for the enzymatic activity. Deletion mutagenesis revealed that a seven-amino acid motif within the sub-domain GC was important for the activity of amino acid activation. A conserved proline residue within the seven-amino acid motif was crucial, while the other six residues were moderately important for the amino acid activation activity. Thus, the last 15 residues of previously defined N-terminal extension of hcMetRS was a part of the catalytic domain; whereas the first 252 residues of hcMetRS constitute the N-terminal extended domain of hcMetRS. The formerly defined N-terminal extension of hcMetRS possesses two functions of two different domains.
Collapse
Affiliation(s)
- Ran He
- Shanghai Institutes for Biological Sciences, The Chinese Academy of Sciences, Shanghai 200031, China
| | | | | | | | | |
Collapse
|
14
|
Inability of human immunodeficiency virus type 1 produced in murine cells to selectively incorporate primer formula. J Virol 2008; 82:12049-59. [PMID: 18842718 DOI: 10.1128/jvi.01744-08] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Attempts to use the mouse as a model system for studying AIDS are stymied by the multiple blocks to human immunodeficiency virus type 1 (HIV-1) replication that exist in mouse cells at the levels of viral entry, transcription, and Gag assembly and processing. In this report, we describe an additional block in the selective packaging of tRNA(3Lys) into HIV-1 produced in murine cells. HIV-1 and murine leukemia virus (MuLV) use tRNA(3Lys) and tRNA(Pro), respectively, as primers for reverse transcription. Selective packaging of tRNA(3Lys) into HIV-1 produced in human cells is much stronger than that for tRNA(Pro) incorporation into MuLV produced in murine cells, and different packaging mechanisms are used. Thus, both lysyl-tRNA synthetase and GagPol are required for tRNA(3Lys) packaging into HIV-1, but neither prolyl-tRNA synthetase nor GagPol is required for tRNA(Pro) packaging into MuLV. In this report, we show that when HIV-1 is produced in murine cells, the virus switches from an HIV-1-like incorporation of tRNA(3Lys) to an MuLV-like packaging of tRNA(Pro). The primer binding site in viral RNA remains complementary to tRNA(3Lys), resulting in a significant decrease in reverse transcription and infectivity. Reduction in tRNA(3Lys) incorporation occurs even though both murine lysyl-tRNA synthetase and HIV-1 GagPol are packaged into the HIV-1 produced in murine cells. Nevertheless, the murine cell is able to support the select incorporation of tRNA(3Lys) into another retrovirus that uses tRNA(3Lys) as a primer, the mouse mammary tumor virus.
Collapse
|
15
|
Hausmann CD, Ibba M. Aminoacyl-tRNA synthetase complexes: molecular multitasking revealed. FEMS Microbiol Rev 2008; 32:705-21. [PMID: 18522650 DOI: 10.1111/j.1574-6976.2008.00119.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The accurate synthesis of proteins, dictated by the corresponding nucleotide sequence encoded in mRNA, is essential for cell growth and survival. Central to this process are the aminoacyl-tRNA synthetases (aaRSs), which provide amino acid substrates for the growing polypeptide chain in the form of aminoacyl-tRNAs. The aaRSs are essential for coupling the correct amino acid and tRNA molecules, but are also known to associate in higher order complexes with proteins involved in processes beyond translation. Multiprotein complexes containing aaRSs are found in all three domains of life playing roles in splicing, apoptosis, viral assembly, and regulation of transcription and translation. An overview of the complexes aaRSs form in all domains of life is presented, demonstrating the extensive network of connections between the translational machinery and cellular components involved in a myriad of essential processes beyond protein synthesis.
Collapse
Affiliation(s)
- Corinne D Hausmann
- Department of Microbiology, The Ohio State University, Columbus, OH 43210-1292, USA
| | | |
Collapse
|
16
|
Crystal structure of tetrameric form of human lysyl-tRNA synthetase: Implications for multisynthetase complex formation. Proc Natl Acad Sci U S A 2008; 105:2331-6. [PMID: 18272479 DOI: 10.1073/pnas.0712072105] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In mammals, many aminoacyl-tRNA synthetases are bound together in a multisynthetase complex (MSC) as a reservoir of procytokines and regulation molecules for functions beyond aminoacylation. The alpha(2) homodimeric lysyl-tRNA synthetase (LysRS) is tightly bound in the MSC and, under specific conditions, is secreted to trigger a proinflammatory response. Results by others suggest that alpha(2) LysRS is tightly bound into the core of the MSC with homodimeric beta(2) p38, a scaffolding protein that itself is multifunctional. Not understood is how the two dimeric proteins combine to make a presumptive alpha(2)beta(2) heterotetramer and, in particular, the location of the surfaces on LysRS that would accommodate the p38 interactions. Here we present a 2.3-A crystal structure of a tetrameric form of human LysRS. The relatively loose (as seen in solution) tetramer interface is assembled from two eukaryote-specific sequences, one in the catalytic- and another in the anticodon-binding domain. This same interface is predicted to provide unique determinants for interaction with p38. The analyses suggest how the core of the MSC is assembled and, more generally, that interactions and functions of synthetases can be built and regulated through dynamic protein-protein interfaces. These interfaces are created from small adaptations to what is otherwise a highly conserved (through evolution) polypeptide sequence.
Collapse
|
17
|
Ward NE, Pellis NR, Risin SA, Risin D. Gene expression alterations in activated human T-cells induced by modeled microgravity. J Cell Biochem 2006; 99:1187-202. [PMID: 16795038 DOI: 10.1002/jcb.20988] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Studies conducted in real Space and in ground-based microgravity analog systems (MAS) have demonstrated changes in numerous lymphocyte functions. In this investigation we explored whether the observed functional changes in lymphocytes in MAS are associated with changes in gene expression. NASA-developed Rotating Wall Vessel (RWV) bioreactor was utilized as a MAS. Activated T lymphocytes were obtained by adding 100 ng/ml of anti-CD3 and 100 U/ml of IL-2 in RPMI medium to blood donor mononuclear cells for 4 days. After that the cells were washed and additionally cultured for up to 2 weeks with media (RPMI, 10% FBS and 100 U/ml IL-2) replacement every 3-4 days. Flow cytometry analysis had proven that activated T lymphocytes were the only cells remaining in culture by that time. They were split into two portions, cultured for additional 24 h in either static or simulated microgravity conditions, and used for RNA extraction. The gene expression was assessed by Affymetrix GeneChip Human U133A array allowing screening for expression of 18,400 genes. About 4-8% of tested genes responded to MG by more than a 1.5-fold change in expression; however, reproducible changes were observed only in 89 genes. Ten of these genes were upregulated and 79 were downregulated. These genes were categorized by associated pathways and viewed graphically through histogram analysis. Separate histograms of each pathway were then constructed representing individual gene expression fold changes. Possible functional consequences of the identified reproducible gene expression changes are discussed.
Collapse
|
18
|
Han JM, Lee MJ, Park SG, Lee SH, Razin E, Choi EC, Kim S. Hierarchical network between the components of the multi-tRNA synthetase complex: implications for complex formation. J Biol Chem 2006; 281:38663-7. [PMID: 17062567 DOI: 10.1074/jbc.m605211200] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The macromolecular tRNA synthetase complex consists of nine different enzymes and three non-enzymatic factors. This complex was recently shown to be a novel signalosome, since many of its components are involved in signaling pathways in addition to their catalytic roles in protein synthesis. The structural organization and dynamic relationships of the components of the complex are not well understood. Here we performed a systematic depletion analysis to determine the effects of structural intimacy and the turnover of the components. The results showed that the stability of some components depended on their neighbors. Lysyl-tRNA synthetase was most independent of other components for its stability whereas it was most required for the stability of other components. Arginyl- and methionyl-tRNA synthetases had the opposite characteristics. Thus, the systematic depletion of the components revealed the functional reason for the complex formation and the assembly pattern of these multi-functional enzymes and their associated factors.
Collapse
Affiliation(s)
- Jung Min Han
- Imagene Company Biotechnology Incubating Center, Golden Helix, Seoul National University, Seoul 151-741, Korea
| | | | | | | | | | | | | |
Collapse
|
19
|
Park SG, Ewalt KL, Kim S. Functional expansion of aminoacyl-tRNA synthetases and their interacting factors: new perspectives on housekeepers. Trends Biochem Sci 2005; 30:569-74. [PMID: 16125937 DOI: 10.1016/j.tibs.2005.08.004] [Citation(s) in RCA: 218] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2005] [Revised: 07/13/2005] [Accepted: 08/12/2005] [Indexed: 11/19/2022]
Abstract
Aminoacyl-tRNA synthetases (ARSs) are essential enzymes that join amino acids to tRNAs, thereby linking the genetic code to specific amino acids. Once considered a class of 'housekeeping' enzymes, ARSs are now known to participate in a wide variety of functions, including transcription, translation, splicing, inflammation, angiogenesis and apoptosis. Three nonenzymatic proteins--ARS-interacting multi-functional proteins (AIMPs)--associate with ARSs in a multi-synthetase complex of higher eukaryotes. Similarly to ARSs, AIMPs have novel functions unrelated to their support role in protein synthesis, acting as a cytokine to control angiogenesis, immune response and wound repair, and as a crucial regulator for cell proliferation and DNA repair. Evaluation of the functional roles of individual ARSs and AIMPs might help to elucidate why these proteins as a whole contribute such varied functions and interactions in complex systems.
Collapse
Affiliation(s)
- Sang Gyu Park
- National Creative Research Initiatives Center for ARS Network, College of Pharmacy, Seoul National University, San 56-1, Shillim-dong, Kwanak-gu, Seoul 151-742, Korea
| | | | | |
Collapse
|
20
|
Ling C, Yao YN, Zheng YG, Wei H, Wang L, Wu XF, Wang ED. The C-terminal appended domain of human cytosolic leucyl-tRNA synthetase is indispensable in its interaction with arginyl-tRNA synthetase in the multi-tRNA synthetase complex. J Biol Chem 2005; 280:34755-63. [PMID: 16055448 DOI: 10.1074/jbc.m413511200] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Human cytosolic leucyl-tRNA synthetase is one component of a macromolecular aminoacyl-tRNA synthetase complex. This is unlike prokaryotic and lower eukaryotic LeuRSs that exist as free soluble enzymes. There is little known about it, since the purified enzyme has been unavailable. Herein, human cytosolic leucyl-tRNA synthetase was heterologously expressed in a baculovirus system and purified to homogeneity. The molecular mass (135 kDa) of the enzyme is close to the theoretical value derived from its cDNA. The kinetic constants of the enzyme for ATP, leucine, and tRNA(Leu) in the ATP-PP(i) exchange and tRNA leucylation reactions were determined, and the results showed that it is quite active as a free enzyme. Human cytosolic leucyl-tRNA synthetase expressed in human 293 T cells localizes predominantly to the cytosol. Additionally, it is found to have a long C-terminal extension that is absent from bacterial and yeast LeuRSs. A C-terminal 89-amino acid truncated human cytosolic leucyl-tRNA synthetase was constructed and purified, and the catalytic activities, thermal stability, and subcellular location were found to be almost identical to native enzyme. In vivo and in vitro experiments, however, show that the C-terminal extension of human cytosolic leucyl-tRNA synthetase is indispensable for its interaction with the N-terminal of human cytosolic arginyl-tRNA synthetase in the macromolecular complex. Our results also indicate that the two molecules interact with each other only through their appended domains.
Collapse
Affiliation(s)
- Chen Ling
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, the Chinese Academy of Sciences, Shanghai 200031
| | | | | | | | | | | | | |
Collapse
|
21
|
Lee SW, Cho BH, Park SG, Kim S. Aminoacyl-tRNA synthetase complexes: beyond translation. J Cell Sci 2005; 117:3725-34. [PMID: 15286174 DOI: 10.1242/jcs.01342] [Citation(s) in RCA: 194] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although aminoacyl-tRNA synthetases (ARSs) are housekeeping enzymes essential for protein synthesis, they can play non-catalytic roles in diverse biological processes. Some ARSs are capable of forming complexes with each other and additional proteins. This characteristic is most pronounced in mammals, which produce a macromolecular complex comprising nine different ARSs and three additional factors: p43, p38 and p18. We have been aware of the existence of this complex for a long time, but its structure and function have not been well understood. The only apparent distinction between the complex-forming ARSs and those that do not form complexes is their ability to interact with the three non-enzymatic factors. These factors are required not only for the catalytic activity and stability of the associated ARSs, such as isoleucyl-, methionyl-, and arginyl-tRNA synthetase, but also for diverse signal transduction pathways. They may thus have joined the ARS community to coordinate protein synthesis with other biological processes.
Collapse
Affiliation(s)
- Sang Won Lee
- National Creative Research Initiatives Center for ARS Network, College of Pharmacy, Seoul National University, Seoul 151-742, Korea
| | | | | | | |
Collapse
|
22
|
Halwani R, Cen S, Javanbakht H, Saadatmand J, Kim S, Shiba K, Kleiman L. Cellular distribution of Lysyl-tRNA synthetase and its interaction with Gag during human immunodeficiency virus type 1 assembly. J Virol 2004; 78:7553-64. [PMID: 15220430 PMCID: PMC434110 DOI: 10.1128/jvi.78.14.7553-7564.2004] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Lysyl-tRNA synthetase (LysRS) is packaged into human immunodeficiency virus type 1 (HIV-1) via its interaction with Gag, and this enzyme facilitates the selective packaging of tRNA(3)(Lys), the primer for initiating reverse transcription, into HIV-1. The Gag/LysRS interaction is detected at detergent-resistant membrane but not in membrane-free cell compartments that contain Gag and LysRS. LysRS is found (i). in the nucleus, (ii). in a cytoplasmic high-molecular-weight aminoacyl-tRNA synthetase complex (HMW aaRS complex), (iii). in mitochondria, and (iv). associated with plasma membrane. The cytoplasmic form of LysRS lacking the mitochondrial import signal was previously shown to be efficiently packaged into virions, and in this report we also show that LysRS compartments in nuclei, in the HMW aaRS complex, and at the membrane are also not required as a primary source for viral LysRS. Exogenous mutant LysRS species unable to either enter the nucleus or bind to the cell membrane are still incorporated into virions. Many HMW aaRS components are not packaged into the virion along with LysRS, and the interaction of LysRS with p38, a protein that binds tightly to LysRS in the HMW aaRS complex, is not required for the incorporation of LysRS into virions. These data indicate that newly synthesized LysRS may interact rapidly with Gag before the enzyme has the opportunity to move to the above-mentioned cellular compartments. In confirmation of this idea, we found that newly synthesized LysRS is associated with Gag after a 10-min pulse with [(35)S]cysteine/methionine. This observation is also supported by previous work indicating that the incorporation of LysRS into HIV-1 is very sensitive to the inhibition of new synthesis of LysRS.
Collapse
Affiliation(s)
- Rabih Halwani
- Lady Davis Institute for Medical Research, Jewish General Hospital, Quebec, Canada H3T 1E2
| | | | | | | | | | | | | |
Collapse
|
23
|
Rinehart J, Horn EK, Wei D, Soll D, Schneider A. Non-canonical Eukaryotic Glutaminyl- and Glutamyl-tRNA Synthetases Form Mitochondrial Aminoacyl-tRNA in Trypanosoma brucei. J Biol Chem 2004; 279:1161-6. [PMID: 14563839 DOI: 10.1074/jbc.m310100200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Glutaminyl-tRNA synthetase is thought to be absent from organelles. Instead, Gln-tRNA is formed via the transamidation pathway, the other route to this essential compound in protein biosynthesis. However, it was previously shown that glutaminyl-tRNA synthetase activity is present in Leishmania mitochondria. This work identifies genes encoding glutaminyl- and glutamyl-tRNA synthetase in the closely related organism Trypanosoma brucei. Down-regulation of their respective gene products by RNA interference showed that (i) they are essential for the growth of insect stage T. brucei and (ii) they are responsible for essentially all of the glutaminyl- and glutamyl-tRNA synthetase activity detected in both the cytosol and the mitochondria. In vitro aminoacylation experiments with the recombinant T. brucei enzymes and total tRNA confirmed the identity of the two aminoacyl-tRNA synthetases. Interestingly, T. brucei uses the same eukaryotic-type glutaminyl-tRNA synthetase to form mitochondrial and cytosolic Gln-tRNA. The formation of Glu-tRNA in mitochondria and the cytoplasm is catalyzed by a single eukaryotic-type discriminating glutamyl-tRNA synthetase. T. brucei, similar to Leishmania, imports all of its mitochondrial tRNAs from the cytosol. The use of these two eukaryotic-type enzymes in mitochondria may therefore reflect an adaptation to the situation in which the cytosol and mitochondria use the same set of tRNAs.
Collapse
Affiliation(s)
- Jesse Rinehart
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520-8114, USA
| | | | | | | | | |
Collapse
|
24
|
Ahn HC, Kim S, Lee BJ. Solution structure and p43 binding of the p38 leucine zipper motif: coiled-coil interactions mediate the association between p38 and p43. FEBS Lett 2003; 542:119-24. [PMID: 12729910 DOI: 10.1016/s0014-5793(03)00362-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
p38, which has been suggested to be a scaffold protein for the assembly of a macromolecular tRNA synthetase complex, contains a leucine zipper-like motif. To understand the importance of the leucine zipper-like motif of p38 (p38LZ) in macromolecular assembly, the p38LZ solution structure was investigated by circular dichroism and nuclear magnetic resonance spectroscopy. The solution structure of p38LZ showed an amphipathic alpha-helical structure and characteristics similar to a coiled-coil motif. The protein-protein interaction mediated by p38LZ was examined by an in vitro binding assay. The p43 protein, another non-synthetase component of the complex, could bind to p38LZ via its N-terminal domain, which is also predicted to have a potential coiled-coil motif. Thus, we propose that the p38-p43 complex would be formed by coiled-coil interactions, and the formation of the binary complex would facilitate the macromolecular assembly of aminoacyl-tRNA synthetases.
Collapse
Affiliation(s)
- Hee Chul Ahn
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-74, South Korea
| | | | | |
Collapse
|
25
|
Han JM, Kim JY, Kim S. Molecular network and functional implications of macromolecular tRNA synthetase complex. Biochem Biophys Res Commun 2003; 303:985-993. [PMID: 12684031 DOI: 10.1016/s0006-291x(03)00485-6] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Understanding the complex network and multi-functionality of proteins is one of the main objectives of post-genome research. Aminoacyl-tRNA synthetases (ARSs) are the family of enzymes that are essential for cellular protein synthesis and viability that catalyze the attachment of specific amino acids to their cognate tRNAs. However, a lot of evidence has shown that these enzymes are multi-functional proteins that are involved in diverse cellular processes, such as tRNA processing, RNA splicing and trafficking, rRNA synthesis, apoptosis, angiogenesis, and inflammation. In addition, mammalian ARSs form a macromolecular complex with three auxiliary factors or with the elongation factor complex. Although the functional meaning and physiological significance of these complexes are poorly understood, recent data on the molecular interactions among the components for the multi-ARS complex are beginning to provide insights into the structural organization and cellular functions. In this review, the molecular mechanism for the assembly and functional implications of the multi-ARS complex will be discussed.
Collapse
Affiliation(s)
- Jung Min Han
- Imagene Co. Biotechnology Incubating Center, Golden Helix, Seoul National University, San 56-1, Shillim-dong, Kwanak-Gu, Republic of Korea
| | | | | |
Collapse
|
26
|
Park SG, Kang YS, Ahn YH, Lee SH, Kim KR, Kim KW, Koh GY, Ko YG, Kim S. Dose-dependent biphasic activity of tRNA synthetase-associating factor, p43, in angiogenesis. J Biol Chem 2002; 277:45243-8. [PMID: 12237313 DOI: 10.1074/jbc.m207934200] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mammalian aminoacyl tRNA synthetases form a macromolecular protein complex with three non-enzymatic cofactors. Among these factors, p43 is also secreted to work as a cytokine on endothelial as well as immune cells. Here we investigated the activity of p43 in angiogenesis and determined the related mediators. It promoted the migration of endothelial cells at low dose but induced their apoptosis at high dose. p43 at low concentration activated extracellular signal-regulating kinase, which resulted in the induction and activation of matrix metalloproteinase 9. In contrast, p43 at high concentration activated Jun N-terminal kinase, which mediated apoptosis of endothelial cells. These results suggest that p43 is a novel cytokine playing a dose-dependent biphasic role in angiogenesis.
Collapse
Affiliation(s)
- Sang Gyu Park
- National Creative Research Initiatives Center for ARS Network, College of Pharmacy, Seoul National University, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Kim JY, Kang YS, Lee JW, Kim HJ, Ahn YH, Park H, Ko YG, Kim S. p38 is essential for the assembly and stability of macromolecular tRNA synthetase complex: implications for its physiological significance. Proc Natl Acad Sci U S A 2002; 99:7912-7916. [PMID: 12060739 PMCID: PMC122994 DOI: 10.1073/pnas.122110199] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2002] [Indexed: 11/18/2022] Open
Abstract
Mammalian tRNA synthetases form a macromolecular complex with three nonenzyme factors: p43, p38, and p18. Here we introduced a mutation within the mouse p38 gene to understand its functional significance for the formation of the multi-tRNA synthetase complex. The complex was completely disintegrated by the deficiency of p38. In addition, the protein levels and catalytic activities of the component enzymes and cofactors were severely decreased. A partial truncation of the p38 polypeptide separated the associated components into different subdomains. The mutant mice showed lethality within 2 days of birth. Thus, this work provides the first evidence, to our knowledge, that p38 is essential for the structural integrity of the multi-tRNA synthetase complex and mouse viability.
Collapse
Affiliation(s)
- Jin Young Kim
- National Creative Research Initiatives Center for ARS Network, College of Pharmacy, Seoul National University, San 56-1, Shillim-dong, Kwanak-gu, Seoul 151-746, Korea
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Galani K, Großhans H, Deinert K, Hurt EC, Simos G. The intracellular location of two aminoacyl-tRNA synthetases depends on complex formation with Arc1p. EMBO J 2001; 20:6889-98. [PMID: 11726524 PMCID: PMC125769 DOI: 10.1093/emboj/20.23.6889] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In yeast, two aminoacyl-tRNA synthetases, MetRS and GluRS, are associated with Arc1p. We have studied the mechanism of this complex formation and found that the non-catalytic N-terminally appended domains of MetRS and GluRS are necessary and sufficient for binding to Arc1p. Similarly, it is the N-terminal domain of Arc1p that contains distinct but overlapping binding sites for MetRS and GluRS. Localization of Arc1p, MetRS and GluRS in living cells using green fluorescent protein showed that these three proteins are cytoplasmic and largely excluded from the nucleus. However, when their assembly into a complex is inhibited, significant amounts of MetRS, GluRS and Arc1p can enter the nucleus. We suggest that the organization of aminoacyl-tRNA synthetases into a multimeric complex not only affects catalysis, but is also a means of segregating the tRNA- aminoacylation machinery mainly to the cytoplasmic compartment.
Collapse
Affiliation(s)
| | - Helge Großhans
- Biochemie-Zentrum Heidelberg (BZH), Im Neuenheimer Feld 328, D-69120 Heidelberg, Germany
Present address: MCDB Department, KBT 940 Yale University, PO Box 208103, 266 Whitney Avenue, New Haven, CT 06520, USA Present address: Laboratory of Biochemistry, School of Medicine, University of Thessaly, 22 Papakiriazi str., 41222 Larissa, Greece Corresponding author e-mail:
| | | | | | - George Simos
- Biochemie-Zentrum Heidelberg (BZH), Im Neuenheimer Feld 328, D-69120 Heidelberg, Germany
Present address: MCDB Department, KBT 940 Yale University, PO Box 208103, 266 Whitney Avenue, New Haven, CT 06520, USA Present address: Laboratory of Biochemistry, School of Medicine, University of Thessaly, 22 Papakiriazi str., 41222 Larissa, Greece Corresponding author e-mail:
| |
Collapse
|
29
|
Deinert K, Fasiolo F, Hurt EC, Simos G. Arc1p organizes the yeast aminoacyl-tRNA synthetase complex and stabilizes its interaction with the cognate tRNAs. J Biol Chem 2001; 276:6000-8. [PMID: 11069915 DOI: 10.1074/jbc.m008682200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Eukaryotic aminoacyl-tRNA synthetases, in contrast to their prokaryotic counterparts, are often part of high molecular weight complexes. In yeast, two enzymes, the methionyl- and glutamyl-tRNA synthetases associate in vivo with the tRNA-binding protein Arc1p. To study the assembly and function of this complex, we have reconstituted it in vitro from individually purified recombinant proteins. Our results show that Arc1p can readily bind to either or both of the two enzymes, mediating the formation of the respective binary or ternary complexes. Under competition conditions, Arc1p alone exhibits broad specificity and interacts with a defined set of tRNA species. Nevertheless, the in vitro reconstituted Arc1p-containing enzyme complexes can bind only to their cognate tRNAs and tighter than the corresponding monomeric enzymes. These results demonstrate that the organization of aminoacyl-tRNA synthetases with general tRNA-binding proteins into multimeric complexes can stimulate their catalytic efficiency and, therefore, offer a significant advantage to the eukaryotic cell.
Collapse
Affiliation(s)
- K Deinert
- Biochemie-Zentrum Heidelberg (BZH), University of Heidelberg, Im Neuenheimer Feld 328, D-69120 Heidelberg, Germany
| | | | | | | |
Collapse
|
30
|
Ko YG, Kim EY, Kim T, Park H, Park HS, Choi EJ, Kim S. Glutamine-dependent antiapoptotic interaction of human glutaminyl-tRNA synthetase with apoptosis signal-regulating kinase 1. J Biol Chem 2001; 276:6030-6. [PMID: 11096076 DOI: 10.1074/jbc.m006189200] [Citation(s) in RCA: 154] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Glutamine has been known to be an apoptosis suppressor, since it blocks apoptosis induced by heat shock, irradiation, and c-Myc overexpression. Here, we demonstrated that HeLa cells were susceptible to Fas-mediated apoptosis under the condition of glutamine deprivation. Fas ligation activated apoptosis signal-regulating kinase 1 (ASK1) and c-Jun N-terminal kinase (JNK; also known as stress-activated protein kinase (SAPK)) in Gln-deprived cells but not in normal cells, suggesting that Gln might be involved in the activity control of ASK1 and JNK/SAPK. As one of the possible mechanisms for the suppressive effect of Gln on ASK1, we investigated the molecular interaction between human glutaminyl-tRNA synthetase (QRS) and ASK1 and found the Gln-dependent association of the two molecules. While their association was enhanced by the elevation of Gln concentration, they were dissociated by Fas ligation within 5 min. The association involved the catalytic domains of the two enzymes. The ASK1 activity was inhibited by the interaction with QRS as determined by in vitro kinase and transcription assays. Finally, we have shown that QRS inhibited the cell death induced by ASK1, and this antiapoptotic function of QRS was weakened by the deprivation of Gln. Thus, the antiapoptotic interaction of QRS with ASK1 is controlled positively by the cellular concentration of Gln and negatively by Fas ligation. The results of this work provide one possible explanation for the working mechanism of the antiapoptotic activity of Gln and suggest a novel function of mammalian ARSs.
Collapse
Affiliation(s)
- Y G Ko
- National Creative Research Initiatives Center for ARS Network, Sung Kyun Kwan University, Suwon, Kyunggido 440-746, Korea
| | | | | | | | | | | | | |
Collapse
|
31
|
Robinson JC, Kerjan P, Mirande M. Macromolecular assemblage of aminoacyl-tRNA synthetases: quantitative analysis of protein-protein interactions and mechanism of complex assembly. J Mol Biol 2000; 304:983-94. [PMID: 11124041 DOI: 10.1006/jmbi.2000.4242] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The structure of the mammalian multi-synthetase complex was investigated in vitro using qualitative and quantitative approaches. This macromolecular assemblage comprises the bifunctional glutamyl-prolyl-tRNA synthetase, the seven monospecific isoleucyl, leucyl, methionyl, glutaminyl, lysyl, arginyl and aspartyl-tRNA synthetases, and the three auxiliary p43, p38 and p18 proteins. The scaffold p38 protein was expressed in Escherichia coli and purified to homogeneity as a His-tagged protein. The different components of the complex were shown to associate in vitro with p38 immobilized on Ni(2+)-coated plates. Interactions between peripheral enzymes and p38 are referred to as central interactions, as opposed to lateral interactions between peripheral enzymes. Kinetic parameters of the interactions were determined by the means of a biosensor-based approach. The two dimeric proteins LysRS and AspRS were found to tightly bind to p38, with a K(d) value of 0.3 and 4.7 nM, respectively. These interactions involved the catalytic core of the enzymes. By contrast, binding of ArgRS or GlnRS to p38 was much weaker (>5 microM). ArgRS and p43, two peripheral components, were shown to interact with moderate affinity (K(d)=93 nM). Since all the components of the complex are tightly associated within this particle, lateral interactions were believed to contribute to the stabilization of this assemblage. Using an in vitro binding assay, concomitant association of several components of the complex on immobilized p38 could be demonstrated, and revealed the involvement of synergistic effects for association of weakly interacting proteins. Taking into account the possible synergy between central and lateral contributions, a sub-complex containing p38, p43, ArgRS and GlnRS was reconstituted in vitro. These data provide compelling evidence for an ordered and concerted mechanism of complex assembly.
Collapse
Affiliation(s)
- J C Robinson
- Laboratoire d'Enzymologie et Biochimie Structurales, UPR 9063 du Centre National de la Recherche Scientifique, 1 Avenue de la Terrasse, Gif-sur-Yvette, 91190, France
| | | | | |
Collapse
|