1
|
Butt AT, Banyard CD, Haldipurkar SS, Agnoli K, Mohsin M, Vitovski S, Paleja A, Tang Y, Lomax R, Ye F, Green J, Thomas M. OUP accepted manuscript. Nucleic Acids Res 2022; 50:3709-3726. [PMID: 35234897 PMCID: PMC9023288 DOI: 10.1093/nar/gkac137] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 01/28/2022] [Accepted: 02/14/2022] [Indexed: 11/14/2022] Open
Abstract
Burkholderia cenocepacia is an opportunistic pathogen that causes severe infections of the cystic fibrosis (CF) lung. To acquire iron, B. cenocepacia secretes the Fe(III)-binding compound, ornibactin. Genes for synthesis and utilisation of ornibactin are served by the iron starvation (IS) extracytoplasmic function (ECF) σ factor, OrbS. Transcription of orbS is regulated in response to the prevailing iron concentration by the ferric uptake regulator (Fur), such that orbS expression is repressed under iron-sufficient conditions. Here we show that, in addition to Fur-mediated regulation of orbS, the OrbS protein itself responds to intracellular iron availability. Substitution of cysteine residues in the C-terminal region of OrbS diminished the ability to respond to Fe(II) in vivo. Accordingly, whilst Fe(II) impaired transcription from and recognition of OrbS-dependent promoters in vitro by inhibiting the binding of OrbS to core RNA polymerase (RNAP), the cysteine-substituted OrbS variant was less responsive to Fe(II). Thus, the cysteine residues within the C-terminal region of OrbS contribute to an iron-sensing motif that serves as an on-board ‘anti-σ factor’ in the presence of Fe(II). A model to account for the presence two regulators (Fur and OrbS) that respond to the same intracellular Fe(II) signal to control ornibactin synthesis and utilisation is discussed.
Collapse
Affiliation(s)
- Aaron T Butt
- Department of Infection, Immunity and Cardiovascular Disease, Faculty of Medicine, Dentistry and Health, University of Sheffield, Sheffield S10 2RX, UK
| | - Christopher D Banyard
- Department of Infection, Immunity and Cardiovascular Disease, Faculty of Medicine, Dentistry and Health, University of Sheffield, Sheffield S10 2RX, UK
| | - Sayali S Haldipurkar
- Department of Infection, Immunity and Cardiovascular Disease, Faculty of Medicine, Dentistry and Health, University of Sheffield, Sheffield S10 2RX, UK
| | - Kirsty Agnoli
- Department of Infection, Immunity and Cardiovascular Disease, Faculty of Medicine, Dentistry and Health, University of Sheffield, Sheffield S10 2RX, UK
| | - Muslim I Mohsin
- Department of Infection, Immunity and Cardiovascular Disease, Faculty of Medicine, Dentistry and Health, University of Sheffield, Sheffield S10 2RX, UK
| | - Srdjan Vitovski
- Department of Infection, Immunity and Cardiovascular Disease, Faculty of Medicine, Dentistry and Health, University of Sheffield, Sheffield S10 2RX, UK
| | - Ameya Paleja
- Department of Infection, Immunity and Cardiovascular Disease, Faculty of Medicine, Dentistry and Health, University of Sheffield, Sheffield S10 2RX, UK
| | - Yingzhi Tang
- Department of Infection, Immunity and Cardiovascular Disease, Faculty of Medicine, Dentistry and Health, University of Sheffield, Sheffield S10 2RX, UK
| | - Rebecca Lomax
- Department of Infection, Immunity and Cardiovascular Disease, Faculty of Medicine, Dentistry and Health, University of Sheffield, Sheffield S10 2RX, UK
| | - Fuzhou Ye
- Section of Structural Biology, Department of Infectious Disease, Imperial College London, Sir Alexander Fleming Building, South Kensington, London SW7 2AZ, UK
| | - Jeffrey Green
- Correspondence may also be addressed to Jeffrey Green. Tel: +44 114 222 4403; Fax: +44 114 222 2800;
| | - Mark S Thomas
- To whom correspondence should be addressed. Tel: +44 114 215 9557; Fax: +44 114 271 1863;
| |
Collapse
|
2
|
Krishna A, Liu B, Peacock SJ, Wigneshweraraj S. The prevalence and implications of single nucleotide polymorphisms in genes encoding the RNA polymerase of clinical isolates of Staphylococcus aureus. Microbiologyopen 2020; 9:e1058. [PMID: 32419302 PMCID: PMC7349150 DOI: 10.1002/mbo3.1058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 04/23/2020] [Accepted: 04/25/2020] [Indexed: 01/22/2023] Open
Abstract
Central to the regulation of bacterial gene expression is the multisubunit enzyme RNA polymerase (RNAP), which is responsible for catalyzing transcription. As all adaptive processes are underpinned by changes in gene expression, the RNAP can be considered the major mediator of any adaptive response in the bacterial cell. In bacterial pathogens, theoretically, single nucleotide polymorphisms (SNPs) in genes that encode subunits of the RNAP and associated factors could mediate adaptation and confer a selective advantage to cope with biotic and abiotic stresses. We investigated this possibility by undertaking a systematic survey of SNPs in genes encoding the RNAP and associated factors in a collection of 1,429 methicillin-resistant Staphylococcus aureus (MRSA) clinical isolates. We present evidence for the existence of several, hitherto unreported, nonsynonymous SNPs in genes encoding the RNAP and associated factors of MRSA ST22 clinical isolates and propose that the acquisition of amino acid substitutions in the RNAP could represent an adaptive strategy that contributes to the pathogenic success of MRSA.
Collapse
Affiliation(s)
- Aishwarya Krishna
- MRC Centre for Molecular Bacteriology and InfectionImperial College LondonLondonUK
| | - Bing Liu
- MRC Centre for Molecular Bacteriology and InfectionImperial College LondonLondonUK
| | - Sharon J. Peacock
- Department of MedicineAddenbrooke's HospitalUniversity of CambridgeCambridgeUK
- Cambridge University Hospitals NHS Foundation TrustCambridgeUK
- Wellcome Trust Sanger InstituteCambridgeUK
- London School of Hygiene and Tropical MedicineLondonUK
| | | |
Collapse
|
3
|
Petushkov I, Pupov D, Bass I, Kulbachinskiy A. Mutations in the CRE pocket of bacterial RNA polymerase affect multiple steps of transcription. Nucleic Acids Res 2015; 43:5798-809. [PMID: 25990734 PMCID: PMC4499132 DOI: 10.1093/nar/gkv504] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Accepted: 05/04/2015] [Indexed: 11/13/2022] Open
Abstract
During transcription, the catalytic core of RNA polymerase (RNAP) must interact with the DNA template with low-sequence specificity to ensure efficient enzyme translocation and RNA extension. Unexpectedly, recent structural studies of bacterial promoter complexes revealed specific interactions between the nontemplate DNA strand at the downstream edge of the transcription bubble (CRE, core recognition element) and a protein pocket formed by core RNAP (CRE pocket). We investigated the roles of these interactions in transcription by analyzing point amino acid substitutions and deletions in Escherichia coli RNAP. The mutations affected multiple steps of transcription, including promoter recognition, RNA elongation and termination. In particular, we showed that interactions of the CRE pocket with a nontemplate guanine immediately downstream of the active center stimulate RNA-hairpin-dependent transcription pausing but not other types of pausing. Thus, conformational changes of the elongation complex induced by nascent RNA can modulate CRE effects on transcription. The results highlight the roles of specific core RNAP–DNA interactions at different steps of RNA synthesis and suggest their importance for transcription regulation in various organisms.
Collapse
Affiliation(s)
- Ivan Petushkov
- Institute of Molecular Genetics, Russian Academy of Sciences, Kurchatov sq. 2, Moscow 123182, Russia Molecular Biology Department, Biological Faculty, Lomonosov Moscow State University, GSP-1, Leninskie Gory, Moscow 119991, Russia
| | - Danil Pupov
- Institute of Molecular Genetics, Russian Academy of Sciences, Kurchatov sq. 2, Moscow 123182, Russia
| | - Irina Bass
- Institute of Molecular Genetics, Russian Academy of Sciences, Kurchatov sq. 2, Moscow 123182, Russia
| | - Andrey Kulbachinskiy
- Institute of Molecular Genetics, Russian Academy of Sciences, Kurchatov sq. 2, Moscow 123182, Russia Molecular Biology Department, Biological Faculty, Lomonosov Moscow State University, GSP-1, Leninskie Gory, Moscow 119991, Russia
| |
Collapse
|
4
|
Brodolin K. Antibiotics trapping transcription initiation intermediates: To melt or to bend, what's first? Transcription 2014; 2:60-65. [PMID: 21468230 DOI: 10.4161/trns.2.2.14366] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Revised: 12/02/2010] [Accepted: 12/02/2010] [Indexed: 11/19/2022] Open
Abstract
Promoter DNA melting, culminating in the loading of the single-stranded DNA template into the RNA polymerase active site, is a key step in transcription initiation. Recently, the first transcription inhibitors found to block distinct steps of promoter melting were characterized. Here, the impact of these studies is discussed with respect to the current models of transcription initiation.
Collapse
Affiliation(s)
- Konstantin Brodolin
- Université Montpellier 1; Université Montpellier 2; CNRS UMR 5236; Centre d'études d'agents Pathogènes et Biotechnologies pour la Santé; Montpellier, France
| |
Collapse
|
5
|
Gulten G, Sacchettini JC. Structure of the Mtb CarD/RNAP β-lobes complex reveals the molecular basis of interaction and presents a distinct DNA-binding domain for Mtb CarD. Structure 2013; 21:1859-69. [PMID: 24055315 DOI: 10.1016/j.str.2013.08.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 07/05/2013] [Accepted: 08/05/2013] [Indexed: 11/16/2022]
Abstract
CarD from Mycobacterium tuberculosis (Mtb) is an essential protein shown to be involved in stringent response through downregulation of rRNA and ribosomal protein genes. CarD interacts with the β-subunit of RNAP and this interaction is vital for Mtb's survival during the persistent infection state. We have determined the crystal structure of CarD in complex with the RNAP β-subunit β1 and β2 domains at 2.1 Å resolution. The structure reveals the molecular basis of CarD/RNAP interaction, providing a basis to further our understanding of RNAP regulation by CarD. The structural fold of the CarD N-terminal domain is conserved in RNAP interacting proteins such as TRCF-RID and CdnL, and displays similar interactions to the predicted homology model based on the TRCF/RNAP β1 structure. Interestingly, the structure of the C-terminal domain, which is required for complete CarD function in vivo, represents a distinct DNA-binding fold.
Collapse
Affiliation(s)
- Gulcin Gulten
- Department of Chemistry, Texas A&M University, College Station, TX 77843, USA
| | | |
Collapse
|
6
|
Hu Y, Morichaud Z, Chen S, Leonetti JP, Brodolin K. Mycobacterium tuberculosis RbpA protein is a new type of transcriptional activator that stabilizes the σ A-containing RNA polymerase holoenzyme. Nucleic Acids Res 2012; 40:6547-57. [PMID: 22570422 PMCID: PMC3413145 DOI: 10.1093/nar/gks346] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
RbpA is an RNA polymerase (RNAP)-binding protein whose presence increases the tolerance levels of Mycobacteria to the first-line anti-tuberculosis drug rifampicin by an unknown mechanism. Here, we show that the role of Mycobacterium tuberculosis RbpA in resistance is indirect because it does not affect the sensitivity of RNAP to rifampicin while it stimulates transcription controlled by the housekeeping σA-factor. The transcription regulated by the stress-related σF was not affected by RbpA. The binding site of RbpA maps to the RNAP β subunit Sandwich-Barrel Hybrid Motif, which has not previously been described as an activator target and does not overlap the rifampicin binding site. Our data suggest that RbpA modifies the structure of the core RNAP, increases its affinity for σA and facilitates the assembly of the transcriptionally competent promoter complexes. We propose that RbpA is an essential partner which advantages σA competitiveness for core RNAP binding with respect to the alternative σ factors. The RbpA-driven stimulation of the housekeeping gene expression may help Mycobacteria to tolerate high rifampicin levels and to adapt to the stress conditions during infection.
Collapse
Affiliation(s)
- Yangbo Hu
- CNRS UMR 5236 - UM1 - UM2, Centre d'études d'agents Pathogénes et Biothechnologies pour la Santé (CPBS), 1919 route de Mende, 34293 Montpellier, France
| | | | | | | | | |
Collapse
|
7
|
Abstract
To obtain insight into the in vivo dynamics of RNA polymerase (RNAP) on the Bacillus subtilis genome, we analyzed the distribution of the σ(A) and β' subunits of RNAP and the NusA elongation factor on the genome in exponentially growing cells using chromatin affinity precipitation coupled with gene chip mapping (ChAP-chip). In contrast to Escherichia coli RNAP, which often accumulates at the promoter-proximal region, B. subtilis RΝΑP is evenly distributed from the promoter to the coding sequences. This finding suggests that, in general, B. subtilis RNAP recruited to the promoter promptly translocates away from the promoter to form the elongation complex and proceeds without intragenic transcription attenuation. We detected RNAP accumulation in the promoter-proximal regions of some genes, most of which can be identified as transcription attenuation systems in the leader region. Our findings suggest that the differences in RNAP behavior between E. coli and B. subtilis during initiation and elongation steps might result in distinct strategies for postinitiation control of transcription. The E. coli mechanism involves trapping at the promoter and promoter-proximal pausing of RNAP in addition to transcription attenuation, whereas transcription attenuation in leader sequences is mainly employed in B. subtilis.
Collapse
|
8
|
Pupov D, Miropolskaya N, Sevostyanova A, Bass I, Artsimovitch I, Kulbachinskiy A. Multiple roles of the RNA polymerase {beta}' SW2 region in transcription initiation, promoter escape, and RNA elongation. Nucleic Acids Res 2010; 38:5784-96. [PMID: 20457751 PMCID: PMC2943606 DOI: 10.1093/nar/gkq355] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Interactions of RNA polymerase (RNAP) with nucleic acids must be tightly controlled to ensure precise and processive RNA synthesis. The RNAP β'-subunit Switch-2 (SW2) region is part of a protein network that connects the clamp domain with the RNAP body and mediates opening and closing of the active center cleft. SW2 interacts with the template DNA near the RNAP active center and is a target for antibiotics that block DNA melting during initiation. Here, we show that substitutions of a conserved Arg339 residue in the Escherichia coli RNAP SW2 confer diverse effects on transcription that include defects in DNA melting in promoter complexes, decreased stability of RNAP/promoter complexes, increased apparent K(M) for initiating nucleotide substrates (2- to 13-fold for different substitutions), decreased efficiency of promoter escape, and decreased stability of elongation complexes. We propose that interactions of Arg339 with DNA directly stabilize transcription complexes to promote stable closure of the clamp domain around nucleic acids. During initiation, SW2 may cooperate with the σ(3.2) region to stabilize the template DNA strand in the RNAP active site. Together, our data suggest that SW2 may serve as a key regulatory element that affects transcription initiation and RNAP processivity through controlling RNAP/DNA template interactions.
Collapse
Affiliation(s)
- Danil Pupov
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow 123182, Molecular Biology Department, Biological Faculty, Moscow State University, Moscow 119991, Russia
| | | | | | | | | | | |
Collapse
|
9
|
T7 phage protein Gp2 inhibits the Escherichia coli RNA polymerase by antagonizing stable DNA strand separation near the transcription start site. Proc Natl Acad Sci U S A 2010; 107:2247-52. [PMID: 20133868 DOI: 10.1073/pnas.0907908107] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Infection of Escherichia coli by the T7 phage leads to rapid and selective inhibition of the host RNA polymerase (RNAP)--a multi-subunit enzyme responsible for gene transcription--by a small ( approximately 7 kDa) phage-encoded protein called Gp2. Gp2 is also a potent inhibitor of E. coli RNAP in vitro. Here we describe the first atomic resolution structure of Gp2, which reveals a distinct run of surface-exposed negatively charged amino acid residues on one side of the molecule. Our comprehensive mutagenesis data reveal that two conserved arginine residues located on the opposite side of Gp2 are important for binding to and inhibition of RNAP. Based on a structural model of the Gp2-RNAP complex, we propose that inhibition of transcription by Gp2 involves prevention of RNAP-promoter DNA interactions required for stable DNA strand separation and maintenance of the "transcription bubble" near the transcription start site, an obligatory step in the formation of a transcriptionally competent promoter complex.
Collapse
|
10
|
Andrecka J, Treutlein B, Arcusa MAI, Muschielok A, Lewis R, Cheung ACM, Cramer P, Michaelis J. Nano positioning system reveals the course of upstream and nontemplate DNA within the RNA polymerase II elongation complex. Nucleic Acids Res 2009; 37:5803-9. [PMID: 19620213 PMCID: PMC2761271 DOI: 10.1093/nar/gkp601] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Crystallographic studies of the RNA polymerase II (Pol II) elongation complex (EC) revealed the locations of downstream DNA and the DNA-RNA hybrid, but not the course of the nontemplate DNA strand in the transcription bubble and the upstream DNA duplex. Here we used single-molecule Fluorescence Resonance Energy Transfer (smFRET) experiments to locate nontemplate and upstream DNA with our recently developed Nano Positioning System (NPS). In the resulting complete model of the Pol II EC, separation of the nontemplate from the template strand at position +2 involves interaction with fork loop 2. The nontemplate strand passes loop β10-β11 on the Pol II lobe, and then turns to the other side of the cleft above the rudder. The upstream DNA duplex exits at an approximately right angle from the incoming downstream DNA, and emanates from the cleft between the protrusion and clamp. Comparison with published data suggests that the architecture of the complete EC is conserved from bacteria to eukaryotes and that upstream DNA is relocated during the initiation–elongation transition.
Collapse
Affiliation(s)
- Joanna Andrecka
- Department of Chemistry and Biochemistry and Center for Integrated Protein Science München, Ludwig-Maximilians-Universität München, Butenandtstr.11, 81377 München, Germany
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Rogozina A, Zaychikov E, Buckle M, Heumann H, Sclavi B. DNA melting by RNA polymerase at the T7A1 promoter precedes the rate-limiting step at 37 degrees C and results in the accumulation of an off-pathway intermediate. Nucleic Acids Res 2009; 37:5390-404. [PMID: 19578065 PMCID: PMC2760793 DOI: 10.1093/nar/gkp560] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The formation of a transcriptionally active complex by RNA polymerase involves a series of short-lived structural intermediates where protein conformational changes are coupled to DNA wrapping and melting. We have used time-resolved KMnO4 and hydroxyl-radical X-ray footprinting to directly probe conformational signatures of these complexes at the T7A1 promoter. Here we demonstrate that DNA melting from m12 to m4 precedes the rate-limiting step in the pathway and takes place prior to the formation of full downstream contacts. In addition, on the wild-type promoter, we can detect the accumulation of a stable off-pathway intermediate that results from the absence of sequence-specific contacts with the melted non-consensus –10 region. Finally, the comparison of the results obtained at 37°C with those at 20°C reveals significant differences in the structure of the intermediates resulting in a different pathway for the formation of a transcriptionally active complex.
Collapse
Affiliation(s)
- Anastasia Rogozina
- Max Planck Institute of Biochemistry, D82152 Martinsried bei Munchen, Germany
| | | | | | | | | |
Collapse
|
12
|
Sclavi B. Opening the DNA at the Promoter; The Energetic Challenge. RNA POLYMERASES AS MOLECULAR MOTORS 2009. [DOI: 10.1039/9781847559982-00038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Bianca Sclavi
- LBPA UMR 8113 du CNRS ENS Cachan 61 Avenue du Président Wilson 94235 Cachan France
| |
Collapse
|
13
|
Tupin A, Gualtieri M, Brodolin K, Leonetti JP. Myxopyronin: a punch in the jaws of bacterial RNA polymerase. Future Microbiol 2009; 4:145-9. [DOI: 10.2217/17460913.4.2.145] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Evaluation of: Belogurov GA, Vassylyeva MN, Sevostyanova A et al.: Transcription inactivation through local refolding of the RNA polymerase structure. Nature 457, 332–335 (2008) and, Mukhopadhyay J, Das K, Ismail S et al.: The RNA polymerase ‘switch region’ is a target for inhibitors. Cell 135, 295–307 (2008). Bacterial RNA polymerase is an essential enzyme, which is responsible for synthesizing RNA from a DNA template and is targeted by a number of antibiotics. The mechanism of action of two closely related transcription inhibitors, myxopyronin B and a synthetic analog desmethyl-myxopyronin was elucidated, together with the structures of the antibiotic–RNA polymerase complexes. The studies reveal a new binding site and a new mechanism of action affecting the jaw domain of the enzyme. As the need for new antibiotics increase, these studies open new ways to the synthesis of more potent myxopyronin analogs.
Collapse
Affiliation(s)
- Audrey Tupin
- Université Montpellier 1, Centre d’études d’agents Pathogènes & Biotechnologies pour la Santé (CPBS), Université Montpellier 2, F-34095 Montpellier, France and, Université Montpellier 1, Centre d’études d’agents Pathogènes & Biotechnologies pour la Santé (CPBS), CNRS, UMR 5236, 4 Bd Henri IV, CS 69033, F-34965 Montpellier, France
| | - Maxime Gualtieri
- Université Montpellier 1, Centre d’études d’agents Pathogènes & Biotechnologies pour la Santé (CPBS), Université Montpellier 2, F-34095 Montpellier, France and, Université Montpellier 1, Centre d’études d’agents Pathogènes & Biotechnologies pour la Santé (CPBS), CNRS, UMR 5236, 4 Bd Henri IV, CS 69033, F-34965 Montpellier, France
| | - Konstantin Brodolin
- Université Montpellier 1, Centre d’études d’agents Pathogènes & Biotechnologies pour la Santé (CPBS), Université Montpellier 2, F-34095 Montpellier, France and, Université Montpellier 1, Centre d’études d’agents Pathogènes & Biotechnologies pour la Santé (CPBS), CNRS, UMR 5236, 4 Bd Henri IV, CS 69033, F-34965 Montpellier, France
| | - Jean-Paul Leonetti
- Université Montpellier 1, Centre d’études d’agents Pathogènes & Biotechnologies pour la Santé (CPBS), Université Montpellier 2, F-34095 Montpellier, France and, Université Montpellier 1, Centre d’études d’agents Pathogènes & Biotechnologies pour la Santé (CPBS), CNRS, UMR 5236, 4 Bd Henri IV, CS 69033, F-34965 Montpellier, France
| |
Collapse
|
14
|
Trinh V, Langelier MF, Archambault J, Coulombe B. Structural perspective on mutations affecting the function of multisubunit RNA polymerases. Microbiol Mol Biol Rev 2006; 70:12-36. [PMID: 16524917 PMCID: PMC1393249 DOI: 10.1128/mmbr.70.1.12-36.2006] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
High-resolution crystallographic structures of multisubunit RNA polymerases (RNAPs) have increased our understanding of transcriptional mechanisms. Based on a thorough review of the literature, we have compiled the mutations affecting the function of multisubunit RNA polymerases, many of which having been generated and studied prior to the publication of the first high-resolution structure, and highlighted the positions of the altered amino acids in the structures of both the prokaryotic and eukaryotic enzymes. The observations support many previous hypotheses on the transcriptional process, including the implication of the bridge helix and the trigger loop in the processivity of RNAP, the importance of contacts between the RNAP jaw-lobe module and the downstream DNA in the establishment of a transcription bubble and selection of the transcription start site, the destabilizing effects of ppGpp on the open promoter complex, and the link between RNAP processivity and termination. This study also revealed novel, remarkable features of the RNA polymerase catalytic mechanisms that will require additional investigation, including the putative roles of fork loop 2 in the establishment of a transcription bubble, the trigger loop in start site selection, and the uncharacterized funnel domain in RNAP processivity.
Collapse
Affiliation(s)
- Vincent Trinh
- Gene Transcription Laboratory, Institut de Recherches Cliniques de Montréal, 110 Ave. des Pins Ouest, Montréal, Québec, Canada
| | | | | | | |
Collapse
|
15
|
Brodolin K, Zenkin N, Severinov K. Remodeling of the sigma70 subunit non-template DNA strand contacts during the final step of transcription initiation. J Mol Biol 2005; 350:930-7. [PMID: 15978618 DOI: 10.1016/j.jmb.2005.05.048] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2005] [Revised: 05/18/2005] [Accepted: 05/19/2005] [Indexed: 10/25/2022]
Abstract
Transcription initiation in bacteria requires melting of approximately 13 bp of promoter DNA. The mechanism of the melting process is not fully understood. Escherichia coli RNA polymerase bearing a deletion of the beta subunit lobe I (amino acid residues 186-433) initiates melting of the -10 promoter element but cannot propagate the melting downstream, towards the transcription initiation start site (+1). However, in the presence of nucleotides, stable downstream melting is induced. Here, we studied lacUV5 promoter complexes formed by the mutant enzyme by cross-linking RNA polymerase subunits to single-stranded DNA in the transcription bubble. In the absence of NTPs, a contact between the sigma70 subunit and the non-template strand of the -10 promoter element was detected. This contact disappeared in the presence of NTPs. Instead, a new sigma70-DNA contact as well as stable beta' and beta subunit contacts with the non-template DNA downstream of the -10 promoter element were established. In terms of the two-step (upstream initiation/downstream propagation) model of promoter melting, our data suggest that beta lobe I induces the propagation of promoter melting by directing downstream promoter DNA duplex towards the downstream DNA-binding channel (beta' clamp). Establishment of downstream contacts leads to remodeling of upstream interactions between sigma70 and the -10 promoter element that might facilitate promoter escape and sigma release.
Collapse
Affiliation(s)
- Konstantin Brodolin
- Institute of Molecular Genetics, Russian Academy of Sciences, Kurchatov Sq. 2, Moscow 123182, Russia.
| | | | | |
Collapse
|
16
|
Wigneshweraraj SR, Burrows PC, Severinov K, Buck M. Stable DNA opening within open promoter complexes is mediated by the RNA polymerase beta'-jaw domain. J Biol Chem 2005; 280:36176-84. [PMID: 16123036 DOI: 10.1074/jbc.m506416200] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DNA opening for transcription-competent open promoter complex (OC) formation by the bacterial RNA polymerase (RNAP) relies upon a complex network of interactions between the structurally conserved and flexible modules of the catalytic beta and beta'-subunits, RNAP-associated sigma-subunit, and the DNA. Here, we show that one such module, the beta'-jaw, functions to stabilize the OC. In OCs formed by the major sigma70-RNAP, the stabilizing role of the beta'-jaw is not restricted to any particular melted DNA segment. In contrast, in OCs formed by the major variant sigma54-RNAP, the beta'-jaw and a conserved sigma54 regulatory domain co-operate to stabilize the melted DNA segment immediately upstream of the transcription start site. Clearly, regulated communication between the mobile modules of the RNAP and the functional domain(s) of the sigma subunit is required for stable DNA opening.
Collapse
Affiliation(s)
- Siva R Wigneshweraraj
- Division of Biology, Faculty of Life Sciences, Sir Alexander Fleming Building, Imperial College London, London SW7 2AZ, United Kingdom
| | | | | | | |
Collapse
|
17
|
Łoziński T, Wierzchowski KL. Mg2+-modulated KMnO4 reactivity of thymines in the open transcription complex reflects variation in the negative electrostatic potential along the separated DNA strands. Footprinting of Escherichia coli RNA polymerase complex at the lambdaP(R) promoter revisited. FEBS J 2005; 272:2838-53. [PMID: 15943816 DOI: 10.1111/j.1742-4658.2005.04705.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
There is still a controversy over the mechanism of promoter DNA strand separation upon open transcription complex (RPo) formation by Escherichia coli RNA polymerase: is it a single or a stepwise process controlled by Mg2+ ions and temperature? To resolve this question, the kinetics of pseudo-first-order oxidation of thymine residues by KMnO4 in the -11 ... +2 DNA region of RPo at the lambdaP(R) promoter was examined under single-hit conditions as a function of temperature (13-37 degrees C) in the absence or presence of 10 mm MgCl2. The reaction was also studied with respect to thymidine and its nucleotides (TMP, TTP and TpT) as a function of temperature and [MgCl2]. The kinetic parameters, (ox)k and (ox)E(a), and Mg-induced enhancement of (ox)k proved to be of the same order of magnitude for RPo-lambdaP(R) and the nucleotides. Unlike the complex, (ox)E(a) for the nucleotides was found to be Mg-independent. The isothermal increase in (ox)k with increasing [Mg2+] was thus interpreted in terms of a simple model of screening of the negative charges on phosphate groups by Mg2+ ions, lowering the electrostatic barrier to the diffusion of MnO4- anions to the reactive double bond of thymine. Similar screening isotherms were determined for the oxidation of two groups of thymines in RPo at a consensus-like Pa promoter, differing in the magnitude of the Mg effect. Together, the findings show that: (a) the two DNA strands in the -11...+2 region of RPo-lambdaP(R) are completely separated over the whole range of temperatures investigated (13-37 degrees C) in the absence of Mg2+ (b) Mg2+ ions induce an increase in the rate of the oxidation reaction by screening negatively charged phosphate and carboxylate groups; and (c) the observed thymine reactivity and the magnitude of the Mg effect reflect variation in the strength of the electrostatic potential along the separated DNA strands, in agreement with the current structural model of RPo.
Collapse
Affiliation(s)
- Tomasz Łoziński
- Department of Biophysics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warszawa, Poland
| | | |
Collapse
|
18
|
Wigneshweraraj SR, Burrows PC, Bordes P, Schumacher J, Rappas M, Finn RD, Cannon WV, Zhang X, Buck M. The second paradigm for activation of transcription. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2005; 79:339-69. [PMID: 16096032 DOI: 10.1016/s0079-6603(04)79007-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- S R Wigneshweraraj
- Department of Biological Sciences and Centre for Structural Biology, Imperial College London, London SW7 2AZ, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
During promoter engagement, RNA polymerase must change conformation or isomerize to its active form. These data show that high concentrations of nucleotides assist this isomerization. When binding to fork junction DNA probes is monitored, isomerization can occur without the need for the DNA that overlaps the transcription start site. When the start site is present, nucleoside triphosphates cause polymerase to change conformation in a way that drives cross-linking to the +1 position on the template strand. Preincubation of transcription complexes with 2 mM initiating nucleotide can drive formation of heparin-resistant complexes under conditions in which isomerization is limiting. It is proposed that complete polymerase isomerization can require nucleotide binding, which can assist formation of the active site that engages the transcription start site.
Collapse
Affiliation(s)
- Chih M Lew
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California, Los Angeles, P.O. Box 951569, Los Angeles, California 90095-1569, USA
| | | |
Collapse
|
20
|
Van Wynsberghe A, Li G, Cui Q. Normal-mode analysis suggests protein flexibility modulation throughout RNA polymerase's functional cycle. Biochemistry 2004; 43:13083-96. [PMID: 15476402 DOI: 10.1021/bi049738+] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
To explore the domain-scale flexibility of bacterial RNA polymerase (RNAP) throughout its functional cycle, block normal-mode analyses (BNM) were performed on several important functional states, including the holoenzyme, the core complex, a model of RNAP bound to primarily duplex DNA, and a model of the ternary elongation complex. The calculations utilized a molecular mechanics (MM) force field with physical interactions; this is made possible by the use of BNM and the implementation of a sparse-matrix diagonalization routine. The use of homology models necessitated the MM force field rather than the simpler elastic network model (ENM). From the MM/BNM, we have systematically and semiquantitatively calculated the atomic fluctuations in the four functional states without bias due to crystal packing or other artifactual forces. We have observed that both alpha subunits and the omega subunit are rigid, in line with their roles as structural motifs that are not mechanistically involved in RNAP's functional cycle. It has been observed that the beta subunit has two highly mobile domains; these are commonly known as the beta1 and beta2 domains. Our calculations suggest that the flexibility of these domains is modulated throughout the functional cycle and that they move entirely independently of each other unless DNA is bound. From an energetic perspective, we have shown the beta2 domain can flex into and out of the cleft, forming interactions with DNA in the TEC as has been previously proposed. Our calculations also confirm that the beta' subunit's likely flexibility into and out of the DNA binding cleft is energetically allowed. These two observations validate that both of the RNAP crab claw's pincers are mobile, as both beta and beta' have substantial flexibility.
Collapse
Affiliation(s)
- Adam Van Wynsberghe
- Graduate Program in Biophysics and Department of Chemistry and Theoretical Chemistry Institute, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, USA
| | | | | |
Collapse
|
21
|
Burrows PC, Severinov K, Buck M, Wigneshweraraj SR. Reorganisation of an RNA polymerase-promoter DNA complex for DNA melting. EMBO J 2004; 23:4253-63. [PMID: 15470504 PMCID: PMC524386 DOI: 10.1038/sj.emboj.7600406] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2004] [Accepted: 08/17/2004] [Indexed: 11/09/2022] Open
Abstract
Sigma factors, the key regulatory components of the bacterial RNA polymerase (RNAP), direct promoter DNA binding and DNA melting. The sigma(54)-RNAP forms promoter complexes in which DNA melting is only triggered by an activator and ATP hydrolysis-driven reorganisation of an initial sigma(54)-RNAP-promoter complex. We report that an initial bacterial RNAP-DNA complex can be reorganised by an activator to form an intermediate transcription initiation complex where full DNA melting has not yet occurred. Using sigma(54) as a chemical nuclease we now show that the reorganisation of the initial sigma(54)-RNAP-promoter complex occurs upon interaction with the activator at the transition point of ATP hydrolysis. We demonstrate that this reorganisation event is an early step in the transcription initiation pathway that occurs independently of RNAP parts normally associated with stable DNA melting and open complex formation. Using photoreactive DNA probes, we provide evidence that within this reorganised sigma(54)-RNAP-promoter complex, DNA contacts across the 'to be melted' sequences are made by the sigma(54) subunit. Strikingly, the activator protein, but not core RNAP subunits, is close to these DNA sequences.
Collapse
Affiliation(s)
| | - Konstantin Severinov
- Waksman Institute and Department of Genetics, Rutgers, The State University, Piscataway, NJ, USA
| | - Martin Buck
- Department of Biological Sciences, Imperial College London, London, UK
- Department of Biological Sciences, Sir Alexander Fleming Building, Imperial College London, South Kensington Campus, London SW7 2AZ, UK. Tel.: +44 207 594 5442; Fax: +44 207 594 5419; E-mail:
| | - Siva R Wigneshweraraj
- Department of Biological Sciences, Imperial College London, London, UK
- Department of Biological Sciences, Sir Alexander Fleming Building, Imperial College London, South Kensington Campus, London SW7 2AZ, UK. Tel.: +44 207 594 5366; Fax: +44 207 594 5419; E-mail:
| |
Collapse
|
22
|
Cybulski LE, del Solar G, Craig PO, Espinosa M, de Mendoza D. Bacillus subtilis DesR functions as a phosphorylation-activated switch to control membrane lipid fluidity. J Biol Chem 2004; 279:39340-7. [PMID: 15247225 DOI: 10.1074/jbc.m405150200] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Des pathway of Bacillus subtilis regulates the synthesis of the cold-shock induced membrane-bound enzyme Delta5-fatty acid desaturase (Delta5-Des). A central component of the Des pathway is the response regulator, DesR, which is activated by a membrane-associated kinase, DesK, in response to a decrease in membrane lipid fluidity. Despite genetic and biochemical studies, specific details of the interaction between DesR and the DNA remain unknown. In this study we show that only the phosphorylated form of protein DesR is able to bind to a regulatory region immediately upstream of the promoter of the Delta5-Des gene (Pdes). Phosphorylation of the regulatory domain of dimeric DesR promotes, in a cooperative fashion, the hierarchical occupation of two adjacent, non-identical, DesR-P DNA binding sites, so that there is a shift in the equilibrium toward the tetrameric active form of the response regulator. Subsequently, this phosphorylation signal propagation leads to the activation of the des gene through recruitment of RNA polymerase to Pdes. This is the first dissected example of a transcription factor functioning as a phosphorylation-activated switch for a cold-shock gene, allowing the cell to optimize the fluidity of membrane phospholipids.
Collapse
Affiliation(s)
- Larisa E Cybulski
- Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas, Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Argentina
| | | | | | | | | |
Collapse
|
23
|
Artsimovitch I, Svetlov V, Murakami KS, Landick R. Co-overexpression of Escherichia coli RNA polymerase subunits allows isolation and analysis of mutant enzymes lacking lineage-specific sequence insertions. J Biol Chem 2003; 278:12344-55. [PMID: 12511572 DOI: 10.1074/jbc.m211214200] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The study of mutant enzymes can reveal important details about the fundamental mechanism and regulation of RNA polymerase, the central enzyme of gene expression. However, such studies are complicated by the multisubunit structure of RNA polymerase and by its indispensability for cell growth. Previously, mutant RNA polymerases have been produced by in vitro assembly from isolated subunits or by in vivo assembly upon overexpression of a single mutant subunit. Both approaches can fail if the mutant subunit is toxic or incorrectly folded. Here we describe an alternative strategy, co-overexpression and in vivo assembly of RNA polymerase subunits, and apply this method to characterize the role of sequence insertions present in the Escherichia coli enzyme. We find that co-overexpression of its subunits allows assembly of an RNA polymerase lacking a 188-amino acid insertion in the beta' subunit. Based on experiments with this and other mutant E. coli enzymes with precisely excised sequence insertions, we report that the beta' sequence insertion and, to a lesser extent, an N-terminal beta sequence insertion confer characteristic stability to the open initiation complex, frequency of abortive initiation, and pausing during transcript elongation relative to RNA polymerases, such as that from Bacillus subtilis, that lack the sequence insertions.
Collapse
Affiliation(s)
- Irina Artsimovitch
- Department of Microbiology, Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | |
Collapse
|
24
|
Wigneshweraraj SR, Kuznedelov K, Severinov K, Buck M. Multiple roles of the RNA polymerase beta subunit flap domain in sigma 54-dependent transcription. J Biol Chem 2003; 278:3455-65. [PMID: 12424241 DOI: 10.1074/jbc.m209442200] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Recent determinations of the structures of the bacterial RNA polymerase (RNAP) and promoter complex thereof establish that RNAP functions as a complex molecular machine that contains distinct structural modules that undergo major conformational changes during transcription. However, the contribution of the RNAP structural modules to transcription remains poorly understood. The bacterial core RNAP (alpha(2)beta beta'omega; E) associates with a sigma (sigma) subunit to form the holoenzyme (E sigma). A mutation removing the beta subunit flap domain renders the Escherichia coli sigma(70) RNAP holoenzyme unable to recognize promoters. sigma(54) is the major variant sigma subunit that utilizes enhancer-dependent promoters. Here, we determined the effects of beta flap removal on sigma(54)-dependent transcription. Our analysis shows that the role of the beta flap in sigma(54)-dependent and sigma(70)-dependent transcription is different. Removal of the beta flap does not prevent the recognition of sigma(54)-dependent promoters, but causes multiple defects in sigma(54)-dependent transcription. Most importantly, the beta flap appears to orchestrate the proper formation of the E sigma(54) regulatory center at the start site proximal promoter element where activator binds and DNA melting originates.
Collapse
Affiliation(s)
- Siva R Wigneshweraraj
- Department of Biological Sciences, Imperial College of Science, Technology and Medicine, Sir Alexander Fleming Building, Imperial College Road, London SW7 2AZ, United Kingdom
| | | | | | | |
Collapse
|
25
|
Wigneshweraraj SR, Nechaev S, Bordes P, Jones S, Cannon W, Severinov K, Buck M. Enhancer-dependent transcription by bacterial RNA polymerase: the beta subunit downstream lobe is used by sigma 54 during open promoter complex formation. Methods Enzymol 2003; 370:646-57. [PMID: 14712681 DOI: 10.1016/s0076-6879(03)70053-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Siva R Wigneshweraraj
- Department of Biological Sciences, National College of Science, Technology, and Medicine, SAFB, Imperial College Road, London SW7 2AZ, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
26
|
Wigneshweraraj SR, Nechaev S, Severinov K, Buck M. Beta subunit residues 186-433 and 436-445 are commonly used by Esigma54 and Esigma70 RNA polymerase for open promoter complex formation. J Mol Biol 2002; 319:1067-83. [PMID: 12079348 DOI: 10.1016/s0022-2836(02)00330-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
During transcription initiation by DNA-dependent RNA polymerase (RNAP) promoter DNA has to be melted locally to allow the synthesis of RNA transcript. Localized melting of promoter DNA is a target for genetic regulation and is poorly understood at the molecular level. The Escherichia coli RNAP holoenzyme is a six-subunit (alpha(2)betabeta'omegasigma; Esigma) protein complex. The sigma subunit is directly responsible for promoter recognition and contributes to localized DNA melting. Mutations in the beta subunit have profound effects on promoter melting by Esigma70. The sigma54 subunit is a representative of an unrelated class of the sigma subunits. Here, we determined whether mutations in the beta subunit that affect late stages of promoter complex formation by Esigma70 also influence promoter complex formation by the enhancer-dependent Esigma54. Analyses of in vitro defects in promoter complex formation and transcription initiation exhibited by mutant Esigma54 suggest that during promoter complex formation by Esigma54 and Esigma70 a common set of beta subunit sequences is used. Late stages of promoter complex formation and localized melting of promoter DNA by Esigma70 and Esigma54 thus proceed through a common pathway.
Collapse
Affiliation(s)
- Siva R Wigneshweraraj
- Department of Biological Sciences, Imperial College of Science, Technology and Medicine, Biomedical Sciences Building, Imperial College Road, London SW7 2AZ, UK
| | | | | | | |
Collapse
|
27
|
Kuznedelov K, Korzheva N, Mustaev A, Severinov K. Structure-based analysis of RNA polymerase function: the largest subunit's rudder contributes critically to elongation complex stability and is not involved in the maintenance of RNA-DNA hybrid length. EMBO J 2002; 21:1369-78. [PMID: 11889042 PMCID: PMC125355 DOI: 10.1093/emboj/21.6.1369] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2001] [Revised: 01/18/2002] [Accepted: 01/18/2002] [Indexed: 11/13/2022] Open
Abstract
Analysis of multisubunit RNA polymerase (RNAP) structures revealed several elements that may constitute the enzyme's functional sites. One such element, the 'rudder', is formed by an evolutionarily conserved segment of the largest subunit of RNAP and contacts the nascent RNA at the upstream edge of the RNA-DNA hybrid, where the DNA template strand separates from the RNA transcript and re-anneals with the non-template strand. Thus, the rudder could (i) maintain the correct length of the RNA-DNA hybrid; (ii) stabilize the nascent RNA in the complex; and (iii) promote or maintain localized DNA melting at the upstream edge of the bubble. We generated a recombinant RNAP mutant that lacked the rudder and studied its properties in vitro. Our results demonstrate that the rudder is not required for establishment of the upstream boundary of the transcription bubble during promoter complex formation, nor is it required for separation of the nascent RNA from the DNA template strand or transcription termination. Our results suggest that the rudder makes critical contributions to elongation complex stability through direct interactions with the nascent RNA.
Collapse
Affiliation(s)
- Konstantin Kuznedelov
- Waksman Institute, Rutgers, The State University, Piscataway, NJ 08854, Public Health Research Institute, New York, NY 10016, USA and Limnological Institute of Siberian Branch of Russian Academy of Sciences, Irkutsk 664033, Russia Corresponding author e-mail: K.Kuznedelov and N.Korzheva contributed equally to this work
| | - Nataliya Korzheva
- Waksman Institute, Rutgers, The State University, Piscataway, NJ 08854, Public Health Research Institute, New York, NY 10016, USA and Limnological Institute of Siberian Branch of Russian Academy of Sciences, Irkutsk 664033, Russia Corresponding author e-mail: K.Kuznedelov and N.Korzheva contributed equally to this work
| | - Arkady Mustaev
- Waksman Institute, Rutgers, The State University, Piscataway, NJ 08854, Public Health Research Institute, New York, NY 10016, USA and Limnological Institute of Siberian Branch of Russian Academy of Sciences, Irkutsk 664033, Russia Corresponding author e-mail: K.Kuznedelov and N.Korzheva contributed equally to this work
| | - Konstantin Severinov
- Waksman Institute, Rutgers, The State University, Piscataway, NJ 08854, Public Health Research Institute, New York, NY 10016, USA and Limnological Institute of Siberian Branch of Russian Academy of Sciences, Irkutsk 664033, Russia Corresponding author e-mail: K.Kuznedelov and N.Korzheva contributed equally to this work
| |
Collapse
|
28
|
Palangat M, Landick R. Roles of RNA:DNA hybrid stability, RNA structure, and active site conformation in pausing by human RNA polymerase II. J Mol Biol 2001; 311:265-82. [PMID: 11478860 DOI: 10.1006/jmbi.2001.4842] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Human RNA polymerase II recognizes a strong transcriptional pause signal in the initially transcribed region of HIV-1. We report the use of a limited-step transcription assay to dissect the mechanism underlying recognition of and escape from this HIV-1 pause. Our results suggest that the primary determinant of transcriptional pausing is a relatively weak RNA:DNA hybrid that triggers backtracking of RNA polymerase II along the RNA and DNA chains and displaces the RNA 3' OH from the active site. In contrast, two alternative RNA secondary structures, TAR and anti-TAR, are not required for pausing and affect it only indirectly, rather than through direct interaction with RNA polymerase II. TAR accelerates escape from the pause, but anti-TAR inhibits formation of TAR prior to pause escape. The behavior of RNA polymerase II at a mutant pause signal supports a two-step, non-equilibrium mechanism in which the rate-determining step is a conformational change in the enzyme, rather than the changes in nucleic-acid base-pairing that accompany backtracking.
Collapse
MESH Headings
- Base Pairing
- Base Sequence
- Binding Sites
- DNA, Viral/chemistry
- DNA, Viral/genetics
- DNA, Viral/metabolism
- HIV Long Terminal Repeat/genetics
- HIV-1/genetics
- Humans
- Isomerism
- Kinetics
- Models, Genetic
- Models, Molecular
- Molecular Sequence Data
- Nucleic Acid Conformation
- Nucleic Acid Heteroduplexes/chemistry
- Nucleic Acid Heteroduplexes/genetics
- Nucleic Acid Heteroduplexes/metabolism
- RNA Polymerase II/metabolism
- RNA Stability
- RNA, Viral/biosynthesis
- RNA, Viral/chemistry
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Templates, Genetic
- Thermodynamics
- Transcription, Genetic/genetics
Collapse
Affiliation(s)
- M Palangat
- Department of Bacteriology, University of Wisconsin-Madison, 1550 Linden Dr, Madison, WI 53706, USA
| | | |
Collapse
|
29
|
Ebright RH. RNA polymerase: structural similarities between bacterial RNA polymerase and eukaryotic RNA polymerase II. J Mol Biol 2000; 304:687-98. [PMID: 11124018 DOI: 10.1006/jmbi.2000.4309] [Citation(s) in RCA: 203] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Bacterial RNA polymerase and eukaryotic RNA polymerase II exhibit striking structural similarities, including similarities in overall structure, relative positions of subunits, relative positions of functional determinants, and structures and folding topologies of subunits. These structural similarities are paralleled by similarities in mechanisms of interaction with DNA.
Collapse
Affiliation(s)
- R H Ebright
- Howard Hughes Medical Institute, Waksman Institute and Department of Chemistry Rutgers University, Piscataway, NJ 08854, USA.
| |
Collapse
|
30
|
Artsimovitch I, Svetlov V, Anthony L, Burgess RR, Landick R. RNA polymerases from Bacillus subtilis and Escherichia coli differ in recognition of regulatory signals in vitro. J Bacteriol 2000; 182:6027-35. [PMID: 11029421 PMCID: PMC94735 DOI: 10.1128/jb.182.21.6027-6035.2000] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Adaptation of bacterial cells to diverse habitats relies on the ability of RNA polymerase to respond to various regulatory signals. Some of these signals are conserved throughout evolution, whereas others are species specific. In this study we present a comprehensive comparative analysis of RNA polymerases from two distantly related bacterial species, Escherichia coli and Bacillus subtilis, using a panel of in vitro transcription assays. We found substantial species-specific differences in the ability of these enzymes to escape from the promoter and to recognize certain types of elongation signals. Both enzymes responded similarly to other pause and termination signals and to the general E. coli elongation factors NusA and GreA. We also demonstrate that, although promoter recognition depends largely on the sigma subunit, promoter discrimination exhibited in species-specific fashion by both RNA polymerases resides in the core enzyme. We hypothesize that differences in signal recognition are due to the changes in contacts made between the beta and beta' subunits and the downstream DNA duplex.
Collapse
Affiliation(s)
- I Artsimovitch
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA.
| | | | | | | | | |
Collapse
|