1
|
Ganjibakhsh M, Tkachenko Y, Knutsen RH, Kozel BA. Toward a rational therapeutic for elastin related disease: Key considerations for elastin based regenerative medicine strategies. Matrix Biol 2025; 138:8-21. [PMID: 40158781 DOI: 10.1016/j.matbio.2025.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 03/07/2025] [Accepted: 03/23/2025] [Indexed: 04/02/2025]
Abstract
Elastin is a connective tissue protein, produced from the ELN gene, that provides elasticity and recoil to tissues that stretch, such as the large arteries of the body, lung parenchyma, skin, ligaments and elastic cartilages. It is produced as a soluble monomer, tropoelastin, that when cross-linked in the extracellular space generates a polymer that is extraordinarily stable, with a predicted half-life of >70 years. Although data suggest ongoing elastin transcription, it is rare to see new elastin deposited outside of its tight developmental window. Consequently, elastin-related disease comes about primarily in one of three scenarios: (1) inadequate elastin deposition, (2) production of poor-quality elastic fibers, or (3) increased destruction of previously deposited elastin. By understanding the pathways controlling elastin production and maintenance, we can design new therapeutics to thwart those abnormal processes. In this review, we will summarize the diseases arising from genetic and environmental alteration of elastin (Williams syndrome, supravalvar aortic stenosis, autosomal dominant cutis laxa, and ELN-related vascular and connective tissue dysfunction) and then describe the mechanisms controlling elastin production and maintenance that might be manipulated to generate novel therapeutics aimed at these conditions. We will end by summarizing existing therapeutic strategies targeting these disease mechanisms before outlining future approaches that may better solve the challenges associated with elastin based regenerative medicine.
Collapse
Affiliation(s)
- Meysam Ganjibakhsh
- Institute of Genomic Medicine, Abigail Wexler Research Institute, Nationwide Children's Hospital, OH 43205, USA
| | - Yanina Tkachenko
- Institute of Genomic Medicine, Abigail Wexler Research Institute, Nationwide Children's Hospital, OH 43205, USA
| | - Russell H Knutsen
- Institute of Genomic Medicine, Abigail Wexler Research Institute, Nationwide Children's Hospital, OH 43205, USA
| | - Beth A Kozel
- Institute of Genomic Medicine, Abigail Wexler Research Institute, Nationwide Children's Hospital, OH 43205, USA; Department of Pediatrics, The Ohio State University, OH 43210, USA.
| |
Collapse
|
2
|
Liang Y, Hao J, Wang J, Zhang G, Su Y, Liu Z, Wang T. Statistical Genomics Analysis of Simple Sequence Repeats from the Paphiopedilum Malipoense Transcriptome Reveals Control Knob Motifs Modulating Gene Expression. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2304848. [PMID: 38647414 PMCID: PMC11200097 DOI: 10.1002/advs.202304848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 02/26/2024] [Indexed: 04/25/2024]
Abstract
Simple sequence repeats (SSRs) are found in nonrandom distributions in genomes and are thought to impact gene expression. The distribution patterns of 48 295 SSRs of Paphiopedilum malipoense are mined and characterized based on the first full-length transcriptome and comprehensive transcriptome dataset from 12 organs. Statistical genomics analyses are used to investigate how SSRs in transcripts affect gene expression. The results demonstrate the correlations between SSR distributions, characteristics, and expression level. Nine expression-modulating motifs (expMotifs) are identified and a model is proposed to explain the effect of their key features, potency, and gene function on an intra-transcribed region scale. The expMotif-transcribed region combination is the most predominant contributor to the expression-modulating effect of SSRs, and some intra-transcribed regions are critical for this effect. Genes containing the same type of expMotif-SSR elements in the same transcribed region are likely linked in function, regulation, or evolution aspects. This study offers novel evidence to understand how SSRs regulate gene expression and provides potential regulatory elements for plant genetic engineering.
Collapse
Affiliation(s)
- Yingyi Liang
- College of Life SciencesSouth China Agricultural UniversityGuangzhou510642China
| | - Jing Hao
- College of Life SciencesSouth China Agricultural UniversityGuangzhou510642China
| | - Jieyu Wang
- College of Forestry and Landscape ArchitectureSouth China Agricultural UniversityGuangzhou510642China
| | - Guoqiang Zhang
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture and ArtFujian Agriculture and Forestry UniversityFuzhou350002China
| | - Yingjuan Su
- School of Life SciencesSun Yat‐sen UniversityGuangzhou510275China
- Research Institute of Sun Yat‐sen University in ShenzhenShenzhen518107China
| | - Zhong‐Jian Liu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture and ArtFujian Agriculture and Forestry UniversityFuzhou350002China
| | - Ting Wang
- College of Life SciencesSouth China Agricultural UniversityGuangzhou510642China
| |
Collapse
|
3
|
Procknow SS, Kozel BA. Emerging mechanisms of elastin transcriptional regulation. Am J Physiol Cell Physiol 2022; 323:C666-C677. [PMID: 35816641 PMCID: PMC9448287 DOI: 10.1152/ajpcell.00228.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/06/2022] [Accepted: 07/06/2022] [Indexed: 11/22/2022]
Abstract
Elastin provides recoil to tissues that stretch such as the lung, blood vessels, and skin. It is deposited in a brief window starting in the prenatal period and extending to adolescence in vertebrates, and then slowly turns over. Elastin insufficiency is seen in conditions such as Williams-Beuren syndrome and elastin-related supravalvar aortic stenosis, which are associated with a range of vascular and connective tissue manifestations. Regulation of the elastin (ELN) gene occurs at multiple levels including promoter activation/inhibition, mRNA stability, interaction with microRNAs, and alternative splicing. However, these mechanisms are incompletely understood. Better understanding of the processes controlling ELN gene expression may improve medicine's ability to intervene in these rare conditions, as well as to replace age-associated losses by re-initiating elastin production. This review describes what is known about the ELN gene promoter structure, transcriptional regulation by cytokines and transcription factors, and posttranscriptional regulation via mRNA stability and micro-RNA and highlights new approaches that may influence regenerative medicine.
Collapse
Affiliation(s)
- Sara S Procknow
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri
| | - Beth A Kozel
- Translational Vascular Medicine Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
4
|
MicroSalmon: A Comprehensive, Searchable Resource of Predicted MicroRNA Targets and 3'UTR Cis-Regulatory Elements in the Full-Length Sequenced Atlantic Salmon Transcriptome. Noncoding RNA 2021; 7:ncrna7040061. [PMID: 34698276 PMCID: PMC8544657 DOI: 10.3390/ncrna7040061] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/17/2021] [Accepted: 09/20/2021] [Indexed: 12/20/2022] Open
Abstract
Complete 3′UTRs unambiguously assigned to specific mRNA isoforms from the Atlantic salmon full-length (FL) transcriptome were collected into a 3′UTRome. miRNA response elements (MREs) and other cis-regulatory motifs were subsequently predicted and assigned to 3′UTRs of all FL-transcripts. The MicroSalmon GitHub repository provides all results. RNAHybrid and sRNAtoolbox tools predicted the MREs. UTRscan and the Teiresias algorithm predicted other 3′UTR cis-acting motifs, both known vertebrate motifs and putative novel motifs. MicroSalmon provides search programs to retrieve all FL-transcripts targeted by a miRNA (median number 1487), all miRNAs targeting an FL-transcript (median number 27), and other cis-acting motifs. As thousands of FL-transcripts may be targets of each miRNA, additional experimental strategies are necessary to reduce the likely true and relevant targets to a number that may be functionally validated. Low-complexity motifs known to affect mRNA decay in vertebrates were over-represented. Many of these were enriched in the terminal end, while purine- or pyrimidine-rich motifs with unknown functions were enriched immediately downstream of the stop codon. Furthermore, several novel complex motifs were over-represented, indicating conservation and putative function. In conclusion, MicroSalmon is an extensive and useful, searchable resource for study of Atlantic salmon transcript regulation by miRNAs and cis-acting 3′UTR motifs.
Collapse
|
5
|
Bernardes WS, Menossi M. Plant 3' Regulatory Regions From mRNA-Encoding Genes and Their Uses to Modulate Expression. FRONTIERS IN PLANT SCIENCE 2020; 11:1252. [PMID: 32922424 PMCID: PMC7457121 DOI: 10.3389/fpls.2020.01252] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 07/29/2020] [Indexed: 05/08/2023]
Abstract
Molecular biotechnology has made it possible to explore the potential of plants for different purposes. The 3' regulatory regions have a great diversity of cis-regulatory elements directly involved in polyadenylation, stability, transport and mRNA translation, essential to achieve the desired levels of gene expression. A complex interaction between the cleavage and polyadenylation molecular complex and cis-elements determine the polyadenylation site, which may result in the choice of non-canonical sites, resulting in alternative polyadenylation events, involved in the regulation of more than 80% of the genes expressed in plants. In addition, after transcription, a wide array of RNA-binding proteins interacts with cis-acting elements located mainly in the 3' untranslated region, determining the fate of mRNAs in eukaryotic cells. Although a small number of 3' regulatory regions have been identified and validated so far, many studies have shown that plant 3' regulatory regions have a higher potential to regulate gene expression in plants compared to widely used 3' regulatory regions, such as NOS and OCS from Agrobacterium tumefaciens and 35S from cauliflower mosaic virus. In this review, we discuss the role of 3' regulatory regions in gene expression, and the superior potential that plant 3' regulatory regions have compared to NOS, OCS and 35S 3' regulatory regions.
Collapse
|
6
|
Abstract
Underlying the dynamic regulation of tropoelastin expression and elastin formation in development and disease are transcriptional and post-transcriptional mechanisms that have been the focus of much research. Of particular importance is the cytokine-governed elastin regulatory axis in which the pro-elastogenic activities of transforming growth factor β-1 (TGFβ1) and insulin-like growth factor-I (IGF-I) are opposed by anti-elastogenic activities of basic fibroblast growth factor (bFGF/FGF-2), heparin-binding epidermal growth factor-like growth factor (HB-EGF), EGF, PDGF-BB, TGFα, tumor necrosis factor-alpha (TNF-α), interleukin (IL)-1β and noncanonical TGFβ1 signaling. A key mechanistic feature of the regulatory axis is that cytokines influence elastin formation through effects on the cell cycle involving control of cyclin-cyclin dependent kinase complexes and activation of the Ras/MEK/ERK signaling pathway. In this article we provide an overview of the major cytokines/growth factors that modulate elastogenesis and describe the underlying molecular mechanisms for their action on elastin production.
Collapse
Affiliation(s)
- Erin P Sproul
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA.
| | | |
Collapse
|
7
|
|
8
|
Mukudai Y, Kubota S, Eguchi T, Sumiyoshi K, Janune D, Kondo S, Shintani S, Takigawa M. A coding RNA segment that enhances the ribosomal recruitment of chicken ccn1 mRNA. J Cell Biochem 2011; 111:1607-18. [PMID: 21053272 DOI: 10.1002/jcb.22894] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
CCN1, a member of the CCN family of proteins, plays important physiological or pathological roles in a variety of tissues. In the present study, we initially found a highly guanine-cytosine (GC)-rich region of approximately 200 bp near the 5'-end of the open reading frame, which was always truncated by amplification of the corresponding cDNA region through the conventional polymerase chain reaction. An RNA in vitro folding assay and selective ribonuclease digestion of the corresponding segment of the ccn1 mRNA confirmed the involvement of a stable secondary structure. Subsequent RNA electromobility-shift assays demonstrated the specific binding of some cytoplasmic factor(s) in chicken embryo fibroblasts to the RNA segment. Moreover, the corresponding cDNA fragment strongly enhanced the expression of the reporter gene in cis at the 5'-end, but did not do so at the 3'-end. According to the results of a ribosomal assembly test, the effect of the mRNA segment can predominantly be ascribed to the enhancement of transport and/or entry of the mRNA into the ribosome. Finally, the minimal GC-rich mRNA segment that was predicted and demonstrated to form a secondary structure was confirmed to be a functional regulatory element. Thus, we here uncover a novel dual-functionality of the mRNA segment in the ccn1 open reading frame, which segment acts as a cis-element that mediates posttranscriptional gene regulation, while retaining the information for the amino acid sequence of the resultant protein.
Collapse
Affiliation(s)
- Yoshiki Mukudai
- Biodental Research Center, Okayama University Dental School, Okayama, Japan
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Systematic analysis of cis-elements in unstable mRNAs demonstrates that CUGBP1 is a key regulator of mRNA decay in muscle cells. PLoS One 2010; 5:e11201. [PMID: 20574513 PMCID: PMC2888570 DOI: 10.1371/journal.pone.0011201] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Accepted: 05/27/2010] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Dramatic changes in gene expression occur in response to extracellular stimuli and during differentiation. Although transcriptional effects are important, alterations in mRNA decay also play a major role in achieving rapid and massive changes in mRNA abundance. Moreover, just as transcription factor activity varies between different cell types, the factors influencing mRNA decay are also cell-type specific. PRINCIPAL FINDINGS We have established the rates of decay for over 7000 transcripts expressed in mouse C2C12 myoblasts. We found that GU-rich (GRE) and AU-rich (ARE) elements are over-represented in the 3'UTRs of short-lived mRNAs and that these mRNAs tend to encode factors involved in cell cycle and transcription regulation. Stabilizing elements were also identified. By comparing mRNA decay rates in C2C12 cells with those previously measured for pluripotent and differentiating embryonic stem (ES) cells, we identified several groups of transcripts that exhibit cell-type specific decay rates. Further, whereas in C2C12 cells the impact of GREs on mRNA decay appears to be greater than that of AREs, AREs are more significant in ES cells, supporting the idea that cis elements make a cell-specific contribution to mRNA stability. GREs are recognized by CUGBP1, an RNA-binding protein and instability factor whose function is affected in several neuromuscular diseases. We therefore utilized RNA immunoprecipitation followed by microarray (RIP-Chip) to identify CUGBP1-associated transcripts. These mRNAs also showed dramatic enrichment of GREs in their 3'UTRs and encode proteins linked with cell cycle, and intracellular transport. Interestingly several CUGBP1 substrate mRNAs, including those encoding the myogenic transcription factors Myod1 and Myog, are also bound by the stabilizing factor HuR in C2C12 cells. Finally, we show that several CUGBP1-associated mRNAs containing 3'UTR GREs, including Myod1, are stabilized in cells depleted of CUGBP1, consistent with the role of CUGBP1 as a destabilizing factor. CONCLUSIONS Taken together, our results systematically establish cis-acting determinants of mRNA decay rates in C2C12 myoblast cells and demonstrate that CUGBP1 associates with GREs to regulate decay of a wide range of mRNAs including several that are critical for muscle development.
Collapse
|
10
|
Tan J, Vonrhein C, Smart OS, Bricogne G, Bollati M, Kusov Y, Hansen G, Mesters JR, Schmidt CL, Hilgenfeld R. The SARS-unique domain (SUD) of SARS coronavirus contains two macrodomains that bind G-quadruplexes. PLoS Pathog 2009; 5:e1000428. [PMID: 19436709 PMCID: PMC2674928 DOI: 10.1371/journal.ppat.1000428] [Citation(s) in RCA: 143] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2008] [Accepted: 04/13/2009] [Indexed: 12/25/2022] Open
Abstract
Since the outbreak of severe acute respiratory syndrome (SARS) in 2003, the three-dimensional structures of several of the replicase/transcriptase components of SARS coronavirus (SARS-CoV), the non-structural proteins (Nsps), have been determined. However, within the large Nsp3 (1922 amino-acid residues), the structure and function of the so-called SARS-unique domain (SUD) have remained elusive. SUD occurs only in SARS-CoV and the highly related viruses found in certain bats, but is absent from all other coronaviruses. Therefore, it has been speculated that it may be involved in the extreme pathogenicity of SARS-CoV, compared to other coronaviruses, most of which cause only mild infections in humans. In order to help elucidate the function of the SUD, we have determined crystal structures of fragment 389-652 ("SUD(core)") of Nsp3, which comprises 264 of the 338 residues of the domain. Both the monoclinic and triclinic crystal forms (2.2 and 2.8 A resolution, respectively) revealed that SUD(core) forms a homodimer. Each monomer consists of two subdomains, SUD-N and SUD-M, with a macrodomain fold similar to the SARS-CoV X-domain. However, in contrast to the latter, SUD fails to bind ADP-ribose, as determined by zone-interference gel electrophoresis. Instead, the entire SUD(core) as well as its individual subdomains interact with oligonucleotides known to form G-quadruplexes. This includes oligodeoxy- as well as oligoribonucleotides. Mutations of selected lysine residues on the surface of the SUD-N subdomain lead to reduction of G-quadruplex binding, whereas mutations in the SUD-M subdomain abolish it. As there is no evidence for Nsp3 entering the nucleus of the host cell, the SARS-CoV genomic RNA or host-cell mRNA containing long G-stretches may be targets of SUD. The SARS-CoV genome is devoid of G-stretches longer than 5-6 nucleotides, but more extended G-stretches are found in the 3'-nontranslated regions of mRNAs coding for certain host-cell proteins involved in apoptosis or signal transduction, and have been shown to bind to SUD in vitro. Therefore, SUD may be involved in controlling the host cell's response to the viral infection. Possible interference with poly(ADP-ribose) polymerase-like domains is also discussed.
Collapse
Affiliation(s)
- Jinzhi Tan
- Institute of Biochemistry, Center for Structural and Cell Biology in Medicine, University of Lübeck, Lübeck, Germany
| | - Clemens Vonrhein
- Global Phasing Ltd., Sheraton House, Castle Park, Cambridge, United Kingdom
| | - Oliver S. Smart
- Global Phasing Ltd., Sheraton House, Castle Park, Cambridge, United Kingdom
| | - Gerard Bricogne
- Global Phasing Ltd., Sheraton House, Castle Park, Cambridge, United Kingdom
| | - Michela Bollati
- Institute of Biochemistry, Center for Structural and Cell Biology in Medicine, University of Lübeck, Lübeck, Germany
| | - Yuri Kusov
- Institute of Biochemistry, Center for Structural and Cell Biology in Medicine, University of Lübeck, Lübeck, Germany
| | - Guido Hansen
- Institute of Biochemistry, Center for Structural and Cell Biology in Medicine, University of Lübeck, Lübeck, Germany
| | - Jeroen R. Mesters
- Institute of Biochemistry, Center for Structural and Cell Biology in Medicine, University of Lübeck, Lübeck, Germany
| | - Christian L. Schmidt
- Institute of Biochemistry, Center for Structural and Cell Biology in Medicine, University of Lübeck, Lübeck, Germany
| | - Rolf Hilgenfeld
- Institute of Biochemistry, Center for Structural and Cell Biology in Medicine, University of Lübeck, Lübeck, Germany
- Laboratory for Structural Biology of Infection and Inflammation, c/o DESY, Hamburg, Germany
- * E-mail:
| |
Collapse
|
11
|
Lipay JM, Mihailescu MR. NMR spectroscopy and kinetic studies of the quadruplex forming RNA r(UGGAGGU). MOLECULAR BIOSYSTEMS 2009; 5:1347-55. [DOI: 10.1039/b911555b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
12
|
Yang S, Nugent MA, Panchenko MP. EGF antagonizes TGF-beta-induced tropoelastin expression in lung fibroblasts via stabilization of Smad corepressor TGIF. Am J Physiol Lung Cell Mol Physiol 2008; 295:L143-51. [PMID: 18441095 DOI: 10.1152/ajplung.00289.2007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We previously reported that neutrophil elastase (NE) downregulates transforming growth factor-beta (TGF-beta)-maintained tropoelastin mRNA levels in lung fibroblasts through transactivation of the epidermal growth factor (EGF) receptor (EGFR)/Mek/Erk pathway, which is dependent on the NE-initiated release of soluble EGFR ligands. In the present study, we investigated the mechanism by which EGF downregulates tropoelastin expression. We found that EGF downregulates tropoelastin expression through inhibition of TGF-beta signaling. We show that EGF does not prevent the TGF-beta-induced nuclear accumulation of Smad2/3; rather, EGF stabilizes the short-lived Smad transcriptional corepressor TG-interacting factor (TGIF) via EGFR/Mek/Erk-mediated phosphorylation of TGIF. Elevation of TGIF levels, either by TGIF overexpression or prevention of TGIF degradation, is sufficient to inhibit TGF-beta-induced tropoelastin expression. Moreover, TGIF is essential for EGF-mediated downregulation of tropoelastin expression, inasmuch as small interfering RNA knockdown of TGIF blocked EGF-induced downregulation of tropoelastin. Finally, we demonstrated that NE treatment, which releases EGF-like growth factors, causes stabilization of TGIF through the EGFR/Mek/Erk pathway. These results suggest that EGFR/Mek/Erk signaling specifically antagonizes the proelastogenic action of TGF-beta in lung fibroblasts by stabilizing the Smad transcriptional corepressor TGIF.
Collapse
Affiliation(s)
- Shenghong Yang
- Department of Biochemistry, Boston University School of Medicine, 715 Albany St, Boston, Massachusetts 02118, USA
| | | | | |
Collapse
|
13
|
Mao G, Pan X, Gu L. Evidence that a mutation in the MLH1 3'-untranslated region confers a mutator phenotype and mismatch repair deficiency in patients with relapsed leukemia. J Biol Chem 2007; 283:3211-3216. [PMID: 18056700 DOI: 10.1074/jbc.m709276200] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Defects in DNA mismatch repair (MMR) are the molecular basis of certain cancers, including hematological malignancies. The defects are often caused by mutations in coding regions of MMR genes or promoter methylation of the genes. However, in many cases, despite that a hypermutable phenotype is detected in a patient, no mutations/hypermethylations of MMR genes can be detected. We report here a novel mechanism that a mutation in the MLH1 3'-untranslated region (3'-UTR) leads to MMR deficiency. A relapsed leukemia patient displayed microsatellite instability, but no genetic and epigenetic alterations in key MMR genes were identifiable. Instead, a 3-nucleotide (TTC) deletion in the MLH1 3'-UTR was found in the patient's blood sample. The mutant MLH1 3'-UTR was found to significantly reduce the expressions of both a firefly luciferase reporter gene and an ectopic MLH1 gene in model cell lines. Consistent with these observations, a significant reduction in the steady-state level of MLH1 mRNA was observed in white blood cells of the patient. These findings suggest that the mutant MLH1 3'-UTR can cause a severely reduced/defective MMR activity conferring leukemia relapse, likely by down-regulating MLH1 expression at the mRNA level. Although the exact mechanism by which the mutant 3'-UTR down-regulates the MLH1 mRNA is not known, our findings provide a novel marker for cancers with MMR defects.
Collapse
Affiliation(s)
- Guogen Mao
- Department of Toxicology, University of Kentucky College of Medicine, Lexington, Kentucky 40536
| | - Xiaoyu Pan
- Department of Toxicology, University of Kentucky College of Medicine, Lexington, Kentucky 40536
| | - Liya Gu
- Department of Toxicology, University of Kentucky College of Medicine, Lexington, Kentucky 40536; Department of Pathology and Laboratory Medicine, University of Kentucky College of Medicine, Lexington, Kentucky 40536.
| |
Collapse
|
14
|
Deschênes-Furry J, Mousavi K, Bolognani F, Neve RL, Parks RJ, Perrone-Bizzozero NI, Jasmin BJ. The RNA-binding protein HuD binds acetylcholinesterase mRNA in neurons and regulates its expression after axotomy. J Neurosci 2007; 27:665-75. [PMID: 17234598 PMCID: PMC6672799 DOI: 10.1523/jneurosci.4626-06.2007] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
After axotomy, expression of acetylcholinesterase (AChE) is greatly reduced in the superior cervical ganglion (SCG); however, the molecular events involved in this response remain unknown. Here, we first examined AChE mRNA levels in the brain of transgenic mice that overexpress human HuD. Both in situ hybridization and reverse transcription-PCR demonstrated that AChE transcript levels were increased by more than twofold in the hippocampus of HuD transgenic mice. Additionally, direct interaction between the HuD transgene product and AChE mRNA was observed. Next, we examined the role of HuD in regulating AChE expression in intact and axotomized rat SCG neurons. After axotomy of the adult rat SCG neurons, AChE transcript levels decreased by 50 and 85% by the first and fourth day, respectively. In vitro mRNA decay assays indicated that the decrease in AChE mRNA levels resulted from changes in the stability of presynthesized transcripts. A combination of approaches performed using the region that directly encompasses an adenylate and uridylate (AU)-rich element within the AChE 3'-untranslated region demonstrated a decrease in RNA-protein complexes in response to axotomy of the SCG and, specifically, a decrease in HuD binding. After axotomy, HuD transcript and protein levels also decreased. Using a herpes simplex virus construct containing the human HuD sequence to infect SCG neurons in vivo, we found that AChE and GAP-43 mRNA levels were maintained in the SCG after axotomy. Together, the results of this study demonstrate that AChE expression in neurons of the rat SCG is regulated via post-transcriptional mechanisms that involve the AU-rich element and HuD.
Collapse
Affiliation(s)
- Julie Deschênes-Furry
- Department of Cellular and Molecular Medicine and Centre for Neuromuscular Disease, University of Ottawa, Ottawa, Ontario, Canada K1H 8M5
| | - Kambiz Mousavi
- Department of Cellular and Molecular Medicine and Centre for Neuromuscular Disease, University of Ottawa, Ottawa, Ontario, Canada K1H 8M5
| | | | - Rachael L. Neve
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, Massachusetts 02478, and
| | - Robin J. Parks
- Molecular Medicine Program, Ottawa Health Research Institute, Ottawa Hospital, General Campus, Ottawa, Ontario, Canada K1H 8L6
| | | | - Bernard J. Jasmin
- Department of Cellular and Molecular Medicine and Centre for Neuromuscular Disease, University of Ottawa, Ottawa, Ontario, Canada K1H 8M5
- Molecular Medicine Program, Ottawa Health Research Institute, Ottawa Hospital, General Campus, Ottawa, Ontario, Canada K1H 8L6
| |
Collapse
|
15
|
Misquitta CM, Chen T, Grover AK. Control of protein expression through mRNA stability in calcium signalling. Cell Calcium 2006; 40:329-46. [PMID: 16765440 DOI: 10.1016/j.ceca.2006.04.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2006] [Revised: 03/22/2006] [Accepted: 04/12/2006] [Indexed: 01/14/2023]
Abstract
Specific sequences (cis-acting elements) in the 3'-untranslated region (UTR) of RNA, together with stabilizing and destabilizing proteins (trans-acting factors), determine the mRNA stability, and consequently, the level of expression of several proteins. Such interactions were discovered initially for short-lived mRNAs encoding cytokines and early genes like c-jun and c-myc. However, they may also determine the fate of more stable mRNAs in a tissue and disease-dependent manner. The interactions between the cis-acting elements and the trans-acting factors may also be modulated by Ca(2+) either directly or via a control of the phosphorylation status of the trans-acting factors. We focus initially on the basic concepts in mRNA stability with the trans-acting factors AUF1 (destabilizing) and HuR (stabilizing). Sarco/endoplasmic reticulum Ca(2+) pumps, SERCA2a (cardiac and slow twitch muscles) and SERCA2b (most cells including smooth muscle cells), are pivotal in Ca(2+) mobilization during signal transduction. SERCA2a and SERCA2b proteins are encoded by relatively stable mRNAs that contain cis-acting stability determinants in their 3'-regions. We present several pathways where 3'-UTR mediated mRNA decay is key to Ca(2+) signalling: SERCA2a and beta-adrenergic receptors in heart failure, renin-angiotensin system, and parathyroid hormones. Other examples discussed include cytokines vascular endothelial growth factor, endothelin and endothelial nitric oxide synthase. Roles of Ca(2+) and Ca(2+)-binding proteins in mRNA stability are also discussed. We anticipate that these novel modes of control of protein expression will form an emerging area of research that may explore the central role of Ca(2+) in cell function during development and in disease.
Collapse
Affiliation(s)
- Christine M Misquitta
- Banting and Best Department of Medical Research, 10th floor Donnelly CCBR, University of Toronto, 160 College Street, Toronto, Ont., Canada M5S 3E1
| | | | | |
Collapse
|
16
|
Akagawa H, Tajima A, Sakamoto Y, Krischek B, Yoneyama T, Kasuya H, Onda H, Hori T, Kubota M, Machida T, Saeki N, Hata A, Hashiguchi K, Kimura E, Kim CJ, Yang TK, Lee JY, Kimm K, Inoue I. A haplotype spanning two genes, ELN and LIMK1, decreases their transcripts and confers susceptibility to intracranial aneurysms. Hum Mol Genet 2006; 15:1722-34. [PMID: 16611674 DOI: 10.1093/hmg/ddl096] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The rupture of an intracranial aneurysm (IA) results in subarachnoid hemorrhage, a catastrophic neurological condition with high morbidity and mortality. Following-up on our previous genome-wide linkage study in Japanese population, we extensively analyzed a 4.6 Mb linkage region around D7S2472 on 7q11 by genotyping 168 single nucleotide polymorphisms (SNPs). SNP association and window scan haplotype-based association studies revealed a susceptibility locus for IA on a single LD block covering the 3'-untranslated region (3'-UTR) of ELN and the entire region of LIMK1. An association study with 404 IA patients and 458 non-IA controls revealed that the ELN 3'-UTR G(+659)C SNP has the strongest association to IA (P=0.000002) and constitutes a tag-SNP for an at-risk haplotype, which contains two functional SNPs, the ELN 3'-UTR (+502) A insertion and the LIMK1 promoter C(-187)T SNP. These allelic and haplotype-based associations were confirmed in a Korean population. Ex vivo and in vitro analyses demonstrate that the functional impact of both SNPs is the decrease of transcript levels, either through accelerated ELN mRNA degradation or through decreased LIMK1 promoter activity. Elastin and LIMK1 protein are involved in the same actin depolymerization signaling pathway; therefore, these lines of evidence suggest a combined effect of the SNPs in the at-risk haplotype possibly by weakening the vascular wall and promoting the development of IA.
Collapse
Affiliation(s)
- Hiroyuki Akagawa
- Division of Genetic Diagnosis, The Institute of Medical Sciences, The University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Kondo S, Kubota S, Mukudai Y, Moritani N, Nishida T, Matsushita H, Matsumoto S, Sugahara T, Takigawa M. Hypoxic regulation of stability of connective tissue growth factor/CCN2 mRNA by 3′-untranslated region interacting with a cellular protein in human chondrosarcoma cells. Oncogene 2005; 25:1099-110. [PMID: 16247469 DOI: 10.1038/sj.onc.1209129] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Connective tissue growth factor (CTGF/CCN2) can be induced by various forms of stress such as exposure to high glucose, mechanical load, or hypoxia. Here, we investigated the molecular mechanism involved in the induction of ctgf/ccn2 by hypoxia in a human chondrosarcoma cell line, HCS-2/8. Hypoxia increased the ctgf/ccn2 mRNA level by altering the 3'-untranslated region (UTR)-mediated mRNA stability without requiring de novo protein synthesis. After a series of extensive analyses, we eventually found that the cis-repressive element of 84 bases within the 3'-UTR specifically bound to a cytoplasmic/nuclear protein. By conducting a UV crosslinking assay, we found the cytoplasmic/nuclear protein to be a 35 kDa molecule that bound to the cis-element in a hypoxia-inducible manner. These results suggest that a cis-element in the 3'-UTR of ctgf/ccn2 mRNA and trans-factor counterpart(s) play an important role in the post-transcriptional regulation by determining the stability of ctgf/ccn2 mRNA.
Collapse
Affiliation(s)
- S Kondo
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Pan B, Shi K, Sundaralingam M. Synthesis, Purification and Crystallization of Guanine-rich RNA Oligonucleotides. Biol Proced Online 2004; 6:257-262. [PMID: 15562298 PMCID: PMC531606 DOI: 10.1251/bpo96] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2004] [Revised: 10/22/2004] [Accepted: 11/02/2004] [Indexed: 11/23/2022] Open
Abstract
Guanine-rich RNA oligonucleotides display many novel structural motifs in recent crystal structures. Here we describe the procedures of the chemical synthesis and the purification of such RNA molecules that are suitable for X-ray crystallographic studies. Modifications of the previous purification methods allow us to obtain better yields in shorter time. We also provide 24 screening conditions that are very effective in crystallization of the guanine-rich RNA oligonucleotides. Optimal crystallization conditions are usually achieved by adjustment of the concentration of the metal ions and pH of the buffer. Crystals obtained by this method usually diffract to high resolution.
Collapse
Affiliation(s)
- Baocheng Pan
- Departments of Chemistry and Biochemistry, The Ohio State University. 200 Johnston Laboratory, Columbus, OH 43210. USA
| | - Ke Shi
- Departments of Chemistry and Biochemistry, The Ohio State University. 200 Johnston Laboratory, Columbus, OH 43210. USA
| | - Muttaiya Sundaralingam
- Departments of Chemistry and Biochemistry, The Ohio State University. 200 Johnston Laboratory, Columbus, OH 43210. USA
| |
Collapse
|
19
|
Mukudai Y, Kubota S, Eguchi T, Kondo S, Nakao K, Takigawa M. Regulation of chicken ccn2 gene by interaction between RNA cis-element and putative trans-factor during differentiation of chondrocytes. J Biol Chem 2004; 280:3166-77. [PMID: 15550387 DOI: 10.1074/jbc.m411632200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
CCN2/CTGF is a multifunctional growth factor. Our previous studies have revealed that CCN2 plays important roles in both growth and differentiation of chondrocytes and that the 3'-untranslated region (3'-UTR) of ccn2 mRNA contains a cis-repressive element of gene expression. In the present study, we found that the stability of chicken ccn2 mRNA is regulated in a differentiation stage-dependent manner in chondrocytes. We also found that stimulation by bone morphogenetic protein 2, platelet-derived growth factor, and CCN2 stabilized ccn2 mRNA in proliferating chondrocytes but that it destabilized the mRNA in prehypertrophic-hypertrophic chondrocytes. The results of a reporter gene assay revealed that the minimal repressive cis-element of the 3'-UTR of chicken ccn2 mRNA was located within the area between 100 and 150 bases from the polyadenylation tail. Moreover, the stability of ccn2 mRNA was correlated with the interaction between this cis-element and a putative 40-kDa trans-factor in nuclei and cytoplasm. In fact, the binding between them was prominent in proliferating chondrocytes and attenuated in (pre)hypertrophic chondrocytes. Stimulation by the growth factors repressed the binding in proliferating chondrocytes; however, it enhanced it in (pre)hypertrophic chondrocytes. Therefore, gene expression of ccn2 mRNA during endochondral ossification is properly regulated, at least in part, by changing the stability of the mRNA, which arises from the interaction between the RNA cis-element and putative trans-factor.
Collapse
Affiliation(s)
- Yoshiki Mukudai
- Biodental Research Center, Okayama University Dental School and Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine and Dentistry, Okayama 700-8525, USA
| | | | | | | | | | | |
Collapse
|
20
|
Bunda S, Kaviani N, Hinek A. Fluctuations of intracellular iron modulate elastin production. J Biol Chem 2004; 280:2341-51. [PMID: 15537639 DOI: 10.1074/jbc.m409897200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Production of insoluble elastin, the major component of elastic fibers, can be modulated by numerous intrinsic and exogenous factors. Because patients with hemolytic disorders characterized with fluctuations in iron concentration demonstrate defective elastic fibers, we speculated that iron might also modulate elastogenesis. In the present report we demonstrate that treatment of cultured human skin fibroblasts with low concentration of iron 2-20 microm (ferric ammonium citrate) induced a significant increase in the synthesis of tropoelastin and deposition of insoluble elastin. Northern blot and real-time reverse transcription-PCR analysis revealed that treatment with 20 microm iron led to an increase of approximately 3-fold in elastin mRNA levels. Because treatment with an intracellular iron chelator, desferrioxamine, caused a significant decrease in elastin mRNA level and consequent inhibition of elastin deposition, we conclude that iron facilitates elastin gene expression. Our experimental evidence also demonstrates the existence of an opposite effect, in which higher, but not cytotoxic concentrations of iron (100-400 microm) induced the production of intracellular reactive oxygen species that coincided with a significant decrease in elastin message stability and the disappearance of iron-dependent stimulatory effect on elastogenesis. This stimulatory elastogenic effect was reversed, however, in cultures simultaneously treated with high iron concentration (200 microm) and the intracellular hydroxyl radical scavenger, dimethylthiourea. Thus, presented data, for the first time, demonstrate the existence of two opposite iron-dependent mechanisms that may affect the steady state of elastin message. We speculate that extreme fluctuations in intracellular iron levels result in impaired elastic fiber production as observed in hemolytic diseases.
Collapse
Affiliation(s)
- Severa Bunda
- Cardiovascular Research Program, The Hospital for Sick Children and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5G 1X8, Canada
| | | | | |
Collapse
|
21
|
Marano RJ, Brankov M, Rakoczy PE. Discovery of a novel control element within the 5'-untranslated region of the vascular endothelial growth factor. Regulation of expression using sense oligonucleotides. J Biol Chem 2004; 279:37808-14. [PMID: 15213238 DOI: 10.1074/jbc.m400047200] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The regulation of vascular endothelial growth factor (VEGF), a potent stimulator of angiogenesis, is controlled primarily through the interactions of control elements located within the 5'- and 3'-untranslated regions, many of which are yet to be described. In this study we examined the 5'-untranslated region of human VEGF for control elements with the aim of regulating expression both in vitro and in vivo using oligonucleotide gene therapy. A potential control element was located, two sense oligonucleotides (S(1) and S(2)) were designed based on its sequence, and a third oligonucleotide (S(3)) was designed as a control and mapped to the 16 base pairs immediately upstream. Retinal cells cultured in the presence of S(1) and S(2) resulted in a 2-fold increase of VEGF protein and a 1.5-fold increase in mRNA 24 h post-transfection whereas S(3) had no significant effect (p > 0.05) compared with controls. Subsequent reporter gene studies confirmed the necessity of this element for up-regulation by S(1). Further in vivo studies showed that S(1) and S(2) mediated an increase in VEGF protein in a rodent ocular model that resulted in angiogenesis. In addition to providing insight into the regulation of the vascular endothelial growth factor, the use of these oligonucleotides to stimulate vascular growth may prove useful for the treatment of ischemic tissues such as those found in the heart following infarct.
Collapse
Affiliation(s)
- Robert J Marano
- Department of Molecular Ophthalmology, Lions Eye Institute, University of Western Australia, Western Australia, Australia
| | | | | |
Collapse
|
22
|
Pan B, Xiong Y, Shi K, Deng J, Sundaralingam M. Crystal structure of an RNA purine-rich tetraplex containing adenine tetrads: implications for specific binding in RNA tetraplexes. Structure 2003; 11:815-23. [PMID: 12842044 DOI: 10.1016/s0969-2126(03)00107-2] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Purine-rich regions in DNA and RNA may contain both guanines and adenines, which have various biological functions. Here we report the crystal structure of an RNA purine-rich fragment containing both guanine and adenine at 1.4 A resolution. Adenines form an adenine tetrad in the N6-H em leader N7 conformation. Substitution of an adenine tetrad in the guanine tetraplex does not change the global conformation but introduces irregularity in both the hydrogen bonding interaction pattern in the groove and the metal ion binding pattern in the central cavity of the tetraplex. The irregularity in groove binding may be critical for specific binding in tetraplexes. The formation of G-U octads provides a mechanism for interaction in the groove. Ba(2+) ions prefer to bind guanine tetrads, and adenine tetrads can only be bound by Na(+) ions, illustrating the binding selectivity of metal ions for the tetraplex.
Collapse
Affiliation(s)
- Baocheng Pan
- Departments of Chemistry and Biochemistry, The Ohio State University, 200 Johnston Lab, 176 West 19th Avenue, Columbus, OH 43210, USA
| | | | | | | | | |
Collapse
|
23
|
Visconti RP, Barth JL, Keeley FW, Little CD. Codistribution analysis of elastin and related fibrillar proteins in early vertebrate development. Matrix Biol 2003; 22:109-21. [PMID: 12782138 DOI: 10.1016/s0945-053x(03)00014-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Elastin is an extracellular matrix protein found in adult and neonatal vasculature, lung, skin and connective tissue. It is secreted as tropoelastin, a soluble protein that is cross-linked in the tissue space to form an insoluble elastin matrix. Cross-linked elastin can be found in association with several microfibril-associated proteins including fibrillin-1, fibrillin-2 and fibulin-1 suggesting that these proteins contribute to elastic fiber assembly, structure or function. To date, the earliest reported elastin expression was in the conotruncal region of the developing avian heart at 3.5 days of gestation. Here we report that elastin expression begins at significantly earlier developmental stages. Using a novel immunolabeling method, the deposition of elastin, fibrillin-1 and -2 and fibulin-1 was analyzed in avian embryos at several time points during the first 2 days of development. Elastin was found at the midline associated with axial structures such as the notochord and somites at 23 h of development. Fibrillin-1 and -2 and fibulin-1 were also expressed at the embryonic midline at this stage with fibrillin-1 and fibulin-1 showing a high degree of colocalization with elastin in fibers surrounding midline structures. The expression of these genes was confirmed by conventional immunoblotting and mRNA detection methods. Our results demonstrate that elastin polypeptide deposition occurs much earlier than was previously appreciated. Furthermore, the results suggest that elastin deposition at the early embryonic midline is accompanied by the deposition and organization of a number of extracellular matrix polypeptides. These filamentous extracellular matrix structures may act to transduce or otherwise stabilize dynamic forces generated during embryogenesis.
Collapse
Affiliation(s)
- Richard P Visconti
- Department of Cell Biology and the Cardiovascular Developmental Biology Center, Medical University of South Carolina, Charleston, SC 29425, USA
| | | | | | | |
Collapse
|
24
|
Deschenes-Furry J, Belanger G, Perrone-Bizzozero N, Jasmin BJ. Post-transcriptional regulation of acetylcholinesterase mRNAs in nerve growth factor-treated PC12 cells by the RNA-binding protein HuD. J Biol Chem 2003; 278:5710-7. [PMID: 12468554 DOI: 10.1074/jbc.m209383200] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Expression of acetylcholinesterase (AChE) is greatly enhanced during neuronal differentiation, but the nature of the molecular mechanisms remains to be fully defined. In this study, we observed that nerve growth factor treatment of PC12 cells leads to a progressive increase in the expression of AChE transcripts, reaching approximately 3.5-fold by 72 h. Given that the AChE 3'-untranslated region (UTR) contains an AU-rich element, we focused on the potential role of the RNA-binding protein HuD in mediating the increase in AChE mRNA seen in differentiating neurons. Using PC12 cells engineered to stably express HuD or an antisense to HuD, our studies indicate that HuD can regulate the abundance of AChE transcripts in neuronal cells. Furthermore, transfection of a reporter construct containing the AChE 3'-UTR showed that this 3'-UTR can increase expression of the reporter gene product in cells expressing HuD but not in cells expressing the antisense. RNA gel shifts and Northwestern blots revealed an increase in the binding of several protein complexes in differentiated neurons. Immunoprecipitation experiments demonstrated that HuD can bind directly AChE transcripts. These results show the importance of post-transcriptional mechanisms in regulating AChE expression in differentiating neurons and implicate HuD as a key trans-acting factor in these events.
Collapse
Affiliation(s)
- Julie Deschenes-Furry
- Department of Cellular and Molecular Medicine and Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | | | | | | |
Collapse
|
25
|
Liu H, Matsugami A, Katahira M, Uesugi S. A dimeric RNA quadruplex architecture comprised of two G:G(:A):G:G(:A) hexads, G:G:G:G tetrads and UUUU loops. J Mol Biol 2002; 322:955-70. [PMID: 12367521 DOI: 10.1016/s0022-2836(02)00876-8] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Using CD and NMR, we determined the structure of an RNA oligomer, r(GGAGGUUUUGGAGG) (R14), comprising two GGAGG segments joined by a UUUU segment. A modified quadruplex structure was observed for r(GGAGGUUUUGGAGG) in solution even in the absence of K(+). An unusually stable dimeric RNA quadruplex architecture formed from two strands of r(GGAGGUUUUGGAGG) at low K(+) concentration is reported here. In each strand of r(GGAGGUUUUGGAGG), two sets of successive turns in the GGAGG segments and turns at both ends of the UUUU loops drive four G-G steps to align in a parallel manner, a core with two stacked G-tetrads being formed. Two adenine bases bind to two edges of one G:G:G:G tetrad through the sheared G:A mismatch augmenting the tetrad into a G:G(:A):G:G(:A) hexad. Thus, one molecule of r(GGAGGUUUUGGAGG) folds into a modified quadruplex comprising a G:G:G:G tetrad, a UUUU double-chain reversal loop and a G:G(:A):G:G(:A) hexad. Two such molecules further associate by stacking through the dimeric hexad-hexad interface with a rotational symmetry. The ribose rings of most nucleotides take S (close to C2'-endo) puckering, which is unusual for an RNA. K(+) can increase the stability of this quadruplex structure; the number of bound K(+) was estimated from the results of the titration experiment. Besides G:G and G:A mismatches, a network of hydrogen bonds including O4'-NH(2) and C-H..O hydrogen bonds, and the extensive base stacking contribute to the high thermodynamic stability of R14. Our results could provide the stereochemical and thermodynamic basis for elucidating the biological role of the GGAGG-containing RNA segments abundantly existing in various RNAs. Relevance to quadruplex-mediated mRNA-FMRP binding and HIV-1 genome RNA dimerization is discussed.
Collapse
Affiliation(s)
- Hui Liu
- Department of Environment and Natural Sciences, Graduate School of Environment and Information Sciences, Yokohama National University, 79-7 Tokiwadai, Hodogaya-ku, Yokohama, Japan
| | | | | | | |
Collapse
|
26
|
Josse C, Boelaert JR, Best-Belpomme M, Piette J. Importance of post-transcriptional regulation of chemokine genes by oxidative stress. Biochem J 2001; 360:321-33. [PMID: 11716760 PMCID: PMC1222232 DOI: 10.1042/0264-6021:3600321] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The transcription factor, nuclear factor kappa B (NF-kappa B), is activated by various stimuli including cytokines, radiation, viruses and oxidative stress. Here we show that, although induction with H(2)O(2) gives rise to NF-kappa B nuclear translocation in both lymphocyte (CEM) and monocyte (U937) cells, it leads only to the production of mRNA species encoding interleukin-8 (IL-8) and macrophage inflammatory protein 1 alpha in U937 cells. Under similar conditions these mRNA species are not observed in CEM cells. With the use of a transient transfection assay of U937 cells transfected with reporter constructs of the IL-8 promoter and subsequently treated with H(2)O(2), we show that (1) IL-8-promoter-driven transcription is stimulated in both U937 and CEM cells and (2) the NF-kappa B site is crucial for activation because its deletion abolishes activation by H(2)O(2). The production of IL-8 mRNA in U937 cells is inhibited by the NF-kappa B inhibitors clasto-lactacystin-beta-lactone and E-64D (l-3-trans-ethoxycarbonyloxirane-2-carbonyl-L-leucine-3-methyl amide) but requires protein synthesis de novo. Moreover, inhibition of the p38 mitogen-activated protein kinase also decreases the IL-8 mRNA up-regulation mediated by H(2)O(2). Taken together, these results show the importance of post-transcriptional events controlled by a p38-dependent pathway in the production of IL-8 mRNA in U937. The much lower activation of p38 in CEM cells in response to H(2)O(2) could explain the lack of stabilization of IL-8 mRNA in these cells.
Collapse
Affiliation(s)
- C Josse
- Laboratory of Virology and Immunology, Institute of Pathology B23, University of Liège, B-4000 Liège, Belgium
| | | | | | | |
Collapse
|
27
|
Mazumder B, Seshadri V, Imataka H, Sonenberg N, Fox PL. Translational silencing of ceruloplasmin requires the essential elements of mRNA circularization: poly(A) tail, poly(A)-binding protein, and eukaryotic translation initiation factor 4G. Mol Cell Biol 2001; 21:6440-9. [PMID: 11533233 PMCID: PMC99791 DOI: 10.1128/mcb.21.19.6440-6449.2001] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ceruloplasmin (Cp) is a glycoprotein secreted by the liver and monocytic cells and probably plays roles in inflammation and iron metabolism. We showed previously that gamma interferon (IFN-gamma) induced Cp synthesis by human U937 monocytic cells but that the synthesis was subsequently halted by a transcript-specific translational silencing mechanism involving the binding of a cytosolic factor(s) to the Cp mRNA 3' untranslated region (UTR). To investigate how protein interactions at the Cp 3'-UTR inhibit translation initiation at the distant 5' end, we considered the "closed-loop" model of mRNA translation. In this model, the transcript termini are brought together by interactions of poly(A)-binding protein (PABP) with both the poly(A) tail and initiation factor eIF4G. The effect of these elements on Cp translational control was tested using chimeric reporter transcripts in rabbit reticulocyte lysates. The requirement for poly(A) was shown since the cytosolic inhibitor from IFN-gamma-treated cells minimally inhibited the translation of a luciferase reporter upstream of the Cp 3'-UTR but almost completely blocked the translation of a transcript containing a poly(A) tail. Likewise, a requirement for poly(A) was shown for silencing of endogenous Cp mRNA. We considered the possibility that the cytosolic inhibitor blocked the interaction of PABP with the poly(A) tail or with eIF4G. We found that neither of these interactions were inhibited, as shown by immunoprecipitation of PABP followed by quantitation of the poly(A) tail by reverse transcription-PCR and of eIF4G by immunoblot analysis. We considered the alternate possibility that these interactions were required for translational silencing. When PABP was depleted from the reticulocyte lysate with anti-human PABP antibody, the cytosolic factor did not inhibit translation of the chimeric reporter, thus showing the requirement for PABP. Similarly, in lysates treated with anti-human eIF4G antibody, the cytosolic extract did not inhibit the translation of the chimeric reporter, thereby showing a requirement for eIF4G. These data show that translational silencing of Cp requires interactions of three essential elements of mRNA circularization, poly(A), PABP, and eIF4G. We suggest that Cp mRNA circularization brings the cytosolic Cp 3'-UTR-binding factor into the proximity of the translation initiation site, where it silences translation by an undetermined mechanism. These results suggest that in addition to its important function in increasing the efficiency of translation, transcript circularization may serve as an essential structural determinant for transcript-specific translational control.
Collapse
Affiliation(s)
- B Mazumder
- Department of Cell Biology, The Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | | | | | | | | |
Collapse
|
28
|
Misquitta CM, Iyer VR, Werstiuk ES, Grover AK. The role of 3'-untranslated region (3'-UTR) mediated mRNA stability in cardiovascular pathophysiology. Mol Cell Biochem 2001; 224:53-67. [PMID: 11693200 DOI: 10.1023/a:1011982932645] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Knowledge of transcription and translation has advanced our understanding of cardiac diseases. Here, we present the hypothesis that the stability of mRNA mediated by the 3'-untranslated region (3'-UTR) plays a role in changing gene expression in cardiovascular pathophysiology. Several proteins that bind to sequences in the 3'-UTR of mRNA of cardiovascular targets have been identified. The affected mRNAs include those encoding beta-adrenergic receptors, angiotensin II receptors, endothelial and inducible nitric oxide synthases, cyclooxygenase, endothelial growth factor, tissue necrosis factor (TNF-alpha), globin, elastin, proteins involved in cell cycle regulation, oncogenes, cytokines and lymphokines. We discuss: (a) the types of 3'-UTR sequences involved in mRNA stability, (b) AUF1, HuR and other proteins that bind to these sequences to either stabilize or destabilize the target mRNAs, and (c) the potential role of the 3'-UTR mediated mRNA stability in heart failure, myocardial infarction and hypertension. We hope that these concepts will aid in better understanding cardiovascular diseases and in developing new therapies.
Collapse
Affiliation(s)
- C M Misquitta
- Department of Biology, McMaster University, Hamilton, ON, Canada
| | | | | | | |
Collapse
|