1
|
Sun Q, Li Y, Jiang H, Du Q, Wang J, Fan R, Han R, Yang Y. Comparison of bacterial intracellular and secreted proteins produced in milk versus medium for Escherichia coli by proteomic analysis. J Dairy Sci 2025; 108:3354-3365. [PMID: 39778797 DOI: 10.3168/jds.2024-25843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 12/04/2024] [Indexed: 01/11/2025]
Abstract
The growth and reproduction of microorganisms are dependent on nutrient supply. Here, milk and Luria-Bertani (LB) media were used as nutrition sources for Escherichia coli, and the changes in bacterial and secretory proteins at 3 time points (3, 9, and 18 h) in the growth cycle were studied using a label-free proteomics technique. The findings revealed that the abundances of bacterial intracellular proteins inosine/xanthosine triphosphatase and universal stress protein F increase dramatically during the growth phase in milk and LB media. In terms of secretory proteins, RNase PH and tyrosine-tRNA ligase abundance increased dramatically, and outer membrane protein X and outer membrane protein C abundance decreased significantly from 3 to 18 h in both milk and LB media. Several bacterial intracellular and secretory proteins showed media-dependent changes, including hydrogenase-2 and s-adenosylmethionine synthase, which were only found in the LB medium. In contrast, DNA polymerase III subunit α and cold shock-like protein CspD (CspD) were discovered only in milk. The 2 media shared the differential abundance of proteins involved in small molecule binding and small molecule metabolic process pathways. The differentially expressed intracellular proteins of E. coli cultured in milk were associated with membrane trafficking and signal transduction pathways. The findings improve our understanding of changes in E. coli bacterial intracellular proteins and secretory proteins in response to nutritional stimuli, as well as provide a new perspective and foundation for investigating its adaptive mechanisms in a variety of environments, potentially leading to better prevention and control strategies.
Collapse
Affiliation(s)
- Qiyue Sun
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, Shandong, China
| | - Yanxin Li
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, Shandong, China
| | - Hongning Jiang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, Shandong, China
| | - Qijing Du
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, Shandong, China
| | - Jun Wang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, Shandong, China
| | - Rongbo Fan
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, Shandong, China
| | - Rongwei Han
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, Shandong, China; Bathurst Future Agri-Tech Institute, Qingdao Agricultural University, Qingdao, 266109, Shandong, China
| | - Yongxin Yang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, Shandong, China; Bathurst Future Agri-Tech Institute, Qingdao Agricultural University, Qingdao, 266109, Shandong, China.
| |
Collapse
|
2
|
Sushkin ME, Jung M, Lemke EA. Tuning the Functionality of Designer Translating Organelles with Orthogonal tRNA Synthetase/tRNA Pairs. J Mol Biol 2024; 436:168728. [PMID: 39089364 DOI: 10.1016/j.jmb.2024.168728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 07/22/2024] [Accepted: 07/25/2024] [Indexed: 08/03/2024]
Abstract
Site-specific incorporation of noncanonical amino acids (ncAAs) can be realized by genetic code expansion (GCE) technology. Different orthogonal tRNA synthetase/tRNA (RS/tRNA) pairs have been developed to introduce a ncAA at the desired site, delivering a wide variety of functionalities that can be installed into selected proteins. Cytoplasmic expression of RS/tRNA pairs can cause a problem with background ncAA incorporation into host proteins. The application of orthogonally translating organelles (OTOs), inspired by the concept of phase separation, provides a solution for this issue in mammalian cells, allowing site-specific and protein-selective ncAA incorporation. So far, only Methanosarcina mazei (Mm) pyrrolysyl-tRNA synthetase (PylRS) has been used within OTOs, limiting the method's potential. Here, we explored the implementation of four other widely used orthogonal RS/tRNA pairs with OTOs, which, to our surprise, were unsuccessful in generating mRNA-selective GCE. Next, we tested several experimental solutions and developed a new chimeric phenylalanyl-RS/tRNA pair that enables ncAA incorporation in OTOs in a site-specific and protein-selective manner. Our work reveals unaccounted design constraints in the spatial engineering of enzyme functions using designer organelles and presents a strategy to overcome those in vivo. We then discuss current limitations and future directions of in-cell engineering in general and protein engineering using GCE specifically.
Collapse
Affiliation(s)
- Mikhail E Sushkin
- Biocenter, Johannes Gutenberg University Mainz, Hanns-Dieter-Hüsch-Weg 17, 55128 Mainz, Germany; International PhD Programme of the Institute of Molecular Biology (IMB) gGmbH, Hanns-Dieter-Hüsch-Weg 17, 55128 Mainz, Germany
| | - Marius Jung
- Biocenter, Johannes Gutenberg University Mainz, Hanns-Dieter-Hüsch-Weg 17, 55128 Mainz, Germany; Biocenter, IMPRS on Cellular Biophysics, Johannes Gutenberg University Mainz, Hanns-Dieter-Hüsch-Weg 17, 55128 Mainz, Germany
| | - Edward A Lemke
- Biocenter, Johannes Gutenberg University Mainz, Hanns-Dieter-Hüsch-Weg 17, 55128 Mainz, Germany; Institute of Molecular Biology (IMB) gGmbH, Ackermannweg 4, 55128 Mainz, Germany.
| |
Collapse
|
3
|
Ganesh RB, Maerkl SJ. Biochemistry of Aminoacyl tRNA Synthetase and tRNAs and Their Engineering for Cell-Free and Synthetic Cell Applications. Front Bioeng Biotechnol 2022; 10:918659. [PMID: 35845409 PMCID: PMC9283866 DOI: 10.3389/fbioe.2022.918659] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/18/2022] [Indexed: 11/13/2022] Open
Abstract
Cell-free biology is increasingly utilized for engineering biological systems, incorporating novel functionality, and circumventing many of the complications associated with cells. The central dogma describes the information flow in biology consisting of transcription and translation steps to decode genetic information. Aminoacyl tRNA synthetases (AARSs) and tRNAs are key components involved in translation and thus protein synthesis. This review provides information on AARSs and tRNA biochemistry, their role in the translation process, summarizes progress in cell-free engineering of tRNAs and AARSs, and discusses prospects and challenges lying ahead in cell-free engineering.
Collapse
|
4
|
Hartman MCT. Non-canonical Amino Acid Substrates of E. coli Aminoacyl-tRNA Synthetases. Chembiochem 2022; 23:e202100299. [PMID: 34416067 PMCID: PMC9651912 DOI: 10.1002/cbic.202100299] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/03/2021] [Indexed: 01/07/2023]
Abstract
In this comprehensive review, I focus on the twenty E. coli aminoacyl-tRNA synthetases and their ability to charge non-canonical amino acids (ncAAs) onto tRNAs. The promiscuity of these enzymes has been harnessed for diverse applications including understanding and engineering of protein function, creation of organisms with an expanded genetic code, and the synthesis of diverse peptide libraries for drug discovery. The review catalogues the structures of all known ncAA substrates for each of the 20 E. coli aminoacyl-tRNA synthetases, including ncAA substrates for engineered versions of these enzymes. Drawing from the structures in the list, I highlight trends and novel opportunities for further exploitation of these ncAAs in the engineering of protein function, synthetic biology, and in drug discovery.
Collapse
Affiliation(s)
- Matthew C T Hartman
- Department of Chemistry and Massey Cancer Center, Virginia Commonwealth University, 1001 W Main St., Richmond, VA 23220, USA
| |
Collapse
|
5
|
Schwark DG, Schmitt MA, Fisk JD. Directed Evolution of the Methanosarcina barkeri Pyrrolysyl tRNA/aminoacyl tRNA Synthetase Pair for Rapid Evaluation of Sense Codon Reassignment Potential. Int J Mol Sci 2021; 22:E895. [PMID: 33477414 PMCID: PMC7830368 DOI: 10.3390/ijms22020895] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/10/2021] [Accepted: 01/12/2021] [Indexed: 12/20/2022] Open
Abstract
Genetic code expansion has largely focused on the reassignment of amber stop codons to insert single copies of non-canonical amino acids (ncAAs) into proteins. Increasing effort has been directed at employing the set of aminoacyl tRNA synthetase (aaRS) variants previously evolved for amber suppression to incorporate multiple copies of ncAAs in response to sense codons in Escherichia coli. Predicting which sense codons are most amenable to reassignment and which orthogonal translation machinery is best suited to each codon is challenging. This manuscript describes the directed evolution of a new, highly efficient variant of the Methanosarcina barkeri pyrrolysyl orthogonal tRNA/aaRS pair that activates and incorporates tyrosine. The evolved M. barkeri tRNA/aaRS pair reprograms the amber stop codon with 98.1 ± 3.6% efficiency in E. coli DH10B, rivaling the efficiency of the wild-type tyrosine-incorporating Methanocaldococcus jannaschii orthogonal pair. The new orthogonal pair is deployed for the rapid evaluation of sense codon reassignment potential using our previously developed fluorescence-based screen. Measurements of sense codon reassignment efficiencies with the evolved M. barkeri machinery are compared with related measurements employing the M. jannaschii orthogonal pair system. Importantly, we observe different patterns of sense codon reassignment efficiency for the M. jannaschii tyrosyl and M. barkeri pyrrolysyl systems, suggesting that particular codons will be better suited to reassignment by different orthogonal pairs. A broad evaluation of sense codon reassignment efficiencies to tyrosine with the M. barkeri system will highlight the most promising positions at which the M. barkeri orthogonal pair may infiltrate the E. coli genetic code.
Collapse
Affiliation(s)
| | | | - John D. Fisk
- Department of Chemistry, University of Colorado Denver, Campus Box 194, P.O. Box 173364, Denver, CO 80217-3364, USA; (D.G.S.); (M.A.S.)
| |
Collapse
|
6
|
Baumann T, Hauf M, Richter F, Albers S, Möglich A, Ignatova Z, Budisa N. Computational Aminoacyl-tRNA Synthetase Library Design for Photocaged Tyrosine. Int J Mol Sci 2019; 20:ijms20092343. [PMID: 31083552 PMCID: PMC6539999 DOI: 10.3390/ijms20092343] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/07/2019] [Accepted: 05/09/2019] [Indexed: 01/20/2023] Open
Abstract
Engineering aminoacyl-tRNA synthetases (aaRSs) provides access to the ribosomal incorporation of noncanonical amino acids via genetic code expansion. Conventional targeted mutagenesis libraries with 5–7 positions randomized cover only marginal fractions of the vast sequence space formed by up to 30 active site residues. This frequently results in selection of weakly active enzymes. To overcome this limitation, we use computational enzyme design to generate a focused library of aaRS variants. For aaRS enzyme redesign, photocaged ortho-nitrobenzyl tyrosine (ONBY) was chosen as substrate due to commercial availability and its diverse applications. Diversifying 17 first- and second-shell sites and performing conventional aaRS positive and negative selection resulted in a high-activity aaRS. This MjTyrRS variant carries ten mutations and outperforms previously reported ONBY-specific aaRS variants isolated from traditional libraries. In response to a single in-frame amber stop codon, it mediates the in vivo incorporation of ONBY with an efficiency matching that of the wild type MjTyrRS enzyme acylating cognate tyrosine. These results exemplify an improved general strategy for aaRS library design and engineering.
Collapse
Affiliation(s)
- Tobias Baumann
- Institut für Chemie, Technische Universität Berlin, Müller-Breslau-Straße 10, 10623 Berlin, Germany.
| | - Matthias Hauf
- Institut für Chemie, Technische Universität Berlin, Müller-Breslau-Straße 10, 10623 Berlin, Germany.
| | - Florian Richter
- Biophysikalische Chemie, Institut für Biologie, Humboldt-Universität zu Berlin, 10115 Berlin, Germany.
| | - Suki Albers
- Institute of Biochemistry and Molecular Biology, University of Hamburg, 20146 Hamburg, Germany.
| | - Andreas Möglich
- Biophysikalische Chemie, Institut für Biologie, Humboldt-Universität zu Berlin, 10115 Berlin, Germany.
- Lehrstuhl für Biochemie, Universität Bayreuth, 95447 Bayreuth, Germany.
| | - Zoya Ignatova
- Institute of Biochemistry and Molecular Biology, University of Hamburg, 20146 Hamburg, Germany.
| | - Nediljko Budisa
- Institut für Chemie, Technische Universität Berlin, Müller-Breslau-Straße 10, 10623 Berlin, Germany.
- Department of Chemistry, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
| |
Collapse
|
7
|
Crnković A, Vargas-Rodriguez O, Söll D. Plasticity and Constraints of tRNA Aminoacylation Define Directed Evolution of Aminoacyl-tRNA Synthetases. Int J Mol Sci 2019; 20:ijms20092294. [PMID: 31075874 PMCID: PMC6540133 DOI: 10.3390/ijms20092294] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 04/29/2019] [Accepted: 05/07/2019] [Indexed: 02/07/2023] Open
Abstract
Genetic incorporation of noncanonical amino acids (ncAAs) has become a powerful tool to enhance existing functions or introduce new ones into proteins through expanded chemistry. This technology relies on the process of nonsense suppression, which is made possible by directing aminoacyl-tRNA synthetases (aaRSs) to attach an ncAA onto a cognate suppressor tRNA. However, different mechanisms govern aaRS specificity toward its natural amino acid (AA) substrate and hinder the engineering of aaRSs for applications beyond the incorporation of a single l-α-AA. Directed evolution of aaRSs therefore faces two interlinked challenges: the removal of the affinity for cognate AA and improvement of ncAA acylation. Here we review aspects of AA recognition that directly influence the feasibility and success of aaRS engineering toward d- and β-AAs incorporation into proteins in vivo. Emerging directed evolution methods are described and evaluated on the basis of aaRS active site plasticity and its inherent constraints.
Collapse
Affiliation(s)
- Ana Crnković
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA.
| | - Oscar Vargas-Rodriguez
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA.
| | - Dieter Söll
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA.
- Department of Chemistry, Yale University, New Haven, CT 06520, USA.
| |
Collapse
|
8
|
Venkat S, Gregory C, Gan Q, Fan C. Biochemical Characterization of the Lysine Acetylation of Tyrosyl-tRNA Synthetase in Escherichia coli. Chembiochem 2017; 18:1928-1934. [PMID: 28741290 PMCID: PMC5629106 DOI: 10.1002/cbic.201700343] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Indexed: 12/21/2022]
Abstract
Aminoacyl-tRNA synthetases (aaRSs) play essential roles in protein synthesis. As a member of the aaRS family, the tyrosyl-tRNA synthetase (TyrRS) in Escherichia coli has been shown in proteomic studies to be acetylated at multiple lysine residues. However, these putative acetylation targets have not yet been biochemically characterized. In this study, we applied a genetic-code-expansion strategy to site-specifically incorporate Nϵ -acetyl-l-lysine into selected positions of TyrRS for in vitro characterization. Enzyme assays demonstrated that acetylation at K85, K235, and K238 could impair the enzyme activity. In vitro deacetylation experiments showed that most acetylated lysine residues in TyrRS were sensitive to the E. coli deacetylase CobB but not YcgC. In vitro acetylation assays indicated that 25 members of the Gcn5-related N-acetyltransferase family in E. coli, including YfiQ, could not acetylate TyrRS efficiently, whereas TyrRS could be acetylated chemically by acetyl-CoA or acetyl-phosphate (AcP) only. Our in vitro characterization experiments indicated that lysine acetylation could be a possible mechanism for modulating aaRS enzyme activities, thus affecting translation.
Collapse
Affiliation(s)
- Sumana Venkat
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Caroline Gregory
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, 727011, USA
| | - Qinglei Gan
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Chenguang Fan
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR, 72701, USA
| |
Collapse
|
9
|
Skupińska M, Stępniak P, Łętowska I, Rychlewski L, Barciszewska M, Barciszewski J, Giel-Pietraszuk M. Natural Compounds as Inhibitors of Tyrosyl-tRNA Synthetase. Microb Drug Resist 2016; 23:308-320. [PMID: 27487455 DOI: 10.1089/mdr.2015.0272] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Tyrosyl-tRNA synthetases (TyrRSs) as essential enzymes for all living organisms are good candidates for therapeutic target in the prevention and therapy of microbial infection. We examined the effect of various polyphenols, alkaloids, and terpenes-secondary metabolites produced by higher plants showing many beneficial properties for the human organism, on bacterial aminoacylation reaction. The most potent inhibitors of Escherichia coli TyrRS are epigallocatechin gallate, acacetin, kaempferide, and chrysin, whereas the enzymes from Staphylococcus aureus and Pseudomonas aeruginosa are inhibited mainly by acacetin and chrysin. Most of them act as competitive inhibitors. Structure-activity relationship showed that the most potent flavonoid inhibitors contain hydroxyl group at position 5 and 7 of A ring and OCH3 group at position 4' of B ring.
Collapse
Affiliation(s)
- Mirosława Skupińska
- 1 Institute of Bioorganic Chemistry , Polish Academy of Sciences, Noskowskiego, Poznan, Poland
| | | | - Iwona Łętowska
- 3 Center of Microbiology and Infectious Diseases, National Institute of Public Health , Chelmska, Warsaw, Poland
| | | | - Mirosława Barciszewska
- 1 Institute of Bioorganic Chemistry , Polish Academy of Sciences, Noskowskiego, Poznan, Poland
| | - Jan Barciszewski
- 1 Institute of Bioorganic Chemistry , Polish Academy of Sciences, Noskowskiego, Poznan, Poland
| | | |
Collapse
|
10
|
Winiger CB, Kim MJ, Hoshika S, Shaw RW, Moses JD, Matsuura MF, Gerloff DL, Benner SA. Polymerase Interactions with Wobble Mismatches in Synthetic Genetic Systems and Their Evolutionary Implications. Biochemistry 2016; 55:3847-50. [DOI: 10.1021/acs.biochem.6b00533] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Christian B. Winiger
- Foundation for
Applied Molecular Evolution (FfAME), 13709 Progress Blvd., Box 7, Alachua, Florida 32615, United States
| | - Myong-Jung Kim
- Foundation for
Applied Molecular Evolution (FfAME), 13709 Progress Blvd., Box 7, Alachua, Florida 32615, United States
- Firebird Biomolecular
Sciences LLC, 13709 Progress Blvd., Box 17, Alachua, Florida 32615, United States
| | - Shuichi Hoshika
- Foundation for
Applied Molecular Evolution (FfAME), 13709 Progress Blvd., Box 7, Alachua, Florida 32615, United States
- Firebird Biomolecular
Sciences LLC, 13709 Progress Blvd., Box 17, Alachua, Florida 32615, United States
| | - Ryan W. Shaw
- Foundation for
Applied Molecular Evolution (FfAME), 13709 Progress Blvd., Box 7, Alachua, Florida 32615, United States
- Firebird Biomolecular
Sciences LLC, 13709 Progress Blvd., Box 17, Alachua, Florida 32615, United States
| | - Jennifer D. Moses
- Foundation for
Applied Molecular Evolution (FfAME), 13709 Progress Blvd., Box 7, Alachua, Florida 32615, United States
- Firebird Biomolecular
Sciences LLC, 13709 Progress Blvd., Box 17, Alachua, Florida 32615, United States
| | - Mariko F. Matsuura
- Foundation for
Applied Molecular Evolution (FfAME), 13709 Progress Blvd., Box 7, Alachua, Florida 32615, United States
- Department
of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Dietlind L. Gerloff
- Foundation for
Applied Molecular Evolution (FfAME), 13709 Progress Blvd., Box 7, Alachua, Florida 32615, United States
| | - Steven A. Benner
- Foundation for
Applied Molecular Evolution (FfAME), 13709 Progress Blvd., Box 7, Alachua, Florida 32615, United States
- Firebird Biomolecular
Sciences LLC, 13709 Progress Blvd., Box 17, Alachua, Florida 32615, United States
| |
Collapse
|
11
|
Simonson T, Ye-Lehmann S, Palmai Z, Amara N, Wydau-Dematteis S, Bigan E, Druart K, Moch C, Plateau P. Redesigning the stereospecificity of tyrosyl-tRNA synthetase. Proteins 2016; 84:240-53. [PMID: 26676967 DOI: 10.1002/prot.24972] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 09/30/2015] [Accepted: 11/26/2015] [Indexed: 12/14/2022]
Abstract
D-Amino acids are largely excluded from protein synthesis, yet they are of great interest in biotechnology. Unnatural amino acids have been introduced into proteins using engineered aminoacyl-tRNA synthetases (aaRSs), and this strategy might be applicable to D-amino acids. Several aaRSs can aminoacylate their tRNA with a D-amino acid; of these, tyrosyl-tRNA synthetase (TyrRS) has the weakest stereospecificity. We use computational protein design to suggest active site mutations in Escherichia coli TyrRS that could increase its D-Tyr binding further, relative to L-Tyr. The mutations selected all modify one or more sidechain charges in the Tyr binding pocket. We test their effect by probing the aminoacyl-adenylation reaction through pyrophosphate exchange experiments. We also perform extensive alchemical free energy simulations to obtain L-Tyr/D-Tyr binding free energy differences. Agreement with experiment is good, validating the structural models and detailed thermodynamic predictions the simulations provide. The TyrRS stereospecificity proves hard to engineer through charge-altering mutations in the first and second coordination shells of the Tyr ammonium group. Of six mutants tested, two are active towards D-Tyr; one of these has an inverted stereospecificity, with a large preference for D-Tyr. However, its activity is low. Evidently, the TyrRS stereospecificity is robust towards charge rearrangements near the ligand. Future design may have to consider more distant and/or electrically neutral target mutations, and possibly design for binding of the transition state, whose structure however can only be modeled.
Collapse
Affiliation(s)
- Thomas Simonson
- Department of Biology, Laboratoire De Biochimie (CNRS UMR7654), Ecole Polytechnique, Palaiseau, 91128, France
| | | | - Zoltan Palmai
- Department of Biology, Laboratoire De Biochimie (CNRS UMR7654), Ecole Polytechnique, Palaiseau, 91128, France
| | - Najette Amara
- Department of Biology, Laboratoire De Biochimie (CNRS UMR7654), Ecole Polytechnique, Palaiseau, 91128, France
| | - Sandra Wydau-Dematteis
- Department of Biology, Laboratoire De Biochimie (CNRS UMR7654), Ecole Polytechnique, Palaiseau, 91128, France
| | - Erwan Bigan
- Department of Biology, Laboratoire De Biochimie (CNRS UMR7654), Ecole Polytechnique, Palaiseau, 91128, France
| | - Karen Druart
- Department of Biology, Laboratoire De Biochimie (CNRS UMR7654), Ecole Polytechnique, Palaiseau, 91128, France
| | - Clara Moch
- Department of Biology, Laboratoire De Biochimie (CNRS UMR7654), Ecole Polytechnique, Palaiseau, 91128, France
| | - Pierre Plateau
- Department of Biology, Laboratoire De Biochimie (CNRS UMR7654), Ecole Polytechnique, Palaiseau, 91128, France
| |
Collapse
|
12
|
Kwon I, Lim SI. Tailoring the substrate specificity of yeast phenylalanyl-tRNA synthetase toward a phenylalanine analog using multiple-site-specific incorporation. ACS Synth Biol 2015; 4:634-43. [PMID: 25268049 DOI: 10.1021/sb500309r] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
A yeast phenylalanyl-tRNA synthetase variant with T415G mutation (yPheRS (T415G)) was rationally designed to recognize various phenylalanine (Phe) analogs allowing site-specific incorporation into an amber site of a protein in E. coli. However, the relaxed substrate specificity of yPheRS (T415G) led to a significant tryptophan (Trp) misincorporation restricting the utility of yPheRS for biosynthesis of proteins containing a Phe analog. In order to obtain yPheRS variants with high substrate-specificity toward a Phe analog, we developed a general high-throughput screening method. This method uses fluorescence reduction of green fluorescence protein (GFP) upon efficient introduction of a Phe analog into multiple sites of GFP by breaking the degeneracy of the Phe codons. Combined use of positive and negative screenings of a yPheRS saturation library led to a yPheRS variant (yPheRS_naph) very selective toward 2-l-naphthylalanine (2Nal), a model Phe analog. The yPheRS_naph exhibited 6-fold higher relative activity toward 2Nal (vs Trp) in ATP-PPi exchange assays and led to high-fidelity incorporation of 2Nal into an amber site of murine dihydrofolate reductase in both minimal and rich media. These results successfully demonstrate that the high-throughput screening method developed can be used to evolve yPheRS to be very selective toward a Phe analog.
Collapse
Affiliation(s)
- Inchan Kwon
- School
of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 500-712, Republic of Korea
- Department
of Chemical Engineering, University of Virginia, Charlottesville, Virginia 22904-4741, United States
| | - Sung In Lim
- Department
of Chemical Engineering, University of Virginia, Charlottesville, Virginia 22904-4741, United States
| |
Collapse
|
13
|
Iwaki J, Endo K, Ichikawa T, Suzuki R, Fujimoto Z, Momma M, Kuno A, Nishimura S, Hasegawa T. Studies on crenarchaeal tyrosylation accuracy with mutational analyses of tyrosyl-tRNA synthetase and tyrosine tRNA from Aeropyrum pernix. J Biochem 2012; 152:539-48. [PMID: 23024156 DOI: 10.1093/jb/mvs114] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Aminoacyl-tRNA synthetases play a key role in the translation of genetic code into correct protein sequences. These enzymes recognize cognate amino acids and tRNAs from noncognate counterparts, and catalyze the formation of aminoacyl-tRNAs. While Although several tyrosyl-tRNA synthetases (TyrRSs) from various species have been structurally and functionally well characterized, the crenarchaeal TyrRS remains poorly understood. In this study, we performed mutational analyses on tyrosine tRNA (tRNA(Tyr)) and TyrRS from the crenarchaeon, Aeropyrum pernix, to investigate the molecular recognition mechanism. Kinetics for tyrosylation using in vitro transcript indicated that the discriminator base A73 and adjacent G72 in the acceptor stem are identity elements of tRNA(Tyr), whereas the C1 base and anticodon had modest roles as identity determinants. Intriguingly, in contrast to the identity element of eukaryotic/euryarchaeal TyrRSs, the first base-pair (C1-G72) of the acceptor stem was not essential in crenarchaeal TyrRS as a pair. Furthermore, A. pernix TyrRS mutants were constructed at positions Tyr39 and Asp172, which could form hydrogen bonds with the 4-hydroxyl group of l-tyrosine. The tyrosylation activities with the mutants resulted that Asp172 mutants completely abolished tyrosylation activity, whereas Tyr39 mutants had no effect on activity. Thus, crenarchaeal TyrRS appears to adopt different molecular recognition mechanism from other TyrRSs.
Collapse
Affiliation(s)
- Jun Iwaki
- Graduate School of Science and Engineering, Yamagata University, Yamagata, Yamagata 990-8560, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Bence AK, Crooks PA. The Mechanism of l-Canavanine Cytotoxicity: Arginyl tRNA Synthetase as a Novel Target for Anticancer Drug Discovery. J Enzyme Inhib Med Chem 2008; 18:383-94. [PMID: 14692504 DOI: 10.1080/1475636031000152277] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
There is a clear need for agents with novel mechanisms of action to provide new therapeutic approaches for the treatment of pancreatic cancer. Owing to its structural similarity to L-arginine, L-canavanine, the beta-oxa-analog of L-arginine, is a substrate for arginyl tRNA synthetase and is incorporated into nascent proteins in place of L-arginine. Although L-arginine and L-canavanine are structurally similar, the oxyguanidino group of L-canavanine is significantly less basic than the guanidino group of L-arginine. Consequently, L-canavanyl proteins lack the capacity to form crucial ionic interactions, resulting in altered protein structure and function, which leads to cellular death. Since L-canavanine is selectively sequestered by the pancreas, it may be especially useful as an adjuvant therapy in the treatment of pancreatic cancer. This novel mechanism of cytotoxicity forms the basis for the anticancer activity of L-canavanine and thus, arginyl tRNA synthetase may represent a novel target for the development of such therapeutic agents.
Collapse
Affiliation(s)
- Aimee K Bence
- Division of Pharmaceutical Sciences, 800 Rose Street, College of Pharmacy, University of Kentucky, Lexington, KY 40536-0082, USA
| | | |
Collapse
|
15
|
Abstract
A general method was recently developed that makes it possible to genetically encode unnatural amino acids (UAAs) with diverse physical, chemical or biological properties in Escherichia coli, yeast, and mammalian cells. Over 30 UAAs have been cotranslationally incorporated into proteins with high fidelity and efficiency by means of a unique codon and corresponding tRNA-synthetase pair. A key feature of this methodology is the orthogonality between the new translational components and their endogenous host counterparts. Specifically, the codon for the UAA should not encode a common amino acid; neither the new tRNA nor cognate aminoacyl tRNA synthetase should cross-react with any endogenous tRNA-synthetase pairs; and the new synthetase should recognize only the UAA and not any of the 20 common amino acids. This methodology provides a powerful tool for exploring protein structure and function both in vitro and in vivo, as well as generating proteins with new or enhanced properties.
Collapse
Affiliation(s)
- Jianming Xie
- Department of Chemistry and Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | |
Collapse
|
16
|
Budisa N, Pal PP. Designing novel spectral classes of proteins with a tryptophan-expanded genetic code. Biol Chem 2005; 385:893-904. [PMID: 15551863 DOI: 10.1515/bc.2004.117] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Fluorescence methods are now well-established and powerful tools to study biological macromolecules. The canonical amino acid tryptophan (Trp), encoded by a single UGG triplet, is the main reporter of intrinsic fluorescence properties of most natural proteins and peptides and is thus an attractive target for tailoring their spectral properties. Recent advances in research have provided substantial evidence that the natural protein translational machinery can be genetically reprogrammed to introduce a large number of non-coded (i.e. noncanonical) Trp analogues and surrogates into various proteins. Especially attractive targets for such an engineering approach are fluorescent proteins in which the chromophore is formed post-translationally from an amino acid sequence, like the green fluorescent protein from Aequorea victoria. With the currently available translationally active fluoro-, hydroxy-, amino-, halogen-, and chalcogen-containing Trp analogues and surrogates, the traditional methods for protein engineering and design can be supplemented or even fully replaced by these novel approaches. Future research will provide a further increase in the number of Trp-like amino acids that are available for redesign (by engineering of the genetic code) of native Trp residues and enable novel strategies to generate proteins with tailored spectral properties.
Collapse
Affiliation(s)
- Nediljko Budisa
- Max-Planck-Institut für Biochemie, Am Klopferspitz 18A, D-82152 Martinsried, Germany.
| | | |
Collapse
|
17
|
|
18
|
Abstract
Although chemists can synthesize virtually any small organic molecule, our ability to rationally manipulate the structures of proteins is quite limited, despite their involvement in virtually every life process. For most proteins, modifications are largely restricted to substitutions among the common 20 amino acids. Herein we describe recent advances that make it possible to add new building blocks to the genetic codes of both prokaryotic and eukaryotic organisms. Over 30 novel amino acids have been genetically encoded in response to unique triplet and quadruplet codons including fluorescent, photoreactive, and redox-active amino acids, glycosylated amino acids, and amino acids with keto, azido, acetylenic, and heavy-atom-containing side chains. By removing the limitations imposed by the existing 20 amino acid code, it should be possible to generate proteins and perhaps entire organisms with new or enhanced properties.
Collapse
Affiliation(s)
- Lei Wang
- Department of Pharmacology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | | |
Collapse
|
19
|
Kobayashi T, Takimura T, Sekine R, Kelly VP, Vincent K, Kamata K, Sakamoto K, Nishimura S, Yokoyama S. Structural snapshots of the KMSKS loop rearrangement for amino acid activation by bacterial tyrosyl-tRNA synthetase. J Mol Biol 2004; 346:105-17. [PMID: 15663931 DOI: 10.1016/j.jmb.2004.11.034] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2004] [Revised: 11/15/2004] [Accepted: 11/16/2004] [Indexed: 10/26/2022]
Abstract
Tyrosyl-tRNA synthetase (TyrRS) has been studied extensively by mutational and structural analyses to elucidate its catalytic mechanism. TyrRS has the HIGH and KMSKS motifs that catalyze the amino acid activation with ATP. In the present study, the crystal structures of the Escherichia coli TyrRS catalytic domain, in complexes with l-tyrosine and a l-tyrosyladenylate analogue, Tyr-AMS, were solved at 2.0A and 2.7A resolution, respectively. In the Tyr-AMS-bound structure, the 2'-OH group and adenine ring of the Tyr-AMS are strictly recognized by hydrogen bonds. This manner of hydrogen-bond recognition is conserved among the class I synthetases. Moreover, a comparison between the two structures revealed that the KMSKS loop is rearranged in response to adenine moiety binding and hydrogen-bond formation, and the KMSKS loop adopts the more compact ("semi-open") form, rather than the flexible, open form. The HIGH motif initially recognizes the gamma-phosphate, and then the alpha and gamma-phosphates of ATP, with a slight rearrangement of the residues. The other residues around the substrate also accommodate the Tyr-AMS. This induced-fit form presents a novel "snapshot" of the amino acid activation step in the aminoacylation reaction by TyrRS. The present structures and the T.thermophilus TyrRS ATP-free and bound structures revealed that the extensive induced-fit conformational changes of the KMSKS loop and the local conformational changes within the substrate binding site form the basis for driving the amino acid activation step: the KMSKS loop adopts the open form, transiently shifts to the semi-open conformation according to the adenosyl moiety binding, and finally assumes the rigid ATP-bound, closed form. After the amino acid activation, the KMSKS loop adopts the semi-open form again to accept the CCA end of tRNA for the aminoacyl transfer reaction.
Collapse
Affiliation(s)
- Takatsugu Kobayashi
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Budisa N. Prolegomena zum experimentellen Engineering des genetischen Codes durch Erweiterung seines Aminosäurerepertoires. Angew Chem Int Ed Engl 2004. [DOI: 10.1002/ange.200300646] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
21
|
Budisa N. Prolegomena to Future Experimental Efforts on Genetic Code Engineering by Expanding Its Amino Acid Repertoire. Angew Chem Int Ed Engl 2004; 43:6426-63. [PMID: 15578784 DOI: 10.1002/anie.200300646] [Citation(s) in RCA: 217] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Protein synthesis and its relation to the genetic code was for a long time a central issue in biology. Rapid experimental progress throughout the past decade, crowned with the recently elucidated ribosomal structures, provided an almost complete description of this process. In addition important experiments provided solid evidence that the natural protein translation machinery can be reprogrammed to encode genetically a vast number of non-coded (i.e. noncanonical) amino acids. Indeed, in the set of 20 canonical amino acids as prescribed by the universal genetic code, many desirable functionalities, such as halogeno, keto, cyano, azido, nitroso, nitro, and silyl groups, as well as C=C or C[triple bond]C bonds, are absent. The ability to encode genetically such chemical diversity will enable us to reprogram living cells, such as bacteria, to express tailor-made proteins exhibiting functional diversity. Accordingly, genetic code engineering has developed into an exciting emerging research field at the interface of biology, chemistry, and physics.
Collapse
Affiliation(s)
- Nediljko Budisa
- Max-Planck-Institut für Biochemie, Junior Research Group "Moleculare Biotechnologie", Am Klopferspitz 18a, 82152 Martinsried bei München, Germany.
| |
Collapse
|
22
|
Wu Z, Alexandratos J, Ericksen B, Lubkowski J, Gallo RC, Lu W. Total chemical synthesis of N-myristoylated HIV-1 matrix protein p17: structural and mechanistic implications of p17 myristoylation. Proc Natl Acad Sci U S A 2004; 101:11587-92. [PMID: 15280532 PMCID: PMC511025 DOI: 10.1073/pnas.0404649101] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The HIV-1 matrix protein p17, excised proteolytically from the N terminus of the Gag polyprotein, forms a protective shell attached to the inner surface of the plasma membrane of the virus. During the late stages of the HIV-1 replication cycle, the N-terminally myristoylated p17 domain targets the Gag polyprotein to the host-cell membrane for particle assembly. In the early stages of HIV-1 replication, however, some p17 molecules dissociate from the viral membrane to direct the preintegration complex to the host-cell nucleus. These two opposing targeting functions of p17 require that the protein be capable of reversible membrane interaction. It is postulated that a significant structural change in p17 triggered by proteolytic cleavage of the Gag polyprotein sequesters the N-terminal myristoyl group, resulting in a weaker membrane binding by the matrix protein than the Gag precursor. To test this "myristoyl switch" hypothesis, we obtained highly purified synthetic HIV-1 p17 of 131 amino acid residues and its N-myristoylated form in large quantity. Both forms of p17 were characterized by circular dichroism spectroscopy, protein chemical denaturation, and analytical centrifugal sedimentation. Our results indicate that although N-myristoylation causes no spectroscopically discernible conformational change in p17, it stabilizes the protein by 1 kcal/mol and promotes protein trimerization in solution. These findings support the premise that the myristoyl switch in p17 is triggered not by a structural change associated with proteolysis, but rather by the destabilization of oligomeric structures of membrane-bound p17 in the absence of downstream Gag subdomains.
Collapse
Affiliation(s)
- Zhibin Wu
- Institute of Human Virology, University of Maryland Biotechnology Institute, and School of Medicine, University of Maryland, 725 West Lombard Street, Baltimore, MD 21201, USA
| | | | | | | | | | | |
Collapse
|
23
|
Abstract
The genetic code is established by the aminoacylation of transfer RNA, reactions in which each amino acid is linked to its cognate tRNA that, in turn, harbors the nucleotide triplet (anticodon) specific to the amino acid. The accuracy of aminoacylation is essential for building and maintaining the universal tree of life. The ability to manipulate and expand the code holds promise for the development of new methods to create novel proteins and to understand the origins of life. Recent efforts to manipulate the genetic code have fulfilled much of this potential. These efforts have led to incorporation of nonnatural amino acids into proteins for a variety of applications and have demonstrated the plausibility of specific proposals for early evolution of the code.
Collapse
Affiliation(s)
- Tamara L Hendrickson
- Department of Chemistry, 1Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, USA.
| | | | | |
Collapse
|
24
|
Purro SA, Bisig CG, Contin MA, Barra HS, Arce CA. Post-translational incorporation of the antiproliferative agent azatyrosine into the C-terminus of alpha-tubulin. Biochem J 2003; 375:121-9. [PMID: 12852782 PMCID: PMC1223667 DOI: 10.1042/bj20030776] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2003] [Revised: 07/03/2003] [Accepted: 07/09/2003] [Indexed: 11/17/2022]
Abstract
Detyrosination/tyrosination of tubulin is a post-translational modification that occurs at the C-terminus of the alpha-subunit, giving rise to microtubules rich in either tyrosinated or detyrosinated tubulin which coexist in the cell. We hereby report that the tyrosine analogue, azatyrosine, can be incorporated into the C-terminus of alpha-tubulin instead of tyrosine. Azatyrosine is structurally identical to tyrosine except that a nitrogen atom replaces carbon-2 of the phenolic group. Azatyrosine competitively excluded incorporation of [14C]tyrosine into tubulin of soluble brain extract. A newly developed rabbit antibody specific to C-terminal azatyrosine was used to study incorporation of azatyrosine in cultured cells. When added to the culture medium (Ham's F12K), azatyrosine was incorporated into tubulin of glioma-derived C6 cells. This incorporation was reversible, i.e. after withdrawal of azatyrosine, tubulin lost azatyrosine and reincorporated tyrosine. Azatyrosinated tubulin self-assembled into microtubules to a similar degree as total tubulin both in vitro and in vivo. Studies by other groups have shown that treatment of certain types of cultured cancer cells with azatyrosine leads to reversion of phenotype to normal, and that administration of azatyrosine into animals harbouring human proto-oncogenic c-Ha- ras prevents tumour formation. These interesting observations led us to study this phenomenon in relation to tubulin status. Under conditions in which tubulin was mostly azatyrosinated, C6 cells remained viable but did not proliferate. After 7-10 days under these conditions, morphology changed from a fused, elongated shape to a rounded soma with thin processes. Incorporation of azatyrosine into the C-terminus of alpha-tubulin is proposed as one possible cause of reversion of the malignant phenotype.
Collapse
Affiliation(s)
- Silvia A Purro
- Centro de Investigaciones en Química Biológica de Córdoba, CIQUIBIC (UNC-CONICET), Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, 5000-Córdoba, Argentina
| | | | | | | | | |
Collapse
|
25
|
Pál G, Santamaria F, Kossiakoff AA, Lu W. The first semi-synthetic serine protease made by native chemical ligation. Protein Expr Purif 2003; 29:185-92. [PMID: 12767808 DOI: 10.1016/s1046-5928(03)00022-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Selective incorporation of non-natural amino acid residues into proteins is a powerful approach to delineate structure-function relationships. Although many methodologies are available for chemistry-based protein engineering, more facile methods are needed to make this approach suitable for routine laboratory practice. Here, we describe a new strategy and provide a proof of concept for engineering semi-synthetic proteins. We chose a serine protease Streptomyces griseus trypsin (SGT) for this study to show that it is possible to efficiently couple a synthetic peptide containing a catalytically critical residue to a recombinant fragment containing the other active site residues. The 223-residue hybrid SGT molecule was prepared by fusing a chemically synthesized N-terminal peptide to a large C-terminal fragment of recombinant origin using native chemical ligation. This C-terminal polypeptide was produced from full-length SGT by cyanogen bromide cleavage at a genetically engineered Met57 position. This semi-synthetic hybrid trypsin is fully active, showing kinetics identical to the wild-type enzyme. Thus, we believe that it is an ideal model enzyme for studying the catalytic mechanisms of serine proteases by providing a straightforward approach to incorporate non-natural amino acids in the N-terminal region of the protein. In particular, this strategy will allow for replacement of the catalytic His57 residue and the buried N-terminus, which is thought to help align the active site, with synthetic analogs. Our approach relies on readily available recombinant proteins and small synthetic peptides, thus having general applications in chemical engineering of large proteins where the N-terminal region is the focal interest.
Collapse
Affiliation(s)
- Gábor Pál
- Department of Biochemistry and Molecular Biology, University of Chicago, 920 East 58th Street, Chicago, IL 60637, USA
| | | | | | | |
Collapse
|
26
|
Chin JW, Cropp TA, Chu S, Meggers E, Schultz PG. Progress toward an expanded eukaryotic genetic code. CHEMISTRY & BIOLOGY 2003; 10:511-9. [PMID: 12837384 DOI: 10.1016/s1074-5521(03)00123-6] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Expanding the eukaryotic genetic code to include unnatural amino acids with novel properties would provide powerful tools for manipulating protein function in eukaryotic cells. Toward this goal, a general approach with potential for isolating aminoacyl-tRNA synthetases that incorporate unnatural amino acids with high fidelity into proteins in Saccharomyces cerevisiae is described. The method is based on activation of GAL4-responsive HIS3, URA3, or lacZ reporter genes by suppression of amber codons in GAL4. The optimization of GAL4 reporters is described, and the positive and negative selection of active Escherichia coli tyrosyl-tRNA synthetase (EcTyrRS)/tRNA(CUA) is demonstrated. Importantly, both selections can be performed on a single cell and with a range of stringencies. This method will facilitate the isolation of a range of aminoacyl-tRNA synthetase (aaRS)/tRNA(CUA) activities from large libraries of mutant synthetases.
Collapse
Affiliation(s)
- Jason W Chin
- Department of Chemistry, Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | |
Collapse
|
27
|
Kiga D, Sakamoto K, Kodama K, Kigawa T, Matsuda T, Yabuki T, Shirouzu M, Harada Y, Nakayama H, Takio K, Hasegawa Y, Endo Y, Hirao I, Yokoyama S. An engineered Escherichia coli tyrosyl-tRNA synthetase for site-specific incorporation of an unnatural amino acid into proteins in eukaryotic translation and its application in a wheat germ cell-free system. Proc Natl Acad Sci U S A 2002; 99:9715-20. [PMID: 12097643 PMCID: PMC124990 DOI: 10.1073/pnas.142220099] [Citation(s) in RCA: 136] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2002] [Indexed: 11/18/2022] Open
Abstract
Tyrosyl-tRNA synthetase (TyrRS) from Escherichia coli was engineered to preferentially recognize 3-iodo-L-tyrosine rather than L-tyrosine for the site-specific incorporation of 3-iodo-L-tyrosine into proteins in eukaryotic translation systems. The wild-type TyrRS does not recognize 3-iodo-L-tyrosine, because of the bulky iodine substitution. On the basis of the reported crystal structure of Bacillus stearothermophilus TyrRS, three residues, Y37, Q179, and Q195, in the L-tyrosine-binding site were chosen for mutagenesis. Thirty-four single amino acid replacements and 16 of their combinations were screened by in vitro biochemical assays. A combination of the Y37V and Q195C mutations changed the amino acid specificity in such a way that the variant TyrRS activates 3-iodo-L-tyrosine 10-fold more efficiently than L-tyrosine. This engineered enzyme, TyrRS(V37C195), was tested for use in the wheat germ cell-free translation system, which has recently been significantly improved, and is now as productive as conventional recombinant systems. During the translation in the wheat germ system, an E. coli suppressor tRNA(Tyr) was not aminoacylated by the wheat germ enzymes, but was aminoacylated by the E. coli TyrRS(V37C195) variant with 3-iodo-l-tyrosine. After the use of the 3-iodotyrosyl-tRNA in translation, the resultant uncharged tRNA could be aminoacylated again in the system. A mass spectrometric analysis of the produced protein revealed that more than 95% of the amino acids incorporated for an amber codon were iodotyrosine, whose concentration was only twice that of L-tyrosine in the translation. Therefore, the variant enzyme, 3-iodo-L-tyrosine, and the suppressor tRNA can serve as an additional set orthogonal to the 20 endogenous sets in eukaryotic in vitro translation systems.
Collapse
Affiliation(s)
- Daisuke Kiga
- RIKEN Genomic Sciences Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Bacher JM, Ellington AD. Selection and characterization of Escherichia coli variants capable of growth on an otherwise toxic tryptophan analogue. J Bacteriol 2001; 183:5414-25. [PMID: 11514527 PMCID: PMC95426 DOI: 10.1128/jb.183.18.5414-5425.2001] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2000] [Accepted: 06/06/2001] [Indexed: 11/20/2022] Open
Abstract
Escherichia coli isolates that were tolerant of incorporation of high proportions of 4-fluorotryptophan were evolved by serial growth. The resultant strain still preferred tryptophan for growth but showed improved growth relative to the parental strain on other tryptophan analogues. Evolved clones fully substituted fluorotryptophan for tryptophan in their proteomes within the limits of mass spectral and amino acid analyses. Of the genes sequenced, many genes were found to be unaltered in the evolved strain; however, three genes encoding enzymes involved in tryptophan uptake and utilization were altered: the aromatic amino acid permease (aroP) and tryptophanyl-tRNA synthetase (trpS) contained several amino acid substitutions, and the tyrosine repressor (tyrR) had a nonsense mutation. While kinetic analysis of the tryptophanyl-tRNA synthetase suggests discrimination against 4-fluorotryptophan, an analysis of the incorporation and growth patterns of the evolved bacteria suggest that other mutations also aid in the adaptation to the tryptophan analogue. These results suggest that the incorporation of unnatural amino acids into organismal proteomes may be possible but that extensive evolution may be required to reoptimize proteins and metabolism to accommodate such analogues.
Collapse
Affiliation(s)
- J M Bacher
- Institute for Cellular and Molecular Biology, University of Texas at Austin, 78712, USA
| | | |
Collapse
|
29
|
Abstract
A unique transfer RNA (tRNA)/aminoacyl-tRNA synthetase pair has been generated that expands the number of genetically encoded amino acids in Escherichia coli. When introduced into E. coli, this pair leads to the in vivo incorporation of the synthetic amino acid O-methyl-l-tyrosine into protein in response to an amber nonsense codon. The fidelity of translation is greater than 99%, as determined by analysis of dihydrofolate reductase containing the unnatural amino acid. This approach should provide a general method for increasing the genetic repertoire of living cells to include a variety of amino acids with novel structural, chemical, and physical properties not found in the common 20 amino acids.
Collapse
MESH Headings
- Anticodon
- Codon/genetics
- Codon/metabolism
- Codon, Terminator
- Escherichia coli/genetics
- Escherichia coli/growth & development
- Escherichia coli/metabolism
- Genetic Code
- Mass Spectrometry
- Methanococcus/enzymology
- Methanococcus/genetics
- Methyltyrosines/metabolism
- Mutation
- Protein Biosynthesis
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Transfer/genetics
- RNA, Transfer/metabolism
- RNA, Transfer, Tyr/genetics
- RNA, Transfer, Tyr/metabolism
- Suppression, Genetic
- Transfer RNA Aminoacylation
- Transformation, Bacterial
- Tyrosine-tRNA Ligase/chemistry
- Tyrosine-tRNA Ligase/genetics
- Tyrosine-tRNA Ligase/metabolism
Collapse
Affiliation(s)
- L Wang
- Department of Chemistry and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|