1
|
Abstract
Increasing antimicrobial resistance and medical device-related infections have led to a renewed interest in phage therapy as an alternative or adjunct to conventional antimicrobials. Expanded access and compassionate use cases have risen exponentially but have varied widely in approach, methodology, and clinical situations in which phage therapy might be considered. Large gaps in knowledge contribute to heterogeneity in approach and lack of consensus in many important clinical areas. The Antibacterial Resistance Leadership Group (ARLG) has convened a panel of experts in phage therapy, clinical microbiology, infectious diseases, and pharmacology, who worked with regulatory experts and a funding agency to identify questions based on a clinical framework and divided them into three themes: potential clinical situations in which phage therapy might be considered, laboratory testing, and pharmacokinetic considerations. Suggestions are provided as answers to a series of questions intended to inform clinicians considering experimental phage therapy for patients in their clinical practices.
Collapse
|
2
|
Characterizing Phage Genomes for Therapeutic Applications. Viruses 2018; 10:v10040188. [PMID: 29642590 PMCID: PMC5923482 DOI: 10.3390/v10040188] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 04/06/2018] [Accepted: 04/09/2018] [Indexed: 12/16/2022] Open
Abstract
Multi-drug resistance is increasing at alarming rates. The efficacy of phage therapy, treating bacterial infections with bacteriophages alone or in combination with traditional antibiotics, has been demonstrated in emergency cases in the United States and in other countries, however remains to be approved for wide-spread use in the US. One limiting factor is a lack of guidelines for assessing the genomic safety of phage candidates. We present the phage characterization workflow used by our team to generate data for submitting phages to the Federal Drug Administration (FDA) for authorized use. Essential analysis checkpoints and warnings are detailed for obtaining high-quality genomes, excluding undesirable candidates, rigorously assessing a phage genome for safety and evaluating sequencing contamination. This workflow has been developed in accordance with community standards for high-throughput sequencing of viral genomes as well as principles for ideal phages used for therapy. The feasibility and utility of the pipeline is demonstrated on two new phage genomes that meet all safety criteria. We propose these guidelines as a minimum standard for phages being submitted to the FDA for review as investigational new drug candidates.
Collapse
|
3
|
Fujimoto DF, Pinilla C, Segall AM. New peptide inhibitors of type IB topoisomerases: similarities and differences vis-a-vis inhibitors of tyrosine recombinases. J Mol Biol 2006; 363:891-907. [PMID: 16996084 PMCID: PMC1876744 DOI: 10.1016/j.jmb.2006.08.052] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2006] [Revised: 08/20/2006] [Accepted: 08/21/2006] [Indexed: 11/20/2022]
Abstract
Topoisomerases relieve topological tension in DNA by breaking and rejoining DNA phosphodiester bonds. Type IB topoisomerases such as vaccinia topoisomerase (vTopo) and human topoisomerase I are structurally and mechanistically similar to the tyrosine recombinase family of enzymes, which includes bacteriophage lambda Integrase (Int). Previously, our laboratory identified peptide inhibitors of Int from a synthetic peptide combinatorial library. The most potent of these peptides also inhibit vTopo. Here, we used the same mixture-based screening procedure to identify peptide inhibitors directly against vTopo using a plasmid relaxation assay. The two most potent new peptides identified, WYCRCK and KCCRCK, inhibit plasmid relaxation, DNA cleavage and Holliday junction (HJ) resolution mediated by vTopo. The peptides tested bind double-stranded DNA at high concentrations but do not appear to displace the enzyme from its DNA substrate. WYCRCK binds specifically to HJ and perturbs the central base-pairing. This peptide also accumulates HJ intermediates when it inhibits Int-mediated recombination, whereas KCCRCK does not. Interestingly, WYCRCK shares four amino acids with a peptide identified against Int, WRWYCR. The octapeptide WRWYCRCK, containing amino acids from both hexapeptides, is more potent than either against vTopo. All peptides are less potent against the type IA Escherichia coli topoisomerase I or against restriction endonucleases. Like the Int-inhibitory peptide WRWYCR, WYCRCK binds to HJs, and both inhibit junction resolution by vTopo. Our results suggest that the newly identified WYCRCK and peptide WRWYCR interact with a distorted DNA intermediate arising during vTopo-mediated catalysis, or interfere with specific interactions between vTopo and DNA.
Collapse
Affiliation(s)
- David F Fujimoto
- Department of Biology, Center for Microbial Sciences and Molecular Biology Institute, San Diego State University, San Diego, CA 92182-4614, USA
| | | | | |
Collapse
|
4
|
Hazelbaker D, Radman-Livaja M, Landy A. Receipt of the C-terminal tail from a neighboring lambda Int protomer allosterically stimulates Holliday junction resolution. J Mol Biol 2005; 351:948-55. [PMID: 16054645 PMCID: PMC1805820 DOI: 10.1016/j.jmb.2005.06.077] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2005] [Accepted: 06/29/2005] [Indexed: 11/19/2022]
Abstract
Bacteriophage lambda integrase (Int) catalyzes the integration and excision of the phage lambda chromosome into and out of the Esherichia coli host chromosome. The seven carboxy-terminal residues (C-terminal tail) of Int comprise a context-sensitive regulatory element that links catalytic function with protein multimerization and also coordinates Int functions within the multimeric recombinogenic complex. The experiments reported here show that the beta5-strand of Int is not simply a placeholder for the C-terminal tail but rather exerts its own allosteric effects on Int function in response to the incoming tail. Using a mutant integrase in which the C-terminal tail has been deleted (W350ter), we demonstrate that the C-terminal tail is required for efficient and accurate resolution of Holliday junctions by tetrameric Int. Addition of a free heptameric peptide of the same sequence as the C-terminal tail partially reverses the W350ter defects by stimulating Holliday junction resolution. The peptide also stimulates the topoisomerase function of monomeric W350ter. Single residue alterations in the peptide sequence and a mutant of the beta5 strand indicate that the observed stimulation arises from specific contacts with the beta5 strand (residues 239-243). The peptide does not stimulate binding of W350ter to its cognate DNA sites and therefore appears to recapitulate the effects of the normal C-terminal tail intermolecular contacts in wild-type Int. Models for the allosteric stimulation of Int activity by beta5 strand contacts are discussed.
Collapse
Affiliation(s)
- Dane Hazelbaker
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI 02912, USA
| | | | | |
Collapse
|
5
|
Boldt JL, Pinilla C, Segall AM. Reversible Inhibitors of λ Integrase-mediated Recombination Efficiently Trap Holliday Junction Intermediates and Form the Basis of a Novel Assay for Junction Resolution. J Biol Chem 2004; 279:3472-83. [PMID: 14625310 DOI: 10.1074/jbc.m309361200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The bacteriophage lambda integrase catalyzes four site-specific recombination pathways with distinct protein and DNA requirements and nucleoprotein intermediates. Some of these intermediates are very transient and difficult to obtain in significant amounts, due to the high efficiency and processivity of integrase, the lack of requirements for external energy factors or metal ions, and the highly reversible nature of each of the intermediates. We have previously used mixture-based combinatorial libraries to identify hexapeptides that trap 40-60% of recombination substrates at the Holliday junction stage of the reaction. These inhibitors discriminate between the four pathways, blocking one of them (bent-L recombination) more severely than the others and blocking the excision pathway least. We presume that these differences reflect specific conformational differences of the nucleoprotein intermediates in each pathway. We have now identified new inhibitors of the excision pathway. One of these, WRWYCR, is over 50-fold more potent at inhibiting excision than the previously identified peptides. This peptide stably traps Holliday junction complexes in all recombination pathways mediated by integrase as well as Cre. This finding and other data presented indicate that the peptide's target is a common feature shared by the Holliday junction complexes assembled by tyrosine recombinases. We have taken advantage of reversible inhibition by the active peptides to develop a new assay for Holliday junction resolution. This assay is particularly useful for determining junction resolution rates in cases where complexes directly assembled on junction substrates undergo little or no catalysis.
Collapse
Affiliation(s)
- Jeffrey L Boldt
- Department of Biology and Center for Microbial Sciences, San Diego State University, San Diego, California 92182-4614, USA
| | | | | |
Collapse
|
6
|
Bankhead TM, Etzel BJ, Wolven F, Bordenave S, Boldt JL, Larsen TA, Segall AM. Mutations at residues 282, 286, and 293 of phage lambda integrase exert pathway-specific effects on synapsis and catalysis in recombination. J Bacteriol 2003; 185:2653-66. [PMID: 12670991 PMCID: PMC152606 DOI: 10.1128/jb.185.8.2653-2666.2003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacteriophage lambda integrase (Int) catalyzes site-specific recombination between pairs of attachment (att) sites. The att sites contain weak Int-binding sites called core-type sites that are separated by a 7-bp overlap region, where cleavage and strand exchange occur. We have characterized a number of mutant Int proteins with substitutions at positions S282 (S282A, S282F, and S282T), S286 (S286A, S286L, and S286T), and R293 (R293E, R293K, and R293Q). We investigated the core- and arm-binding properties and cooperativity of the mutant proteins, their ability to catalyze cleavage, and their ability to form and resolve Holliday junctions. Our kinetic analyses have identified synapsis as the rate-limiting step in excisive recombination. The IntS282 and IntS286 mutants show defects in synapsis in the bent-L and excisive pathways, respectively, while the IntR293 mutants exhibit synapsis defects in both the excision and bent-L pathways. The results of our study support earlier findings that the catalytic domain also serves a role in binding to core-type sites, that the core contacts made by this domain are important for both synapsis and catalysis, and that Int contacts core-type sites differently among the four recombination pathways. We speculate that these residues are important for the proper positioning of the catalytic residues involved in the recombination reaction and that their positions differ in the distinct nucleoprotein architectures formed during each pathway. Finally, we found that not all catalytic events in excision follow synapsis: the attL site probably undergoes several rounds of cleavage and ligation before it synapses and exchanges DNA with attR.
Collapse
Affiliation(s)
- Troy M Bankhead
- Department of Biology and Center for Microbial Sciences, San Diego State University, San Diego, California 92182-4614, USA
| | | | | | | | | | | | | |
Collapse
|
7
|
Cassell GD, Segall AM. Mechanism of inhibition of site-specific recombination by the Holliday junction-trapping peptide WKHYNY: insights into phage lambda integrase-mediated strand exchange. J Mol Biol 2003; 327:413-29. [PMID: 12628247 DOI: 10.1016/s0022-2836(03)00058-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Holliday junctions are central intermediates in site-specific recombination reactions mediated by tyrosine recombinases. Because these intermediates are extremely transient, only artificially assembled Holliday junctions have been available for study. We have recently identified hexapeptides that cause the accumulation of natural Holliday junctions of bacteriophage lambda Integrase (Int)-mediated reactions. We now show that one of these peptides acts after the first DNA cleavage event to stabilize protein-bound junctions and to prevent their resolution. The peptide acts before the step affected by site affinity (saf) mutations in the core region, in agreement with a model that the peptide stabilizes the products of strand exchange (i.e. Holliday junctions) while saf mutations reduce ligation of exchanged strands.Strand exchange events leading to Holliday junctions in phage lambda integration and excision are asymmetric, presumably because interactions between Int and some of its core-binding sites determine the order of strand cleavage. We have compared the structure of Holliday junctions in one unidirectional and in two bidirectional Int-mediated pathways and show that the strand cleavage steps are much more symmetric in the bidirectional pathways. Thus Int-DNA interactions which determine the order of top and bottom strand cleavage and exchange are unique in each recombination pathway.
Collapse
Affiliation(s)
- Geoffrey D Cassell
- Department of Biology and Center for Microbial Sciences, San Diego State University, 5500 Campanile Drive, CA 92182-4614, USA
| | | |
Collapse
|
8
|
Tekle M, Warren DJ, Biswas T, Ellenberger T, Landy A, Nunes-Düby SE. Attenuating functions of the C terminus of lambda integrase. J Mol Biol 2002; 324:649-65. [PMID: 12460568 DOI: 10.1016/s0022-2836(02)01108-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The tyrosine family site-specific recombinases, in contrast to the related type I topoisomerases, which act as monomers on a single DNA molecule, rely on multi-protein complexes to synapse partner DNAs and coordinate two sequential strand exchanges involving four nicking-closing reactions. Here, we analyze three mutants of the catalytic domain of lambda integrase (Int), A241V, I353M and W350ter that are defective for normal recombination, but possess increased topoisomerase activity. The mutant enzymes can carry out individual DNA strand exchanges using truncated substrates or Holliday junctions, and they show more DNA-cleavage activity than wild-type Int on isolated att sites. Structural modeling predicts that the substituted residues may destabilize interactions between the C-terminal beta-strand (beta7) of Int and the core of the protein. The cleavage-competent state of Int requires the repositioning of the nucleophile (Y342) located on beta6 and the catalyst K235 located on the flexible beta2-beta3 loop, relative to their positions in a crystal structure of the inactive conformation. We propose that the anchoring of beta7 against the protein core restrains the movement of Tyr342 and/or Lys235, causing an attenuation of cleavage activity in most contexts. Within a bona fide recombination complex, the release of strand beta7 would allow Tyr342 and Lys235 to assume catalytically active conformations in coordination with other Int protomers in the complex. The loss of beta7 packing by misalignment or truncation in the mutant proteins described here causes a loss of regulated activity, thereby favoring DNA cleavage activity in monomeric complexes and forfeiting the coordination of strand-exchange necessary for efficient recombination.
Collapse
Affiliation(s)
- Michael Tekle
- Division of Pathology, Department of Microbiology, Pathology and Immunology, Karolinska Institutet, Huddinge University Hospital, F46, SE-141 86 Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
9
|
Kazmierczak RA, Swalla BM, Burgin AB, Gumport RI, Gardner JF. Regulation of site-specific recombination by the C-terminus of lambda integrase. Nucleic Acids Res 2002; 30:5193-204. [PMID: 12466544 PMCID: PMC137966 DOI: 10.1093/nar/gkf652] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Site-specific recombination catalyzed by bacteriophage lambda integrase (Int) is essential for establishment and termination of the viral lysogenic life cycle. Int is the archetype of the tyrosine recombinase family whose members are responsible for DNA rearrangement in prokaryotes, eukaryotes and viruses. The mechanism regulating catalytic activity during recombination is incompletely understood. Studies of tyrosine recombinases bound to their target substrates suggest that the C-termini of the proteins are involved in protein-protein contacts that control the timing of DNA cleavage events during recombination. We investigated an Int truncation mutant (W350) that possesses enhanced topoisomerase activity but greater than 100-fold reduced recombination activity. Alanine scanning mutagenesis of the C-terminus indicates that two mutants, W350A and I353A, cannot perform site-specific recombination although their DNA binding, cleavage and ligation activities are at wild-type levels. Two other mutants, R346A and R348A, are deficient solely in the ability to cleave DNA. To explain these results, we have constructed a homology-threaded model of the Int structure using a Cre crystal structure. We propose that residues R346 and R348 are involved in orientation of the catalytic tyrosine that cleaves DNA, whereas W350 and I353 control and make intermolecular contacts with other Int proteins in the higher order recombination structures known as intasomes. These results suggest that Int and the other tyrosine recombinases have evolved regulatory contacts that coordinate site-specific recombination at the C-terminus.
Collapse
Affiliation(s)
- Robert A Kazmierczak
- Department of Microbiology and College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | | | | | | |
Collapse
|
10
|
Sadofsky MJ. The RAG proteins in V(D)J recombination: more than just a nuclease. Nucleic Acids Res 2001; 29:1399-409. [PMID: 11266539 PMCID: PMC31291 DOI: 10.1093/nar/29.7.1399] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2001] [Revised: 02/09/2001] [Accepted: 02/09/2001] [Indexed: 11/12/2022] Open
Abstract
V(D)J recombination is the process that generates the diversity among T cell receptors and is one of three mechanisms that contribute to the diversity of antibodies in the vertebrate immune system. The mechanism requires precise cutting of the DNA at segment boundaries followed by rejoining of particular pairs of the resulting termini. The imprecision of aspects of the joining reaction contributes significantly to increasing the variability of the resulting functional genes. Signal sequences target DNA recombination and must participate in a highly ordered protein-DNA complex in order to limit recombination to appropriate partners. Two proteins, RAG1 and RAG2, together form the nuclease that cleaves the DNA at the border of the signal sequences. Additional roles of these proteins in organizing the reaction complex for subsequent steps are explored.
Collapse
Affiliation(s)
- M J Sadofsky
- Medical College of Georgia, Institute of Molecular Medicine and Genetics, CB-2803, Augusta, GA 30912, USA.
| |
Collapse
|
11
|
Organization, Replication, Transposition, and Repair of DNA. Biochemistry 2001. [DOI: 10.1016/b978-012492543-4/50030-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|