1
|
Seiler C, Stainthorp AK, Ketchen S, Jones CM, Marks K, Quirke P, Ladbury JE. The Grb2 splice variant, Grb3-3, is a negative regulator of RAS activation. Commun Biol 2022; 5:1029. [PMID: 36171279 PMCID: PMC9519967 DOI: 10.1038/s42003-022-03985-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 09/13/2022] [Indexed: 11/24/2022] Open
Abstract
Activation of RAS is crucial in driving cellular outcomes including proliferation, differentiation, migration and apoptosis via the MAPK pathway. This is initiated on recruitment of Grb2, as part of a Grb2-Sos complex, to an up-regulated receptor tyrosine kinase (RTK), enabling subsequent interaction of Sos with the plasma membrane-localised RAS. Aberrant regulation at this convergence point for RTKs in MAPK signalling is a key driver of multiple cancers. Splicing of the GRB2 gene produces a deletion variant, Grb3-3, that is incapable of binding to RTKs. We show that, despite maintaining the ability to bind to Sos, the Grb3-3-Sos complex remains in the cytoplasm, unable to engage with RAS. Competition between Grb2 and Grb3-3 for binding to C-terminal proline-rich sequences on Sos modulates MAPK signalling. Additionally, we demonstrate that splicing is regulated by heterogenous nuclear riboproteins C1/C2, and that normal and malignant colon tissue show differential Grb3-3 expression.
Collapse
Affiliation(s)
- Caroline Seiler
- School of Molecular and Cellular Biology, University of Leeds, Leeds, UK
| | - Amy K Stainthorp
- School of Molecular and Cellular Biology, University of Leeds, Leeds, UK
| | - Sophie Ketchen
- School of Molecular and Cellular Biology, University of Leeds, Leeds, UK
| | - Christopher M Jones
- School of Molecular and Cellular Biology, University of Leeds, Leeds, UK
- Radiotherapy Research Group, Faculty of Medicine & Health, University of Leeds, Leeds, UK
- Leeds Cancer Centre, The Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Kate Marks
- University of Leeds School of Medicine, Leeds Institute of Medical Research, Pathology and Data Analytics, University of Leeds, Leeds, UK
| | - Philip Quirke
- University of Leeds School of Medicine, Leeds Institute of Medical Research, Pathology and Data Analytics, University of Leeds, Leeds, UK
| | - John E Ladbury
- School of Molecular and Cellular Biology, University of Leeds, Leeds, UK.
| |
Collapse
|
2
|
Zhang W, Feng J, Li Q. The replisome guides nucleosome assembly during DNA replication. Cell Biosci 2020; 10:37. [PMID: 32190287 PMCID: PMC7066812 DOI: 10.1186/s13578-020-00398-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 02/29/2020] [Indexed: 12/18/2022] Open
Abstract
Nucleosome assembly during DNA replication is tightly coupled to ongoing DNA synthesis. This process, termed DNA replication-coupled (RC) nucleosome assembly, is essential for chromatin replication and has a great impact on both genome stability maintenance and epigenetic inheritance. This review discusses a set of recent findings regarding the role of replisome components contributing to RC nucleosome assembly. Starting with a brief introduction to the factors involved in nucleosome assembly and some aspects of the architecture of the eukaryotic replisome, we discuss studies from yeast to mammalian cells and the interactions of replisome components with histones and histone chaperones. We describe the proposed functions of replisome components during RC nucleosome assembly and discuss their impacts on histone segregation and implications for epigenetic inheritance.
Collapse
Affiliation(s)
- Wenshuo Zhang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871 China
| | - Jianxun Feng
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871 China
| | - Qing Li
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871 China
| |
Collapse
|
3
|
Davis MJ, Shin CJ, Jing N, Ragan MA. Rewiring the dynamic interactome. MOLECULAR BIOSYSTEMS 2012; 8:2054-2013. [PMID: 22729145 DOI: 10.1039/c2mb25050k] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Transcriptomics continues to provide ever-more evidence that in morphologically complex eukaryotes, each protein-coding genetic locus can give rise to multiple transcripts that differ in length, exon content and/or other sequence features. In humans, more than 60% of loci give rise to multiple transcripts in this way. Motifs that mediate protein-protein interactions can be present or absent in these transcripts. Analysis of protein interaction networks has been a valuable development in systems biology. Interactions are typically recorded for representative proteins or even genes, although exploratory transcriptomics has revealed great spatiotemporal diversity in the output of genes at both the transcript and protein-isoform levels. The increasing availability of high-resolution protein structures has made it possible to identify the domain-domain interactions that underpin many protein interactions. To explore the impact of transcript and isoform diversity we use full-length human cDNAs to interrogate the protein-coding transcriptional output of genes, identifying variation in the inclusion of protein interaction domains. We map these data to a set of high-quality protein interactions, and characterise the variation in network connectivity likely to result. We find strong evidence for altered interaction potential in nearly 20% of genes, suggesting that transcriptional variation can significantly rewire the human interactome.
Collapse
Affiliation(s)
- Melissa J Davis
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia
| | | | | | | |
Collapse
|
4
|
Zhou L, Diefenbach E, Crossett B, Tran SL, Ng T, Rizos H, Rua R, Wang B, Kapur A, Gandhi K, Brew BJ, Saksena NK. First evidence of overlaps between HIV-Associated Dementia (HAD) and non-viral neurodegenerative diseases: proteomic analysis of the frontal cortex from HIV+ patients with and without dementia. Mol Neurodegener 2010; 5:27. [PMID: 20573273 PMCID: PMC2904315 DOI: 10.1186/1750-1326-5-27] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2009] [Accepted: 06/24/2010] [Indexed: 12/12/2022] Open
Abstract
Background The pathogenesis of HIV-associated dementia (HAD) is poorly understood. To date, detailed proteomic fingerprinting directly from autopsied brain tissues of HAD and HIV non-dementia patients has not been performed. Result Here, we have analyzed total proteins from the frontal cortex of 9 HAD and 5 HIV non-dementia patients. Using 2-Dimensional differential in-gel electrophoresis (2-DIGE) to analyze the brain tissue proteome, 76 differentially expressed proteins (p < 0.05; fold change>1.25) were identified between HAD and HIV non-dementia patients, of which 36 protein spots (based on 3D appearance of spots on the images) were chosen for the mass spectrometry analysis. The large majority of identified proteins were represented in the energy metabolic (mitochondria) and signal transduction pathways. Furthermore, over 90% of the protein candidates are common to both HAD and other non-viral neurodegenerative disease, such as Alzheimer's disease. The data was further validated using specific antibodies to 4 proteins (CA2, GS, CKMT and CRMP2) by western blot (WB) in the same samples used for 2D-DIGE, with additional confirmation by immunohistochemitsry (IHC) using frontal lobe tissue from different HAD and HIV+ non-dementia patients. The validation for all 4 antibodies by WB and IHC was in concordance with the DIGE results, lending further credence to the current findings. Conclusion These results suggest not only convergent pathogenetic pathways for the two diseases but also the possibility of increased Alzheimer's disease (AD) susceptibility in HAD patients whose life expectancy has been significantly increased by highly active antiretroviral therapy.
Collapse
Affiliation(s)
- Li Zhou
- Center for Virus Research, Westmead Millennium Institute, Westmead Hospital, The University of Sydney, Westmead, NSW 2145, Sydney, Australia.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Casley WL, Ogrodowczyk C, Larocque L, Jaentschke B, LeBlanc-Westwood C, Menzies JA, Whitehouse L, Hefford MA, Aubin RA, Thorn CF, Whitehead AS, Li X. Cytotoxic doses of ketoconazole affect expression of a subset of hepatic genes. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2007; 70:1946-1955. [PMID: 17966066 DOI: 10.1080/15287390701551407] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Ketoconazole is a widely prescribed antifungal drug, which has also been investigated as an anticancer therapy in both clinical and pre-clinical settings. However, severe hepatic injuries were reported to be associated with the use of ketoconazole, even in patients routinely monitored for their liver functions. Several questions concerning ketoconazole-induced hepatic injury remain unanswered, including (1) does ketoconazole alter cytochrome P450 expression at the transcriptional level?, (2) what types of gene products responsible for cytotoxicity are induced by ketoconazole?, and (3) what role do the major metabolites of ketoconazole play in this pathophysiologic process? A mouse model was employed to investigate hepatic gene expression following hepatotoxic doses of ketoconazole. Hepatic gene expression was analyzed using a toxicogenomic microarray platform, which is comprised of cDNA probes generated from livers exposed to various hepatoxicants. These hepatoxicants fall into five well-studied toxicological categories: peroxisome proliferators, aryl hydrocarbon receptor agonists, noncoplanar polychlorinated biphenyls, inflammatory agents, and hypoxia-inducing agents. Nine genes encoding enzymes involved in Phase I metabolism and one Phase II enzyme (glutathione S-transferase) were found to be upregulated. Serum amyloid A (SAA1/2) and hepcidin were the only genes that were downregulated among the 2364 genes assessed. In vitro cytotoxicity and transcription analyses revealed that SAA and hepcidin are associated with the general toxicity of ketoconazole, and might be usefully explored as generalized surrogate markers of xenobiotic-induced hepatic injury. Finally, it was shown that the primary metabolite of ketoconazole (de-N-acetyl ketoconazole) is largely responsible for the hepatoxicity and the downregulation of SAA and hepcidin.
Collapse
Affiliation(s)
- William L Casley
- Center for Biologics Research, Biologics and Genetic Therapies Directorate, Health Canada, Ottawa, Ontario, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Fleischer A, Duhamel M, Lopez-Fernandez LA, Muñoz M, Rebollo MP, Alvarez-Franco F, Rebollo A. Cascade of transcriptional induction and repression during IL-2 deprivation-induced apoptosis. Immunol Lett 2007; 112:9-29. [PMID: 17651815 DOI: 10.1016/j.imlet.2007.06.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2007] [Revised: 06/05/2007] [Accepted: 06/07/2007] [Indexed: 11/21/2022]
Abstract
Apoptosis of mature T lymphocytes is an essential process for maintaining immune system homeostasis. However, the details of the molecular signaling pathways leading to T cell apoptosis are poorly understood. We used cDNA microarrays containing 15,630 murine genes to study the gene expression profile in T lymphocytes at different time points of IL-2 withdrawal. Comparison of the gene expression profiles revealed that 2% of the genes were affected by cytokine starvation. Interestingly, the apoptotic program rather seems to activate gene expression in the early phase of cell death. On the contrary, transcription was strongly repressed in later stages of apoptosis. Self-organizing map clustering of the 270 differentially expressed transcripts revealed specific temporal expression patterns supporting the idea that IL-2 deprivation triggers a tightly regulated transcriptional program to induce cell death. To validate microarray results, changes in gene expression following IL-2 deprivation were confirmed for selected genes by Northern blot. In addition, the signaling pathways created can explain the molecular events leading to T cell apoptosis, even if the T cell line used in this study might not reflect individual T cell subpopulations expressing different level of IL-2 receptor or IL-2 dependence. Taken together, these results provide novel insights into the temporal regulation of gene expression during T lymphocyte death.
Collapse
Affiliation(s)
- Aarne Fleischer
- Immunologie Cellulaire et Tissulaire, INSERM U543, 83 Bd de l'Hôpital, 75013 Paris, France
| | | | | | | | | | | | | |
Collapse
|
7
|
Bandyopadhyay S, Kelley R, Ideker T. Discovering regulated networks during HIV-1 latency and reactivation. PACIFIC SYMPOSIUM ON BIOCOMPUTING. PACIFIC SYMPOSIUM ON BIOCOMPUTING 2007. [PMID: 17094252 DOI: 10.1142/9789812701626_0033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Human immunodeficiency virus (HIV) affects millions of people across the globe. Despite the introduction of powerful anti-viral therapies, one factor confounding viral elimination is the ability of HIV to remain latent within the host genome. Here, we perform a network analysis of the viral reactivation process using human gene expression profiles and curated databases of both human-human and human-HIV protein interactions. Based on this analysis, we report the identification of active pathways in both the latent and early phases of reactivation. These active pathways suggest host functions that are altered and important for HIV pathogenesis.
Collapse
Affiliation(s)
- Sourav Bandyopadhyay
- Program in Bioinformatics, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| | | | | |
Collapse
|
8
|
Gondois-Rey F, Biancotto A, Fernandez MA, Bettendroffer L, Blazkova J, Trejbalova K, Pion M, Hirsch I. R5 variants of human immunodeficiency virus type 1 preferentially infect CD62L- CD4+ T cells and are potentially resistant to nucleoside reverse transcriptase inhibitors. J Virol 2006; 80:854-65. [PMID: 16378987 PMCID: PMC1346836 DOI: 10.1128/jvi.80.2.854-865.2006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2005] [Accepted: 10/27/2005] [Indexed: 01/16/2023] Open
Abstract
The persistence of human immunodeficiency virus type 1 (HIV-1) in memory CD4+ T cells is a major obstacle to the eradication of the virus with current antiretroviral therapy. Here, we investigated the effect of the activation status of CD4+ T cells on the predominance of R5 and X4 HIV-1 variants in different subsets of CD4+ T cells in ex vivo-infected human lymphoid tissues and peripheral blood mononuclear cells (PBMCs). In these cell systems, we examined the sensitivity of HIV replication to reverse transcriptase inhibitors. We demonstrate that R5 HIV-1 variants preferentially produced productive infection in HLA-DR- CD62L- CD4+ T cells. These cells were mostly in the G1b phase of the cell cycle, divided slowly, and expressed high levels of CCR5. In contrast, X4 HIV-1 variants preferentially produced productive infection in activated HLA-DR+ CD62L+ CD4+ T cells, which expressed high levels of CXCR4. The abilities of the nucleoside reverse transcriptase inhibitors (NRTI) zidovudine and lamivudine to stop HIV-1 replication were 20 times greater in activated T cells than in slowly dividing HLA-DR- CD62L- CD4+ T cells. This result, demonstrated both in a highly physiologically relevant ex vivo lymphoid tissue model and in PBMCs, correlated with higher levels of thymidine kinase mRNA in activated than in slowly dividing HLA-DR- CD62L- CD4+ T cells. The non-NRTI nevirapine was equally efficient in both cell subsets. The lymphoid tissue and PBMC-derived cell systems represent well-defined models which could be used as new tools for the study of the mechanism of resistance to HIV-1 inhibitors in HLA-DR- CD62L- CD4+ T cells.
Collapse
|
9
|
Régulier EG, Reiss K, Khalili K, Amini S, Zagury JF, Katsikis PD, Rappaport J. T-cell and neuronal apoptosis in HIV infection: implications for therapeutic intervention. Int Rev Immunol 2004; 23:25-59. [PMID: 14690854 DOI: 10.1080/08830180490265538] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The pathogenesis of HIV infection involves the selective loss of CD4+ T cells contributing to immune deficiency. Although loss of T cells leading to immune dysfunction in HIV infection is mediated in part by viral infection, there is a much larger effect on noninfected T cells undergoing apoptosis in response to activation stimuli. In the subset of patients with HIV dementia complex, neuronal injury, loss, and apoptosis are observed. Viral proteins, gp120 and Tat, exhibit proapoptotic activities when applied to T cell and neuronal cultures by direct and indirect mechanisms. The pathways leading to cell death involve the activation of one or more death receptor pathways (i.e., TNF-alpha, Fas, and TRAIL receptors), chemokine receptor signaling, cytokine dysregulation, caspase activation, calcium mobilization, and loss of mitochondrial membrane potential. In this review, the mechanisms involved in T-cell and neuronal apoptosis, as well as antiapoptotic pathways potentially amenable to therapeutic application, are discussed.
Collapse
Affiliation(s)
- Emmanuel G Régulier
- Center for Neurovirology and Cancer Biology, Temple University, Philadelphia, Pennsylvania 19122, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
The human immunodeficiency virus type 1 (HIV-1) has evolved to coordinate its replication with the activation state of the host CD4T cell. To this end, it taps into major host cell signaling pathways and their associated transcription factors. Of these, T-cell activation and the transcription factor NF-kappaB, respectively, have become the best-studied examples. The past several years have revealed compelling evidence that another transcription factor family involved in T-cell activation, the nuclear factor of activated T cells (NFAT), plays an important role in the regulation of HIV-1. Major advances have been made in our understanding of the interaction of HIV-1 with this intriguing transcription factor. The duplicated NF-kappaB binding sites in the HIV-1 enhancer surprisingly also bind NFAT proteins and appear to be the most important targets for NFAT transactivation of the HIV-1 long terminal repeat. The crystal structure of NFAT1 bound to one of these duplicated sites was solved recently. Interestingly, it showed that NFAT1 binds to this site as a homodimer and occupies the core of the NF-kappaB site, suggesting mutually exclusive binding and alternate transactivation by these two factors. NFAT also regulates HIV-1 infection indirectly, as it can relieve a block to reverse transcription in quiescent T cells. In turn, HIV-1, and particularly its Tat and Nef gene products, can upregulate NFAT expression and activity. This reciprocal regulation between virus and transcription factor potentially creates a positive feedback loop, which may facilitate the establishment of early HIV-1 infection and, later, the transition from latent to productive infection. The immunosuppressive drug cyclosporin A (CsA) inhibits NFAT activity and thus represents a potential treatment for HIV-1 infection. Recent small-scale clinical trials have yielded optimistic results, suggesting roles for CsA after organ transplantation in HIV-1+ individuals and as adjunct treatment in stable early HIV-1 infection.
Collapse
Affiliation(s)
- F Pessler
- Division of Rheumatology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | | |
Collapse
|
11
|
Gondois-Rey F, Biancotto A, Pion M, Chenine AL, Gluschankof P, Horejsi V, Tamalet C, Vigne R, Hirsch I. Production of HIV-1 by resting memory T lymphocytes. AIDS 2001; 15:1931-40. [PMID: 11600820 DOI: 10.1097/00002030-200110190-00004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND The persistence of HIV-1 within resting memory CD4 T cells constitutes a major obstacle in the control of HIV-1 infection. OBJECTIVE To examine the expression of HIV-1 in resting memory CD4 T cells, using an in-vitro model. DESIGN AND METHODS Phytohaemagglutinin-activated peripheral blood mononuclear cells were challenged with T cell-tropic and macrophage-tropic HIV-1 clones, and with a replication-incompetent and non-cytotoxic HIV-1-derived vector (HDV) pseudotyped by the vesicular stomatitis virus glycoprotein G. To obtain resting memory CD4 T cells containing HIV-1 provirus, residual CD25(+), CD69(+) and HLA-DR(+) cells were immunodepleted after a 3 week cultivation period. RESULTS In spite of the resting phenotype, the majority of provirus-harbouring T cells expressed HIV-1 genomes and produced infectious virus into cell-free supernatant. The expression of HDV dropped by only 30% during the return of activated HDV-challenged cells into the quiescent phase. Although resting memory T cells generated in vitro expressed HIV-1 and HDV genome when infected during the course of the preceding T cell activation, they were resistant to HIV-1 and HDV challenge de novo. The infected culture of resting memory T cells showed a higher resistance to the cytotoxic effects of HIV-1 in comparison with the same cultures after reactivation by phytohaemagglutinin. CONCLUSION The majority of resting memory T cells infected during the course of a preceding cell activation produces virus persistently, without establishing a true HIV-1 latency. The described system could be used as a model for testing new drugs able to control residual HIV-1 replication in resting memory T cells.
Collapse
Affiliation(s)
- F Gondois-Rey
- INSERM U372, Unité de Pathogénie des Infections à Lentivirus, Parc Scientifique et Technologique de Luminy, 13276 Marseille
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Li X, Josef J, Marasco WA. Hiv-1 Tat can substantially enhance the capacity of NIK to induce IkappaB degradation. Biochem Biophys Res Commun 2001; 286:587-94. [PMID: 11511100 DOI: 10.1006/bbrc.2001.5442] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The human immunodeficiency virus type 1 (HIV-1) Tat is a virally encoded protein that dramatically up-regulates viral replication through interactions with the HIV-1 5' long terminal repeat (LTR) and cellular transcription factors. The HIV-1 LTR is divided into three major regions: modulatory, core and TAR. The modulatory region contains numerous cis-acting sequences for the binding of transcription factors including NF-kappaB, NF-AT, and AP-1. In several reports, Tat has been found to induce NF-kappaB activation of the HIV-1 LTR, while in other studies Tat has been reported to have no effect on activation of NF-kappaB. These discrepancies may arise from differences in experimental conditions such as the source of Tat (exogenous versus endogenous), the detection methods for NF-kappaB activation (DNA binding capability versus IkappaB degradation), and the types of reporters used (HIV-1 versus non-HIV-1 derived). To reconcile these differences we examined the effect of endogenous Tat on NF-kappaB activation, on IkappaB degradation and its interaction with upstream MAP3Ks. We demonstrate that although an 80% reduction in Tat-induced HIV-1 LTR activity can be detected if the kappaB binding sites are mutated, surprisingly endogenous Tat (expressed intracellularly by transfection) lacks direct effect on IkappaB degradation. Further analysis demonstrates that although Tat alone lacks direct effect on IkappaBalpha degradation or dissociation from NF-kappaB, Tat can substantially enhance the capacity of NF-kappaB-inducing kinase (NIK), but not MEKK1, to accelerate degradation of IkappaB. We propose a model to explain these collective experimental findings.
Collapse
Affiliation(s)
- X Li
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|