1
|
Phadwal K, Haggarty J, Kurian D, Martí JA, Sun J, Houston RD, Betancor MB, MacRae VE, Whitfield PD, Macqueen DJ. Rapamycin induced autophagy enhances lipid breakdown and ameliorates lipotoxicity in Atlantic salmon cells. Biochim Biophys Acta Mol Cell Biol Lipids 2025; 1870:159636. [PMID: 40389074 DOI: 10.1016/j.bbalip.2025.159636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 04/22/2025] [Accepted: 05/15/2025] [Indexed: 05/21/2025]
Abstract
Autophagy is a highly conserved cellular recycling process essential for homeostasis in all eukaryotic cells. Lipid accumulation and its regulation by autophagy are key areas of research for understanding metabolic disorders in human and model mammals. However, the role of autophagy in lipid regulation remains poorly characterized in non-model fish species of importance to food production, which could be important for managing health and welfare in aquaculture. Addressing this knowledge gap, we investigate the role of autophagy in lipid regulation using a macrophage-like cell line (SHK-1) from Atlantic salmon (Salmo salar L.), the world's most commercially valuable farmed finfish. Multiple lines of experimental evidence reveal that the autophagic pathway responsible for lipid droplet breakdown is conserved in Atlantic salmon cells. We employed global lipidomics and proteomics analyses on SHK-1 cells subjected to lipid overload, followed by treatment with rapamycin to induce autophagy. This revealed that activating autophagy via rapamycin enhances storage of unsaturated triacylglycerols and suppresses key lipogenic proteins, including fatty acid elongase 6, fatty acid binding protein 2 and acid sphingomyelinase. Moreover, fatty acid elongase 6 and fatty acid binding protein 2 were identified as possible cargo for autophagosomes, suggesting a critical role for autophagy in lipid metabolism in fish. Together, this study establishes a novel model of lipotoxicity and advances understanding of lipid autophagy in fish cells, with significant implications for addressing fish health issues in aquaculture.
Collapse
Affiliation(s)
- Kanchan Phadwal
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, UK.
| | - Jennifer Haggarty
- Shared Research Facilities, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Dominic Kurian
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, UK
| | - Judit Aguilar Martí
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, UK
| | - Jianxuan Sun
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, UK
| | | | - Mónica B Betancor
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, UK
| | - Vicky E MacRae
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, UK; School of Life Sciences, Faculty of Science and Engineering, Anglia Ruskin University, Cambridge, UK
| | - Phillip D Whitfield
- Glasgow Polyomics and Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Daniel J Macqueen
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, UK
| |
Collapse
|
2
|
Yang S, Jiang L, Deng L, Luo J, Zhang X, Chen S, Dong Z. Chaperone-Mediated Autophagy Alleviates Cerebral Ischemia-Reperfusion Injury by Inhibiting P53-Mediated Mitochondria-Associated Apoptosis. Neurochem Res 2024; 50:29. [PMID: 39576398 DOI: 10.1007/s11064-024-04266-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/12/2024] [Accepted: 10/01/2024] [Indexed: 11/24/2024]
Abstract
Ischemia-reperfusion is a complex brain disease involving multiple biological processes, including autophagy, oxidative stress, and mitochondria-associated apoptosis. Chaperone-mediated autophagy (CMA), a selective autophagy, is involved in the development of various neurodegenerative diseases and acute nerve injury, but its role in ischemia-reperfusion is unclear. Here, we used middle cerebral artery occlusion/reperfusion (MCAO/R) and oxygen-glucose deprivation/reoxygenation (OGD/R) models to simulate cerebral ischemic stroke in vivo and in vitro, respectively. LAMP2A (lysosome-associated membrane protein 2A), a key molecule of CMA, was dramatically downregulated in ischemia-reperfusion. Enhancement of CMA activity by LAMP2A overexpression reduced the neurological deficit, brain infarct volume, pathological features, and neuronal apoptosis of the cortex in vivo. Concomitantly, enhanced CMA activity alleviated OGD/R-induced apoptosis and mitochondrial membrane potential decline in vitro. In addition, we found that CMA inhibited the P53(Tumor protein p53) signaling pathway and reduced P53 translocation to mitochondria. The P53 activator, Nutlin-3, not only reversed the inhibitory effect of CMA on apoptosis, but also significantly weakened the protective effect of CMA on OGD/R and MCAO/R. Taken together, these results indicate that inhibition of P53-mediated mitochondria-associated apoptosis is essential for the neuroprotective effect of CMA against ischemia-reperfusion.
Collapse
Affiliation(s)
- Shaonan Yang
- Key Laboratory of Biochemistry and Molecular Pharmacology, Department of Pharmacology, Chongqing Medical University, Chongqing, 400016, China
| | - Lu Jiang
- Key Laboratory of Biochemistry and Molecular Pharmacology, Department of Pharmacology, Chongqing Medical University, Chongqing, 400016, China
| | - Ling Deng
- Key Laboratory of Biochemistry and Molecular Pharmacology, Department of Pharmacology, Chongqing Medical University, Chongqing, 400016, China
| | - Jingjing Luo
- Key Laboratory of Biochemistry and Molecular Pharmacology, Department of Pharmacology, Chongqing Medical University, Chongqing, 400016, China
| | - Xiaoling Zhang
- Key Laboratory of Biochemistry and Molecular Pharmacology, Department of Pharmacology, Chongqing Medical University, Chongqing, 400016, China
| | - Sha Chen
- Key Laboratory of Biochemistry and Molecular Pharmacology, Department of Pharmacology, Chongqing Medical University, Chongqing, 400016, China.
| | - Zhi Dong
- Key Laboratory of Biochemistry and Molecular Pharmacology, Department of Pharmacology, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
3
|
Zhang Y, Yang J, Ouyang C, Meng N. The association between ferroptosis and autophagy in cardiovascular diseases. Cell Biochem Funct 2024; 42:e3985. [PMID: 38509716 DOI: 10.1002/cbf.3985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/05/2024] [Accepted: 03/08/2024] [Indexed: 03/22/2024]
Abstract
Autophagy is a process in which cells degrade intracellular substances and play a variety of roles in cells, such as maintaining intracellular homeostasis, preventing cell overgrowth, and removing pathogens. It is highly conserved during the evolution of eukaryotic cells. So far, the study of autophagy is still a hot topic in the field of cytology. Ferroptosis is an iron-dependent form of cell death, accompanied by the accumulation of reactive oxygen species and lipid peroxides. With the deepening of research, it has been found that ferroptosis, like autophagy, is involved in the occurrence and development of cardiovascular diseases. The relationship between autophagy and ferroptosis is complex, and the association between the two in cardiovascular disease remains to be clarified. This article reviews the mechanism of autophagy and ferroptosis and their correlation, and discusses the relationship between them in cardiovascular diseases, which is expected to provide new and important treatment strategies for cardiovascular diseases.
Collapse
Affiliation(s)
- Yifan Zhang
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Junjun Yang
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Chenxi Ouyang
- Department of Vascular Surgery, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ning Meng
- School of Biological Science and Technology, University of Jinan, Jinan, China
| |
Collapse
|
4
|
Tschirhart BJ, Lu X, Mokale Kognou AL, Martin CM, Slessarev M, Fraser DD, Leligdowicz A, Urquhart B, Feng Q. Pharmacokinetics of recombinant human annexin A5 (SY-005) in patients with severe COVID-19. Front Pharmacol 2024; 14:1299613. [PMID: 38269269 PMCID: PMC10806122 DOI: 10.3389/fphar.2023.1299613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/26/2023] [Indexed: 01/26/2024] Open
Abstract
Objective: Annexin A5 is a phosphatidylserine binding protein with anti-inflammatory, anticoagulant and anti-apoptotic properties. Preclinical studies have shown that annexin A5 inhibits pro-inflammatory responses and improves organ function and survival in rodent models of sepsis. This clinical trial aimed to evaluate the pharmacokinetic (PK) properties of the recombinant human annexin A5 (SY-005) in severe COVID-19. Methods: This was a pilot randomized, double-blind, placebo-controlled trial. Severe COVID-19 patients were randomly assigned to receive intravenous 50 μg/kg (low dose, n = 3), 100 μg/kg (high dose, n = 5) of SY-005 or placebo (n = 5) every 12 h for 7 days. Plasma SY-005 levels were assessed using enzyme-linked immunosorbent assay (ELISA) and the PK parameters were determined using non-compartmental analysis. Results: All patients treated with SY-005 had a normal baseline estimated glomerular filtration rate (eGFR, 104-125 mL/min/1.73 m2). Both low and high doses of SY-005 were cleared within 6 h after intravenous administration. Plasma maximum concentrations (Cmax), half-life, clearance and volume distribution of low and high doses of SY-005 were 402.4 and 848.9 ng/mL, 0.92 and 0.96 h, 7.52 and 15.19 L/h, and 9.98 and 20.79 L, respectively. Daily pre-dose circulating annexin A5 levels were not significantly different when SY-005 was administered at the low or the high dose 12-h intervals. There was no significant effect on activated partial thromboplastin time (aPTT) or INR (international normalized ratio of prothrombin time) during 7 days of SY-005 treatment. Conclusion: SY-005 doses of 50 and 100 μg/kg were detectable and subsequently cleared from the plasma in severe COVID-19 patients with normal baseline renal function. There was no significant plasma SY-005 accumulation 6 h after drug administration and coagulation was not altered during 7 days of treatment. Clinical trials Registration: This study was registered with ClinicalTrials.gov (NCT04748757, first posted on 10 February 2021).
Collapse
Affiliation(s)
- Brent J. Tschirhart
- Department of Physiology and Pharmacology, Schulich School of Dentistry and Medicine, Western University, London, ON, Canada
- Lawson Health Research Institute, London Health Sciences Centre, London, ON, Canada
| | - Xiangru Lu
- Department of Physiology and Pharmacology, Schulich School of Dentistry and Medicine, Western University, London, ON, Canada
| | - Aristide Laurel Mokale Kognou
- Department of Physiology and Pharmacology, Schulich School of Dentistry and Medicine, Western University, London, ON, Canada
| | - Claudio M. Martin
- Lawson Health Research Institute, London Health Sciences Centre, London, ON, Canada
- Division of Critical Care, Department of Medicine, Schulich School of Dentistry and Medicine, Western University, London, ON, Canada
| | - Marat Slessarev
- Lawson Health Research Institute, London Health Sciences Centre, London, ON, Canada
- Division of Critical Care, Department of Medicine, Schulich School of Dentistry and Medicine, Western University, London, ON, Canada
| | - Douglas D. Fraser
- Lawson Health Research Institute, London Health Sciences Centre, London, ON, Canada
- Division of Critical Care, Department of Medicine, Schulich School of Dentistry and Medicine, Western University, London, ON, Canada
| | - Aleksandra Leligdowicz
- Division of Critical Care, Department of Medicine, Schulich School of Dentistry and Medicine, Western University, London, ON, Canada
- Robarts Research Institute, Schulich School of Dentistry and Medicine, Western University, London, ON, Canada
- Department of Microbiology and Immunology, Schulich School of Dentistry and Medicine, Western University, London, ON, Canada
| | - Bradley Urquhart
- Department of Physiology and Pharmacology, Schulich School of Dentistry and Medicine, Western University, London, ON, Canada
- Lawson Health Research Institute, London Health Sciences Centre, London, ON, Canada
| | - Qingping Feng
- Department of Physiology and Pharmacology, Schulich School of Dentistry and Medicine, Western University, London, ON, Canada
- Lawson Health Research Institute, London Health Sciences Centre, London, ON, Canada
| |
Collapse
|
5
|
Grindheim AK, Patil SS, Nebigil CG, Désaubry L, Vedeler A. The flavagline FL3 interferes with the association of Annexin A2 with the eIF4F initiation complex and transiently stimulates the translation of annexin A2 mRNA. Front Cell Dev Biol 2023; 11:1094941. [PMID: 37250892 PMCID: PMC10214161 DOI: 10.3389/fcell.2023.1094941] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 04/28/2023] [Indexed: 05/31/2023] Open
Abstract
Introduction: Annexin A2 (AnxA2) plays a critical role in cell transformation, immune response, and resistance to cancer therapy. Besides functioning as a calcium- and lipidbinding protein, AnxA2 also acts as an mRNA-binding protein, for instance, by interacting with regulatory regions of specific cytoskeleton-associated mRNAs. Methods and Results: Nanomolar concentrations of FL3, an inhibitor of the translation factor eIF4A, transiently increases the expression of AnxA2 in PC12 cells and stimulates shortterm transcription/translation of anxA2 mRNA in the rabbit reticulocyte lysate. AnxA2 regulates the translation of its cognate mRNA by a feed-back mechanism, which can partly be relieved by FL3. Results obtained using the holdup chromatographic retention assay results suggest that AnxA2 interacts transiently with eIF4E (possibly eIF4G) and PABP in an RNA-independent manner while cap pulldown experiments indicate a more stable RNA-dependent interaction. Short-term (2 h) treatment of PC12 cells with FL3 increases the amount of eIF4A in cap pulldown complexes of total lysates, but not of the cytoskeletal fraction. AnxA2 is only present in cap analogue-purified initiation complexes from the cytoskeletal fraction and not total lysates confirming that AnxA2 binds to a specific subpopulation of mRNAs. Discussion: Thus, AnxA2 interacts with PABP1 and subunits of the initiation complex eIF4F, explaining its inhibitory effect on translation by preventing the formation of the full eIF4F complex. This interaction appears to be modulated by FL3. These novel findings shed light on the regulation of translation by AnxA2 and contribute to a better understanding of the mechanism of action of eIF4A inhibitors.
Collapse
Affiliation(s)
- Ann Kari Grindheim
- Department of Biomedicine, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Sudarshan S. Patil
- Department of Biomedicine, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Canan G. Nebigil
- Regenerative Nanomedicine Laboratory (UMR1260), Faculty of Medicine, FMTS, INSERM-University of Strasbourg, Strasbourg, France
| | - Laurent Désaubry
- Regenerative Nanomedicine Laboratory (UMR1260), Faculty of Medicine, FMTS, INSERM-University of Strasbourg, Strasbourg, France
| | - Anni Vedeler
- Department of Biomedicine, Faculty of Medicine, University of Bergen, Bergen, Norway
| |
Collapse
|
6
|
Abstract
Protein homeostasis relies on a balance between protein folding and protein degradation. Molecular chaperones like Hsp70 and Hsp90 fulfill well-defined roles in protein folding and conformational stability via ATP-dependent reaction cycles. These folding cycles are controlled by associations with a cohort of non-client protein co-chaperones, such as Hop, p23, and Aha1. Pro-folding co-chaperones facilitate the transit of the client protein through the chaperone-mediated folding process. However, chaperones are also involved in proteasomal and lysosomal degradation of client proteins. Like folding complexes, the ability of chaperones to mediate protein degradation is regulated by co-chaperones, such as the C-terminal Hsp70-binding protein (CHIP/STUB1). CHIP binds to Hsp70 and Hsp90 chaperones through its tetratricopeptide repeat (TPR) domain and functions as an E3 ubiquitin ligase using a modified RING finger domain (U-box). This unique combination of domains effectively allows CHIP to network chaperone complexes to the ubiquitin-proteasome and autophagosome-lysosome systems. This chapter reviews the current understanding of CHIP as a co-chaperone that switches Hsp70/Hsp90 chaperone complexes from protein folding to protein degradation.
Collapse
Affiliation(s)
- Abantika Chakraborty
- Biomedical Biotechnology Research Unit, Department of Biochemistry and Microbiology, Rhodes University, Makhanda/Grahamstown, South Africa
| | - Adrienne L Edkins
- Biomedical Biotechnology Research Unit, Department of Biochemistry and Microbiology, Rhodes University, Makhanda/Grahamstown, South Africa.
| |
Collapse
|
7
|
The Interplay between Autophagy and Redox Signaling in Cardiovascular Diseases. Cells 2022; 11:cells11071203. [PMID: 35406767 PMCID: PMC8997791 DOI: 10.3390/cells11071203] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/29/2022] [Accepted: 03/31/2022] [Indexed: 12/20/2022] Open
Abstract
Reactive oxygen and nitrogen species produced at low levels under normal cellular metabolism act as important signal molecules. However, at increased production, they cause damage associated with oxidative stress, which can lead to the development of many diseases, such as cardiovascular, metabolic, neurodegenerative, diabetes, and cancer. The defense systems used to maintain normal redox homeostasis plays an important role in cellular responses to oxidative stress. The key players here are Nrf2-regulated redox signaling and autophagy. A tight interface has been described between these two processes under stress conditions and their role in oxidative stress-induced diseases progression. In this review, we focus on the role of Nrf2 as a key player in redox regulation in cell response to oxidative stress. We also summarize the current knowledge about the autophagy regulation and the role of redox signaling in this process. In line with the focus of our review, we describe in more detail information about the interplay between Nrf2 and autophagy pathways in myocardium and the role of these processes in cardiovascular disease development.
Collapse
|
8
|
Auzmendi-Iriarte J, Otaegi-Ugartemendia M, Carrasco-Garcia E, Azkargorta M, Diaz A, Saenz-Antoñanzas A, Andermatten JA, Garcia-Puga M, Garcia I, Elua-Pinin A, Ruiz I, Sampron N, Elortza F, Cuervo AM, Matheu A. Chaperone-Mediated Autophagy Controls Proteomic and Transcriptomic Pathways to Maintain Glioma Stem Cell Activity. Cancer Res 2022; 82:1283-1297. [PMID: 35131870 PMCID: PMC9359743 DOI: 10.1158/0008-5472.can-21-2161] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 12/15/2021] [Accepted: 01/27/2022] [Indexed: 02/07/2023]
Abstract
Chaperone-mediated autophagy (CMA) is a homeostatic process essential for the lysosomal degradation of a selected subset of the proteome. CMA activity directly depends on the levels of LAMP2A, a critical receptor for CMA substrate proteins at the lysosomal membrane. In glioblastoma (GBM), the most common and aggressive brain cancer in adulthood, high levels of LAMP2A in the tumor and tumor-associated pericytes have been linked to temozolomide resistance and tumor progression. However, the role of LAMP2A, and hence CMA, in any cancer stem cell type or in glioblastoma stem cells (GSC) remains unknown. In this work, we show that LAMP2A expression is enriched in patient-derived GSCs, and its depletion diminishes GSC-mediated tumorigenic activities. Conversely, overexpression of LAMP2A facilitates the acquisition of GSC properties. Proteomic and transcriptomic analysis of LAMP2A-depleted GSCs revealed reduced extracellular matrix interaction effectors in both analyses. Moreover, pathways related to mitochondrial metabolism and the immune system were differentially deregulated at the proteome level. Furthermore, clinical samples of GBM tissue presented overexpression of LAMP2, which correlated with advanced glioma grade and poor overall survival. In conclusion, we identified a novel role of CMA in directly regulating GSCs activity via multiple pathways at the proteome and transcriptome levels. SIGNIFICANCE A receptor of chaperone-mediated autophagy regulates glioblastoma stem cells and may serve as a potential biomarker for advanced tumor grade and poor survival in this disease.
Collapse
Affiliation(s)
| | | | | | - Mikel Azkargorta
- Proteomics Platform, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), CIBERehd, ProteoRed-ISCIII, Spain
| | - Antonio Diaz
- Department of Development and Molecular Biology, Albert Einstein College of Medicine, Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, New York
| | | | | | - Mikel Garcia-Puga
- Cellular Oncology Group, Biodonostia Health Research Institute, San Sebastian, Spain
| | - Idoia Garcia
- Cellular Oncology Group, Biodonostia Health Research Institute, San Sebastian, Spain
| | | | - Irune Ruiz
- Cellular Oncology Group, Biodonostia Health Research Institute, San Sebastian, Spain.,Donostia University Hospital, Osakidetza, San Sebastian, Spain
| | - Nicolas Sampron
- Cellular Oncology Group, Biodonostia Health Research Institute, San Sebastian, Spain.,Donostia University Hospital, Osakidetza, San Sebastian, Spain
| | - Felix Elortza
- Proteomics Platform, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), CIBERehd, ProteoRed-ISCIII, Spain
| | - Ana Maria Cuervo
- Department of Development and Molecular Biology, Albert Einstein College of Medicine, Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, New York
| | - Ander Matheu
- Cellular Oncology Group, Biodonostia Health Research Institute, San Sebastian, Spain.,CIBER de Fragilidad y Envejecimiento Saludable (CIBERfes), Madrid, Spain.,IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.,Corresponding Author: Ander Matheu, Cellular Oncology, Biodonostia Health Research Institute, Paseo Dr. Beguiristain s/n, San Sebastian 20014, Spain. E-mail:
| |
Collapse
|
9
|
Enrich C, Lu A, Tebar F, Rentero C, Grewal T. Annexins Bridging the Gap: Novel Roles in Membrane Contact Site Formation. Front Cell Dev Biol 2022; 9:797949. [PMID: 35071237 PMCID: PMC8770259 DOI: 10.3389/fcell.2021.797949] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 12/16/2021] [Indexed: 01/16/2023] Open
Abstract
Membrane contact sites (MCS) are specialized small areas of close apposition between two different organelles that have led researchers to reconsider the dogma of intercellular communication via vesicular trafficking. The latter is now being challenged by the discovery of lipid and ion transfer across MCS connecting adjacent organelles. These findings gave rise to a new concept that implicates cell compartments not to function as individual and isolated entities, but as a dynamic and regulated ensemble facilitating the trafficking of lipids, including cholesterol, and ions. Hence, MCS are now envisaged as metabolic platforms, crucial for cellular homeostasis. In this context, well-known as well as novel proteins were ascribed functions such as tethers, transporters, and scaffolds in MCS, or transient MCS companions with yet unknown functions. Intriguingly, we and others uncovered metabolic alterations in cell-based disease models that perturbed MCS size and numbers between coupled organelles such as endolysosomes, the endoplasmic reticulum, mitochondria, or lipid droplets. On the other hand, overexpression or deficiency of certain proteins in this narrow 10-30 nm membrane contact zone can enable MCS formation to either rescue compromised MCS function, or in certain disease settings trigger undesired metabolite transport. In this "Mini Review" we summarize recent findings regarding a subset of annexins and discuss their multiple roles to regulate MCS dynamics and functioning. Their contribution to novel pathways related to MCS biology will provide new insights relevant for a number of human diseases and offer opportunities to design innovative treatments in the future.
Collapse
Affiliation(s)
- Carlos Enrich
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain.,Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Albert Lu
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain.,Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Francesc Tebar
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain.,Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Carles Rentero
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain.,Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Thomas Grewal
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
10
|
Le S, Fu X, Pang M, Zhou Y, Yin G, Zhang J, Fan D. The Antioxidative Role of Chaperone-Mediated Autophagy as a Downstream Regulator of Oxidative Stress in Human Diseases. Technol Cancer Res Treat 2022; 21:15330338221114178. [PMID: 36131551 PMCID: PMC9500268 DOI: 10.1177/15330338221114178] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Chaperone-mediated autophagy (CMA) plays an important role in regulating a variety of cellular functions by selectively degrading damaged or functional proteins in the cytoplasm. One of the cellular processes in which CMA participates is the oxidative stress response. Oxidative stress regulates CMA activity, while CMA protects cells from oxidative damage by degrading oxidized proteins and preventing the accumulation of excessive reactive oxygen species (ROS). Changes in CMA activity have been found in many human diseases, and oxidative stress is also involved. Therefore, understanding the interaction mechanism of ROS and CMA will provide new targets for disease treatment. In this review, we discuss the role of CMA in combatting oxidative stress during the development of different conditions, such as aging, neurodegeneration, liver diseases, infections, pulmonary disorders, and cancers.
Collapse
Affiliation(s)
- Shuangshuang Le
- Guangxi Key Laboratory of Bio-Targeting Theranostics, National Center for International Research of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-Targeting Theranostics, 74626Guangxi Medical University, Nanning, China.,State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, 12644Air Force Military Medical University, Xi'an, China
| | - Xin Fu
- Guangxi Key Laboratory of Bio-Targeting Theranostics, National Center for International Research of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-Targeting Theranostics, 74626Guangxi Medical University, Nanning, China.,State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, 12644Air Force Military Medical University, Xi'an, China
| | - Maogui Pang
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, 12644Air Force Military Medical University, Xi'an, China
| | - Yao Zhou
- Guangxi Key Laboratory of Bio-Targeting Theranostics, National Center for International Research of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-Targeting Theranostics, 74626Guangxi Medical University, Nanning, China.,State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, 12644Air Force Military Medical University, Xi'an, China
| | - Guoqing Yin
- Department of Oncology, 572481Xianyang Hospital of Yan'an University, Xianyang, China
| | - Jie Zhang
- Department of Oncology, 572481Xianyang Hospital of Yan'an University, Xianyang, China
| | - Daiming Fan
- Guangxi Key Laboratory of Bio-Targeting Theranostics, National Center for International Research of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-Targeting Theranostics, 74626Guangxi Medical University, Nanning, China.,State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, 12644Air Force Military Medical University, Xi'an, China
| |
Collapse
|
11
|
Meneses-Salas E, García-Melero A, Kanerva K, Blanco-Muñoz P, Morales-Paytuvi F, Bonjoch J, Casas J, Egert A, Beevi SS, Jose J, Llorente-Cortés V, Rye KA, Heeren J, Lu A, Pol A, Tebar F, Ikonen E, Grewal T, Enrich C, Rentero C. Annexin A6 modulates TBC1D15/Rab7/StARD3 axis to control endosomal cholesterol export in NPC1 cells. Cell Mol Life Sci 2020; 77:2839-2857. [PMID: 31664461 PMCID: PMC7326902 DOI: 10.1007/s00018-019-03330-y] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/30/2019] [Accepted: 10/01/2019] [Indexed: 01/23/2023]
Abstract
Cholesterol accumulation in late endosomes is a prevailing phenotype of Niemann-Pick type C1 (NPC1) mutant cells. Likewise, annexin A6 (AnxA6) overexpression induces a phenotype reminiscent of NPC1 mutant cells. Here, we demonstrate that this cellular cholesterol imbalance is due to AnxA6 promoting Rab7 inactivation via TBC1D15, a Rab7-GAP. In NPC1 mutant cells, AnxA6 depletion and eventual Rab7 activation was associated with peripheral distribution and increased mobility of late endosomes. This was accompanied by an enhanced lipid accumulation in lipid droplets in an acyl-CoA:cholesterol acyltransferase (ACAT)-dependent manner. Moreover, in AnxA6-deficient NPC1 mutant cells, Rab7-mediated rescue of late endosome-cholesterol export required the StAR-related lipid transfer domain-3 (StARD3) protein. Electron microscopy revealed a significant increase of membrane contact sites (MCS) between late endosomes and ER in NPC1 mutant cells lacking AnxA6, suggesting late endosome-cholesterol transfer to the ER via Rab7 and StARD3-dependent MCS formation. This study identifies AnxA6 as a novel gatekeeper that controls cellular distribution of late endosome-cholesterol via regulation of a Rab7-GAP and MCS formation.
Collapse
Affiliation(s)
- Elsa Meneses-Salas
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036, Barcelona, Spain
- Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain
| | - Ana García-Melero
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036, Barcelona, Spain
| | - Kristiina Kanerva
- Faculty of Medicine, Anatomy, University of Helsinki, 00014, Helsinki, Finland
- Minerva Foundation Institute for Medical Research, 00290, Helsinki, Finland
| | - Patricia Blanco-Muñoz
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036, Barcelona, Spain
- Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain
| | - Frederic Morales-Paytuvi
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036, Barcelona, Spain
- Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain
| | - Júlia Bonjoch
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036, Barcelona, Spain
- Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain
| | - Josefina Casas
- Research Unit on BioActive Molecules (RUBAM), Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona, Spain
| | - Antonia Egert
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, 2006, Australia
| | - Syed S Beevi
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, 2006, Australia
| | - Jaimy Jose
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, 2006, Australia
| | - Vicenta Llorente-Cortés
- Lipids and Cardiovascular Pathology Group, Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain
- CIBERCV, Institute of Health Carlos III, Madrid, Spain
- Biomedical Research Institute of Barcelona-CSIC, Barcelona, Spain
| | - Kerry-Anne Rye
- School of Medical Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Joerg Heeren
- Department of Biochemistry and Molecular Biology II: Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Albert Lu
- Department of Biochemistry, Stanford University School of Medicine, Stanford, USA
| | - Albert Pol
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036, Barcelona, Spain
- Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avaçats (ICREA), 08010, Barcelona, Spain
| | - Francesc Tebar
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036, Barcelona, Spain
- Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain
| | - Elina Ikonen
- Faculty of Medicine, Anatomy, University of Helsinki, 00014, Helsinki, Finland
- Minerva Foundation Institute for Medical Research, 00290, Helsinki, Finland
| | - Thomas Grewal
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, 2006, Australia.
| | - Carlos Enrich
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036, Barcelona, Spain.
- Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain.
| | - Carles Rentero
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036, Barcelona, Spain.
- Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain.
| |
Collapse
|
12
|
Expression of Annexin A2 Promotes Cancer Progression in Estrogen Receptor Negative Breast Cancers. Cells 2020; 9:cells9071582. [PMID: 32629869 PMCID: PMC7407301 DOI: 10.3390/cells9071582] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/22/2020] [Accepted: 06/27/2020] [Indexed: 12/26/2022] Open
Abstract
When breast cancer progresses to a metastatic stage, survival rates decline rapidly and it is considered incurable. Thus, deciphering the critical mechanisms of metastasis is of vital importance to develop new treatment options. We hypothesize that studying the proteins that are newly synthesized during the metastatic processes of migration and invasion will greatly enhance our understanding of breast cancer progression. We conducted a mass spectrometry screen following bioorthogonal noncanonical amino acid tagging to elucidate changes in the nascent proteome that occur during epidermal growth factor stimulation in migrating and invading cells. Annexin A2 was identified in this screen and subsequent examination of breast cancer cell lines revealed that Annexin A2 is specifically upregulated in estrogen receptor negative (ER-) cell lines. Furthermore, siRNA knockdown showed that Annexin A2 expression promotes the proliferation, wound healing and directional migration of breast cancer cells. In patients, Annexin A2 expression is increased in ER- breast cancer subtypes. Additionally, high Annexin A2 expression confers a higher probability of distant metastasis specifically for ER- patients. This work establishes a pivotal role of Annexin A2 in breast cancer progression and identifies Annexin A2 as a potential therapeutic target for the more aggressive and harder to treat ER- subtype.
Collapse
|
13
|
Meneses-Salas E, García-Melero A, Blanco-Muñoz P, Jose J, Brenner MS, Lu A, Tebar F, Grewal T, Rentero C, Enrich C. Selective Degradation Permits a Feedback Loop Controlling Annexin A6 and Cholesterol Levels in Endolysosomes of NPC1 Mutant Cells. Cells 2020; 9:cells9051152. [PMID: 32392809 PMCID: PMC7291204 DOI: 10.3390/cells9051152] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 04/23/2020] [Accepted: 05/05/2020] [Indexed: 12/22/2022] Open
Abstract
We recently identified elevated annexin A6 (AnxA6) protein levels in Niemann–Pick-type C1 (NPC1) mutant cells. In these cells, AnxA6 depletion rescued the cholesterol accumulation associated with NPC1 deficiency. Here, we demonstrate that elevated AnxA6 protein levels in NPC1 mutants or upon pharmacological NPC1 inhibition, using U18666A, were not due to upregulated AnxA6 mRNA expression, but caused by defects in AnxA6 protein degradation. Two KFERQ-motifs are believed to target AnxA6 to lysosomes for chaperone-mediated autophagy (CMA), and we hypothesized that the cholesterol accumulation in endolysosomes (LE/Lys) triggered by the NPC1 inhibition could interfere with the CMA pathway. Therefore, AnxA6 protein amounts and cholesterol levels in the LE/Lys (LE-Chol) compartment were analyzed in NPC1 mutant cells ectopically expressing lysosome-associated membrane protein 2A (Lamp2A), which is well known to induce the CMA pathway. Strikingly, AnxA6 protein amounts were strongly decreased and coincided with significantly reduced LE-Chol levels in NPC1 mutant cells upon Lamp2A overexpression. Therefore, these findings suggest Lamp2A-mediated restoration of CMA in NPC1 mutant cells to lower LE-Chol levels with concomitant lysosomal AnxA6 degradation. Collectively, we propose CMA to permit a feedback loop between AnxA6 and cholesterol levels in LE/Lys, encompassing a novel mechanism for regulating cholesterol homeostasis in NPC1 disease.
Collapse
Affiliation(s)
- Elsa Meneses-Salas
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036 Barcelona, Spain; (E.M.-S.); (A.G.-M.); (P.B.-M.); (F.T.)
- Centre de Recerca Biomèdica CELLEX, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036-Barcelona, Spain
| | - Ana García-Melero
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036 Barcelona, Spain; (E.M.-S.); (A.G.-M.); (P.B.-M.); (F.T.)
- Centre de Recerca Biomèdica CELLEX, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036-Barcelona, Spain
| | - Patricia Blanco-Muñoz
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036 Barcelona, Spain; (E.M.-S.); (A.G.-M.); (P.B.-M.); (F.T.)
- Centre de Recerca Biomèdica CELLEX, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036-Barcelona, Spain
| | - Jaimy Jose
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney 2006, NSW, Australia; (J.J.); (M.-S.B.)
| | - Marie-Sophie Brenner
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney 2006, NSW, Australia; (J.J.); (M.-S.B.)
| | - Albert Lu
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA;
| | - Francesc Tebar
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036 Barcelona, Spain; (E.M.-S.); (A.G.-M.); (P.B.-M.); (F.T.)
- Centre de Recerca Biomèdica CELLEX, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036-Barcelona, Spain
| | - Thomas Grewal
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney 2006, NSW, Australia; (J.J.); (M.-S.B.)
- Correspondence: (T.G.); (C.R.); (C.E.); Tel.: +34-934021908 (C.R.)
| | - Carles Rentero
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036 Barcelona, Spain; (E.M.-S.); (A.G.-M.); (P.B.-M.); (F.T.)
- Centre de Recerca Biomèdica CELLEX, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036-Barcelona, Spain
- Correspondence: (T.G.); (C.R.); (C.E.); Tel.: +34-934021908 (C.R.)
| | - Carlos Enrich
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036 Barcelona, Spain; (E.M.-S.); (A.G.-M.); (P.B.-M.); (F.T.)
- Centre de Recerca Biomèdica CELLEX, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036-Barcelona, Spain
- Correspondence: (T.G.); (C.R.); (C.E.); Tel.: +34-934021908 (C.R.)
| |
Collapse
|
14
|
Lipids Nutrients in Parkinson and Alzheimer's Diseases: Cell Death and Cytoprotection. Int J Mol Sci 2020; 21:ijms21072501. [PMID: 32260305 PMCID: PMC7178281 DOI: 10.3390/ijms21072501] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 03/26/2020] [Accepted: 04/01/2020] [Indexed: 12/11/2022] Open
Abstract
Neurodegenerative diseases, particularly Parkinson’s and Alzheimer’s, have common features: protein accumulation, cell death with mitochondrial involvement and oxidative stress. Patients are treated to cure the symptoms, but the treatments do not target the causes; so, the disease is not stopped. It is interesting to look at the side of nutrition which could help prevent the first signs of the disease or slow its progression in addition to existing therapeutic strategies. Lipids, whether in the form of vegetable or animal oils or in the form of fatty acids, could be incorporated into diets with the aim of preventing neurodegenerative diseases. These different lipids can inhibit the cytotoxicity induced during the pathology, whether at the level of mitochondria, oxidative stress or apoptosis and inflammation. The conclusions of the various studies cited are oriented towards the preventive use of oils or fatty acids. The future of these lipids that can be used in therapy/prevention will undoubtedly involve a better delivery to the body and to the brain by utilizing lipid encapsulation.
Collapse
|
15
|
Nitric oxide mediated redox regulation of protein homeostasis. Cell Signal 2018; 53:348-356. [PMID: 30408515 DOI: 10.1016/j.cellsig.2018.10.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 10/27/2018] [Accepted: 10/29/2018] [Indexed: 12/12/2022]
Abstract
Nitric oxide is a versatile diffusible signaling molecule, whose biosynthesis by three NO synthases (NOS) is tightly regulated at transcriptional and posttranslational levels, availability of co-factors, and calcium binding. Above normal levels of NO have beneficial protective effects for example in the cardiovascular system, but also contribute to the pathophysiology in the context of inflammatory diseases, and to aging and neurodegeneration in the nervous system. The effect specificity relies on the functional and spatial specificity of the NOS isoenzymes, and on the duality of two major signaling mechanisms (i) activation of soluble guanylycylase (sGC)-dependent cGMP production and (ii) direct S-nitrosylation of redox sensitive cysteines of susceptible proteins. The present review summarizes the functional implications of S-nitrosylation in the context of proteostasis, and focuses on two NO target proteins, heat shock cognate of 70 kDa (Hsc70/HSPA8) and the ubiquitin 2 ligase (UBE2D), because both are modified on functionally critical cysteines and are key regulators of chaperone mediated and assisted autophagy and proteasomal protein degradation. SNO modifications of these candidates are associated with protein accumulations and adoption of a senescent phenotype of neuronal cells suggesting that S-nitrosylations of protein homeostatic machineries contribute to aging phenomena.
Collapse
|
16
|
Nitric oxide contributes to protein homeostasis by S-nitrosylations of the chaperone HSPA8 and the ubiquitin ligase UBE2D. Redox Biol 2018; 20:217-235. [PMID: 30368041 PMCID: PMC6202877 DOI: 10.1016/j.redox.2018.10.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 09/25/2018] [Accepted: 10/02/2018] [Indexed: 02/06/2023] Open
Abstract
Upregulations of neuronal nitric oxide synthase (nNOS) in the rodent brain have been associated with neuronal aging. To address underlying mechanisms we generated SH-SY5Y neuronal cells constitutively expressing nNOS at a level similar to mouse brain (nNOS+ versus MOCK). Initial experiments revealed S-nitrosylations (SNO) of key players of protein homeostasis: heat shock cognate HSC70/HSPA8 within its nucleotide-binding site, and UBE2D ubiquitin conjugating enzymes at the catalytic site cysteine. HSPA8 is involved in protein folding, organelle import/export and chaperone-mediated LAMP2a-dependent autophagy (CMA). A set of deep redox and full proteome analyses, plus analysis of autophagy, CMA and ubiquitination with rapamycin and starvation as stimuli confirmed the initial observations and revealed a substantial increase of SNO modifications in nNOS+ cells, in particular targeting protein networks involved in protein catabolism, ubiquitination, carbohydrate metabolism and cell cycle control. Importantly, NO-independent reversible oxidations similarly occurred in both cell lines. Functionally, nNOS caused an accumulation of proteins, including CMA substrates and loss of LAMP2a. UBE2D activity and proteasome activity were impaired, resulting in dysregulations of cell cycle checkpoint proteins. The observed changes of protein degradation pathways caused an expansion of the cytoplasm, large lysosomes, slowing of the cell cycle and suppression of proliferation suggesting a switch of the phenotype towards aging, supported by downregulations of neuronal progenitor markers but increase of senescence-associated proteins. Hence, upregulation of nNOS in neuronal cells imposes aging by SNOing of key players of ubiquitination, chaperones and of substrate proteins leading to interference with crucial steps of protein homeostasis.
Collapse
|
17
|
Tekirdag K, Cuervo AM. Chaperone-mediated autophagy and endosomal microautophagy: Joint by a chaperone. J Biol Chem 2018; 293:5414-5424. [PMID: 29247007 PMCID: PMC5900761 DOI: 10.1074/jbc.r117.818237] [Citation(s) in RCA: 256] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
A variety of mechanisms deliver cytosolic materials to the lysosomal compartment for degradation through autophagy. Here, we focus on two autophagic pathways, the chaperone-mediated autophagy and the endosomal microautophagy that rely on the cytosolic chaperone hsc70 for substrate targeting. Although hsc70 participates in the triage of proteins for degradation by different proteolytic systems, the common characteristic shared by these two forms of autophagy is that hsc70 binds directly to a specific five-amino acid motif in the cargo protein for its autophagic targeting. We summarize the current understanding of the molecular machineries behind each of these types of autophagy.
Collapse
Affiliation(s)
- Kumsal Tekirdag
- From the Department of Developmental and Molecular Biology, Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Ana Maria Cuervo
- From the Department of Developmental and Molecular Biology, Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, New York 10461
| |
Collapse
|
18
|
Liu L, An D, Xu J, Shao B, Li X, Shi J. Ac2-26 Induces IKKβ Degradation Through Chaperone-Mediated Autophagy Via HSPB1 in NCM-Treated Microglia. Front Mol Neurosci 2018; 11:76. [PMID: 29662435 PMCID: PMC5890123 DOI: 10.3389/fnmol.2018.00076] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 02/26/2018] [Indexed: 11/24/2022] Open
Abstract
Annexin A1 (ANXA1) is an endogenous protein with potent anti-inflammatory properties in the brain. Although ANXA1 has been predominantly studied for its binding to formyl peptide receptors (FPRs) on plasma membranes, little is known regarding whether this protein has an anti-inflammatory effect in the cytosol. Here, we investigated the mechanism by which the ANXA1 peptide Ac2-26 decreases high TNF-α production and IKKβ activity, which was caused by oxygen glucose deprivation/reperfusion (OGD/R)-induced neuronal conditioned medium (NCM) in microglia. We found that exogenous Ac2-26 crosses into the cytoplasm of microglia and inhibits both gene expression and protein secretion of TNF-α. Ac2-26 also causes a decrease in IKKβ protein but not IKKβ mRNA, and this effect is inverted by lysosome inhibitor NH4CL. Furthermore, we demonstrate that Ac2-26 induces IKKβ accumulation in lysosomes and that lysosomal-associated membrane protein 2A (LAMP-2A), not LC-3, is enhanced in microglia exposed to Ac2-26. We hypothesize that Ac2-26 mediates IKKβ degradation in lysosomes through chaperone-mediated autophagy (CMA). Interestingly, ANXA1 in the cytoplasm does not interact with IKKβ but with HSPB1, and Ac2-26 promotes HSPB1 binding to IKKβ. Furthermore, both ANXA1 and HSPB1 can interact with Hsc70 and LAMP-2A, but IKKβ only associates with LAMP-2A. Downregulation of HSPB1 or LAMP-2A reverses the degradation of IKKβ induced by Ac2-26. Taken together, these findings define an essential role of exogenous Ac2-26 in microglia and demonstrate that Ac2-26 is associated with HSPB1 and promotes HSPB1 binding to IKKβ, which is degraded by CMA, thereby reducing TNF-α expression.
Collapse
Affiliation(s)
- Lu Liu
- Department of Neurobiology and Key Laboratory of Neurological Diseases of Ministry of Education, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China
| | - Dandan An
- Department of Neurobiology and Key Laboratory of Neurological Diseases of Ministry of Education, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China
| | - Junying Xu
- Department of Neurobiology and Key Laboratory of Neurological Diseases of Ministry of Education, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China
| | - Bin Shao
- Department of Neurobiology and Key Laboratory of Neurological Diseases of Ministry of Education, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China
| | - Xing Li
- Department of Neurobiology and Key Laboratory of Neurological Diseases of Ministry of Education, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Shi
- Department of Neurobiology and Key Laboratory of Neurological Diseases of Ministry of Education, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
19
|
Alfaro IE, Albornoz A, Molina A, Moreno J, Cordero K, Criollo A, Budini M. Chaperone Mediated Autophagy in the Crosstalk of Neurodegenerative Diseases and Metabolic Disorders. Front Endocrinol (Lausanne) 2018; 9:778. [PMID: 30766511 PMCID: PMC6365421 DOI: 10.3389/fendo.2018.00778] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 12/11/2018] [Indexed: 12/12/2022] Open
Abstract
Chaperone Mediated Autophagy (CMA) is a lysosomal-dependent protein degradation pathway. At least 30% of cytosolic proteins can be degraded by this process. The two major protein players of CMA are LAMP-2A and HSC70. While LAMP-2A works as a receptor for protein substrates at the lysosomal membrane, HSC70 specifically binds protein targets and takes them for CMA degradation. Because of the broad spectrum of proteins able to be degraded by CMA, this pathway has been involved in physiological and pathological processes such as lipid and carbohydrate metabolism, and neurodegenerative diseases, respectively. Both, CMA, and the mentioned processes, are affected by aging and by inadequate nutritional habits such as a high fat diet or a high carbohydrate diet. Little is known regarding about CMA, which is considered a common regulation factor that links metabolism with neurodegenerative disorders. This review summarizes what is known about CMA, focusing on its molecular mechanism, its role in protein, lipid and carbohydrate metabolism. In addition, the review will discuss how CMA could be linked to protein, lipids and carbohydrate metabolism within neurodegenerative diseases. Furthermore, it will be discussed how aging and inadequate nutritional habits can have an impact on both CMA activity and neurodegenerative disorders.
Collapse
Affiliation(s)
- Iván E. Alfaro
- Fundación Ciencia & Vida, Santiago, Chile
- *Correspondence: Iván E. Alfaro
| | | | - Alfredo Molina
- Dentistry Faculty, Institute in Dentistry Sciences, University of Chile, Santiago, Chile
| | - José Moreno
- Dentistry Faculty, Institute in Dentistry Sciences, University of Chile, Santiago, Chile
| | - Karina Cordero
- Dentistry Faculty, Institute in Dentistry Sciences, University of Chile, Santiago, Chile
| | - Alfredo Criollo
- Dentistry Faculty, Institute in Dentistry Sciences, University of Chile, Santiago, Chile
- Autophagy Research Center (ARC), Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDiS), University of Chile, Santiago, Chile
| | - Mauricio Budini
- Dentistry Faculty, Institute in Dentistry Sciences, University of Chile, Santiago, Chile
- Autophagy Research Center (ARC), Santiago, Chile
- Mauricio Budini
| |
Collapse
|
20
|
Alpha-synuclein: Pathology, mitochondrial dysfunction and neuroinflammation in Parkinson’s disease. Neurobiol Dis 2018; 109:249-257. [DOI: 10.1016/j.nbd.2017.04.004] [Citation(s) in RCA: 339] [Impact Index Per Article: 48.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 03/29/2017] [Accepted: 04/05/2017] [Indexed: 12/12/2022] Open
|
21
|
Fernández-Fernández MR, Gragera M, Ochoa-Ibarrola L, Quintana-Gallardo L, Valpuesta JM. Hsp70 - a master regulator in protein degradation. FEBS Lett 2017; 591:2648-2660. [PMID: 28696498 DOI: 10.1002/1873-3468.12751] [Citation(s) in RCA: 166] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 07/04/2017] [Accepted: 07/07/2017] [Indexed: 12/31/2022]
Abstract
Proteostasis, the controlled balance of protein synthesis, folding, assembly, trafficking and degradation, is a paramount necessity for cell homeostasis. Impaired proteostasis is a hallmark of ageing and of many human diseases. Molecular chaperones are essential for proteostasis in eukaryotic cells, and their function has traditionally been linked to protein folding, assembly and disaggregation. More recent findings suggest that chaperones also contribute to key steps in protein degradation. In particular, Hsp70 has an essential role in substrate degradation through the ubiquitin-proteasome system, as well as through different autophagy pathways. Accumulated knowledge suggests that the fate of an Hsp70 substrate is dictated by the combination of partners (cochaperones and other chaperones) that interact with Hsp70 in a given cell context.
Collapse
Affiliation(s)
| | - Marcos Gragera
- Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | | | | | | |
Collapse
|
22
|
Bartlett JJ, Trivedi PC, Pulinilkunnil T. Autophagic dysregulation in doxorubicin cardiomyopathy. J Mol Cell Cardiol 2017; 104:1-8. [PMID: 28108310 DOI: 10.1016/j.yjmcc.2017.01.007] [Citation(s) in RCA: 161] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 01/12/2017] [Accepted: 01/16/2017] [Indexed: 12/22/2022]
|
23
|
Aukrust I, Rosenberg LA, Ankerud MM, Bertelsen V, Hollås H, Saraste J, Grindheim AK, Vedeler A. Post-translational modifications of Annexin A2 are linked to its association with perinuclear nonpolysomal mRNP complexes. FEBS Open Bio 2017; 7:160-173. [PMID: 28174683 PMCID: PMC5292671 DOI: 10.1002/2211-5463.12173] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 11/03/2016] [Accepted: 11/23/2016] [Indexed: 01/20/2023] Open
Abstract
Various post‐translational modifications (PTMs) regulate the localisation and function of the multifunctional protein Annexin A2 (AnxA2). In addition to its various tasks as a cytoskeletal‐ and membrane‐associated protein, AnxA2 can function as a trans‐acting protein binding to cis‐acting sequences of specific mRNAs. In the present study, we have examined the role of Ser25 phosphorylation in subcellular localisation of AnxA2 and its interaction with mRNP complexes. Subcellular fractionation and confocal microscopy of rat neuroendocrine PC12 cells showed that Ser25‐phosphorylated AnxA2 (pSer25AnxA2) is absent from the nucleus and mainly localised to the perinuclear region, evidently associating with both membranes and cytoskeletal elements. Perinuclear targeting of AnxA2 was abolished by inhibition of protein kinase C activity, which resulted in cortical enrichment of the protein. Although oligo(dT)‐affinity purification of mRNAs revealed that pSer25AnxA2 associates with nonpolysomal, translationally inactive mRNP complexes, it displayed only partial overlap with a marker of P‐bodies. The phosphorylated protein is present as high‐molecular‐mass forms, indicating that it contains additional covalent PTMs, apparently triggered by its Ser25 phosphorylation. The subcellular distributions of these forms clearly differ from the main form of AnxA2 and are also distinct from that of Tyr23‐phosphorylated AnxA2. Immunoprecipitation verified that these high‐molecular‐mass forms are due to ubiquitination and/or sumoylation. Moreover, these results indicate that Ser25 phosphorylation and ubiquitin/SUMO1 conjugation of AnxA2 promote its association with nonpolysomal mRNAs, providing evidence of a possible mechanism to sequester a subpopulation of mRNAs in a translationally inactive and transport competent form at a distinct subcellular localisation.
Collapse
Affiliation(s)
- Ingvild Aukrust
- Department of Biomedicine University of Bergen Norway; Present address: Centre for Medical Genetics and Molecular Medicine Haukeland University Hospital Bergen Norway
| | | | | | - Vibeke Bertelsen
- Department of Biomedicine University of Bergen Norway; Present address: Department of Pathology Oslo University Hospital University of Oslo Oslo Norway
| | - Hanne Hollås
- Department of Biomedicine University of Bergen Norway
| | - Jaakko Saraste
- Department of Biomedicine University of Bergen Norway; Molecular Imaging Centre (MIC) University of Bergen Norway
| | - Ann Kari Grindheim
- Department of Biomedicine University of Bergen Norway; Molecular Imaging Centre (MIC) University of Bergen Norway
| | - Anni Vedeler
- Department of Biomedicine University of Bergen Norway
| |
Collapse
|
24
|
Grewal T, Hoque M, Conway JRW, Reverter M, Wahba M, Beevi SS, Timpson P, Enrich C, Rentero C. Annexin A6-A multifunctional scaffold in cell motility. Cell Adh Migr 2017; 11:288-304. [PMID: 28060548 DOI: 10.1080/19336918.2016.1268318] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Annexin A6 (AnxA6) belongs to a highly conserved protein family characterized by their calcium (Ca2+)-dependent binding to phospholipids. Over the years, immunohistochemistry, subcellular fractionations, and live cell microscopy established that AnxA6 is predominantly found at the plasma membrane and endosomal compartments. In these locations, AnxA6 acts as a multifunctional scaffold protein, recruiting signaling proteins, modulating cholesterol and membrane transport and influencing actin dynamics. These activities enable AnxA6 to contribute to the formation of multifactorial protein complexes and membrane domains relevant in signal transduction, cholesterol homeostasis and endo-/exocytic membrane transport. Hence, AnxA6 has been implicated in many biological processes, including cell proliferation, survival, differentiation, inflammation, but also membrane repair and viral infection. More recently, we and others identified roles for AnxA6 in cancer cell migration and invasion. This review will discuss how the multiple scaffold functions may enable AnxA6 to modulate migratory cell behavior in health and disease.
Collapse
Affiliation(s)
- Thomas Grewal
- a Faculty of Pharmacy , University of Sydney , Sydney , NSW , Australia
| | - Monira Hoque
- a Faculty of Pharmacy , University of Sydney , Sydney , NSW , Australia
| | - James R W Conway
- b The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Cancer Division, St Vincent's Clinical School, Faculty of Medicine , University of New South Wales , Sydney , NSW , Australia
| | - Meritxell Reverter
- c Departament de Biomedicina, Unitat de Biologia Cel·lular, Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Facultat de Medicina , Universitat de Barcelona , Barcelona , Spain
| | - Mohamed Wahba
- a Faculty of Pharmacy , University of Sydney , Sydney , NSW , Australia
| | - Syed S Beevi
- a Faculty of Pharmacy , University of Sydney , Sydney , NSW , Australia
| | - Paul Timpson
- b The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Cancer Division, St Vincent's Clinical School, Faculty of Medicine , University of New South Wales , Sydney , NSW , Australia
| | - Carlos Enrich
- c Departament de Biomedicina, Unitat de Biologia Cel·lular, Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Facultat de Medicina , Universitat de Barcelona , Barcelona , Spain
| | - Carles Rentero
- c Departament de Biomedicina, Unitat de Biologia Cel·lular, Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Facultat de Medicina , Universitat de Barcelona , Barcelona , Spain
| |
Collapse
|
25
|
Enrich C, Rentero C, Meneses-Salas E, Tebar F, Grewal T. Annexins: Ca 2+ Effectors Determining Membrane Trafficking in the Late Endocytic Compartment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 981:351-385. [PMID: 29594868 DOI: 10.1007/978-3-319-55858-5_14] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Despite the discovery of annexins 40 years ago, we are just beginning to understand some of the functions of these still enigmatic proteins. Defined and characterized by their ability to bind anionic membrane lipids in a Ca2+-dependent manner, each annexin has to be considered a multifunctional protein, with a multitude of cellular locations and diverse activities. Underlying causes for this considerable functional diversity include their capability to associate with multiple cytosolic and membrane proteins. In recent years, the increasingly recognized establishment of membrane contact sites between subcellular compartments opens a new scenario for annexins as instrumental players to link Ca2+ signalling with the integration of membrane trafficking in many facets of cell physiology. In this chapter, we review and discuss current knowledge on the contribution of annexins in the biogenesis and functioning of the late endocytic compartment, affecting endo- and exocytic pathways in a variety of physiological consequences ranging from membrane repair, lysosomal exocytosis, to cell migration.
Collapse
Affiliation(s)
- Carlos Enrich
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Centre de Recerca Biomèdica (CELLEX), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain. .,Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain.
| | - Carles Rentero
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Centre de Recerca Biomèdica (CELLEX), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
| | - Elsa Meneses-Salas
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Centre de Recerca Biomèdica (CELLEX), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
| | - Francesc Tebar
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Centre de Recerca Biomèdica (CELLEX), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
| | - Thomas Grewal
- Faculty of Pharmacy, University of Sydney, Sydney, Australia
| |
Collapse
|
26
|
Bao Y, Mugume Y, Bassham DC. Biochemical Methods to Monitor Autophagic Responses in Plants. Methods Enzymol 2016; 588:497-513. [PMID: 28237117 DOI: 10.1016/bs.mie.2016.09.090] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The study of autophagy in plants is rapidly increasing, due to its pivotal and fundamental roles in responding to stressful stimuli, recycling nutrients during senescence, and maintaining growth under normal conditions. Assays for detecting autophagy in plants have generally been based on microscopic observations, providing qualitative information on autophagy activity. Here, we discuss biochemical assays for detecting autophagy, which have the potential for providing more quantitative information, with a focus on immunoblotting with antibodies against ATG8, NBR1, or epitope tags fused to ATG proteins.
Collapse
Affiliation(s)
- Y Bao
- Iowa State University, Ames, IA, United States
| | - Y Mugume
- Iowa State University, Ames, IA, United States
| | - D C Bassham
- Iowa State University, Ames, IA, United States.
| |
Collapse
|
27
|
Enrich C, Rentero C, Grewal T. Annexin A6 in the liver: From the endocytic compartment to cellular physiology. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1864:933-946. [PMID: 27984093 DOI: 10.1016/j.bbamcr.2016.10.017] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 10/25/2016] [Accepted: 10/26/2016] [Indexed: 12/15/2022]
Abstract
Annexin A6 (AnxA6) belongs to the conserved annexin family - a group of Ca2+-dependent membrane binding proteins. AnxA6 is the largest of all annexins and highly expressed in smooth muscle, hepatocytes, endothelial cells and cardiomyocytes. Upon activation, AnxA6 binds to negatively charged phospholipids in a wide range of intracellular localizations, in particular the plasma membrane, late endosomes/pre-lysosomes, but also synaptic vesicles and sarcolemma. In these cellular sites, AnxA6 is believed to contribute to the organization of membrane microdomains, such as cholesterol-rich lipid rafts and confer multiple regulatory functions, ranging from vesicle fusion, endocytosis and exocytosis to programmed cell death and muscle contraction. Growing evidence supports that Ca2+ and Ca2+-binding proteins control endocytosis and autophagy. Their regulatory role seems to operate at the level of the signalling pathways that initiate autophagy or at later stages, when autophagosomes fuse with endolysosomal compartments. The convergence of the autophagic and endocytic vesicles to lysosomes shares several features that depend on Ca2+ originating from lysosomes/late endosomes and seems to depend on proteins that are subsequently activated by this cation. However, the involvement of Ca2+ and its effector proteins in these autophagic and endocytic stages still remains poorly understood. Although AnxA6 makes up almost 0.25% of total protein in the liver, little is known about its function in hepatocytes. Within the endocytic route, we identified AnxA6 in endosomes and autophagosomes of hepatocytes. Hence, AnxA6 and possibly other annexins might represent new Ca2+ effectors that regulate converging steps of autophagy and endocytic trafficking in hepatocytes. This article is part of a Special Issue entitled: ECS Meeting edited by Claus Heizmann, Joachim Krebs and Jacques Haiech.
Collapse
Affiliation(s)
- Carlos Enrich
- Departament de Biomedicina, Unitat de Biologia Cellular, Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Facultat de Medicina, Universitat de Barcelona, 08036 Barcelona, Spain.
| | - Carles Rentero
- Departament de Biomedicina, Unitat de Biologia Cellular, Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Facultat de Medicina, Universitat de Barcelona, 08036 Barcelona, Spain
| | - Thomas Grewal
- Faculty of Pharmacy A15, University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
28
|
Wang DW, Peng ZJ, Ren GF, Wang GX. The different roles of selective autophagic protein degradation in mammalian cells. Oncotarget 2016; 6:37098-116. [PMID: 26415220 PMCID: PMC4741918 DOI: 10.18632/oncotarget.5776] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 08/31/2015] [Indexed: 01/01/2023] Open
Abstract
Autophagy is an intracellular pathway for bulk protein degradation and the removal of damaged organelles by lysosomes. Autophagy was previously thought to be unselective; however, studies have increasingly confirmed that autophagy-mediated protein degradation is highly regulated. Abnormal autophagic protein degradation has been associated with multiple human diseases such as cancer, neurological disability and cardiovascular disease; therefore, further elucidation of protein degradation by autophagy may be beneficial for protein-based clinical therapies. Macroautophagy and chaperone-mediated autophagy (CMA) can both participate in selective protein degradation in mammalian cells, but the process is quite different in each case. Here, we summarize the various types of macroautophagy and CMA involved in determining protein degradation. For this summary, we divide the autophagic protein degradation pathways into four categories: the post-translational modification dependent and independent CMA pathways and the ubiquitin dependent and independent macroautophagy pathways, and describe how some non-canonical pathways and modifications such as phosphorylation, acetylation and arginylation can influence protein degradation by the autophagy lysosome system (ALS). Finally, we comment on why autophagy can serve as either diagnostics or therapeutic targets in different human diseases.
Collapse
Affiliation(s)
- Da-wei Wang
- Department of Biochemistry and Molecular Biology, School of Medicine, Shandong University, Jinan, Shandong, China
| | - Zhen-ju Peng
- Medical Institute of Paediatrics, Qilu Children's Hospital of Shandong University, Jinan, Shandong, China
| | - Guang-fang Ren
- Medical Institute of Paediatrics, Qilu Children's Hospital of Shandong University, Jinan, Shandong, China
| | - Guang-xin Wang
- Medical Institute of Paediatrics, Qilu Children's Hospital of Shandong University, Jinan, Shandong, China
| |
Collapse
|
29
|
Saho S, Satoh H, Kondo E, Inoue Y, Yamauchi A, Murata H, Kinoshita R, Yamamoto KI, Futami J, Putranto EW, Ruma IMW, Sumardika IW, Youyi C, Suzawa K, Yamamoto H, Soh J, Tomida S, Sakaguchi Y, Saito K, Iioka H, Huh NH, Toyooka S, Sakaguchi M. Active Secretion of Dimerized S100A11 Induced by the Peroxisome in Mesothelioma Cells. CANCER MICROENVIRONMENT 2016; 9:93-105. [PMID: 27334300 DOI: 10.1007/s12307-016-0185-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 06/13/2016] [Indexed: 12/31/2022]
Abstract
S100A11, a small Ca2+ binding protein, acts extracellularly as a mediator of cancer progression. That raises the question of how a protein that lacks the classical secretory signal is able to be secreted outside cells without being damaged. Some insights into this question have been obtained, and there has been accumulating evidence indicating a pivotal role of a non-classical vesicle-mediated pathway using lysosomes or peroxisomes for the protein secretion. To obtain a more precise insight into the secretory mechanism of S100A11, we first screened representative cancer cells exhibiting significantly active secretion of S100A11. From the results of profiling, we turned our attention to aggressive cancer mesothelioma cells. In mesothelioma cells, we found that abundant dimeric S100A11 was produced selectively in the peroxisome after transportation of monomeric S100A11 through an interaction with PEX14, a peroxisome membrane protein, resulting in peroxisomal secretion of dimerized S100A11. In an extracellular environment in vitro, dimerized S100A11 promoted mesothelial cell invasion indirectly with the help of fibroblast cells. Overall, the results indicate that the peroxisome functions as an essential vesicle for the production of dimerized S100A11 and the subsequent secretion of the protein from mesothelioma cells and that peroxisome-mediated secretion of dimerized S100A11 might play a critical role in mesothelioma progression in a tumor microenvironment.
Collapse
Affiliation(s)
- Satomi Saho
- Department of Cell Biology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, 2-5-1 Shikata-cho, Kita-ku, Okayama-shi, Okayama, 700-8558, Japan
| | - Hiroki Satoh
- Department of Thoracic, Breast and Endocrinological Surgery, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Eisaku Kondo
- Division of Molecular and Cellular Pathology, Niigata University Graduate School of Medical and Dental Sciences, 757, Ichiban-cho, Asahimachi-dori, Chuo-ku, Niigata-shi, Niigata, 951-8510, Japan
| | - Yusuke Inoue
- Faculty of Science and Technology, Division of Molecular Science, Gunma University, 1-5-1 Tenjin-cho, Kiryu-shi, Gunma, 376-8515, Japan
| | - Akira Yamauchi
- Department of Biochemistry, Kawasaki Medical School, 577 Matsushima, Kurashiki-shi, Okayama, 701-0192, Japan
| | - Hitoshi Murata
- Department of Cell Biology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, 2-5-1 Shikata-cho, Kita-ku, Okayama-shi, Okayama, 700-8558, Japan
| | - Rie Kinoshita
- Department of Cell Biology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, 2-5-1 Shikata-cho, Kita-ku, Okayama-shi, Okayama, 700-8558, Japan
| | - Ken-Ichi Yamamoto
- Department of Cell Biology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, 2-5-1 Shikata-cho, Kita-ku, Okayama-shi, Okayama, 700-8558, Japan
| | - Junichiro Futami
- Department of Medical and Bioengineering Science, Okayama University Graduate School of Natural Science and Technology, 3-1-1, Tsushima-Naka, Kita-ku, Okayama, 700-8530, Japan
| | - Endy Widya Putranto
- Department of Cell Biology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, 2-5-1 Shikata-cho, Kita-ku, Okayama-shi, Okayama, 700-8558, Japan
- Faculty of Medicine, Gajah Mada University, Yogyakarta, 55281, Indonesia
| | - I Made Winarsa Ruma
- Department of Cell Biology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, 2-5-1 Shikata-cho, Kita-ku, Okayama-shi, Okayama, 700-8558, Japan
- Faculty of Medicine, Udayana University, Denpasar, 80232, Bali, Indonesia
| | - I Wayan Sumardika
- Department of Cell Biology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, 2-5-1 Shikata-cho, Kita-ku, Okayama-shi, Okayama, 700-8558, Japan
- Faculty of Medicine, Udayana University, Denpasar, 80232, Bali, Indonesia
| | - Chen Youyi
- Department of Cell Biology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, 2-5-1 Shikata-cho, Kita-ku, Okayama-shi, Okayama, 700-8558, Japan
| | - Ken Suzawa
- Department of Thoracic, Breast and Endocrinological Surgery, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Hiromasa Yamamoto
- Department of Thoracic, Breast and Endocrinological Surgery, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Junichi Soh
- Department of Thoracic, Breast and Endocrinological Surgery, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Shuta Tomida
- Department of Biobank, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Yoshihiko Sakaguchi
- Department of Microbiology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami, Sagamihara, Kanagawa, 252-0374, Japan
| | - Ken Saito
- Division of Molecular and Cellular Pathology, Niigata University Graduate School of Medical and Dental Sciences, 757, Ichiban-cho, Asahimachi-dori, Chuo-ku, Niigata-shi, Niigata, 951-8510, Japan
| | - Hidekazu Iioka
- Division of Molecular and Cellular Pathology, Niigata University Graduate School of Medical and Dental Sciences, 757, Ichiban-cho, Asahimachi-dori, Chuo-ku, Niigata-shi, Niigata, 951-8510, Japan
| | - Nam-Ho Huh
- Department of Cell Biology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, 2-5-1 Shikata-cho, Kita-ku, Okayama-shi, Okayama, 700-8558, Japan
| | - Shinichi Toyooka
- Department of Thoracic, Breast and Endocrinological Surgery, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
- Department of Clinical Genomic Medicine, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Masakiyo Sakaguchi
- Department of Cell Biology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, 2-5-1 Shikata-cho, Kita-ku, Okayama-shi, Okayama, 700-8558, Japan.
| |
Collapse
|
30
|
Differences in Host Innate Responses among Coccidioides Isolates in a Murine Model of Pulmonary Coccidioidomycosis. EUKARYOTIC CELL 2015; 14:1043-53. [PMID: 26275879 DOI: 10.1128/ec.00122-15] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 08/10/2015] [Indexed: 01/18/2023]
Abstract
Coccidioides immitis and Coccidioides posadasii are soil-dwelling fungi and the causative agents of coccidioidomycosis, a mycosis endemic to certain semiarid regions in the Americas. The most common route of infection is by inhalation of airborne Coccidioides arthroconidia. Once a susceptible host inhales the conidia, a transition to mature endosporulated spherules can occur within the first 5 days of infection. For this study, we examined the host response in a murine model of coccidioidomycosis during a time period of infection that has not been well characterized. We collected lung tissue and bronchoalveolar lavage fluid (BALF) from BALB/c mice that were infected with a C. immitis pure strain, a C. immitis hybrid strain, or a C. posadasii strain as well as uninfected mice. We compared the host responses to the Coccidioides strains used in this study by assessing the level of transcription of selected cytokine genes in lung tissues and characterized host and fungal proteins present in BALF. Host response varied depending on the Coccidioides strain that was used and did not appear to be overly robust. This study provides a foundation to begin to dissect the host immune response early in infection, to detect abundant Coccidioides proteins, and to develop diagnostics that target these early time points of infection.
Collapse
|
31
|
Wen Z, Shu Y, Gao C, Wang X, Qi G, Zhang P, Li M, Shi J, Tian B. CDK5-mediated phosphorylation and autophagy of RKIP regulate neuronal death in Parkinson's disease. Neurobiol Aging 2014; 35:2870-2880. [PMID: 25104559 DOI: 10.1016/j.neurobiolaging.2014.05.034] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 04/15/2014] [Accepted: 05/08/2014] [Indexed: 11/29/2022]
Abstract
Raf kinase inhibitor protein (RKIP) is a major negative mediator of the extracellular signal-related kinase (ERK)/mitogen-activated protein kinase (MAPK) pathway. The downregulation of RKIP is correlated with many cancers, but the mechanisms that underlie this downregulation and its roles in the nervous system remain unclear. Here, we demonstrate that RKIP is a substrate of cyclin-dependent kinase 5 (CDK5) in neurons and that the phosphorylation of RKIP at T42 causes the release of Raf-1. Moreover, T42 phosphorylation promotes the exposure and recognition of the target motif "KLYEQ" in the C-terminus of RKIP by chaperone Hsc70 and the subsequent degradation of RKIP via chaperone-mediated autophagy (CMA). Furthermore, in the brain sample of Parkinson's disease (PD) patients and in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine hydrochloride-induced and transgenic PD models, we demonstrate that CDK5-mediated phosphorylation and autophagy of RKIP are involved in the overactivation of the ERK/MAPK cascade, leading to S-phase reentry and neuronal loss. These findings provide evidence for the role of the CDK5/RKIP/ERK pathway in PD pathogenesis and suggest that this pathway may be a suitable therapeutic target in PD.
Collapse
Affiliation(s)
- Zheng Wen
- Department of Neurobiology, Tongji Medical School, Huazhong University of Science and Technology, Wuhan, Hubei Province, China; Key Laboratory of Neurological Diseases, Ministry of Education, Wuhan, Hubei Province, China
| | - Yang Shu
- Department of Neurobiology, Tongji Medical School, Huazhong University of Science and Technology, Wuhan, Hubei Province, China; Key Laboratory of Neurological Diseases, Ministry of Education, Wuhan, Hubei Province, China
| | - Caiyun Gao
- Department of Neurobiology, Tongji Medical School, Huazhong University of Science and Technology, Wuhan, Hubei Province, China; Key Laboratory of Neurological Diseases, Ministry of Education, Wuhan, Hubei Province, China
| | - Xuemin Wang
- Department of Neurobiology, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Guangjian Qi
- Department of Neurobiology, Tongji Medical School, Huazhong University of Science and Technology, Wuhan, Hubei Province, China; Key Laboratory of Neurological Diseases, Ministry of Education, Wuhan, Hubei Province, China
| | - Pei Zhang
- Department of Neurobiology, Tongji Medical School, Huazhong University of Science and Technology, Wuhan, Hubei Province, China; Key Laboratory of Neurological Diseases, Ministry of Education, Wuhan, Hubei Province, China
| | - Man Li
- Department of Neurobiology, Tongji Medical School, Huazhong University of Science and Technology, Wuhan, Hubei Province, China; Key Laboratory of Neurological Diseases, Ministry of Education, Wuhan, Hubei Province, China
| | - Jing Shi
- Department of Neurobiology, Tongji Medical School, Huazhong University of Science and Technology, Wuhan, Hubei Province, China; Key Laboratory of Neurological Diseases, Ministry of Education, Wuhan, Hubei Province, China
| | - Bo Tian
- Department of Neurobiology, Tongji Medical School, Huazhong University of Science and Technology, Wuhan, Hubei Province, China; Key Laboratory of Neurological Diseases, Ministry of Education, Wuhan, Hubei Province, China.
| |
Collapse
|
32
|
Annexin A2: its molecular regulation and cellular expression in cancer development. DISEASE MARKERS 2014; 2014:308976. [PMID: 24591759 PMCID: PMC3925611 DOI: 10.1155/2014/308976] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/29/2013] [Revised: 10/31/2013] [Accepted: 11/01/2013] [Indexed: 01/05/2023]
Abstract
Annexin A2 (ANXA2) orchestrates multiple biologic processes and clinical associations, especially in cancer progression. The structure of ANXA2 affects its cellular localization and function. However, posttranslational modification and protease-mediated N-terminal cleavage also play critical roles in regulating ANXA2. ANXA2 expression levels vary among different types of cancers. With some cancers, ANXA2 can be used for the detection and diagnosis of cancer and for monitoring cancer progression. ANXA2 is also required for drug-resistance. This review discusses the feasibility of ANXA2 which is active in cancer development and can be a therapeutic target in cancer management.
Collapse
|
33
|
Lee CM, Lee BS, Arnold SL, Isoherranen N, Morgan ET. Nitric oxide and interleukin-1β stimulate the proteasome-independent degradation of the retinoic acid hydroxylase CYP2C22 in primary rat hepatocytes. J Pharmacol Exp Ther 2014; 348:141-52. [PMID: 24144795 PMCID: PMC3868880 DOI: 10.1124/jpet.113.209841] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 10/21/2013] [Indexed: 01/17/2023] Open
Abstract
CYP2C22 was recently described as a retinoic acid-metabolizing cytochrome P450 enzyme whose transcription is induced by all-trans-retinoic acid (atRA) in hepatoma cells (Qian L, Zolfaghari R, and Ross AC (2010) J Lipid Res 51:1781-1792). We identified CYP2C22 as a putative nitric oxide (NO)-regulated protein in a proteomic screen and raised specific polyclonal antibodies to CYP2C22 to study its protein expression. We found that CYP2C22 is a liver-specific protein that was not significantly induced by activators of the pregnane X receptor, constitutive androstane receptor, or peroxisome proliferator-activated receptor-α, but was downregulated to <25% of control by the aryl hydrocarbon receptor agonist β-naphthoflavone in cultured rat hepatocytes. CYP2C22 protein and its mRNA both were induced by atRA in hepatocytes, with EC50 of 100-300 nM, whereas the maximal extent of mRNA induction was twice that of the protein. CYP2C22 protein, but not its mRNA, was rapidly downregulated in hepatocytes by interleukin-1 (IL-1) or NO-donating compounds, and the downregulation by IL-1 was blocked by inhibition of NO synthases. The NO donor (Z)-1-[N-(3-aminopropyl)-N-(3-ammoniopropyl)amino]diazen-1-ium-1,2-diolate reduced the half-life of CYP2C22 from 8.7 to 3.4 hours in the presence of cycloheximide, demonstrating that NO-dependent downregulation is due to stimulated proteolysis. No intermediate degradation products were detected. However, this degradation was insensitive to inhibitors of calpains or the canonical proteasomal or lysosomal pathways, indicating that NO-dependent degradation of CYP2C22 proceeds via a novel pathway.
Collapse
Affiliation(s)
- Choon-myung Lee
- Department of Pharmacology, Emory University, Atlanta, Georgia (C.-m.L., B.-s.L., E.T.M.); and Department of Pharmaceutics, University of Washington, Seattle, Washington (S.L.A., N.I.)
| | | | | | | | | |
Collapse
|
34
|
Signals from the lysosome: a control centre for cellular clearance and energy metabolism. Nat Rev Mol Cell Biol 2013; 14:283-96. [PMID: 23609508 DOI: 10.1038/nrm3565] [Citation(s) in RCA: 1229] [Impact Index Per Article: 102.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
For a long time, lysosomes were considered merely to be cellular 'incinerators' involved in the degradation and recycling of cellular waste. However, now there is compelling evidence indicating that lysosomes have a much broader function and that they are involved in fundamental processes such as secretion, plasma membrane repair, signalling and energy metabolism. Furthermore, the essential role of lysosomes in autophagic pathways puts these organelles at the crossroads of several cellular processes, with significant implications for health and disease. The identification of a master regulator, transcription factor EB (TFEB), that regulates lysosomal biogenesis and autophagy has revealed how the lysosome adapts to environmental cues, such as starvation, and targeting TFEB may provide a novel therapeutic strategy for modulating lysosomal function in human disease.
Collapse
|
35
|
Willis MS, Min JN, Wang S, McDonough H, Lockyer P, Wadosky KM, Patterson C. Carboxyl terminus of Hsp70-interacting protein (CHIP) is required to modulate cardiac hypertrophy and attenuate autophagy during exercise. Cell Biochem Funct 2013; 31:724-35. [PMID: 23553918 DOI: 10.1002/cbf.2962] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Revised: 01/18/2013] [Accepted: 01/22/2013] [Indexed: 12/20/2022]
Abstract
The carboxyl terminus of Hsp70-interacting protein (CHIP) is a ubiquitin ligase/cochaperone critical for the maintenance of cardiac function. Mice lacking CHIP (CHIP-/-) suffer decreased survival, enhanced myocardial injury and increased arrhythmias compared with wild-type controls following challenge with cardiac ischaemia reperfusion injury. Recent evidence implicates a role for CHIP in chaperone-assisted selective autophagy, a process that is associated with exercise-induced cardioprotection. To determine whether CHIP is involved in cardiac autophagy, we challenged CHIP-/- mice with voluntary exercise. CHIP-/- mice respond to exercise with an enhanced autophagic response that is associated with an exaggerated cardiac hypertrophy phenotype. No impairment of function was identified in the CHIP-/- mice by serial echocardiography over the 5 weeks of running, indicating that the cardiac hypertrophy was physiologic not pathologic in nature. It was further determined that CHIP plays a role in inhibiting Akt signalling and autophagy determined by autophagic flux in cardiomyocytes and in the intact heart. Taken together, cardiac CHIP appears to play a role in regulating autophagy during the development of cardiac hypertrophy, possibly by its role in supporting Akt signalling, induced by voluntary running in vivo.
Collapse
Affiliation(s)
- Monte S Willis
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, USA; Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
McLeod IX, Jia W, He YW. The contribution of autophagy to lymphocyte survival and homeostasis. Immunol Rev 2013; 249:195-204. [PMID: 22889223 DOI: 10.1111/j.1600-065x.2012.01143.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Over the life span of a T lymphocyte, from thymic development to death, it is subjected to a variety of stresses and stimuli. Upon receipt of each stress or stimulus, a potentially life-changing fate decision must be made, namely, whether to commit to a form of programmed cell death or to make the necessary adaptations to effectively deal with the changing environment. In our laboratory, we have identified several stresses that a T lymphocyte will encounter during a normal life span. Our studies have focused on how T cells utilize autophagy to get a grasp on the situation, or in cases in which survival is untenable, how T cells use autophagy to hasten their demise. This review focuses on the functions of T-cell autophagy in maintaining homeostasis, eliminating excess or dangerous levels of mitochondria, trimming levels of endoplasmic reticulum, and promoting a healthy metabolic level to allow cells to perform as productive components of the immune system. In addition, the use of autophagy signaling molecules to perform autophagy-independent tasks involved in the maintenance of immune homeostasis is discussed.
Collapse
Affiliation(s)
- Ian X McLeod
- Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | |
Collapse
|
37
|
Sun Y, Gao G, Cai J, Wang Y, Qu X, He L, Liu F, Zhang Y, Lin K, Ma S, Yang X, Qian X, Zhao X. Annexin A2 is a discriminative serological candidate in early hepatocellular carcinoma. Carcinogenesis 2012. [PMID: 23188673 PMCID: PMC3581600 DOI: 10.1093/carcin/bgs372] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
To date, the useful markers of hepatocellular carcinoma (HCC) remains incompletely developed. Here, we show that annexin A2 complement alpha-fetoprotein (AFP), a widely used liver cancer marker, in the serologically surveillance and early detection of HCC. First, differentially expressed proteins in HCC were identified using a subcellular proteomic approach. Annexin A2 was then selected for further verification. It was found to be overexpressed in HCC tissues (60.7%, 136/224). Using a self-estabished sandwich enzyme-linked immunosorbent assay, we found that annexin A2 significantly increased in the sera of HCC (n = 175, median, 24.75ng/µl) compared with the healthy (n = 49, median, 16.69ng/µl), benign tumors (n = 19, median, 19.92ng/µl), hepatitis (n = 23, median, 6.48ng/µl) and cirrhosis (n = 51, median, 7.39ng/µl) controls and other malignant tumors (n = 87). Importantly, raised concentrations of annexin A2 were observed in 83.2% (79/95) of early stage (median, 24.32ng/µl) and 78.4% (58/74) of AFP-negative (median, 24.09ng/µl) patients. Annexin A2 alone had a better area under the receiver-operating characteristic curve (AUC = 0.79, 95% confidence interval: 0.73–0.85) in comparison with AFP (AUC = 0.73, 95% confidence interval: 0.66–0.80) in detecting of early stage HCC. Combining both markers notably improved the diagnostic efficiency of early HCC with an achieved sensitivity of 87.4%. Additionally, the expression characteristics of annexin A2 during hepatocarcinogenesis were detected in p21-HBx gene knockin transgenic mice model. The results showed that annexin A2 expression was substantially elevated in HCC-bearing mice, in accordance with the finding in human samples. In conclusion, annexin A2 may be an independent serological candidate for hepatitis B virus–related HCC, especially in the early stage cases with normal serum AFP.
Collapse
Affiliation(s)
- Yulin Sun
- State Key Laboratory of Molecular Oncology, Cancer Institute & Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Kaushik S, Bandyopadhyay U, Sridhar S, Kiffin R, Martinez-Vicente M, Kon M, Orenstein SJ, Wong E, Cuervo AM. Chaperone-mediated autophagy at a glance. J Cell Sci 2011; 124:495-9. [PMID: 21282471 DOI: 10.1242/jcs.073874] [Citation(s) in RCA: 159] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
- Susmita Kaushik
- Department of Developmental and Molecular Biology and Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Kaminskyy V, Zhivotovsky B. Proteases in autophagy. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2011; 1824:44-50. [PMID: 21640203 DOI: 10.1016/j.bbapap.2011.05.013] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Revised: 05/13/2011] [Accepted: 05/16/2011] [Indexed: 02/07/2023]
Abstract
Autophagy is a process involved in the proteolytic degradation of cellular macromolecules in lysosomes, which requires the activity of proteases, enzymes that hydrolyse peptide bonds and play a critical role in the initiation and execution of autophagy. Importantly, proteases also inhibit autophagy in certain cases. The initial steps of macroautophagy depend on the proteolytic processing of a particular protein, Atg8, by a cysteine protease, Atg4. This processing step is essential for conjugation of Atg8 with phosphatidylethanolamine and, subsequently, autophagosome formation. Lysosomal hydrolases, known as cathepsins, can be divided into several groups based on the catalitic residue in the active site, namely, cysteine, serine and aspartic cathepsins, which catalyse the cleavage of peptide bonds of autophagy substrates and, together with other factors, dispose of the autophagic flux. Whilst most cathepsins degrade autophagosomal content, some, such as cathepsin L, also degrade lysosomal membrane components, GABARAP-II and LC3-II. In contrast, cathepsin A, a serine protease, is involved in inhibition of chaperon-mediated autophagy through proteolytic processing of LAMP-2A. In addition, other families of calcium-dependent non-lysosomal cysteine proteases, such as calpains, and cysteine aspartate-specific proteases, such as caspases, may cleave autophagy-related proteins, negatively influencing the execution of autophagic processes. Here we discuss the current state of knowledge concerning protein degradation by autophagy and outline the role of proteases in autophagic processes. This article is part of a Special Issue entitled: Proteolysis 50 years after the discovery of lysosome.
Collapse
Affiliation(s)
- Vitaliy Kaminskyy
- Institute of Environmental Medicine, Division of Toxicology, Karolinska Instituet, Stockholm, Sweden
| | | |
Collapse
|
40
|
Li W, Yang Q, Mao Z. Chaperone-mediated autophagy: machinery, regulation and biological consequences. Cell Mol Life Sci 2011; 68:749-63. [PMID: 20976518 PMCID: PMC11114861 DOI: 10.1007/s00018-010-0565-6] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Revised: 10/07/2010] [Accepted: 10/08/2010] [Indexed: 10/18/2022]
Abstract
Degradation of dysfunctional intracellular components in the lysosome system can occur through three different pathways, i.e., macroautophagy, microautophagy and chaperone-mediated autophagy (CMA). In this review, we focus on CMA, a type of autophagy distinct from the other two autophagic pathways owing to its selectivity, saturability and competitivity by which a subset of long-lived cytosolic soluble proteins are directly delivered into the lysosomal lumen via specific receptors. CMA participates in quality control to maintain normal cell functions by clearing "old" proteins and provides energy to cells under nutritional stress. Deregulation of CMA has recently been shown to underlie some diseases, especially neurodegenerative disorders for which the decline with age in the activity of CMA may become a major aggravating factor. Therefore, targeting aberrant alteration in CMA under pathological conditions could serve as a potential therapeutic strategy for treating related diseases.
Collapse
Affiliation(s)
- Wenming Li
- Departments of Pharmacology and Neurology, Emory University School of Medicine, Atlanta, GA 30322 USA
| | - Qian Yang
- Departments of Pharmacology and Neurology, Emory University School of Medicine, Atlanta, GA 30322 USA
| | - Zixu Mao
- Departments of Pharmacology and Neurology, Emory University School of Medicine, Atlanta, GA 30322 USA
| |
Collapse
|
41
|
Arias E, Cuervo AM. Chaperone-mediated autophagy in protein quality control. Curr Opin Cell Biol 2010; 23:184-9. [PMID: 21094035 DOI: 10.1016/j.ceb.2010.10.009] [Citation(s) in RCA: 236] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Revised: 10/01/2010] [Accepted: 10/21/2010] [Indexed: 10/18/2022]
Abstract
Chaperone-mediated autophagy is a selective mechanism for degradation of soluble cytosolic proteins in lysosomes that distinguishes itself from other autophagic pathways by the selectivity with which CMA substrates are targeted for degradation. The recent molecular dissection of this autophagic pathway and the development of experimental models with compromised CMA have unveiled the important contribution of this pathway to protein quality control. In fact, CMA activation seems to be a common mechanism of cellular defense against proteotoxicity.
Collapse
Affiliation(s)
- Esperanza Arias
- Department of Developmental and Molecular Biology and Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | |
Collapse
|
42
|
Sztolsztener ME, Strzelecka-Kiliszek A, Pikula S, Tylki-Szymanska A, Bandorowicz-Pikula J. Cholesterol as a factor regulating intracellular localization of annexin A6 in Niemann–Pick type C human skin fibroblasts. Arch Biochem Biophys 2010; 493:221-33. [DOI: 10.1016/j.abb.2009.11.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2009] [Revised: 10/27/2009] [Accepted: 11/02/2009] [Indexed: 11/25/2022]
|
43
|
Wang CY, Lin YS, Su WC, Chen CL, Lin CF. Glycogen synthase kinase-3 and Omi/HtrA2 induce annexin A2 cleavage followed by cell cycle inhibition and apoptosis. Mol Biol Cell 2009; 20:4153-61. [PMID: 19656851 DOI: 10.1091/mbc.e09-02-0174] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Annexin A2 is involved in multiple cellular processes, including cell survival, growth, division, and differentiation. A lack of annexin A2 makes cells more sensitive to apoptotic stimuli. Here, we demonstrate a potential mechanism for apoptotic stimuli-induced annexin A2 cleavage, which contributes to cell cycle inhibition and apoptosis. Annexin A2 was persistently expressed around the proliferative but not the necrotic region in BALB/c nude mice with human lung epithelial carcinoma cell A549-derived tumors. Knockdown expression of annexin A2 made cells susceptible to either serum withdrawal-induced cell cycle inhibition or cisplatin-induced apoptosis. Under apoptotic stimuli, annexin A2 was time-dependently cleaved. Mechanistic studies have shown that protein phosphatase 2A (PP2A)-activated glycogen synthase kinase (GSK)-3 is essential for this process. Therefore, inhibiting GSK-3 reversed serum withdrawal-induced cell cycle inhibition and cisplatin-induced apoptosis. Furthermore, inhibiting serine proteases blocked apoptotic stimuli-induced annexin A2 cleavage. Bax activation and Mcl-1 destabilization, which is regulated by PP2A and GSK-3, caused annexin A2 cleavage via an Omi/HtrA2-dependent pathway. Taking these results together, we conclude that GSK-3 and Omi/HtrA2 synergistically cause annexin A2 cleavage and then cell cycle inhibition or apoptosis.
Collapse
Affiliation(s)
- Chi-Yun Wang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | | | | | | | | |
Collapse
|
44
|
Yu WH, Dorado B, Figueroa HY, Wang L, Planel E, Cookson MR, Clark LN, Duff KE. Metabolic activity determines efficacy of macroautophagic clearance of pathological oligomeric alpha-synuclein. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 175:736-47. [PMID: 19628769 DOI: 10.2353/ajpath.2009.080928] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Macroautophagy is an essential degradative pathway that can be induced to clear aggregated proteins, such as those found in Parkinson's disease and dementia with Lewy bodies, a form of Parkinsonism. This study found that both LC3-II and beclin were significantly increased in brains from humans with Dementia with Lewy bodies and transgenic mice overexpressing mutant alpha-synuclein, as compared with respective controls, suggesting that macroautophagy is induced to remove alpha-syn, particularly oligomeric or mutant forms. Aged mutant animals had higher autophagy biomarker levels relative to younger animals, suggesting that with aging, autophagy is less efficient and requires more stimulation to achieve the same outcome. Disruption of autophagy by RNA interference significantly increased alpha-syn oligomer accumulation in vitro, confirming the significance of autophagy in alpha-syn clearance. Finally, rotenone-induced alpha-syn aggregates were cleared following rapamycin stimulation of autophagy. Chronic rotenone exposure and commensurate reduction of metabolic activity limited the efficacy of rapamycin to promote autophagy, suggesting that cellular metabolism is critical for determining autophagic activity. Cumulatively, these findings support the concept that neuronal autophagy is essential for protein homeostasis and, in our system, reduction of autophagy increased the accumulation of potentially pathogenic alpha-synuclein oligomers. Aging and metabolic state were identified as important determinants of autophagic activity. This study provides therapeutic and pathological implications for both synucleinopathy and Parkinson's disease, identifying conditions in which autophagy may be insufficient to degrade alpha-syn aggregates.
Collapse
Affiliation(s)
- Wai Haung Yu
- Dept of Pathology, Columbia University Medical Center, 630 W168th St Rm 12-461, New York NY 10032, USA
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
At the cell surface, activation of the epidermal growth factor (EGF) receptor triggers a complex network of signalling events that regulate a variety of cellular processes. For signal termination, the activated EGF receptor is internalised and targeted to lysosomes for degradation. Microdomain localization at the plasma membrane and endocytic transport of the EGFR is important for the formation of compartment-specific signalling complexes and is regulated by scaffolding and targeting proteins. This includes Ca2+-effector proteins, such as calmodulin and annexins (Anx), in particular AnxA1, AnxA2, AnxA6 and as shown recently,AnxA8. Given that these annexins show differences in their expression patterns, subcellular localization and mode of action, they are likely to differentially contribute and cooperate in the fine-tuning of EGFR activity. In support of this hypothesis, current literature suggests these annexins to be involved in different steps that control the endocytic transport and signalling of the EGF receptor. This review summarizes how the coordinated activity of AnxA1, AnxA2, AnxA6 and AnxA8 can contribute to regulate EGF receptor localization and activity.
Collapse
Affiliation(s)
- Thomas Grewal
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Sydney, Sydney, Australia.
| | | |
Collapse
|
46
|
Bertin S, Samson M, Pons C, Guigonis JM, Gavelli A, Baqué P, Brossette N, Pagnotta S, Ricci JE, Pierrefite-Carle V. Comparative proteomics study reveals that bacterial CpG motifs induce tumor cell autophagy in vitro and in vivo. Mol Cell Proteomics 2008; 7:2311-22. [PMID: 18632594 DOI: 10.1074/mcp.m800100-mcp200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Unmethylated CpG dinucleotides, present in bacterial DNA, are recognized in vertebrates via the Toll-like receptor 9 (TLR9) and are known to act as an anticancer agent by stimulating immune cells to induce a proinflammatory response. Although the effects of CpG-oligodeoxynucleotides (CpG-ODNs) in immune cells have been widely studied, little is known regarding their molecular effects in TLR9-positive tumor cells. To better understand the role of these bacterial motifs in cancer cells, we analyzed proteome modifications induced in TLR9-positive tumor cells in vitro and in vivo after CpG-ODN treatment in a rat colon carcinoma model. Proteomics analysis of tumor cells by two-dimensional gel electrophoresis followed by mass spectrometry identified several proteins modulated by bacterial CpG motifs. Among them, several are related to autophagy including potential autophagic substrates. In addition, we observed an increased glyceraldehyde-3-phosphate dehydrogenase expression, which has been shown to be sufficient to trigger an autophagic process. Autophagy is a self-digestion pathway whereby cytoplasmic material is sequestered by a structure termed the autophagosome for subsequent degradation and recycling. As bacteria are known to trigger autophagy, we assessed whether bacterial CpG motifs might induce autophagy in TLR9-positive tumor cells. We showed that CpG-ODN can induce autophagy in rodent and human tumor cell lines and was TLR9-dependent. In addition, an increase in the number of autophagosomes can also be observed in vivo after CpG motif intratumoral injection. Our findings bring new insights on the effect of bacterial CpG motifs in tumor cells and may be relevant for cancer treatment and more generally for gene therapy approaches in TLR9-positive tissues.
Collapse
|
47
|
Sakaguchi M, Murata H, Sonegawa H, Sakaguchi Y, Futami JI, Kitazoe M, Yamada H, Huh NH. Truncation of Annexin A1 Is a Regulatory Lever for Linking Epidermal Growth Factor Signaling with Cytosolic Phospholipase A2 in Normal and Malignant Squamous Epithelial Cells. J Biol Chem 2007; 282:35679-86. [DOI: 10.1074/jbc.m707538200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
48
|
Finn PF, Dice JF. Proteolytic and lipolytic responses to starvation. Nutrition 2006; 22:830-44. [PMID: 16815497 DOI: 10.1016/j.nut.2006.04.008] [Citation(s) in RCA: 233] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2005] [Revised: 03/30/2006] [Accepted: 04/12/2006] [Indexed: 01/20/2023]
Abstract
Mammals survive starvation by activating proteolysis and lipolysis in many different tissues. These responses are triggered, at least in part, by changing hormonal and neural statuses during starvation. Pathways of proteolysis that are activated during starvation are surprisingly diverse, depending on tissue type and duration of starvation. The ubiquitin-proteasome system is primarily responsible for increased skeletal muscle protein breakdown during starvation. However, in most other tissues, lysosomal pathways of proteolysis are stimulated during fasting. Short-term starvation activates macroautophagy, whereas long-term starvation activates chaperone-mediated autophagy. Lipolysis also increases in response to starvation, and the breakdown of triacylglycerols provides free fatty acids to be used as an energy source by skeletal muscle and other tissues. In addition, glycerol released from triacylglycerols can be converted to glucose by hepatic gluconeogenesis. During long-term starvation, oxidation of free fatty acids by the liver leads to the production of ketone bodies that can be used for energy by skeletal muscle and brain. Tissues that cannot use ketone bodies for energy respond to these small molecules by activating chaperone-mediated autophagy. This is one form of interaction between proteolytic and lipolytic responses to starvation.
Collapse
Affiliation(s)
- Patrick F Finn
- Department of Molecular and Cellular Physiology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | | |
Collapse
|
49
|
Seehafer SS, Pearce DA. You say lipofuscin, we say ceroid: defining autofluorescent storage material. Neurobiol Aging 2006; 27:576-88. [PMID: 16455164 DOI: 10.1016/j.neurobiolaging.2005.12.006] [Citation(s) in RCA: 152] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2005] [Revised: 11/22/2005] [Accepted: 12/08/2005] [Indexed: 01/15/2023]
Abstract
Accumulation of intracellular autofluorescent material or "aging pigment" has been characterized as a normal aging event. Certain diseases also exhibit a similar accumulation of intracellular autofluorescent material. However, autofluorescent storage material associated with aging and disease has distinct characteristics. Lipofuscin is a common term for aging pigments, whereas ceroid is used to describe pathologically derived storage material, for example, in the neuronal ceroid lipofuscinoses (NCLs). NCLs are a family of neurodegenerative diseases that are characterized by an accumulation of autofluorescent storage material (ceroid) in the lysosome, which has been termed "lipofuscin-like". There have been many studies that describe this autofluorescent storage material, but what is it? Is this accumulation lipofuscin or ceroid? In this review we will try to answer the following questions: (1) What is lipofuscin and ceroid? (2) What contributes to the accumulation of this storage material in one or the other? (3) Does this material have an effect on cellular function? Studying parallels between the accumulation of lipofuscin and ceroid may provide insight into the biological relevance of these phenomena.
Collapse
Affiliation(s)
- Sabrina S Seehafer
- Center for Aging and Developmental Biology, Aab Institute of Biomedical Sciences, University of Rochester, School of Medicine and Dentistry, Rochester, NY 14642, USA
| | | |
Collapse
|
50
|
Shorer H, Amar N, Meerson A, Elazar Z. Modulation of N-Ethylmaleimide-sensitive Factor Activity upon Amino Acid Deprivation. J Biol Chem 2005; 280:16219-26. [PMID: 15708857 DOI: 10.1074/jbc.m500554200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Adaptation of eukaryotic cells to changing environmental conditions entails rapid regulation of protein targeting and transport to specific organelles. Such adaptation is well exemplified in mammalian cells exposed to nitrogen starvation that are triggered to form and transport autophagosomes to lysosomes, thus constituting an inducible intracellular trafficking pathway. Here we investigated the relationship between the general secretory machinery and the autophagic pathway in Chinese hamster ovary cells grown in the absence of amino acid. Utilizing VSVG-YFP (vesicular stomatitis virus G protein fused to yellow fluorescent protein) and norepinephrine as markers for constitutive and regulated exocytosis, respectively, we found that secretion is attenuated in cells grown in media lacking amino acid. Such decrease in exocytosis stems from partial inhibition of N-ethylmaleimide-sensitive factor ATPase activity, which in turn causes an accumulation of SNARE complexes at both the Golgi apparatus and the plasma membrane of the starved cells. These findings expose a novel cellular strategy to attenuate secretion of proteins under conditions of limited amino acid supply.
Collapse
Affiliation(s)
- Hagai Shorer
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot, 76100 Israel
| | | | | | | |
Collapse
|