1
|
Gao M, Sun J, Xiao Q, Zhai Y, Tian Y, Zhang Z, Xu F, Zhang P. Sensitive quantification of mevalonate pathway intermediates and prediction of relative novel analogs by chemical derivatization-based LC-MS/MS. J Chromatogr A 2024; 1731:465163. [PMID: 39029328 DOI: 10.1016/j.chroma.2024.465163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/02/2024] [Accepted: 07/12/2024] [Indexed: 07/21/2024]
Abstract
The mevalonate (MVA) pathway plays a crucial role in the occurrence and progression of various diseases, such as osteoporosis, breast cancer, and lung cancer, etc. However, determining all the MVA pathway intermediates is still challenging due to their high polarity, low concentration, chelation effect with metal compartments, and poor mass spectrometric response. In this study, we established a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method coupled with N2, N2, N4, N4-tetramethyl-6-(4-(piperazin-1-ylsulfonyl) phenyl)-1,3,5-triazine-2,4-diamine (Tmt-PP) labeling for the simultaneous analysis of all MVA intermediates in biospecimens. Chemical derivatization significantly improved the chromatographic retention, peak shape, and detection sensitivity of the analytes. Moreover, we employed a method named mass spectrum calculation to achieve the absolute quantification of the isomers, i.e., isopentenyl pyrophosphate (IPP) and dimethylallyl pyrophosphate (DMAPP). The established method was fully qualified and applied to explore the difference of these metabolites in cisplatin-resistant non-small cell lung cancer (NSCLC) cells. Additionally, several MVA intermediate analogs, including isopentenyl monophosphate or dimethylallyl monophosphate (IMP/DMAMP), geranyl monophosphate (GMP), 5-triphosphomevalonate (MTP), and isopentenyl triphosphate or dimethylallyl triphosphate (ITP/DMATP), were identified for the first time using a knowledge-driven prediction strategy. We further explored the tissue distribution of these novel metabolites. Overall, this work developed a sensitive quantification method for all MVA intermediates, which will enhance our understanding of the role of this pathway in various health and disease conditions. The novel metabolites we discovered warrant further investigations into their biosynthesis and biological functions.
Collapse
Affiliation(s)
- Meiyu Gao
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, PR China
| | - Jiarui Sun
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, PR China
| | - Qinwen Xiao
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, PR China
| | - Yuanyuan Zhai
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, PR China
| | - Yuan Tian
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, PR China
| | - Zunjian Zhang
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, PR China
| | - Fengguo Xu
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, PR China; School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China.
| | - Pei Zhang
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, PR China.
| |
Collapse
|
2
|
Ning J, Sala M, Reina J, Kalagiri R, Hunter T, McCullough BS. Histidine Phosphorylation: Protein Kinases and Phosphatases. Int J Mol Sci 2024; 25:7975. [PMID: 39063217 PMCID: PMC11277029 DOI: 10.3390/ijms25147975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/09/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Phosphohistidine (pHis) is a reversible protein post-translational modification (PTM) that is currently poorly understood. The P-N bond in pHis is heat and acid-sensitive, making it more challenging to study than the canonical phosphoamino acids pSer, pThr, and pTyr. As advancements in the development of tools to study pHis have been made, the roles of pHis in cells are slowly being revealed. To date, a handful of enzymes responsible for controlling this modification have been identified, including the histidine kinases NME1 and NME2, as well as the phosphohistidine phosphatases PHPT1, LHPP, and PGAM5. These tools have also identified the substrates of these enzymes, granting new insights into previously unknown regulatory mechanisms. Here, we discuss the cellular function of pHis and how it is regulated on known pHis-containing proteins, as well as cellular mechanisms that regulate the activity of the pHis kinases and phosphatases themselves. We further discuss the role of the pHis kinases and phosphatases as potential tumor promoters or suppressors. Finally, we give an overview of various tools and methods currently used to study pHis biology. Given their breadth of functions, unraveling the role of pHis in mammalian systems promises radical new insights into existing and unexplored areas of cell biology.
Collapse
Affiliation(s)
- Jia Ning
- Correspondence: (J.N.); (B.S.M.)
| | | | | | | | | | - Brandon S. McCullough
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA; (M.S.); (J.R.); (R.K.); (T.H.)
| |
Collapse
|
3
|
Xu M, Liu Y, Kuang X, Pu Y, Jiang Y, Zhao X, Yang X, Li M. Nuclear NME1 enhances the malignant behavior of A549 cells and impacts lung adenocarcinoma patient prognosis. iScience 2024; 27:110286. [PMID: 39055952 PMCID: PMC11269300 DOI: 10.1016/j.isci.2024.110286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/26/2024] [Accepted: 06/13/2024] [Indexed: 07/28/2024] Open
Abstract
NME1 is a metastatic suppressor inconsistently reported to have multiple roles as both a promoter and inhibitor of cancer metastasis. Nevertheless, the specific mechanism behind these results is still unclear. We observed that A549 cells with stable transfer of NME1 into the nucleus (A549-nNm23-H1) exhibited significantly increased migration and invasion activity compared to vector control cells, which was further enhanced by over-expressing CYP24A1 (p < 0.001). NME1 demonstrated the ability to safely attach to and amplify the transcription activation of JUN, consequently leading to the up-regulation of CYP24A1. Analysis of clinical data showed a positive relationship between nuclear NME1 levels and CYP24A1 expression. Furthermore, they were positively associated with postoperative distant metastasis and negatively correlated with prognosis in those with early stage lung adenocarcinoma. In conclusion, the data presented provides a new understanding of the probable pathways by which nuclear NME1 facilitates tumor metastasis, establishing the groundwork for future prediction and treatment of tumor metastasis.
Collapse
Affiliation(s)
- Mingfang Xu
- Department of Cancer Center, Daping Hospital, Army Medical University, Chongqing, China
- The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yingda Liu
- Department of Cancer Center, Daping Hospital, Army Medical University, Chongqing, China
| | - Xunjie Kuang
- Department of Cancer Center, Daping Hospital, Army Medical University, Chongqing, China
| | - Yu Pu
- Department of Cancer Center, Daping Hospital, Army Medical University, Chongqing, China
| | - Yuzhu Jiang
- Department of Cancer Center, Daping Hospital, Army Medical University, Chongqing, China
| | - Xiaodong Zhao
- The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xueqin Yang
- Department of Cancer Center, Daping Hospital, Army Medical University, Chongqing, China
| | - Mengxia Li
- Department of Cancer Center, Daping Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
4
|
Tossounian MA, Hristov SD, Semelak JA, Yu BYK, Baczynska M, Zhao Y, Estrin DA, Trujillo M, Filonenko V, Gouge J, Gout I. A Unique Mode of Coenzyme A Binding to the Nucleotide Binding Pocket of Human Metastasis Suppressor NME1. Int J Mol Sci 2023; 24:9359. [PMID: 37298313 PMCID: PMC10253429 DOI: 10.3390/ijms24119359] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 05/21/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
Coenzyme A (CoA) is a key cellular metabolite which participates in diverse metabolic pathways, regulation of gene expression and the antioxidant defense mechanism. Human NME1 (hNME1), which is a moonlighting protein, was identified as a major CoA-binding protein. Biochemical studies showed that hNME1 is regulated by CoA through both covalent and non-covalent binding, which leads to a decrease in the hNME1 nucleoside diphosphate kinase (NDPK) activity. In this study, we expanded the knowledge on previous findings by focusing on the non-covalent mode of CoA binding to the hNME1. With X-ray crystallography, we solved the CoA bound structure of hNME1 (hNME1-CoA) and determined the stabilization interactions CoA forms within the nucleotide-binding site of hNME1. A hydrophobic patch stabilizing the CoA adenine ring, while salt bridges and hydrogen bonds stabilizing the phosphate groups of CoA were observed. With molecular dynamics studies, we extended our structural analysis by characterizing the hNME1-CoA structure and elucidating possible orientations of the pantetheine tail, which is absent in the X-ray structure due to its flexibility. Crystallographic studies suggested the involvement of arginine 58 and threonine 94 in mediating specific interactions with CoA. Site-directed mutagenesis and CoA-based affinity purifications showed that arginine 58 mutation to glutamate (R58E) and threonine 94 mutation to aspartate (T94D) prevent hNME1 from binding to CoA. Overall, our results reveal a unique mode by which hNME1 binds CoA, which differs significantly from that of ADP binding: the α- and β-phosphates of CoA are oriented away from the nucleotide-binding site, while 3'-phosphate faces catalytic histidine 118 (H118). The interactions formed by the CoA adenine ring and phosphate groups contribute to the specific mode of CoA binding to hNME1.
Collapse
Affiliation(s)
- Maria-Armineh Tossounian
- Department of Structural and Molecular Biology, University College London, London WC1E 6BT, UK; (S.D.H.); (B.Y.K.Y.); (M.B.); (Y.Z.); (I.G.)
| | - Stefan Denchev Hristov
- Department of Structural and Molecular Biology, University College London, London WC1E 6BT, UK; (S.D.H.); (B.Y.K.Y.); (M.B.); (Y.Z.); (I.G.)
| | - Jonathan Alexis Semelak
- Departmento de Química Inorgánica Analítica y Química Física, Instituto de Química Física de los Materiales, Medioambiente y Energía (INQUIMAE) and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Universitaria, Pab. 2 C1428EHA, Buenos Aires 1865, Argentina; (J.A.S.); (D.A.E.)
| | - Bess Yi Kun Yu
- Department of Structural and Molecular Biology, University College London, London WC1E 6BT, UK; (S.D.H.); (B.Y.K.Y.); (M.B.); (Y.Z.); (I.G.)
| | - Maria Baczynska
- Department of Structural and Molecular Biology, University College London, London WC1E 6BT, UK; (S.D.H.); (B.Y.K.Y.); (M.B.); (Y.Z.); (I.G.)
| | - Yuhan Zhao
- Department of Structural and Molecular Biology, University College London, London WC1E 6BT, UK; (S.D.H.); (B.Y.K.Y.); (M.B.); (Y.Z.); (I.G.)
| | - Dario Ariel Estrin
- Departmento de Química Inorgánica Analítica y Química Física, Instituto de Química Física de los Materiales, Medioambiente y Energía (INQUIMAE) and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Universitaria, Pab. 2 C1428EHA, Buenos Aires 1865, Argentina; (J.A.S.); (D.A.E.)
| | - Madia Trujillo
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay;
- Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo 11800, Uruguay
| | - Valeriy Filonenko
- Department of Cell Signaling, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 03680 Kyiv, Ukraine;
| | - Jerome Gouge
- Department of Structural and Molecular Biology, University College London, London WC1E 6BT, UK; (S.D.H.); (B.Y.K.Y.); (M.B.); (Y.Z.); (I.G.)
- Institute of Structural and Molecular Biology, Birkbeck College, University of London, London WC1E 7HX, UK
| | - Ivan Gout
- Department of Structural and Molecular Biology, University College London, London WC1E 6BT, UK; (S.D.H.); (B.Y.K.Y.); (M.B.); (Y.Z.); (I.G.)
- Department of Cell Signaling, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 03680 Kyiv, Ukraine;
| |
Collapse
|
5
|
Adam K, Ning J, Reina J, Hunter T. NME/NM23/NDPK and Histidine Phosphorylation. Int J Mol Sci 2020; 21:E5848. [PMID: 32823988 PMCID: PMC7461546 DOI: 10.3390/ijms21165848] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 12/15/2022] Open
Abstract
The NME (Non-metastatic) family members, also known as NDPKs (nucleoside diphosphate kinases), were originally identified and studied for their nucleoside diphosphate kinase activities. This family of kinases is extremely well conserved through evolution, being found in prokaryotes and eukaryotes, but also diverges enough to create a range of complexity, with homologous members having distinct functions in cells. In addition to nucleoside diphosphate kinase activity, some family members are reported to possess protein-histidine kinase activity, which, because of the lability of phosphohistidine, has been difficult to study due to the experimental challenges and lack of molecular tools. However, over the past few years, new methods to investigate this unstable modification and histidine kinase activity have been reported and scientific interest in this area is growing rapidly. This review presents a global overview of our current knowledge of the NME family and histidine phosphorylation, highlighting the underappreciated protein-histidine kinase activity of NME family members, specifically in human cells. In parallel, information about the structural and functional aspects of the NME family, and the knowns and unknowns of histidine kinase involvement in cell signaling are summarized.
Collapse
Affiliation(s)
| | | | | | - Tony Hunter
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA; (K.A.); (J.N.); (J.R.)
| |
Collapse
|
6
|
Adam K, Lesperance J, Hunter T, Zage PE. The Potential Functional Roles of NME1 Histidine Kinase Activity in Neuroblastoma Pathogenesis. Int J Mol Sci 2020; 21:ijms21093319. [PMID: 32392889 PMCID: PMC7247550 DOI: 10.3390/ijms21093319] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/04/2020] [Accepted: 05/05/2020] [Indexed: 12/15/2022] Open
Abstract
Neuroblastoma is the most common extracranial solid tumor in childhood. Gain of chromosome 17q material is found in >60% of neuroblastoma tumors and is associated with poor patient prognosis. The NME1 gene is located in the 17q21.3 region, and high NME1 expression is correlated with poor neuroblastoma patient outcomes. However, the functional roles and signaling activity of NME1 in neuroblastoma cells and tumors are unknown. NME1 and NME2 have been shown to possess histidine (His) kinase activity. Using anti-1- and 3-pHis specific monoclonal antibodies and polyclonal anti-pH118 NME1/2 antibodies, we demonstrated the presence of pH118-NME1/2 and multiple additional pHis-containing proteins in all tested neuroblastoma cell lines and in xenograft neuroblastoma tumors, supporting the presence of histidine kinase activity in neuroblastoma cells and demonstrating the potential significance of histidine kinase signaling in neuroblastoma pathogenesis. We have also demonstrated associations between NME1 expression and neuroblastoma cell migration and differentiation. Our demonstration of NME1 histidine phosphorylation in neuroblastoma and of the potential role of NME1 in neuroblastoma cell migration and differentiation suggest a functional role for NME1 in neuroblastoma pathogenesis and open the possibility of identifying new therapeutic targets and developing novel approaches to neuroblastoma therapy.
Collapse
Affiliation(s)
- Kevin Adam
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, 10010 N Torrey Pines Road, La Jolla, CA 92037, USA; (K.A.); (T.H.)
| | - Jacqueline Lesperance
- Department of Pediatrics, Division of Hematology-Oncology, University of California San Diego, La Jolla, CA 92093, USA;
| | - Tony Hunter
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, 10010 N Torrey Pines Road, La Jolla, CA 92037, USA; (K.A.); (T.H.)
| | - Peter E. Zage
- Department of Pediatrics, Division of Hematology-Oncology, University of California San Diego, La Jolla, CA 92093, USA;
- Correspondence:
| |
Collapse
|
7
|
Günther Sillero MA, de Diego A, Sillero A. Methylenebisphosphonate and triphosphate derivatives of the mevalonate pathway are substrates of yeast UTP:glucose-1-phosphate uridylyltransferase. Biochimie 2012; 94:1871-5. [PMID: 22580055 DOI: 10.1016/j.biochi.2012.04.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Accepted: 04/26/2012] [Indexed: 11/19/2022]
Abstract
UTP:glucose-1-phospate uridylyltransferase (EC 2.7.7.9) from Saccharomyces cerevisiae transfers the uridylyl moiety of UDP-glucose onto methylenebisphosphonate (pCH(2)p) yielding uridine 5'-(β,γ-methylenetriphosphate) (UppCH(2)p). The following bisphosphonates were not acceptors of UMP: alendronate, pamidronate, clodronate and etidronate. UDP-glucose serves as uridylyl donor to triphosphate derivatives of the mevalonate pathway: farnesyl (far-PPP), geranyl (ger-PPP) and isopentenyl (iso-PPP), with formation of farnesyl-tetraphosphouridine (far-ppppU); geranyl-tetraphosphouridine (ger-ppppU) and isopentenyl-tetraphosphouridine (iso-ppppU). The K(m) (mM) and V(max) (mU/mg protein) values determined for these substrates were: 0.32 ± 0.07 and 4.9 ± 0.6; 0.21 ± 0.06 and 5.7 ± 0.8; 0.51 ± 0.14 and 2.0 ± 0.2, respectively. The K(m) and V(max) values for methylenebisphosphonate were 1.1 ± 0.2 mM and 4055 ± 96 mU/mg protein, respectively.
Collapse
Affiliation(s)
- María Antonia Günther Sillero
- Departamento de Bioquímica, Instituto de Investigaciones Biomédicas Alberto Sols, UAM/CSIC, Facultad de Medicina, 28029 Madrid, Spain
| | | | | |
Collapse
|
8
|
Pereira CA, Bouvier LA, Cámara MDLM, Miranda MR. Singular features of trypanosomatids' phosphotransferases involved in cell energy management. Enzyme Res 2011; 2011:576483. [PMID: 21603267 PMCID: PMC3092577 DOI: 10.4061/2011/576483] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Revised: 01/23/2011] [Accepted: 02/08/2011] [Indexed: 01/15/2023] Open
Abstract
Trypanosomatids are responsible for economically important veterinary affections and severe human diseases. In Africa, Trypanosoma brucei causes sleeping sickness or African trypanosomiasis, while in America, Trypanosoma cruzi is the etiological agent of Chagas disease. These parasites have complex life cycles which involve a wide variety of environments with very different compositions, physicochemical properties, and availability of metabolites. As the environment changes there is a need to maintain the nucleoside homeostasis, requiring a quick and regulated response. Most of the enzymes required for energy management are phosphotransferases. These enzymes present a nitrogenous group or a phosphate as acceptors, and the most clear examples are arginine kinase, nucleoside diphosphate kinase, and adenylate kinase. Trypanosoma and Leishmania have the largest number of phosphotransferase isoforms ever found in a single cell; some of them are absent in mammals, suggesting that these enzymes are required in many cellular compartments associated to different biological processes. The presence of such number of phosphotransferases support the hypothesis of the existence of an intracellular enzymatic phosphotransfer network that communicates the spatially separated intracellular ATP consumption and production processes. All these unique features make phosphotransferases a promising start point for rational drug design for the treatment of human trypanosomiasis.
Collapse
Affiliation(s)
- Claudio A Pereira
- Laboratorio de Biología Molecular de Trypanosoma cruzi (LBMTC), Instituto de Investigaciones Médicas "Alfredo Lanari", Universidad de Buenos Aires and CONICET, Combatientes de Malvinas 3150, 1427 Buenos Aires, Argentina
| | | | | | | |
Collapse
|
9
|
Murakami M, Kaul R, Kumar P, Robertson ES. Nucleoside diphosphate kinase/Nm23 and Epstein-Barr virus. Mol Cell Biochem 2009; 329:131-9. [PMID: 19412732 PMCID: PMC5958352 DOI: 10.1007/s11010-009-0123-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Accepted: 04/16/2009] [Indexed: 12/19/2022]
Abstract
Nm23-H1 was discovered as the first metastasis suppressor gene about 20 years ago. Since then, extensive work has contributed to understanding its role in various cellular signaling pathways. Its association with a range of human cancers as well as its ability to regulate cell cycle and suppress metastasis has been explored. We have determined that the EBV-encoded nuclear antigens, EBNA3C and EBNA1, required for EBV-mediated lymphoproliferation and for maintenance EBV genome extrachromosomally in dividing mammalian cells, respectively, target and disrupt the physiological role of Nm23-H1 in the context of cell proliferation and cell migration. This review will focus on the interaction of Nm23-H1 with the Epstein-Barr virus nuclear antigens, EBNA3C and EBNA1 and the functional significance of this interaction as it relates to EBV pathogenesis.
Collapse
Affiliation(s)
- Masanao Murakami
- Department of Microbiology and Tumor Virology Program of Abramson Comprehensive Cancer Center, University of Pennsylvania School of Medicine, 201E Johnson Pavilion, 3610 Hamilton Walk, Philadelphia, PA 19104, USA
| | | | | | | |
Collapse
|
10
|
Abstract
The NM23 (non-metastatic 23) family is almost universally conserved across all three domains of life: eubacteria, archaea and eucaryotes. Unicellular organisms possess one NM23 ortholog, whilst vertebrates possess several. Gene multiplication through evolution has been accompanied by structural and functional diversification. Many NM23 orthologs are nucleoside diphosphate kinases (NDP kinases), but some more recently evolved members lack NDP kinase activity and/or display other functions, for instance, acting as protein kinases or transcription factors. These members display overlapping but distinct expression patterns during vertebrate development. In this review, we describe the functional differences and similarities among various NM23 family members. Moreover, we establish orthologous relationships through a phylogenetic analysis of NM23 members across vertebrate species, including Xenopus laevis and zebrafish, primitive chordates and several phyla of invertebrates. Finally, we summarize the involvement of NM23 proteins in development, in particular neural development. Carcinogenesis is a process of misregulated development, and NM23 was initially implicated as a metastasis suppressor. A more detailed understanding of the evolution of the family and its role in vertebrate development will facilitate elucidation of the mechanism of NM23 involvement in human cancer.
Collapse
|
11
|
Jung H, Seong HA, Ha H. Direct interaction between NM23-H1 and macrophage migration inhibitory factor (MIF) is critical for alleviation of MIF-mediated suppression of p53 activity. J Biol Chem 2008; 283:32669-79. [PMID: 18815136 DOI: 10.1074/jbc.m806225200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Macrophage migration inhibitory factor (MIF) is a pluripotent cytokine that is involved in host immune and inflammatory responses, as well as tumorigenesis. However, the regulatory mechanism of MIF function is unclear. Here we report that the NM23-H1 interacts with MIF in cells, as demonstrated by cotransfection and coimmunoprecipitation experiments. Analysis of cysteine (Cys) to serine (Ser) substitution mutants of NM23-H1 (C4S, C109S, and C145S) and MIF (C57S, C60S, and C81S) revealed that Cys(145) of NM23-H1 and Cys(60) of MIF are responsible for complex formation. NM23-H1-MIF complexes were dependent on reducing conditions, such as the presence of dithiothreitol or beta-mercaptoethanol, but not H(2)O(2). NM23-H1 alleviated the MIF-mediated suppression of p53-induced apoptosis and cell cycle arrest by promoting the dissociation of MIF from MIF-p53 complexes. In addition, NM23-H1 significantly inhibited the MIF-induced proliferation of quiescent NIH 3T3 cells through a direct interaction with MIF, and decreased the MIF-induced activation of phosphatidylinositol 3-kinase/PDK1 and p44/p42 extracellular signal-regulated (ERK) mitogen-activated protein kinase. The results of the current study suggest that the NM23-H1 functions as a negative regulator of MIF.
Collapse
Affiliation(s)
- Haiyoung Jung
- Department of Biochemistry, Biotechnology Research Institute, School of Life Sciences, Chungbuk National University, Cheongju 361-763, Republic of Korea
| | | | | |
Collapse
|
12
|
Miranda MR, Canepa GE, Bouvier LA, Pereira CA. Trypanosoma cruzi: multiple nucleoside diphosphate kinase isoforms in a single cell. Exp Parasitol 2008; 120:103-7. [PMID: 18534579 DOI: 10.1016/j.exppara.2008.04.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2008] [Revised: 03/28/2008] [Accepted: 04/25/2008] [Indexed: 11/19/2022]
Abstract
Nucleoside diphosphate kinases (NDPKs) are multifunctional enzymes involved mainly in the conservation of nucleotides and deoxynucleotides at intracellular levels. Here we report the characterization of two NDPKs from the protozoan parasite Trypanosoma cruzi, the etiological agent of Chagas disease. TcNDPK1 and TcNDPK2 were biochemically characterized presenting different kinetic parameters and regulation mechanisms. NDPK activity was mainly detected in soluble fractions according to the digitonin extraction technique; however 20% of the activity remains insoluble at digitonin concentrations up to 5 mg ml(-1). TcNDPK1 is a short enzyme isoform, whereas TcNDPK2 is a long one containing a DM10 motif. In addition, two other putative NDPK genes (TcNPDK3 and TcNDPK4) were detected by data mining at the T. cruzi genome database. The large number and diversity of NDPK isoforms are in agreement with those previously observed for other T. cruzi phosphotransferases, such as adenylate kinases.
Collapse
Affiliation(s)
- Mariana R Miranda
- Laboratorio de Biología Molecular de Trypanosoma cruzi, Instituto de Investigaciones Médicas Alfredo Lanari, Universidad de Buenos Aires and CONICET, Av. Combatientes de Malvinas 3150, 1427 Capital Federal, Buenos Aires, Argentina
| | | | | | | |
Collapse
|
13
|
Kowluru A. Emerging roles for protein histidine phosphorylation in cellular signal transduction: lessons from the islet beta-cell. J Cell Mol Med 2008; 12:1885-908. [PMID: 18400053 PMCID: PMC4506158 DOI: 10.1111/j.1582-4934.2008.00330.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Protein phosphorylation represents one of the key regulatory events in physiological insulin secretion from the islet β-cell. In this context, several classes of protein kinases (e.g. calcium-, cyclic nucleotide- and phospholipid-dependent protein kinases and tyrosine kinases) have been characterized in the β-cell. The majority of phosphorylated amino acids identified include phosphoserine, phosphothreonine and phosphotyrosine. Protein histidine phosphorylation has been implicated in the prokaryotic and eukaryotic cellular signal transduction. Most notably, phoshohistidine accounts for 6% of total protein phosphorylation in eukaryotes, which makes it nearly 100-fold more abundant than phosphotyrosine, but less abundant than phosphoserine and phosphothreonine. However, very little is known about the number of proteins with phosphohistidines, since they are highly labile and are rapidly lost during phosphoamino acid identification under standard experimental conditions. The overall objectives of this review are to: (i) summarize the existing evidence indicating the subcellular distribution and characterization of various histidine kinases in the islet β-cell, (ii) describe evidence for functional regulation of these kinases by agonists of insulin secretion, (iii) present a working model to implicate novel regulatory roles for histidine kinases in the receptor-independent activation, by glucose, of G-proteins endogenous to the β-cell, (iv) summarize evidence supporting the localization of protein histidine phosphatases in the islet β-cell and (v) highlight experimental evidence suggesting potential defects in the histidine kinase signalling cascade in islets derived from the Goto-Kakizaki (GK) rat, a model for type 2 diabetes. Potential avenues for future research to further decipher regulatory roles for protein histidine phosphorylation in physiological insulin secretion are also discussed.
Collapse
Affiliation(s)
- Anjaneyulu Kowluru
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA.
| |
Collapse
|
14
|
Palmieri D, Horak CE, Lee JH, Halverson DO, Steeg PS. Translational approaches using metastasis suppressor genes. J Bioenerg Biomembr 2007; 38:151-61. [PMID: 16944301 DOI: 10.1007/s10863-006-9039-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Cancer metastasis is a significant contributor to breast cancer patient morbidity and mortality. In order to develop new anti-metastatic therapies, we need to understand the biological and biochemical mechanisms of metastasis. Toward these efforts, we and others have studied metastasis suppressor genes, which halt metastasis in vivo without affecting primary tumor growth. The first metastasis suppressor gene identified was nm23, also known as NDP kinase. Nm23 represents the most widely validated metastasis suppressor gene, based on transfection and knock-out mouse strategies. The biochemical mechanism of metastasis suppression via Nm23 is unknown and likely complex. Two potential mechanisms include binding proteins and a histidine kinase activity. Elevation of Nm23 expression in micrometastatic tumor cells may constitute a translational strategy for the limitation of metastatic colonization in high risk cancer patients. To date, medroxyprogesterone acetate (MPA) has been identified as a candidate compound for clinical testing.
Collapse
Affiliation(s)
- Diane Palmieri
- Women's Cancers Section, Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, Building 37, Room 1122, NIH, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
15
|
Zhou Q, Yang X, Zhu D, Ma L, Zhu W, Sun Z, Yang Q. Double mutant P96S/S120G of Nm23-H1 abrogates its NDPK activity and motility-suppressive ability. Biochem Biophys Res Commun 2007; 356:348-53. [PMID: 17335772 DOI: 10.1016/j.bbrc.2007.02.066] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2007] [Accepted: 02/14/2007] [Indexed: 11/16/2022]
Abstract
The Nm23-H1 gene is a metastasis suppressor gene. However, its biochemical mechanism of suppressing the metastatic potential of cancer cells is still unknown. The previous hypothesis that a histidine protein kinase activity may contributes to the motility-suppressive effect of Nm23-H1 could not explain why the H118F mutant, a kinase-deficient mutant, still had motility-suppressive ability. We conducted a study on the double mutant P96S/S120G of Nm23-H1 and succeeded in introducing the RP-HPLC method in NDPK assay. The results showed that the double mutant P96S/S120G, when expressed in the bacteria, was completely aggregated in inclusion bodies; this mutant abrogated not only its motility-suppressive ability, but also its NDPK activity. Based on previous work and this study, we prompted that the deficiency of motility-suppressive function of S120G, P96S, and P96S/S120G mutants was due to their altered structure, which might deprive Nm23-H1 of most activities including kinase activity or interactions with other proteins.
Collapse
Affiliation(s)
- Qinghua Zhou
- Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, PR China.
| | | | | | | | | | | | | |
Collapse
|
16
|
Lee B, Yoshida Y, Hasunuma K. Photomorphogenetic characteristics are severely affected in nucleoside diphosphate kinase-1 (ndk-1)-disrupted mutants in Neurospora crassa. Mol Genet Genomics 2005; 275:9-17. [PMID: 16307287 DOI: 10.1007/s00438-005-0044-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2005] [Accepted: 08/10/2005] [Indexed: 12/16/2022]
Abstract
We previously demonstrated that the NDK-1 (Nucleoside Diphosphate Kinase-1) point mutant, ndk-1(P72H), displays a defective phenotype in light-induced perithecial polarity in Neurospora crassa. To investigate the biological function of NDK-1 in detail, we isolated two ndk-1 mutants, ndk-1(RIP-1) and ndk-1(RIP-2), using the RIPing (repeat induced point mutation) method. Notably, we detected no accumulation of ndk-1(RIP-1) mRNA and truncated NDK-1(RIP-2) protein. The ndk-1(RIP) mutants exhibited altered morphogenesis; (1) aerial hypha was not formed with no conidium formation, (2) the mutants exhibited colonial, and very slow mycelial growth on a solid medium and by shaking culture in a liquid medium, (3) light-induced carotenoid accumulation in mutant mycelia is reduced to less than half that by wild type, (4) the mutants exhibited spiral growth of mycelia, and (5) female sterility with defective protoperithecium formation. The morphogenetic processes of 1, 3, and 5 are light induced in the wild type. Moreover, despite only 10-20% of total nucleoside diphosphate kinase activity, the accumulation of relevant transcripts in the ndk-1(RIP) mutants, such as al-1 and al-2, was similar to that of wild type.
Collapse
Affiliation(s)
- Bumkyu Lee
- Graduate School of Integrated Science, Yokohama City University, 641-12 Maioka-cho, Yokohama 244-0813, Japan
| | | | | |
Collapse
|
17
|
Johansson M, Mackenzie-Hose A, Andersson I, Knorpp C. Structure and mutational analysis of a plant mitochondrial nucleoside diphosphate kinase. Identification of residues involved in serine phosphorylation and oligomerization. PLANT PHYSIOLOGY 2004; 136:3034-42. [PMID: 15466238 PMCID: PMC523365 DOI: 10.1104/pp.104.044040] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2004] [Revised: 07/21/2004] [Accepted: 08/05/2004] [Indexed: 05/11/2023]
Abstract
We report the first crystal structure of a plant (Pisum sativum L. cv Oregon sugarpod) mitochondrial nucleoside diphosphate kinase. Similar to other eukaryotic nucleoside diphosphate kinases, the plant enzyme is a hexamer; the six monomers in the asymmetric unit are arranged as trimers of dimers. Different functions of the kinase have been correlated with the oligomeric structure and the phosphorylation of Ser residues. We show that the occurrence of Ser autophosphorylation depends on enzymatic activity. The mutation of the strictly conserved Ser-119 to Ala reduced the Ser phosphorylation to about one-half of that observed in wild type with only a modest change of enzyme activity. We also show that mutating another strictly conserved Ser, Ser-69, to Ala reduces the enzyme activity to 6% and 14% of wild-type using dCDP and dTDP as acceptors, respectively. Changes in the oligomerization pattern of the S69A mutant were observed by cross-linking experiments. A reduction in trimer formation and a change in the dimer interaction could be detected with a concomitant increase of tetramers. We conclude that the S69 mutant is involved in the stabilization of the oligomeric state of this plant nucleoside diphosphate kinase.
Collapse
Affiliation(s)
- Monika Johansson
- Department of Plant Biology and Forest Genetics, Swedish University of Agricultural Sciences, S-750 07 Uppsala, Sweden
| | | | | | | |
Collapse
|
18
|
Abstract
The isoprenoid biosynthetic pathway is the source of a wide array of products. The pathway has been highly conserved throughout evolution, and isoprenoids are some of the most ancient biomolecules ever identified, playing key roles in many life forms. In this review we focus on C-10 mono-, C-15 sesqui-, and C-20 diterpenes. Evidence for interconversion between the pathway intermediates farnesyl pyrophosphate and geranylgeranyl pyrophosphate and their respective metabolites is examined. The diverse functions of these molecules are discussed in detail, including their ability to regulate expression of the beta-HMG-CoA reductase and Ras-related proteins. Additional topics include the mechanisms underlying the apoptotic effects of select isoprenoids, antiulcer activities, and the disposition and degradation of isoprenoids in the environment. Finally, the significance of pharmacological manipulation of the isoprenoid pathway and clinical correlations are discussed.
Collapse
Affiliation(s)
- Sarah A Holstein
- Departments of Internal Medicine and Pharmacology, University of Iowa, Iowa City, Iowa 52242, USA
| | | |
Collapse
|
19
|
Knorpp C, Johansson M, Baird AM. Plant mitochondrial nucleoside diphosphate kinase is attached to the membrane through interaction with the adenine nucleotide translocator. FEBS Lett 2003; 555:363-6. [PMID: 14644443 DOI: 10.1016/s0014-5793(03)01288-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
This study shows that the plant mitochondrial nucleoside diphosphate kinase (mNDPK) localizes to both the intermembrane space and to the mitochondrial inner membrane. We show that mNDPK is very firmly attached to the membrane. Co-immunoprecipitation experiments identified the adenine nucleotide translocator as an interaction partner. This is the first report showing a direct association between these two proteins, although previous studies have shown metabolic cooperation between them. Possible consequences for mitochondrial energy metabolism are discussed.
Collapse
Affiliation(s)
- Carina Knorpp
- Department of Plant Biology and Forest Genetics, The Swedish University of Agricultural Sciences, Box 7080, S-750 07 Uppsala, Sweden.
| | | | | |
Collapse
|
20
|
Kowluru A. Regulatory roles for small G proteins in the pancreatic beta-cell: lessons from models of impaired insulin secretion. Am J Physiol Endocrinol Metab 2003; 285:E669-84. [PMID: 12959934 DOI: 10.1152/ajpendo.00196.2003] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Emerging evidence suggests that GTP-binding proteins (G proteins) play important regulatory roles in physiological insulin secretion from the islet beta-cell. Such conclusions were drawn primarily from experimental data derived through the use of specific inhibitors of G protein function. Data from gene depletion experiments appear to further substantiate key roles for these signaling proteins in the islet metabolism. The first part of this review will focus on findings supporting the hypothesis that activation of specific G proteins is essential for insulin secretion, including regulation of their function by posttranslational modifications at their COOH-terminal cysteines (e.g., isoprenylation). The second part will overview novel, non-receptor-dependent mechanism(s) whereby glucose might activate specific G proteins via protein histidine phosphorylation. The third section will review findings that appear to link abnormalities in the expression and/or functional activation of these key signaling proteins to impaired insulin secretion. It is hoped that this review will establish a basis for future research in this area of islet signal transduction, which presents a significant potential, not only in identifying key signaling proteins that are involved in physiological insulin secretion, but also in examining potential abnormalities in this signaling cascade that lead to islet dysfunction and onset of diabetes.
Collapse
Affiliation(s)
- Anjaneyulu Kowluru
- Department of Pharmaceutical Sciences 3601, Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI 48202.
| |
Collapse
|
21
|
Salerno M, Ouatas T, Palmieri D, Steeg PS. Inhibition of signal transduction by the nm23 metastasis suppressor: possible mechanisms. Clin Exp Metastasis 2003; 20:3-10. [PMID: 12650601 DOI: 10.1023/a:1022578000022] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The first metastasis suppressor gene identified was nm23. Transfection of nm23 into metastatic cell lines resulted in the inhibition of metastasis, but not primary tumor size in vivo. Using in vitro assays, nm23 overexpression resulted in reduced anchorage-independent colonization in response to TGF-beta, reduced invasion and motility in response to multiple factors, and increased differentiation. We hypothesize that the mechanism of action of Nm23 in metastasis suppression involves diminished signal transduction downstream of a particular receptor. Candidate biochemical mechanisms are identified and discussed herein.
Collapse
Affiliation(s)
- Massimiliano Salerno
- Women's Cancers Section, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA.
| | | | | | | |
Collapse
|
22
|
Ouatas T, Salerno M, Palmieri D, Steeg PS. Basic and translational advances in cancer metastasis: Nm23. J Bioenerg Biomembr 2003; 35:73-9. [PMID: 12848344 DOI: 10.1023/a:1023497924277] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cancer metastasis is a significant contributor to breast cancer patient morbidity and mortality. To develop new anti-metastatic therapies, we need to understand the biological and biochemical mechanisms of metastasis. Toward these efforts, we and others have studied metastasis suppressor genes, which halt metastasis in vivo without affecting primary tumor growth. The first metastasis suppressor gene confirmed was nm23, also known as NDP kinase. Using in vitro assays, nm23 overexpression resulted in reduced anchorage-independent colonization in response to TGF-beta, reduced invasion and motility in response to multiple factors, and increased differentiation. We hypothesize that the mechanism of action of Nm23 in metastasis suppression involves diminished signal transduction, downstream of a particular receptor. We hypothesize that a histidine protein kinase activity of Nm23 underlies its suppression of metastasis, and identify candidate substrates. This review also discusses therapeutic options on the basis of reexpression of metastasis suppressors.
Collapse
MESH Headings
- Animals
- Breast Neoplasms/enzymology
- Breast Neoplasms/genetics
- Breast Neoplasms/therapy
- Carcinoma in Situ/genetics
- Carcinoma, Ductal, Breast/enzymology
- Carcinoma, Ductal, Breast/genetics
- Carcinoma, Ductal, Breast/secondary
- Carcinoma, Ductal, Breast/therapy
- Female
- Gene Expression Regulation, Enzymologic
- Gene Expression Regulation, Neoplastic
- Genes, Tumor Suppressor/physiology
- Humans
- Lymphatic Metastasis
- NM23 Nucleoside Diphosphate Kinases
- Neoplasm Metastasis/genetics
- Neoplasm Metastasis/therapy
- Nucleoside-Diphosphate Kinase
- Protein Biosynthesis/genetics
- Proteins/metabolism
Collapse
Affiliation(s)
- Taoufik Ouatas
- Women's Cancers Section, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA.
| | | | | | | |
Collapse
|
23
|
Hartsough MT, Morrison DK, Salerno M, Palmieri D, Ouatas T, Mair M, Patrick J, Steeg PS. Nm23-H1 metastasis suppressor phosphorylation of kinase suppressor of Ras via a histidine protein kinase pathway. J Biol Chem 2002; 277:32389-99. [PMID: 12105213 DOI: 10.1074/jbc.m203115200] [Citation(s) in RCA: 157] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The metastasis-suppressive activity of Nm23-H1 was previously correlated with its in vitro histidine protein kinase activity, but physiological substrates have not been identified. We hypothesized that proteins that interact with histidine kinases throughout evolution may represent partners for Nm23-H1 and focused on the interaction of Arabidopsis "two-component" histidine kinase ERS with CTR1. A mammalian homolog of CTR1 was previously reported to be c-Raf; we now report that CTR1 also exhibits homology to the kinase suppressor of Ras (KSR), a scaffold protein for the mitogen-activated protein kinase (MAPK) cascade. Nm23-H1 co-immunoprecipitated KSR from lysates of transiently transfected 293T cells and at endogenous protein expression levels in MDA-MB-435 breast carcinoma cells. Autophosphorylated recombinant Nm23-H1 phosphorylated KSR in vitro. Phosphoamino acid analysis identified serine as the major target, and two peaks of Nm23-H1 phosphorylation were identified upon high performance liquid chromatography analysis of KSR tryptic peptides. Using site-directed mutagenesis, we found that Nm23-H1 phosphorylated KSR serine 392, a 14-3-3-binding site, as well as serine 434 when serine 392 was mutated. Phosphorylated MAPK but not total MAPK levels were reduced in an nm23-H1 transfectant of MDA-MB-435 cells. The data identify a complex in vitro histidine-to-serine protein kinase pathway, which may contribute to signal transduction and metastasis.
Collapse
Affiliation(s)
- Melanie T Hartsough
- Women's Cancers Section, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Laukens K, Roef L, Witters E, Slegers H, Van Onckelen H. Cyclic AMP affinity purification and ESI-QTOF MS-MS identification of cytosolic glyceraldehyde 3-phosphate dehydrogenase and two nucleoside diphosphate kinase isoforms from tobacco BY-2 cells. FEBS Lett 2001; 508:75-9. [PMID: 11707271 DOI: 10.1016/s0014-5793(01)03026-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The soluble protein fraction of tobacco bright yellow 2 cells contained adenosine 3',5'-cyclic monophosphate (cAMP)-binding activity, detected with both a conventional binding assay and a surface plasmon resonance biosensor. A cAMP-agarose-based affinity purification procedure yielded three proteins which were identified by mass spectrometry as glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and two nucleoside diphosphate kinases (NDPKs). This is the first report describing an interaction between cAMP and these proteins in higher plants. Our findings are discussed in view of the reported role of the interaction of cAMP with GAPDH and NDPK in animals and yeast. In addition, we provide a rapid method to isolate both proteins from higher plants.
Collapse
Affiliation(s)
- K Laukens
- Laboratorium voor Plantenbiochemie en -fysiologie, Department of Biology, University of Antwerp (UIA), Universiteitsplein 1, B-2610 Antwerp, Belgium
| | | | | | | | | |
Collapse
|