1
|
Kung CC, Lo JM, Liao KS, Wu CY, Cheng LC, Chung C, Hsu TL, Ma C, Wong CH. Expression of Human β3GalT5-1 in Insect Cells as Active Glycoforms for the Efficient Synthesis of Cancer-Associated Globo-Series Glycans. J Am Chem Soc 2025; 147:10864-10874. [PMID: 40130300 PMCID: PMC11969553 DOI: 10.1021/jacs.4c11723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 01/13/2025] [Accepted: 02/05/2025] [Indexed: 03/26/2025]
Abstract
The globo-series glycosphingolipids (GSLs) are unique glycolipids exclusively expressed on the cell surface of various types of cancer and have been used as targets for the development of cancer vaccines and therapeutics. A practical enzymatic method has been developed for the synthesis of globo-series glycans, where the conversion of Gb4 to Gb5 (SSEA-3) glycan based on the microbial galactosyltransferase LgtD is relatively inefficient compared to other steps. To improve the efficiency, we explored the two human galactosyltransferase (β3GalT5) isozymes in cancer cells for this reaction and found that isozyme 1 (β3GalT5-1) is more active than isozyme 2 (β3GalT5-2). We then identified a common soluble domain of the two β3GalT5 isozymes as a candidate and evaluated the activity and substrate specificity of the glycosylated and nonglycosylated glycoforms. The glycoforms expressed in Sf9 cells were selected, and a site-specific alanine scan was performed to identify S66A β3GalT5 variant with 10-fold more efficiency than LgtD for the synthesis of globo-series glycans. The X-ray structure of β3GalT5-1 was determined for molecular modeling, and the result together with kinetic data were used to rationalize the improvement in catalysis.
Collapse
Affiliation(s)
- Chih-Chuan Kung
- Genomics
Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Jennifer M. Lo
- Genomics
Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Kuo-Shiang Liao
- Genomics
Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Chung-Yi Wu
- Genomics
Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Li-Chun Cheng
- Genomics
Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Cinya Chung
- Genomics
Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Tsui-Ling Hsu
- Genomics
Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Che Ma
- Genomics
Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Chi-Huey Wong
- Genomics
Research Center, Academia Sinica, Taipei 11529, Taiwan
- Department
of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| |
Collapse
|
2
|
Zhang J, Huang Y, Li H, Xu P, Liu Q, Sun Y, Zhang Z, Wu T, Tang Q, Jia Q, Xia Y, Xu Y, Jing X, Li J, Mo L, Xie W, Qu A, He J, Li Y. B3galt5 functions as a PXR target gene and regulates obesity and insulin resistance by maintaining intestinal integrity. Nat Commun 2024; 15:5919. [PMID: 39004626 PMCID: PMC11247088 DOI: 10.1038/s41467-024-50198-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 07/03/2024] [Indexed: 07/16/2024] Open
Abstract
Pregnane X receptor (PXR) has been reported to regulate glycolipid metabolism. The dysfunction of intestinal barrier contributes to metabolic disorders. However, the role of intestinal PXR in metabolic diseases remains largely unknown. Here, we show that activation of PXR by tributyl citrate (TBC), an intestinal-selective PXR agonist, improves high fat diet (HFD)-induced obesity. The metabolic benefit of intestinal PXR activation is associated with upregulation of β-1,3 galactosyltransferase 5 (B3galt5). Our results reveal that B3galt5 mainly expresses in the intestine and is a direct PXR transcriptional target. B3galt5 knockout exacerbates HFD-induced obesity, insulin resistance and inflammation. Mechanistically, B3galt5 is essential to maintain the integrity of intestinal mucus barrier. B3galt5 ablation impairs the O-glycosylation of mucin2, destabilizes the mucus layer, and increases intestinal permeability. Furthermore, B3galt5 deficiency abolishes the beneficial effect of intestinal PXR activation on metabolic disorders. Our results suggest the intestinal-selective PXR activation regulates B3galt5 expression and maintains metabolic homeostasis, making it a potential therapeutic strategy in obesity.
Collapse
Affiliation(s)
- Jinhang Zhang
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Ya Huang
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
- Department of Pharmacy, GuiQian International General Hospital, Guiyang, China
| | - Hong Li
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Pengfei Xu
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Qinhui Liu
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Yang Sun
- Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Yunnan Institute of Digestive Disease, Kunming, Yunnan Province, China
| | - Zijing Zhang
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Tong Wu
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Qin Tang
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Qingyi Jia
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Yan Xia
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Ying Xu
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Xiandan Jing
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Jiahui Li
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Li Mo
- Center of Gerontology and Geriatrics, West China Hospital of Sichuan University, Chengdu, China
| | - Wen Xie
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Aijuan Qu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, P.R. China
| | - Jinhan He
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
| | - Yanping Li
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
| |
Collapse
|
3
|
Convenient and Sensitive Measurement of Lactosylceramide Synthase Activity Using Deuterated Glucosylceramide and Mass Spectrometry. Int J Mol Sci 2023; 24:ijms24065291. [PMID: 36982367 PMCID: PMC10049619 DOI: 10.3390/ijms24065291] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 03/12/2023] Open
Abstract
Lactosylceramide is necessary for the biosynthesis of almost all classes of glycosphingolipids and plays a relevant role in pathways involved in neuroinflammation. It is synthesized by the action of galactosyltransferases B4GALT5 and B4GALT6, which transfer galactose from UDP-galactose to glucosylceramide. Lactosylceramide synthase activity was classically determined in vitro by a method based on the incorporation of radiolabeled galactose followed by the chromatographic separation and quantitation of the product by liquid scintillation counting. Here, we used deuterated glucosylceramide as the acceptor substrate and quantitated the deuterated lactosylceramide product by liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). We compared this method with the classical radiochemical method and found that the reactions have similar requirements and provide comparable results in the presence of high synthase activity. Conversely, when the biological source lacked lactosylceramide synthase activity, as in the case of a crude homogenate of human dermal fibroblasts, the radiochemical method failed, while the other provided a reliable measurement. In addition to being very accurate and sensitive, the proposed use of deuterated glucosylceramide and LC-MS/MS for the detection of lactosylceramide synthase in vitro has the relevant advantage of avoiding the costs and discomforts of managing radiochemicals.
Collapse
|
4
|
Das KK, Brown JW. 3'-sulfated Lewis A/C: An oncofetal epitope associated with metaplastic and oncogenic plasticity of the gastrointestinal foregut. Front Cell Dev Biol 2023; 11:1089028. [PMID: 36866273 PMCID: PMC9971977 DOI: 10.3389/fcell.2023.1089028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 01/10/2023] [Indexed: 02/16/2023] Open
Abstract
Metaplasia, dysplasia, and cancer arise from normal epithelia via a plastic cellular transformation, typically in the setting of chronic inflammation. Such transformations are the focus of numerous studies that strive to identify the changes in RNA/Protein expression that drive such plasticity along with the contributions from the mesenchyme and immune cells. However, despite being widely utilized clinically as biomarkers for such transitions, the role of glycosylation epitopes is understudied in this context. Here, we explore 3'-Sulfo-Lewis A/C, a clinically validated biomarker for high-risk metaplasia and cancer throughout the gastrointestinal foregut: esophagus, stomach, and pancreas. We discuss the clinical correlation of sulfomucin expression with metaplastic and oncogenic transformation, as well as its synthesis, intracellular and extracellular receptors and suggest potential roles for 3'-Sulfo-Lewis A/C in contributing to and maintaining these malignant cellular transformations.
Collapse
Affiliation(s)
- Koushik K Das
- Division of Gastroenterology, Department of Medicine, Washington University in St. Louis, School of Medicine, St. Louis, MO, United States
| | - Jeffrey W Brown
- Division of Gastroenterology, Department of Medicine, Washington University in St. Louis, School of Medicine, St. Louis, MO, United States
| |
Collapse
|
5
|
Zhang X, Liu H, Wang H, Zhao R, Lu Q, Liu Y, Han Y, LuluRen, Pan H, Han W. B3galt5 deficiency attenuates hepatocellular carcinoma by suppressing mTOR/p70s6k-mediated glycolysis. Cell Mol Life Sci 2022; 80:8. [PMID: 36495345 PMCID: PMC11072394 DOI: 10.1007/s00018-022-04601-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 12/13/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignancies with high morbidity and mortality. Beta-1,3-galactosyltransferase 5 (b3galt5) plays crucial roles in protein glycosylation, but its function in HCC remains unclear. Here, we investigated the role and underlying mechanism of b3galt5 in HCC. We found that b3galt5 is highly expressed and associated with a poor prognosis in HCC patients. In vitro studies showed that b3galt5 promoted the proliferation and survival of HCC cells. We also demonstrated that b3galt5 deficiency suppressed hepatocarcinogenesis in DEN/TCPOBOP-induced HCC. Further investigation confirmed that b3galt5 promoted aerobic glycolysis in HCC. Mechanistically, b3galt5 promoted glycolysis by activating the mTOR/p70s6k pathway through O-linked glycosylation modification on mTOR. Moreover, p70s6k inhibition reduced the expression of key glycolytic enzymes and the glycolysis rate in b3galt5-overexpressing cells. Our study uncovers a novel mechanism by which b3galt5 mediates glycolysis in HCC and highlights the b3galt5-mTOR/p70s6k axis as a potential target for HCC therapy.
Collapse
Affiliation(s)
- Xiaoling Zhang
- Department of Medical Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 3# East Qingchun Road, Hangzhou, 310016, Zhejiang, China
- Department of Medical Oncology, Hangzhou First People's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hao Liu
- Department of Medical Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 3# East Qingchun Road, Hangzhou, 310016, Zhejiang, China
- Laboratory of Cancer Biology, Institute of Clinical Science, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Haidong Wang
- Department of Medical Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 3# East Qingchun Road, Hangzhou, 310016, Zhejiang, China
| | - Rongjie Zhao
- Department of Medical Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 3# East Qingchun Road, Hangzhou, 310016, Zhejiang, China
| | - Qian Lu
- Department of Medical Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 3# East Qingchun Road, Hangzhou, 310016, Zhejiang, China
| | - Yunlong Liu
- Department of Medical Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 3# East Qingchun Road, Hangzhou, 310016, Zhejiang, China
- Laboratory of Cancer Biology, Institute of Clinical Science, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yicheng Han
- Department of Medical Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 3# East Qingchun Road, Hangzhou, 310016, Zhejiang, China
| | - LuluRen
- Department of Medical Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 3# East Qingchun Road, Hangzhou, 310016, Zhejiang, China
| | - Hongming Pan
- Department of Medical Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 3# East Qingchun Road, Hangzhou, 310016, Zhejiang, China.
| | - Weidong Han
- Department of Medical Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 3# East Qingchun Road, Hangzhou, 310016, Zhejiang, China.
| |
Collapse
|
6
|
Glycobiology of the Epithelial to Mesenchymal Transition. Biomedicines 2021; 9:biomedicines9070770. [PMID: 34356834 PMCID: PMC8301408 DOI: 10.3390/biomedicines9070770] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/30/2021] [Accepted: 06/30/2021] [Indexed: 12/20/2022] Open
Abstract
Glycosylation consists in the covalent, enzyme mediated, attachment of sugar chains to proteins and lipids. A large proportion of membrane and secreted proteins are indeed glycoproteins, while glycolipids are fundamental component of cell membranes. The biosynthesis of sugar chains is mediated by glycosyltransferases, whose level of expression represents a major factor of regulation of the glycosylation process. In cancer, glycosylation undergoes profound changes, which often contribute to invasion and metastasis. Epithelial to mesenchymal transition (EMT) is a key step in metastasis formation and is intimately associated with glycosylation changes. Numerous carbohydrate structures undergo up- or down-regulation during EMT and often regulate the process. In this review, we will discuss the relationship with EMT of the N-glycans, of the different types of O-glycans, including the classical mucin-type, O-GlcNAc, O-linked fucose, O-linked mannose and of glycolipids. Finally, we will discuss the role in EMT of galectins, a major class of mammalian galactoside-binding lectins. While the expression of specific carbohydrate structures can be used as a marker of EMT and of the propensity to migrate, the manipulation of the glycosylation machinery offers new perspectives for cancer treatment through inhibition of EMT.
Collapse
|
7
|
Glycosyltransferase B4GALNT2 as a Predictor of Good Prognosis in Colon Cancer: Lessons from Databases. Int J Mol Sci 2021; 22:ijms22094331. [PMID: 33919332 PMCID: PMC8122605 DOI: 10.3390/ijms22094331] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND glycosyltransferase B4GALNT2 and its cognate carbohydrate antigen Sda are highly expressed in normal colon but strongly downregulated in colorectal carcinoma (CRC). We previously showed that CRC patients expressing higher B4GALNT2 mRNA levels displayed longer survival. Forced B4GALNT2 expression reduced the malignancy and stemness of colon cancer cells. METHODS Kaplan-Meier survival curves were determined in "The Cancer Genome Atlas" (TCGA) COAD cohort for several glycosyltransferases, oncogenes, and tumor suppressor genes. Whole expression data of coding genes as well as miRNA and methylation data for B4GALNT2 were downloaded from TCGA. RESULTS the prognostic potential of B4GALNT2 was the best among the glycosyltransferases tested and better than that of many oncogenes and tumor suppressor genes; high B4GALNT2 expression was associated with a lower malignancy gene expression profile; differential methylation of an intronic B4GALNT2 gene position and miR-204-5p expression play major roles in B4GALNT2 regulation. CONCLUSIONS high B4GALNT2 expression is a strong predictor of good prognosis in CRC as a part of a wider molecular signature that includes ZG16, ITLN1, BEST2, and GUCA2B. Differential DNA methylation and miRNA expression contribute to regulating B4GALNT2 expression during colorectal carcinogenesis.
Collapse
|
8
|
Indellicato R, Trinchera M. Epigenetic Regulation of Glycosylation in Cancer and Other Diseases. Int J Mol Sci 2021; 22:ijms22062980. [PMID: 33804149 PMCID: PMC7999748 DOI: 10.3390/ijms22062980] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/10/2021] [Accepted: 03/12/2021] [Indexed: 12/12/2022] Open
Abstract
In the last few decades, the newly emerging field of epigenetic regulation of glycosylation acquired more importance because it is unraveling physiological and pathological mechanisms related to glycan functions. Glycosylation is a complex process in which proteins and lipids are modified by the attachment of monosaccharides. The main actors in this kind of modification are the glycoenzymes, which are translated from glycosylation-related genes (or glycogenes). The expression of glycogenes is regulated by transcription factors and epigenetic mechanisms (mainly DNA methylation, histone acetylation and noncoding RNAs). This review focuses only on these last ones, in relation to cancer and other diseases, such as inflammatory bowel disease and IgA1 nephropathy. In fact, it is clear that a deeper knowledge in the fine-tuning of glycogenes is essential for acquiring new insights in the glycan field, especially if this could be useful for finding novel and personalized therapeutics.
Collapse
Affiliation(s)
- Rossella Indellicato
- Department of Health Sciences, University of Milan, 20142 Milan, Italy
- Correspondence:
| | - Marco Trinchera
- Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy;
| |
Collapse
|
9
|
Indellicato R, Domenighini R, Malagolini N, Cereda A, Mamoli D, Pezzani L, Iascone M, dall'Olio F, Trinchera M. A novel nonsense and inactivating variant of ST3GAL3 in two infant siblings suffering severe epilepsy and expressing circulating CA19.9. Glycobiology 2020; 30:95-104. [PMID: 31584066 DOI: 10.1093/glycob/cwz079] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 09/09/2019] [Accepted: 09/24/2019] [Indexed: 01/06/2023] Open
Abstract
Three missense variants of ST3GAL3 are known to be responsible for a congenital disorder of glycosylation determining a neurodevelopmental disorder (intellectual disability/epileptic encephalopathy). Here we report a novel nonsense variant, p.Y220*, in two dichorionic infant twins presenting a picture of epileptic encephalopathy with impaired neuromotor development. Upon expression in HEK-293T cells, the variant appears totally devoid of enzymatic activity in vitro, apparently accumulated with respect to the wild-type or the missense variants, as detected by western blot, and in large part properly localized in the Golgi apparatus, as assessed by confocal microscopy. Both patients were found to efficiently express the CA19.9 antigen in the serum despite the total loss of ST3GAL3 activity, which thus appears replaceable from other ST3GALs in the synthesis of the sialyl-Lewis a epitope. Kinetic studies of ST3GAL3 revealed a strong preference for lactotetraosylceramide as acceptor and gangliotetraosylceramide was also efficiently utilized in vitro. Moreover, the p.A13D missense variant, the one maintaining residual sialyltransferase activity, was found to have much lower affinity for all suitable substrates than the wild-type enzyme with an overall catalytic efficiency almost negligible. Altogether the present data suggest that the apparent redundancy of ST3GALs deduced from knock-out mouse models only partially exists in humans. In fact, our patients lacking ST3GAL3 activity synthesize the CA19.9 epitope sialyl-Lewis a, but not all glycans necessary for fine brain functions, where the role of minor gangliosides deserves further attention.
Collapse
Affiliation(s)
- Rossella Indellicato
- Department of Health Sciences, San Paolo Hospital, University of Milan, via Antonio di Rudinì 8, 20142 Milano, Italy
| | - Ruben Domenighini
- Department of Health Sciences, San Paolo Hospital, University of Milan, via Antonio di Rudinì 8, 20142 Milano, Italy
| | - Nadia Malagolini
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, via San Giacomo 14, 40126 Bologna, Italy
| | - Anna Cereda
- Department of Pediatrics, ASST Papa Giovanni XXIII, via OMS 1, 24127 Bergamo, Italy
| | - Daniela Mamoli
- Neuropsichiatria infantile, ASST Papa Giovanni XXIII, via OMS 1, 24127 Bergamo, Italy
| | - Lidia Pezzani
- Laboratory of Medical Genetics, ASST Papa Giovanni XXIII, via OMS 1, 24127 Bergamo, Italy
| | - Maria Iascone
- Laboratory of Medical Genetics, ASST Papa Giovanni XXIII, via OMS 1, 24127 Bergamo, Italy
| | - Fabio dall'Olio
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, via San Giacomo 14, 40126 Bologna, Italy
| | - Marco Trinchera
- Department of Medicine and Surgery (DMC), University of Insubria, via JH Dunant 5, 21100 Varese, Italy
| |
Collapse
|
10
|
Complementary Use of Carbohydrate Antigens Lewis a, Lewis b, and Sialyl-Lewis a (CA19.9 Epitope) in Gastrointestinal Cancers: Biological Rationale Towards A Personalized Clinical Application. Cancers (Basel) 2020; 12:cancers12061509. [PMID: 32527016 PMCID: PMC7352550 DOI: 10.3390/cancers12061509] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/03/2020] [Accepted: 06/06/2020] [Indexed: 12/14/2022] Open
Abstract
Carbohydrate antigen 19.9 (CA19.9) is used as a tumor marker for clinical and research purposes assuming that it is abundantly produced by gastrointestinal cancer cells due to a cancer-associated aberrant glycosylation favoring its synthesis. Recent data has instead suggested a different picture, where immunodetection on tissue sections matches biochemical and molecular data. In addition to CA19.9, structurally related carbohydrate antigens Lewis a and Lewis b are, in fact, undetectable in colon cancer, due to the down-regulation of a galactosyltransferase necessary for their synthesis. In the pancreas, no differential expression of CA19.9 or cognate glycosyltransferases occurs in cancer. Ductal cells only express such Lewis antigens in a pattern affected by the relative levels of each glycosyltransferase, which are genetically and epigenetically determined. The elevation of circulating antigens seems to depend on the obstruction of neoplastic ducts and loss of polarity occurring in malignant ductal cells. Circulating Lewis a and Lewis b are indeed promising candidates for monitoring pancreatic cancer patients that are negative for CA19.9, but not for improving the low diagnostic performance of such an antigen. Insufficient biological data are available for gastric and bile duct cancer. Studying each patient in a personalized manner determining all Lewis antigens in the surgical specimens and in the blood, together with the status of the tissue-specific glycosylation machinery, promises fruitful advances in translational research and clinical practice.
Collapse
|
11
|
Indellicato R, Parini R, Domenighini R, Malagolini N, Iascone M, Gasperini S, Masera N, dall’Olio F, Trinchera M. Total loss of GM3 synthase activity by a normally processed enzyme in a novel variant and in all ST3GAL5 variants reported to cause a distinct congenital disorder of glycosylation. Glycobiology 2019; 29:229-241. [DOI: 10.1093/glycob/cwy112] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 12/14/2018] [Accepted: 12/19/2018] [Indexed: 01/02/2023] Open
Affiliation(s)
- Rossella Indellicato
- Department of Health Sciences, San Paolo Hospital, University of Milan, via A. di Rudinì 8, Milano, Italy
| | - Rossella Parini
- Department of Pediatrics, University Milano Bicocca, Fondazione MBBM, San Gerardo Hospital, via Pergolesi 33, Monza, Italy
- San Raffaele Telethon Institute for Gene Therapy (TIGET), San Raffaele Scientific Institute, via Olgettina 60, Milano, Italy
| | - Ruben Domenighini
- Department of Health Sciences, San Paolo Hospital, University of Milan, via A. di Rudinì 8, Milano, Italy
| | - Nadia Malagolini
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, via San Giacomo 14, Bologna, Italy
| | - Maria Iascone
- Laboratory of Genetics, Papa Giovanni XXIII Hospital, Piazza OMS 1, Bergamo, Italy
| | - Serena Gasperini
- Department of Pediatrics, University Milano Bicocca, Fondazione MBBM, San Gerardo Hospital, via Pergolesi 33, Monza, Italy
| | - Nicoletta Masera
- Department of Pediatrics, University Milano Bicocca, Fondazione MBBM, San Gerardo Hospital, via Pergolesi 33, Monza, Italy
| | - Fabio dall’Olio
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, via San Giacomo 14, Bologna, Italy
| | - Marco Trinchera
- Department of Medicine and Surgery (DMC), University of Insubria, via JH Dunant 5, Varese, Italy
| |
Collapse
|
12
|
Liau B, Tan B, Teo G, Zhang P, Choo A, Rudd PM. Shotgun Glycomics Identifies Tumor-Associated Glycan Ligands Bound by an Ovarian Carcinoma-Specific Monoclonal Antibody. Sci Rep 2017; 7:14489. [PMID: 29101385 PMCID: PMC5670200 DOI: 10.1038/s41598-017-15123-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 10/20/2017] [Indexed: 11/09/2022] Open
Abstract
Cancers display distinctive carbohydrate molecules (glycans) on their surface proteins and lipids. mAb A4, an in-house generated monoclonal IgM antibody, is capable of distinguishing malignant ovarian carcinoma cells from benign ovarian epithelia by binding specifically to cancer cell-associated glycans. However, the structural details of the glycan targets of mAb A4 have been elusive. Here we developed a novel approach of isolating and fractionating glycan molecules released from glycoproteins in cancer cell lysates using HILIC-UPLC, and used them as probes on a microarray for affinity-based identification of the binding targets, allowing full-size, difficult to synthesize, cancer-associated glycans to be directly studied. As a result of this "shotgun" glycomics approach, we corroborate the previously assigned specificity of mAb A4 by showing that mAb A4 binds primarily to large (>15 glucose units), sialylated N-glycans containing the H-type 1 antigen (Fuc-α1,2-Gal-β1,3-GlcNAc). Although mAb A4 was also capable of directly binding to type 1 N-acetyl-lactosamine, this epitope was mostly shielded by sialylation and thus relatively inaccessible to binding. Knowledge of the structure of mAb A4 antigen will facilitate its clinical development as well as its use as a diagnostic biomarker.
Collapse
Affiliation(s)
- B Liau
- Analytics Department, Bioprocessing Technology Institute, Agency for Science, Technology and Research, 20 Biopolis Way, Singapore, 138668, Republic of Singapore.
| | - B Tan
- Analytics Department, Bioprocessing Technology Institute, Agency for Science, Technology and Research, 20 Biopolis Way, Singapore, 138668, Republic of Singapore
| | - G Teo
- Analytics Department, Bioprocessing Technology Institute, Agency for Science, Technology and Research, 20 Biopolis Way, Singapore, 138668, Republic of Singapore
| | - P Zhang
- Analytics Department, Bioprocessing Technology Institute, Agency for Science, Technology and Research, 20 Biopolis Way, Singapore, 138668, Republic of Singapore
| | - A Choo
- Analytics Department, Bioprocessing Technology Institute, Agency for Science, Technology and Research, 20 Biopolis Way, Singapore, 138668, Republic of Singapore
| | - P M Rudd
- Analytics Department, Bioprocessing Technology Institute, Agency for Science, Technology and Research, 20 Biopolis Way, Singapore, 138668, Republic of Singapore
| |
Collapse
|
13
|
Selectin Ligands Sialyl-Lewis a and Sialyl-Lewis x in Gastrointestinal Cancers. BIOLOGY 2017; 6:biology6010016. [PMID: 28241499 PMCID: PMC5372009 DOI: 10.3390/biology6010016] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 02/17/2017] [Accepted: 02/20/2017] [Indexed: 12/20/2022]
Abstract
The tetrasaccharide structures Siaα2,3Galβ1,3(Fucα1,4)GlcNAc and Siaα2,3Galβ1,4(Fucα1,3)GlcNAc constitute the epitopes of the carbohydrate antigens sialyl-Lewis a (sLea) and sialyl-Lewis x (sLex), respectively, and are the minimal requirement for selectin binding to their counter-receptors. Interaction of sLex expressed on the cell surface of leucocytes with E-selectin on endothelial cells allows their arrest and promotes their extravasation. Similarly, the rolling of cancer cells ectopically expressing the selectin ligands on endothelial cells is potentially a crucial step favoring the metastatic process. In this review, we focus on the biosynthetic steps giving rise to selectin ligand expression in cell lines and native tissues of gastrointestinal origin, trying to understand whether and how they are deregulated in cancer. We also discuss the use of such molecules in the diagnosis of gastrointestinal cancers, particularly in light of recent data questioning the ability of colon cancers to express sLea and the possible use of circulating sLex in the early detection of pancreatic cancer. Finally, we reviewed the data dealing with the mechanisms that link selectin ligand expression in gastrointestinal cells to cancer malignancy. This promising research field seems to require additional data on native patient tissues to reach more definitive conclusions.
Collapse
|
14
|
Zhao YP, Zhou PT, Ji WP, Wang H, Fang M, Wang MM, Yin YP, Jin G, Gao CF. Validation of N-glycan markers that improve the performance of CA19-9 in pancreatic cancer. Clin Exp Med 2017; 17:9-18. [PMID: 26714469 DOI: 10.1007/s10238-015-0401-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 11/02/2015] [Indexed: 01/05/2023]
Abstract
Pancreatic cancer (PC) has a high mortality rate because it is usually diagnosed late. Glycosylation of proteins is known to change in tumor cells during the development of PC. The objectives of this study were to identify and validate the diagnostic value of novel biomarkers based on N-glycomic profiling for PC. In total, 217 individuals including subjects with PC, pancreatitis, and healthy controls were divided randomly into a training group (n = 164) and validation groups (n = 53). Serum N-glycomic profiling was analyzed by DSA-FACE. The diagnostic model was constructed based on N-glycan markers with logistic stepwise regression. The diagnostic performance of the model was assessed further in validation cohort. The level of total core fucose residues was increased significantly in PC. Two diagnostic models designated GlycoPCtest and PCmodel (combining GlycoPCtest and CA19-9) were constructed to differentiate PC from normal. The area under the receiver operating characteristic curve (AUC) of PCmodel was higher than that of CA19-9 (0.925 vs. 0.878). The diagnostic models based on N-glycans are new, valuable, noninvasive alternatives for identifying PC. The diagnostic efficacy is improved by combined GlycoPCtest and CA19-9 for the discrimination of patients with PC from healthy controls.
Collapse
Affiliation(s)
- Yun-Peng Zhao
- Department of Laboratory Medicine, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, 225 Changhai Rd, Shanghai, 200438, China
| | - Ping-Ting Zhou
- Department of Laboratory Medicine, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, 225 Changhai Rd, Shanghai, 200438, China
| | - Wei-Ping Ji
- Department of Surgery, Changhai Hospital, Second Military Medical University, 116 Changhai Rd, Shanghai, 200438, China
| | - Hao Wang
- Department of Laboratory Medicine, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Meng Fang
- Department of Laboratory Medicine, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, 225 Changhai Rd, Shanghai, 200438, China
| | - Meng-Meng Wang
- Department of Laboratory Medicine, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, 225 Changhai Rd, Shanghai, 200438, China
| | - Yue-Peng Yin
- Department of Laboratory Medicine, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, 225 Changhai Rd, Shanghai, 200438, China
| | - Gang Jin
- Department of Surgery, Changhai Hospital, Second Military Medical University, 116 Changhai Rd, Shanghai, 200438, China.
| | - Chun-Fang Gao
- Department of Laboratory Medicine, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, 225 Changhai Rd, Shanghai, 200438, China.
| |
Collapse
|
15
|
Aronica A, Avagliano L, Caretti A, Tosi D, Bulfamante GP, Trinchera M. Unexpected distribution of CA19.9 and other type 1 chain Lewis antigens in normal and cancer tissues of colon and pancreas: Importance of the detection method and role of glycosyltransferase regulation. Biochim Biophys Acta Gen Subj 2016; 1861:3210-3220. [PMID: 27535614 DOI: 10.1016/j.bbagen.2016.08.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 07/29/2016] [Accepted: 08/12/2016] [Indexed: 12/20/2022]
Abstract
BACKGROUND CA19.9 antigen has been assumed as an abundant product of cancer cells, due to the reactivity found by immunohistochemical staining of cancer tissues with anti-CA19.9 antibody. METHODS Expression and biosynthesis of type 1 chain Lewis antigens in the colon and the pancreas were studied by immunodetection in tissue sections and lysates, quantification of glycosyltransferase transcripts, bisulfite sequencing, and chromatin immunoprecipitation assays. RESULTS CA19.9 was poorly detectable in normal colon mucosa and almost undetectable in colon cancer, while it was easily detected in the pancreatic ducts, together with Lewis b antigen, under both normal and cancer conditions. B3GALT5 transcripts were down-regulated in colon cancer, while they remained expressed in pancreatic cancer. Even ST3GAL3 transcript appeared well expressed in the pancreas but poorly in the colon, irrespective of normal or cancer conditions. CpG islands flanking B3GALT5 native promoter presented an extremely low degree of methylation in pancreatic cancer with respect to colon cancer. In a DNA region about 1kb away from the B3GALT5 retroviral promoter, a stretch of CG dinucleotides presented a methylation pattern potentially associated with transcription. Such a DNA region and the transcription factor binding site provided overlapping results by chromatin immunoprecipitation assays, corroborating the hypothesis. CONCLUSIONS CA19.9 appears as a physiological product whose synthesis strongly depends on the tissue specific and epigenetically-regulated expression of B3GALT5 and ST3GAL3. GENERAL SIGNIFICANCE CA19.9 and other Lewis antigens acquire tumor marker properties in the pancreas due to mechanisms giving rise to reabsorption into vessels and elevation in circulating levels.
Collapse
Affiliation(s)
- Adele Aronica
- Department of Health Sciences, San Paolo Hospital Medical School, University of Milan, 20142 Milano, Italy
| | - Laura Avagliano
- Department of Health Sciences, San Paolo Hospital Medical School, University of Milan, 20142 Milano, Italy
| | - Anna Caretti
- Department of Health Sciences, San Paolo Hospital Medical School, University of Milan, 20142 Milano, Italy
| | - Delfina Tosi
- Department of Health Sciences, San Paolo Hospital Medical School, University of Milan, 20142 Milano, Italy
| | - Gaetano Pietro Bulfamante
- Department of Health Sciences, San Paolo Hospital Medical School, University of Milan, 20142 Milano, Italy; Unit of Human Pathology, Cytogenetics and Molecular Biology, ASST Santi Paolo e Carlo, 20142 Milano, Italy
| | - Marco Trinchera
- Department of Medicine Clinical and Experimental (DMCS), University of Insubria Medical School, 21100 Varese, Italy.
| |
Collapse
|
16
|
Chia J, Goh G, Bard F. Short O-GalNAc glycans: regulation and role in tumor development and clinical perspectives. Biochim Biophys Acta Gen Subj 2016; 1860:1623-39. [PMID: 26968459 DOI: 10.1016/j.bbagen.2016.03.008] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 03/03/2016] [Accepted: 03/03/2016] [Indexed: 12/12/2022]
Abstract
BACKGROUND While the underlying causes of cancer are genetic modifications, changes in cellular states mediate cancer development. Tumor cells display markedly changed glycosylation states, of which the O-GalNAc glycans called the Tn and TF antigens are particularly common. How these antigens get over-expressed is not clear. The expression levels of glycosylation enzymes fail to explain it. SCOPE OF REVIEW We describe the regulation of O-GalNAc glycosylation initiation and extension with emphasis on the initiating enzymes ppGalNAcTs (GALNTs), and introduce the GALA pathway--a change in GALNTs compartmentation within the secretory pathway that regulates Tn levels. We discuss the roles of O-GalNAc glycans and GALNTs in tumorigenic processes and finally consider diagnostic and therapeutic perspectives. MAJOR CONCLUSIONS Contrary to a common hypothesis, short O-glycans in tumors are not the result of an incomplete glycosylation process but rather reveal the activation of regulatory pathways. Surprisingly, high Tn levels reveal a major shift in the O-glycoproteome rather than a shortening of O-glycans. These changes are driven by membrane trafficking events. GENERAL SIGNIFICANCE Many attempts to use O-glycans for biomarker, antibody and therapeutic vaccine development have been made, but suffer limitations including poor sensitivity and/or specificity that may in part derive from lack of a mechanistic understanding. Deciphering how short O-GalNAc glycans are regulated would open new perspectives to exploit this biology for therapeutic usage. This article is part of a Special Issue entitled "Glycans in personalised medicine" Guest Editor: Professor Gordan Lauc.
Collapse
Affiliation(s)
- Joanne Chia
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, 138673, Singapore
| | - Germaine Goh
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, 138673, Singapore
| | - Frederic Bard
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, 138673, Singapore; Department of Biochemistry, National University of Singapore, 21 Lower Kent Ridge, Road, 119077, Singapore.
| |
Collapse
|
17
|
Magalhães A, Marcos-Pinto R, Nairn AV, Dela Rosa M, Ferreira RM, Junqueira-Neto S, Freitas D, Gomes J, Oliveira P, Santos MR, Marcos NT, Xiaogang W, Figueiredo C, Oliveira C, Dinis-Ribeiro M, Carneiro F, Moremen KW, David L, Reis CA. Helicobacter pylori chronic infection and mucosal inflammation switches the human gastric glycosylation pathways. Biochim Biophys Acta Mol Basis Dis 2015; 1852:1928-39. [PMID: 26144047 DOI: 10.1016/j.bbadis.2015.07.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 05/29/2015] [Accepted: 07/01/2015] [Indexed: 02/06/2023]
Abstract
Helicobacter pylori exploits host glycoconjugates to colonize the gastric niche. Infection can persist for decades promoting chronic inflammation, and in a subset of individuals lesions can silently progress to cancer. This study shows that H. pylori chronic infection and gastric tissue inflammation result in a remodeling of the gastric glycophenotype with increased expression of sialyl-Lewis a/x antigens due to transcriptional up-regulation of the B3GNT5, B3GALT5, and FUT3 genes. We observed that H. pylori infected individuals present a marked gastric local pro-inflammatory signature with significantly higher TNF-α levels and demonstrated that TNF-induced activation of the NF-kappaB pathway results in B3GNT5 transcriptional up-regulation. Furthermore, we show that this gastric glycosylation shift, characterized by increased sialylation patterns, favors SabA-mediated H. pylori attachment to human inflamed gastric mucosa. This study provides novel clinically relevant insights into the regulatory mechanisms underlying H. pylori modulation of host glycosylation machinery, and phenotypic alterations crucial for life-long infection. Moreover, the biosynthetic pathways here identified as responsible for gastric mucosa increased sialylation, in response to H. pylori infection, can be exploited as drug targets for hindering bacteria adhesion and counteract the infection chronicity.
Collapse
Affiliation(s)
- Ana Magalhães
- Institute for Research and Innovation in Health (i3S), University of Porto, Portugal; Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Portugal
| | - Ricardo Marcos-Pinto
- Centro Hospitalar do Porto (CHP), Gastroenterology Department, Portugal; Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Portugal; Medical Faculty, University of Porto, Portugal
| | - Alison V Nairn
- Complex Carbohydrate Research Center and Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
| | - Mitche Dela Rosa
- Complex Carbohydrate Research Center and Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
| | - Rui M Ferreira
- Institute for Research and Innovation in Health (i3S), University of Porto, Portugal; Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Portugal
| | - Susana Junqueira-Neto
- Institute for Research and Innovation in Health (i3S), University of Porto, Portugal; Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Portugal
| | - Daniela Freitas
- Institute for Research and Innovation in Health (i3S), University of Porto, Portugal; Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Portugal
| | - Joana Gomes
- Institute for Research and Innovation in Health (i3S), University of Porto, Portugal; Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Portugal
| | - Patrícia Oliveira
- Institute for Research and Innovation in Health (i3S), University of Porto, Portugal; Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Portugal
| | - Marta R Santos
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Portugal
| | - Nuno T Marcos
- Institute for Research and Innovation in Health (i3S), University of Porto, Portugal; Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Portugal; Section of Health Sciences, University of Aveiro, Portugal
| | - Wen Xiaogang
- Department of Pathology, Centro Hospitalar São João, Porto, Portugal; Centro Hospitalar Vila Nova de Gaia/Espinho, Portugal
| | - Céu Figueiredo
- Institute for Research and Innovation in Health (i3S), University of Porto, Portugal; Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Portugal; Medical Faculty, University of Porto, Portugal
| | - Carla Oliveira
- Institute for Research and Innovation in Health (i3S), University of Porto, Portugal; Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Portugal; Medical Faculty, University of Porto, Portugal
| | - Mário Dinis-Ribeiro
- Medical Faculty, University of Porto, Portugal; Gastroenterology Department, IPO Porto, Portugal; CIDES/CINTESIS, University of Porto, Portugal
| | - Fátima Carneiro
- Institute for Research and Innovation in Health (i3S), University of Porto, Portugal; Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Portugal; Medical Faculty, University of Porto, Portugal; Department of Pathology, Centro Hospitalar São João, Porto, Portugal
| | - Kelley W Moremen
- Complex Carbohydrate Research Center and Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
| | - Leonor David
- Institute for Research and Innovation in Health (i3S), University of Porto, Portugal; Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Portugal; Medical Faculty, University of Porto, Portugal
| | - Celso A Reis
- Institute for Research and Innovation in Health (i3S), University of Porto, Portugal; Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Portugal; Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Portugal; Medical Faculty, University of Porto, Portugal.
| |
Collapse
|
18
|
Abstract
Blood group antigens represent polymorphic traits inherited among individuals and populations. At present, there are 34 recognized human blood groups and hundreds of individual blood group antigens and alleles. Differences in blood group antigen expression can increase or decrease host susceptibility to many infections. Blood groups can play a direct role in infection by serving as receptors and/or coreceptors for microorganisms, parasites, and viruses. In addition, many blood group antigens facilitate intracellular uptake, signal transduction, or adhesion through the organization of membrane microdomains. Several blood groups can modify the innate immune response to infection. Several distinct phenotypes associated with increased host resistance to malaria are overrepresented in populations living in areas where malaria is endemic, as a result of evolutionary pressures. Microorganisms can also stimulate antibodies against blood group antigens, including ABO, T, and Kell. Finally, there is a symbiotic relationship between blood group expression and maturation of the gastrointestinal microbiome.
Collapse
Affiliation(s)
- Laura Cooling
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
19
|
Stowell SR, Ju T, Cummings RD. Protein glycosylation in cancer. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2015; 10:473-510. [PMID: 25621663 DOI: 10.1146/annurev-pathol-012414-040438] [Citation(s) in RCA: 627] [Impact Index Per Article: 62.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Neoplastic transformation results in a wide variety of cellular alterations that impact the growth, survival, and general behavior of affected tissue. Although genetic alterations underpin the development of neoplastic disease, epigenetic changes can exert an equally significant effect on neoplastic transformation. Among neoplasia-associated epigenetic alterations, changes in cellular glycosylation have recently received attention as a key component of neoplastic progression. Alterations in glycosylation appear to not only directly impact cell growth and survival but also facilitate tumor-induced immunomodulation and eventual metastasis. Many of these changes may support neoplastic progression, and unique alterations in tumor-associated glycosylation may also serve as a distinct feature of cancer cells and therefore provide novel diagnostic and even therapeutic targets.
Collapse
|
20
|
Trinchera M, Zulueta A, Caretti A, Dall'Olio F. Control of Glycosylation-Related Genes by DNA Methylation: the Intriguing Case of the B3GALT5 Gene and Its Distinct Promoters. BIOLOGY 2014; 3:484-97. [PMID: 25256425 PMCID: PMC4192623 DOI: 10.3390/biology3030484] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 07/22/2014] [Accepted: 07/25/2014] [Indexed: 12/21/2022]
Abstract
Glycosylation is a metabolic pathway consisting of the enzymatic modification of proteins and lipids through the stepwise addition of sugars that gives rise to glycoconjugates. To determine the full complement of glycoconjugates that cells produce (the glycome), a variety of genes are involved, many of which are regulated by DNA methylation. The aim of the present review is to briefly describe some relevant examples of glycosylation-related genes whose DNA methylation has been implicated in their regulation and to focus on the intriguing case of a glycosyltransferase gene (B3GALT5). Aberrant promoter methylation is frequently at the basis of their modulation in cancer, but in the case of B3GALT5, at least two promoters are involved in regulation, and a complex interplay is reported to occur between transcription factors, chromatin remodelling and DNA methylation of typical CpG islands or even of other CpG dinucleotides. Transcription of the B3GALT5 gene underwent a particular evolutionary fate, so that promoter hypermethylation, acting on one transcript, and hypomethylation of other sequences, acting on the other, cooperate on one gene to obtain full cancer-associated silencing. The findings may also help in unravelling the complex origin of serum CA19.9 antigen circulating in some patients.
Collapse
Affiliation(s)
- Marco Trinchera
- Department of Medicine Clinical and Experimental (DMCS), University of Insubria, 21100 Varese, Italy.
| | - Aida Zulueta
- Department of Health Sciences, San Paolo Hospital, University of Milan, 20142 Milano, Italy.
| | - Anna Caretti
- Department of Health Sciences, San Paolo Hospital, University of Milan, 20142 Milano, Italy.
| | - Fabio Dall'Olio
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40126 Bologna, Italy.
| |
Collapse
|
21
|
Liang Y, Tang W, Huang T, Gao Y, Tan A, Yang X, Zhang H, Hu Y, Qin X, Li S, Zhang S, Mo L, Liang Z, Shi D, Huang Z, Guan Y, Zhou J, Winkler C, O'Brien SJ, Xu J, Mo Z, Peng T. Genetic variations affecting serum carcinoembryonic antigen levels and status of regional lymph nodes in patients with sporadic colorectal cancer from Southern China. PLoS One 2014; 9:e97923. [PMID: 24941225 PMCID: PMC4062418 DOI: 10.1371/journal.pone.0097923] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 04/27/2014] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Serum carcinoembryonic antigen (sCEA) level might be an indicator of disease. Indeed, an elevated sCEA level is a prognostic factor in colorectal cancer (CRC) patients. However, the genetic determinants of sCEA level in healthy and CRC population remains unclear. Thus we investigated the genetic markers associated with elevated serum sCEA level in these two populations and its clinical implications. METHODS AND FINDINGS Genome-wide association study (GWAS) was conducted in a cohort study with 4,346 healthy male adults using the Illumina Omni 1 M chip. Candidate SNPs associated with elevated sCEA levels were validated in 194 CRC patients on ABI Taqman platform. Eight candidate SNPs were validated in CRC patients. The rs1047781 (chr19- FUT2) (A/T) was associated with elevated sCEA levels, and rs8176746 (chr9- ABO) was associated with the regional lymph metastasis in the CRC patients. The preoperative sCEA level was a risk factor for tumor recurrence in 5 years after operation (OR = 1.427, 95% CI: 1.005∼1.843, P = 0.006). It was also one of the risk factors for regional lymph node metastasis (OR = 2.266, 95% CI: 1.196∼4.293, P = 0.012). The sCEA level in rs1047781-T carriers was higher than that in the A carriers in CRC patients without lymph node metastasis (P = 0.006). The regional lymph node metastasis in patients with homozygote AA of rs8176746 was more common than that in the heterozygote AG carriers (P = 0.022). In addition, rs1047781-AT and TT CRC patients exhibited a worse disease-free survival than AA genotype carriers (P = 0.023). CONCLUSIONS We found candidate SNPs associated with elevated sCEA levels in both healthy males and CRC population. Rs1047781 (chr19- FUT2) may be the susceptible locus for recurrence of CRC in a population from Southern China.
Collapse
Affiliation(s)
- Yu Liang
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Weizhong Tang
- Department of Anal and colorectal Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Tiqiang Huang
- Department of Anal and colorectal Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Yong Gao
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Aihua Tan
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Xiaobo Yang
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Haiying Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Yanling Hu
- Medical Scientific Research Center, Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Xue Qin
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Shan Li
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Shijun Zhang
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Linjian Mo
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, People's Republic of China
- Institute of Urology and Nephrology, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Zhenjia Liang
- Medical Examination Center, Fangchenggang First People's Hospital, Fangchenggang, Guangxi, People's Republic of China
| | - Deyi Shi
- Medical Examination Center, Fangchenggang First People's Hospital, Fangchenggang, Guangxi, People's Republic of China
| | - Zhang Huang
- Medical Examination Center, Guigang First People's Hospital, Guigang, Guangxi, People's Republic of China
| | - Yingyong Guan
- Medical Examination Center, Yulin First People's Hospital, Yulin, Guangxi, People's Republic of China
| | - Jicheng Zhou
- Department of Hematology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Cheryl Winkler
- Molecular Genetics Epidemiology Sec., Frederick Nat. Lab for Cancer Research, National Cancer Institute, NIH, Frederick, Maryland, United States of America
| | - Stephen J. O'Brien
- Laboratory of Genomic Diversity, National Cancer Institute, NIH, Frederick, Maryland, United States of America
- Theodosius Dobzhansky Center for Genome Bioinformatics, St. Petersburg State University, St. Petersburg, Russia
- Oceanographic Center, Nova Southeastern University, Ft. Lauderdale, Florida, United States of America
| | - Jianfeng Xu
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, People's Republic of China
- Center for Cancer Genomics, Wake Forest University School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Zengnan Mo
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, People's Republic of China
- Institute of Urology and Nephrology, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
- * E-mail: (TP); (ZM)
| | - Tao Peng
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
- Laboratory of Genomic Diversity, National Cancer Institute, NIH, Frederick, Maryland, United States of America
- * E-mail: (TP); (ZM)
| |
Collapse
|
22
|
Expression of carbohydrate-antigen sialyl-Lewis a on colon cancer cells promotes xenograft growth and angiogenesis in nude mice. Int J Biochem Cell Biol 2013; 45:2796-800. [DOI: 10.1016/j.biocel.2013.10.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 09/23/2013] [Accepted: 10/01/2013] [Indexed: 12/21/2022]
|
23
|
Zulueta A, Caretti A, Signorelli P, Dall'Olio F, Trinchera M. Transcriptional control of the
B3GALT5
gene by a retroviral promoter and methylation of distant regulatory elements. FASEB J 2013; 28:946-55. [DOI: 10.1096/fj.13-236273] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Aida Zulueta
- Department of Health SciencesSan Paolo HospitalUniversity of MilanMilanItaly
| | - Anna Caretti
- Department of Health SciencesSan Paolo HospitalUniversity of MilanMilanItaly
| | - Paola Signorelli
- Department of Health SciencesSan Paolo HospitalUniversity of MilanMilanItaly
| | - Fabio Dall'Olio
- Department of Experimental, Diagnostic, and Specialty Medicine (DIMES)University of BolognaBolognaItaly
| | - Marco Trinchera
- Department of Medicine Clinical and Experimental (DMCS)University of InsubriaVareseItaly
| |
Collapse
|
24
|
CA19.9 antigen circulating in the serum of colon cancer patients: Where is it from? Int J Biochem Cell Biol 2013; 45:792-7. [DOI: 10.1016/j.biocel.2013.01.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 12/03/2012] [Accepted: 01/08/2013] [Indexed: 01/17/2023]
|
25
|
Chachadi VB, Ali MF, Cheng PW. Prostatic cell-specific regulation of the synthesis of MUC1-associated sialyl Lewis a. PLoS One 2013; 8:e57416. [PMID: 23451223 PMCID: PMC3579856 DOI: 10.1371/journal.pone.0057416] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 01/24/2013] [Indexed: 11/21/2022] Open
Abstract
Sialyl Lewis antigens are selectin ligands involved in leukocyte trafficking and cancer metastasis. Biosynthesis of these selectin ligands occurs by the sequential actions of several glycosyltransferases in the Golgi apparatus following synthesis of the protein backbone in the endoplasmic reticulum. In this study, we examine how the synthesis of sialyl Lewis a (sLea) is regulated in prostatic cells and identify a mucin that carries this glycotope. We treat human prostatic cells including one normal and three cancerous cells with histone deacetylase inhibitors, valproic acid, tricostatin A (TSA), and suberoylanilide hydroxamic acid (SAHA), and then monitor the expression of sLea. We have found that SAHA enhances the production of sLea in normal prostatic RWPE-1 cells but not prostatic cancer cells. Employing siRNA technology and co-immunoprecipitation, we show that the sLea is associated with MUC1, which is confirmed by confocal immunofluorescence microscopy and proximity ligation assay. The SAHA-induced production of sLea in RWPE-1 cells is resulted from upregulation of B3GALT1 gene via enhancement of acetylated histone-3 and histone-4. Interestingly, PC3 and LNCaP C-81 cells do not produce detectable amounts of sLea despite expressing high levels of B3GALT1. However, the MUC1-associated sLea is generated in these cells after introduction of MUC1 cDNA. We conclude that the synthesis of sLea is controlled by not only peptide backbone of the glycoprotein but also glycoprotein-specific glycosyltransferases involved in the synthesis of sLea. Further, the SAHA induction of this selectin ligand in normal prostatic cells may pose a potentially serious side effect of this drug recently approved by the US Food and Drug Administration.
Collapse
Affiliation(s)
- Vishwanath B. Chachadi
- Department of Research Service, Veterans Administration Nebraska-Western Iowa Health Care System, Omaha, Nebraska, United States of America
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Mohamed F. Ali
- Department of Research Service, Veterans Administration Nebraska-Western Iowa Health Care System, Omaha, Nebraska, United States of America
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Pi-Wan Cheng
- Department of Research Service, Veterans Administration Nebraska-Western Iowa Health Care System, Omaha, Nebraska, United States of America
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- * E-mail:
| |
Collapse
|
26
|
Caretti A, Sirchia SM, Tabano S, Zulueta A, Dall’Olio F, Trinchera M. DNA methylation and histone modifications modulate the β1,3 galactosyltransferase β3Gal-T5 native promoter in cancer cells. Int J Biochem Cell Biol 2012; 44:84-90. [DOI: 10.1016/j.biocel.2011.09.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Revised: 09/19/2011] [Accepted: 09/27/2011] [Indexed: 12/20/2022]
|
27
|
Castro I, Aguilera S, Brockhausen I, Alliende C, Quest AFG, Molina C, Urzúa U, Mandel U, Bahamondes V, Barrera MJ, Sánchez M, González S, Hermoso M, Leyton C, González MJ. Decreased salivary sulphotransferase activity correlated with inflammation and autoimmunity parameters in Sjogren's syndrome patients. Rheumatology (Oxford) 2011; 51:482-90. [PMID: 22101162 DOI: 10.1093/rheumatology/ker351] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
OBJECTIVES To determine the expression and enzymatic activities of sulphotransferases involved in mucin hyposulphation in labial salivary glands (LSGs) from SS patients and to correlate sulphotransferase activity with clinical parameters such as secretion, inflammation and serology. METHODS LSG from 31 SS patients and 31 control subjects were studied. Relative mRNA and protein levels of Gal3-O-sulphotransferases (Gal3STs) and β1,3-galactosyltransferase-5 (β3GalT5) were determined by quantitative RT-PCR and western blotting, respectively. Enzymatic activities were quantified using radioactively labelled donor substrates and specific acceptor substrates. Products were purified by chromatography. Spearman's correlation analysis was used to compare data. RESULTS The levels of Gal3ST activity were significantly decreased in SS patients, without changes in mRNA and protein levels, while the enzymatic activities of glycosyltransferases involved in mucin glycosylation were similar in both groups. An inverse correlation was observed between Gal3ST activity and glandular function measured by scintigraphy, but not with unstimulated salivary flow. Gal3ST activity was inversely correlated with focus score, TNF-α levels and presence of the autoantibodies Ro/SS-A and La/SS-B. CONCLUSION The decrease in sulphotransferase activity provides an explanation for mucin hyposulphation observed in the LSGs from SS patients. The decrease in Gal3STs activity was not a consequence of reduced gene expression, but probably due to alterations in the enzyme activity regulation. Interestingly, the levels of sulphotransferase activity detected correlated well with secretory function, inflammation and serology. Finally, we postulate that pro-inflammatory cytokines induced by autoantibodies, such as Ro/SS-A and La/SS-B in SS patients, may modulate Gal3ST activity, thereby altering mucin quality and leading to mouth dryness.
Collapse
Affiliation(s)
- Isabel Castro
- Institute of Biomedical Sciences, University of Chile, Casilla, Chile
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
A glycosyltransferase-enriched reconstituted membrane system for the synthesis of branched O-linked glycans in vitro. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1808:1509-19. [PMID: 21081110 DOI: 10.1016/j.bbamem.2010.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Revised: 10/14/2010] [Accepted: 11/02/2010] [Indexed: 11/23/2022]
Abstract
Mimicking the biochemical reactions that take place in cell organelles is becoming one of the most important challenges in biological chemistry. In particular, reproducing the Golgi glycosylation system in vitro would allow the synthesis of bioactive glycan polymers and glycoconjugates for many future applications including treatments of numerous pathologies. In the present study, we reconstituted a membrane system enriched in glycosyltransferases obtained by combining the properties of the wheat germ lectin with the dialysable detergent n-octylglucoside. When applied to cells engineered to express the O-glycan branching enzyme core2 beta (1,6)-N-acetylglucosaminyltransferase (C2GnT-I), this combination led to the reconstitution of lipid vesicles exhibiting an enzyme activity 11 times higher than that found in microsomal membranes. The enzyme also showed a slightly higher affinity than its soluble counterpart toward the acceptor substrate. Moreover, the use of either the detergent re-solubilization, glycoprotein substrates or N-glycanase digestion suggests that most of the reconstituted glycosyltransferases have their catalytic domains in an extravesicular orientation. Using the disaccharide substrate Galβ1-3GalNAc-O-p-nitrophenyl as a primer, we performed sequential glycosylation reactions and compared the recovered oligosaccharides to those synthesized by cultured parental cells. After three successive glycosylation reactions using a single batch of the reconstituted vesicles and without changing the buffer, the acceptor was transformed into an O-glycan with chromatographic properties similar to glycans produced by C2GnT-I-expressing cells. Therefore, this new and efficient approach would greatly improve the synthesis of bioactive carbohydrates and glycoconjugates in vitro and could be easily adapted for the study of other reactions naturally occurring in the Golgi apparatus such as N-glycosylation or sulfation.
Collapse
|
29
|
Gao Y, Lazar C, Szarek WA, Brockhausen I. Specificity of β1,4-galactosyltransferase inhibition by 2-naphthyl 2-butanamido-2-deoxy-1-thio-β-D-glucopyranoside. Glycoconj J 2010; 27:673-84. [PMID: 20976621 DOI: 10.1007/s10719-010-9312-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Revised: 10/08/2010] [Accepted: 10/11/2010] [Indexed: 01/27/2023]
Abstract
Inhibitors of Galactosyltransferase (GalT) have the potential of reducing the amounts of adhesive carbohydrates on secreted and cell surface-bound glycoproteins. We recently found a potent inhibitor of β4GalT, 2-naphthyl 2-butanamido-2-deoxy-1-thio-β-D-glucopyranoside (compound 612). In this work, we have tested compound 612 for the specificity of its inhibition and examined its effect on GalT, and on GlcNAc- and GalNAc-transferases in homogenates of different cell lines, as well as on recombinant glycosyltransferases. Compound 612 was found to be a specific inhibitor of β4GalT. The specificity of recombinant human β3GalT5 that also acts on GlcNAc-R substrates, revealed similarities to bovine milk β4GalT. However, 612 was a poor substrate and not an inhibitor for β3GalT5. To further determine the specific structures responsible for the inhibitory property of 612, we synthesized (2-naphthyl)-2-butanamido-2-deoxy-β-D-glucopyranosylamine (compound 629) containing nitrogen in the glycosidic linkage, and compared it to other naphthyl and quinolinyl derivatives of GlcNAc as substrates and inhibitors. Compound 629 was a substrate for both β4GalT and β3GalT5. This suggests that properties of 612 other than the presence of the naphthyl ring alone were responsible for its inhibitory action. The results suggest a usefulness of 612 in specifically blocking the synthesis of type 2 chains and thus epitopes attached to type 2 chains. In addition, 612 potently inhibits β4GalT in cell homogenates and thus allows assaying β3GalT activity in the presence of β4GalT.
Collapse
Affiliation(s)
- Yin Gao
- Department of Medicine, Division of Rheumatology, Queen's University, Kingston, ON, K7L 3N6, Canada
| | | | | | | |
Collapse
|
30
|
Trinchera M, Malagolini N, Chiricolo M, Santini D, Minni F, Caretti A, Dall'olio F. The biosynthesis of the selectin-ligand sialyl Lewis x in colorectal cancer tissues is regulated by fucosyltransferase VI and can be inhibited by an RNA interference-based approach. Int J Biochem Cell Biol 2010; 43:130-9. [PMID: 20965272 DOI: 10.1016/j.biocel.2010.10.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Revised: 10/08/2010] [Accepted: 10/11/2010] [Indexed: 01/22/2023]
Abstract
Sialyl Lewis x (sLex) is a selectin ligand whose overexpression in epithelial cancers mediates metastasis formation. The molecular basis of sLex biosynthesis in colon cancer tissues is still unclear. The prerequisite for therapeutic approaches aimed at sLex down-regulation in cancer, is the identification of rate-limiting steps in its biosynthesis. We have studied the role of α1,3-fucosyltransferases (Fuc-Ts) potentially involved in sLex biosynthesis in specimens of normal and cancer colon as well as in experimental systems. We found that: (i) in colon cancer, but not in normal mucosa where the antigen was poorly expressed, sLex correlated with a Fuc-T which, like Fuc-TVI, was active on 3'sialyllactosamine at a low concentration (Fuc-T(SLN)); (ii) competitive RT-PCR analysis revealed that the level of Fuc-T mRNA expression in both normal and cancer colon was Fuc-TVI>Fuc-TIII>Fuc-TIV; Fuc-TV and Fuc-TVII expression was negligible; (iii) sLex was expressed only by the gastrointestinal cell lines displaying both Fuc-TVI mRNA and Fuc-T(SLN) activity, but not by those expressing only Fuc-TIII mRNA; (iv) transfection with Fuc-TVI cDNA, but not with Fuc-TIII cDNA, induced sLex expression in gastrointestinal cell lines; (v) Fuc-TVI knock-down with specific siRNA induced down-regulation of Fuc-TVI mRNA and Fuc-T(SLN) activity and a dramatic inhibition of sLex expression. These data indicate that in colon cancer tissues Fuc-TVI is a key regulator of sLex biosynthesis which can be the target of RNA-interference-based gene knock-down approaches.
Collapse
Affiliation(s)
- Marco Trinchera
- Department of Biomedical Sciences Experimental and Clinical (DSBSC), University of Insubria, Via JH Dunant 5, 21100 Varese, Italy.
| | | | | | | | | | | | | |
Collapse
|
31
|
Saravanan C, Cao Z, Head SR, Panjwani N. Detection of differentially expressed wound-healing-related glycogenes in galectin-3-deficient mice. Invest Ophthalmol Vis Sci 2009; 50:5690-6. [PMID: 19643959 PMCID: PMC3005591 DOI: 10.1167/iovs.08-3359] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
PURPOSE A prior study showed that exogenous galectin-3 (Gal-3) stimulates re-epithelialization of corneal wounds in wild-type (Gal-3(+/+)) mice but, surprisingly, not in galectin-3-deficient (Gal-3(-/-)) mice. In an effort to understand why the injured corneas of Gal-3(-/-) mice are unresponsive to exogenous Gal-3, the present study was designed to determine whether genes encoding the enzymes that regulate the synthesis of glycan ligands of Gal-3 are differentially expressed in Gal-3(-/-) corneas compared with the Gal-3(+/+) corneas. METHODS Glycogene microarray technology was used to identify differentially expressed glycosyltransferases in healing Gal-3(+/+) and Gal-3(-/-) corneas. RESULTS Of approximately 2000 glycogenes on the array, the expression of 8 was upregulated and that of 14 was downregulated more than 1.3-fold in healing Gal-3(-/-) corneas. A galactosyltransferase, beta3GalT5, which has the ability to synthesize Gal-3 ligands was markedly downregulated in healing Gal-3(-/-) corneas. The genes for polypeptide galactosaminyltransferases (ppGalNAcT-3 and -7) that are known to initiate O-linked glycosylation and N-aspartyl-beta-glucosaminidase, which participates in the removal of N-glycans, were found to be upregulated in healing Gal-3(-/-) corneas. Microarray data were validated by qRT-PCR. CONCLUSIONS Based on the known functions of the differentially expressed glycogenes, it appears that the glycan structures on glycoproteins and glycolipids, synthesized as a result of the differential glycogene expression pattern in healing Gal-3(-/-) corneas may lead to the downregulation of specific counterreceptors for Gal-3. This may explain, at least in part, why, unlike healing Gal-3(+/+) corneas, the healing Gal-3(-/-) corneas are unresponsive to the stimulatory effect of exogenous Gal-3 on re-epithelialization of corneal wounds.
Collapse
Affiliation(s)
- Chandrassegar Saravanan
- Department of Ophthalmology and The New England Eye Center, Tufts University School of Medicine, Boston, Massachusetts
- Program in Cell, Molecular and Developmental Biology, Tufts University School of Medicine, Boston, Massachusetts
| | - Zhiyi Cao
- Department of Ophthalmology and The New England Eye Center, Tufts University School of Medicine, Boston, Massachusetts
| | - Steven R. Head
- DNA Array Core Facility, The Scripps Research Institute, La Jolla, California
| | - Noorjahan Panjwani
- Department of Ophthalmology and The New England Eye Center, Tufts University School of Medicine, Boston, Massachusetts
- Program in Cell, Molecular and Developmental Biology, Tufts University School of Medicine, Boston, Massachusetts
| |
Collapse
|
32
|
Saravanan C, Cao Z, Head SR, Panjwani N. Analysis of differential expression of glycosyltransferases in healing corneas by glycogene microarrays. Glycobiology 2009; 20:13-23. [PMID: 19736239 DOI: 10.1093/glycob/cwp133] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
It is generally accepted that the glycans on the cell surface and extracellular matrix proteins play a pivotal role in the events that mediate re-epithelialization of wounds. Yet, the global alteration in the structure and composition of glycans, specifically occurring during corneal wound closure remains unknown. In this study, GLYCOv2 glycogene microarray technology was used for the first time to identify the differentially expressed glycosylation-related genes in healing mouse corneas. Of approximately 2000 glycogenes on the array, the expression of 11 glycosytransferase and glycosidase enzymes was upregulated and that of 19 was downregulated more than 1.5-fold in healing corneas compared with the normal, uninjured corneas. Among them, notably, glycosyltransferases, beta3GalT5, T-synthase, and GnTIVb, were all found to be induced in the corneas in response to injury, whereas, GnTIII and many sialyltransferases were downregulated. Interestingly, it appears that the glycan structures on glycoproteins and glycolipids, expressed in healing corneas as a result of differential regulation of these glycosyltransferases, may serve as specific counter-receptors for galectin-3, a carbohydrate-binding protein, known to play a key role in re-epithelialization of corneal wounds. Additionally, many glycogenes including a proteoglycan, glypican-3, cell adhesion proteins dectin-1 and -2, and mincle, and mucin 1 were identified for the first time to be differentially regulated during corneal wound healing. Results of glycogene microarray data were confirmed by qRT-PCR and lectin blot analyses. The differentially expressed glycogenes identified in the present study have not previously been investigated in the context of wound healing and represent novel factors for investigating the role of carbohydrate-mediated recognition in corneal wound healing.
Collapse
Affiliation(s)
- Chandrassegar Saravanan
- Program in Cell, Molecular and Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA
| | | | | | | |
Collapse
|
33
|
Lin CH, Fan YY, Chen YY, Wang SH, Chen CI, Yu LC, Khoo KH. Enhanced expression of beta 3-galactosyltransferase 5 activity is sufficient to induce in vivo synthesis of extended type 1 chains on lactosylceramides of selected human colonic carcinoma cell lines. Glycobiology 2009; 19:418-27. [PMID: 19136585 DOI: 10.1093/glycob/cwn156] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In general, an elevated expression of beta 3-galactosyltransferase (beta 3GalT) activity contributed by beta 3GalT5 correlates well with increased biosynthesis and expression of type 1 chain (Gal beta 1-3GlcNAc beta 1-) derivatives such as Lewis A and sialyl Lewis A, which are mostly recognized as terminal epitopes and not further extended. Most known beta 3-N-acetylglucosaminyltransferases show a higher activity toward extending type 2 chain (Gal beta 1-4GlcNAc beta 1-), and an over-expression of beta 3GalT5 could suppress the formation of the type 2 chain poly-N-acetyllactosaminoglycans. The potential of extending instead the predominant type 1 chain termini synthesized under such circumstances was, however, not investigated, partly due to technical difficulty in unambiguous identification of extended type 1 chains. Using an advanced mass spectrometry-based glycomic mapping and glycan sequencing approach, we show here that type 1 chains carried on the lacto-series glycosphingolipids of colonic carcinoma cells can be extended when the endogenous beta 3GalT activity relative to competing beta 4GalT activity, as defined against a common GlcNAc beta 1-3Gal beta 1-4Glc acceptor, is sufficiently high, as found in Colo205 and SW1116, but not in DLD-1 cells. In support of this positive correlation, the lacto-series glycosphingolipids isolated from stably transfected DLD-1 clones over-expressing beta 3GalT5 were shown to comprise fucosylated dimeric type 1 chains, whereas a mock transfectant and the DLD-1 parent carried only fucosylated dimeric type 2 chains on their lactosylceramides. It suggests that while the natural expression of extended type 1 chain is likely to be determined by many contributing factors including the relative amounts of competing glycosyltransferases and the UDP-Gal level, the enhanced expression of beta 3GalT5 is sufficient to promote in vivo extension of type 1 chains by furnishing a significantly higher amount of type 1 chain precursors relative to competing type 2 chains.
Collapse
Affiliation(s)
- Chi-Hung Lin
- Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Academia Sinica, Taipei 115, Taiwan
| | | | | | | | | | | | | |
Collapse
|
34
|
Kawamura YI, Toyota M, Kawashima R, Hagiwara T, Suzuki H, Imai K, Shinomura Y, Tokino T, Kannagi R, Dohi T. DNA hypermethylation contributes to incomplete synthesis of carbohydrate determinants in gastrointestinal cancer. Gastroenterology 2008; 135:142-151.e3. [PMID: 18485915 DOI: 10.1053/j.gastro.2008.03.031] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2007] [Revised: 02/19/2008] [Accepted: 03/13/2008] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS It has long been known that malignant transformation is associated with abnormal expression of carbohydrate determinants. The aim of this study was to clarify the cause of cancer-associated abnormal glycosylation in gastrointestinal (GI) cancers. METHODS We compared the expression levels of "glyco-genes," including glycosyltransferases and glycosidases, in normal GI mucosa and in gastric and colorectal cancer cells. To examine the possibility that DNA hypermethylation contributed to the down-regulation of these genes, we treated GI cancer cells with 5-aza-2'-deoxycytidine (5-aza-dC), an inhibitor of DNA methyltransferase. RESULTS The silencing of some of these glyco-genes, but not up-regulation of certain molecules, was observed. The Sd(a) carbohydrate was abundantly expressed in the normal GI mucosa, but its expression was significantly decreased in cancer tissues. When human colon and gastric cancer cells were treated with 5-aza-dC, cell surface expression of Sd(a) and the transcription of B4GALNT2, which catalyzes the synthesis of the Sd(a), were induced. The promoter region of the human B4GALNT2 gene was heavily hypermethylated in many of the GI cancer cell lines examined as well as in gastric cancer tissues (39 out of 78 cases). In addition, aberrant methylation of the B4GALNT2 gene was strongly correlated with Epstein-Barr virus-associated gastric carcinomas and occurred coincidentally with hypermethylation of the ST3GAL6 gene. CONCLUSIONS Epigenetic changes in a group of glycosyltransferases including B4GALNT2 and ST3GAL6 represent a malignant phenotype of gastric cancer caused by silencing of the activity of these enzymes, which action may eventually induce aberrant glycosylation and expression of cancer-associated carbohydrate antigens.
Collapse
Affiliation(s)
- Yuki I Kawamura
- Department of Gastroenterology, Research Institute, International Medical Center of Japan, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Mare L, Trinchera M. Comparative Analysis of Retroviral and Native Promoters Driving Expression of β1,3-Galactosyltransferase β3Gal-T5 in Human and Mouse Tissues. J Biol Chem 2007; 282:49-57. [PMID: 17107959 DOI: 10.1074/jbc.m606666200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Beta1,3-galactosyltransferase beta3Gal-T5 is highly expressed in the colons of humans and certain primates due to a retroviral long terminal repeat (LTR) acting as a strong promoter. Because this promoter is inactive in other human tissues or mice, we attempted to understand how adoption of a retrotransposon allowed the gene to acquire tissue-specific expression. We identified three novel 5'-UTRs of beta3Gal-T5 mRNA, types A, B, and C, and found widespread expression of the type A transcript at much lower levels than the LTR transcript, the expression of which is restricted to organs of the gastrointestinal tract. Expression of the type C 5'-UTR transcript was mostly restricted to the ileum, where it was expressed at high levels. We cloned the 5'-flanking regions of both types A and B 5'-UTRs, found deletion constructs functionally active as promoters, and identified CCAAT-binding factor (CBF) and hepatocyte nuclear factor 1 (HNF-1) as the principal nuclear factors controlling the promoters of types A and B 5'-UTR transcripts, respectively. The CCAAT-binding factor binding site and the entire downstream sequence driving the expression of type A transcripts in humans are structurally and functionally conserved in mice, where they constitute a uniquebeta3Gal-T5 promoter that appears to be the ancestral promoter of the gene. The HNF-1 binding motif of the second human promoter is identical to the HNF-1/Cdx binding motif of the LTR promoter but is in the antisense orientation, resulting in much lower binding affinity and promoter strength. These data may explain the successful insertion of the transposon during evolution.
Collapse
Affiliation(s)
- Lydia Mare
- Department of Biomedical Sciences Experimental and Clinical, University of Insubria Medical School, 21100 Varese, Italy
| | | |
Collapse
|
36
|
Holgersson J, Löfling J. Glycosyltransferases involved in type 1 chain and Lewis antigen biosynthesis exhibit glycan and core chain specificity. Glycobiology 2006; 16:584-93. [PMID: 16484342 DOI: 10.1093/glycob/cwj090] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Sialyl Lewis A (SLe(a)), Lewis A (Le(a)), and Lewis B (Le(b)) have been studied in many different biological contexts, for example in microbial adhesion and cancer. Their biosynthesis is complex and involves beta1,3-galactosyltransferases (beta3Gal-Ts) and a combined action of alpha2- and/or alpha4-fucosyltransferases (Fuc-Ts). Further, O-glycans with different core structures have been identified, and the ability of beta3Gal-Ts and Fuc-Ts to use these as substrates has not been resolved. Therefore, to examine the in vivo specificity of enzymes involved in SLe(a), Le(a), and Le(b) synthesis, we have transiently transfected CHO-K1 cells with relevant human glycosyltransferases and, on secreted reporter proteins, detected the resulting Lewis antigens on N- and O-linked glycans using western blotting and Le-specific antibodies. beta3Gal-T1, -T2, and -T5 could synthesize type 1 chains on N-linked glycans, but only beta3Gal-T5 worked on O-linked glycans. The latter enzyme could use both core 2 and core 3 precursor structures. Furthermore, the specificity of FUT5 and FUT3 in Le(a) and Le(b) synthesis was different, with FUT5 fucosylating H type 1 only on core 2, but FUT3 fucosylating H type 1 much more efficient on core 3 than on core 2. Finally, FUT1 and FUT2 were both found to direct alpha2-fucosylation on type 1 chains on both N- and O-linked structures. This knowledge enables us to engineer recombinant glycoproteins with glycan- and core chain-specific Lewis antigen substitution. Such tools will be important for investigations on the fine carbohydrate specificity of Le(b)-binding lectins, such as Helicobacter pylori adhesins and DC-SIGN, and may also prove useful as therapeutics.
Collapse
Affiliation(s)
- Jan Holgersson
- Division of Clinical Immunology, Karolinska Institutet, Karolinska University Hospital, Huddinge, S-141 86 Stockholm, Sweden
| | | |
Collapse
|
37
|
Kobata A, Amano J. Altered glycosylation of proteins produced by malignant cells, and application for the diagnosis and immunotherapy of tumours. Immunol Cell Biol 2005; 83:429-39. [PMID: 16033539 DOI: 10.1111/j.1440-1711.2005.01351.x] [Citation(s) in RCA: 189] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Most secretory and membrane-bound proteins produced by mammalian cells contain covalently linked sugar chains. Alterations of the sugar chain structures of glycoproteins have been found to occur in various tumours. Because the sugar chains of glycoproteins are essential for the maintenance of the ordered social behaviour of differentiated cells in multicellular organisms, alterations to the sugar chains are the molecular basis of abnormal social behaviours in tumour cells, such as invasion into the surrounding tissues and metastasis. In this review, the structure and enzymatic basis of typical alterations of the N-linked sugar chains, which are found in various tumours, are introduced. These data are useful for devising diagnostic methods and immunotherapies for the clinical treatment of tumours. Three beta-N-acetylglucosaminyltransferases, GnT-III, -IV and -V, play roles in the structural alteration of the complex-type sugar chains in various tumours. In addition, transcriptional changes in various glycosyltransferases, together with the transporters of sugar nucleotides and sulfate, which are responsible for the formation of the outer chain moieties of complex-type sugar chains, are the keys to inducing the alterations.
Collapse
|
38
|
Kannagi R. Molecular mechanism for cancer-associated induction of sialyl Lewis X and sialyl Lewis A expression-The Warburg effect revisited. Glycoconj J 2005; 20:353-64. [PMID: 15229399 DOI: 10.1023/b:glyc.0000033631.35357.41] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Cell adhesion mediated by selectins and their carbohydrate ligands, sialyl Lewis X and sialyl Lewis A, figures heavily in cancer metastasis. Expression of these carbohydrate determinants is markedly enhanced in cancer cells, but the molecular mechanism that leads to cancer-associated expression of sialyl Lewis X/A has not been well understood. Results of recent studies indicated involvement of two principal mechanisms in the accelerated expression of sialyl Lewis X/A in cancers; 'incomplete synthesis' and ' neo synthesis.' As to 'incomplete synthesis,' we have recently found further modified forms of sialyl Lewis X and sialyl Lewis A in non-malignant colonic epithelium, which have additional 6-sulfation or 2 --> 6 sialylation. The impairment of GlcNAc 6-sulfation and 2 --> 6 sialylation upon malignant transformation leads to accumulation of sialyl Lewis X/A in colon cancer cells. Epigenetic changes such as DNA methylation and/or histone deacetylation are suggested to lie behind such incomplete synthesis. As to the mechanism called ' neo synthesis,' recent studies have indicated that cancer-associated alterations in the sugar transportation and intermediate carbohydrate metabolism play important roles. Cancer cells are known to exhibit a metabolic shift from oxidative to elevated anaerobic glycolysis (Warburg effect), which is correlated with the increased gene expression of sugar transporters and glycolytic enzymes induced by common cancer-specific genetic alterations. The increased sialyl Lewis X/A expression in cancer is a link in the chains of these events because our recent results indicated that these events accompany transcriptional induction of a set of genes closely related to its expression.
Collapse
Affiliation(s)
- Reiji Kannagi
- Molecular Pathology, Aichi Cancer Center, Chikusaku, Nagoya 464-8681, Japan
| |
Collapse
|
39
|
Miyazaki K, Ohmori K, Izawa M, Koike T, Kumamoto K, Furukawa K, Ando T, Kiso M, Yamaji T, Hashimoto Y, Suzuki A, Yoshida A, Takeuchi M, Kannagi R. Loss of disialyl Lewis(a), the ligand for lymphocyte inhibitory receptor sialic acid-binding immunoglobulin-like lectin-7 (Siglec-7) associated with increased sialyl Lewis(a) expression on human colon cancers. Cancer Res 2004; 64:4498-505. [PMID: 15231659 DOI: 10.1158/0008-5472.can-03-3614] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Expression of sialyl Lewis(a) is known to be increased in cancers of the digestive organs. The determinant serves as a ligand for E-selectin and mediates hematogenous metastasis of cancers. In contrast, disialyl Lewis(a), which has an extra sialic acid attached at the C6-position of penultimate GlcNAc in sialyl Lewis(a), is expressed preferentially on nonmalignant colonic epithelial cells, and its expression decreases significantly on malignant transformation. Introduction of the gene for an alpha2-->6 sialyl-transferase responsible for disialyl Lewis(a) synthesis to colon cancer cells resulted in a marked increase in disialyl Lewis(a) expression and corresponding decrease in sialyl Lewis(a) expression. This was accompanied by the complete loss of E-selectin binding activity of the cells. In contrast, the transfected cells acquired significant binding activity to sialic acid-binding immunoglobulin-like lectin-7 (Siglec-7)/p75/adhesion inhibitory receptor molecule-1, an inhibitory receptor expressed on lymphoid cells. These results indicate that the transition of carbohydrate determinants from disialyl Lewis(a)-dominant status to sialyl Lewis(a)-dominant status on malignant transformation has a dual functional consequence: the loss of normal cell-cell recognition between mucosal epithelial cells and lymphoid cells on one hand and the gain of E-selectin binding activity on the other. The transcription of a gene encoding the alpha2-->6 sialyltransferase was markedly down-regulated in cancer cells compared with nonmalignant epithelial cells, which is in line with the decreased expression of disialyl Lewis(a) and increased expression of sialyl Lewis(a) in cancers. Treatment of cancer cells with butyrate or 5-azacytidine induced strongly disialyl Lewis(a) expression, suggesting that histone deacetylation and/or DNA methylation may be involved in the silencing of the gene in cancers.
Collapse
Affiliation(s)
- Keiko Miyazaki
- Department of Molecular Pathology, Aichi Cancer Center Research Institute, Nagoya, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Mare L, Trinchera M. Suppression of beta 1,3galactosyltransferase beta 3Gal-T5 in cancer cells reduces sialyl-Lewis a and enhances poly N-acetyllactosamines and sialyl-Lewis x on O-glycans. ACTA ACUST UNITED AC 2004; 271:186-94. [PMID: 14686931 DOI: 10.1046/j.1432-1033.2003.03919.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We investigated the role of beta 3 Gal-T5, a member of the beta 1,3galactosyltransferase (beta 1,3Gal-T) family, in cancer-associated glycosylation, focusing on the expression of sialyl-Lewis a (sLea, the epitope of CA19.9 antigen), poly N-acetyllactosamines, and sialyl-Lewis x (sLex) antigen. A clone permanently expressing an antisense fragment of beta 3Gal-T5 was obtained from the human pancreas adenocarcinoma cell line BxPC3 and characterized. Both beta 1,3Gal-T activity and sLea expression are dramatically impaired in the clone. Analysis of the oligosaccharides synthesized in cells metabolically labelled with tritiated galactose shows that a relevant amount of radioactivity is associated to large O-glycans. Endo-beta-galactosidase mostly releases NeuAc alpha 2-3Gal beta 1-3[Fuc alpha 1-4]GlcNAc beta 1-3Gal and NeuAc alpha 2-3Gal beta 1-3GlcNAc beta 1-3Gal from such O-glycans of BxPC3 membranes, but GlcNAc beta 1-3Gal and type 2 chain oligosaccharides, including NeuAc alpha 2-3Gal beta 1-4[Fuc alpha 1-3]GlcNAc beta 1-3Gal, from those of the antisense clone. Furthermore, BxPC3 cells secrete sLea in the culture media but not sLex, while antisense clone secretes mostly sLex, and accumulation of both antigens is prevented by benzyl-alpha-GalNAc. These data indicate that beta 3Gal-T5 suppression turns synthesis of type 1 chain O-glycans to poly N-acetyllactosamine elongation and termination by sLex. In other cell lines and clones, beta 3Gal-T5 transcript, beta 1,3Gal-T activity, and sLea antigen are also correlated, but quantitatively the relative expression ratios are very different from cell type to cell type. We suggest that beta 3Gal-T5 plays a relevant role in gastrointestinal and pancreatic tissues counteracting the glycosylation pattern associated to malignancy, and is necessary for the synthesis and secretion of CA19.9 antigen, whose expression still depends on multiple interacting factors.
Collapse
Affiliation(s)
- Lydia Mare
- Department of Biomedical Sciences Experimental and Clinical (DSBSC), University of Insubria, Varese, Italy
| | | |
Collapse
|
41
|
Dunn CA, Medstrand P, Mager DL. An endogenous retroviral long terminal repeat is the dominant promoter for human beta1,3-galactosyltransferase 5 in the colon. Proc Natl Acad Sci U S A 2003; 100:12841-6. [PMID: 14534330 PMCID: PMC240706 DOI: 10.1073/pnas.2134464100] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
LTRs of endogenous retroviruses are known to affect expression of several human genes, typically as a relatively minor alternative promoter. Here, we report that an endogenous retrovirus LTR acts as one of at least two alternative promoters for the human beta1,3-galactosyltransferase 5 gene, involved in type 1 Lewis antigen synthesis, and show that the LTR promoter is most active in the gastrointestinal tract and mammary gland. Indeed, the LTR is the dominant promoter in the colon, indicating that this ancient retroviral element has a major impact on gene expression. Using colorectal cancer cell lines and electrophoretic mobility-shift assays, we found that hepatocyte nuclear factor 1 (HNF-1) binds a site within the retroviral promoter and that expression of HNF-1 and interaction with its binding site correlated with promoter activation. We conclude that HNF-1 is at least partially responsible for the tissue-specific activation of the LTR promoter of human beta 1,3-galactosyltransferase 5. We demonstrate that this tissue-specific transcription factor is implicated in the activation of an LTR gene promoter.
Collapse
Affiliation(s)
- Catherine A. Dunn
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, BC, Canada V5Z 1L3; Department of Cell and Molecular Biology, Biomedical Centre, Lund University, 221 84 Lund, Sweden; and Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada V6T 1Z1
| | - Patrik Medstrand
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, BC, Canada V5Z 1L3; Department of Cell and Molecular Biology, Biomedical Centre, Lund University, 221 84 Lund, Sweden; and Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada V6T 1Z1
| | - Dixie L. Mager
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, BC, Canada V5Z 1L3; Department of Cell and Molecular Biology, Biomedical Centre, Lund University, 221 84 Lund, Sweden; and Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada V6T 1Z1
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
42
|
Isshiki S, Kudo T, Nishihara S, Ikehara Y, Togayachi A, Furuya A, Shitara K, Kubota T, Watanabe M, Kitajima M, Narimatsu H. Lewis type 1 antigen synthase (beta3Gal-T5) is transcriptionally regulated by homeoproteins. J Biol Chem 2003; 278:36611-20. [PMID: 12855703 DOI: 10.1074/jbc.m302681200] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The type 1 carbohydrate chain, Galbeta1-3GlcNAc, is synthesized by UDP-galactose:beta-N-acetylglucosamine beta1,3-galactosyltransferase (beta3Gal-T). Among six beta3Gal-Ts cloned to date, beta3Gal-T5 is an essential enzyme for the synthesis of type 1 chain in epithelium of digestive tracts or pancreatic tissue. It forms the type 1 structure on glycoproteins produced from such tissues. In the present study, we found that the transcriptional regulation of the beta3Gal-T5 gene is controlled by homeoproteins, i.e. members of caudal-related homeobox protein (Cdx) and hepatocyte nuclear factor (HNF) families. We found an important region (-151 to -121 from the transcription initiation site), named the beta3Gal-T5 control element (GCE), for the promoter activity. GCE contained the consensus sequences for members of the Cdx and HNF families. Mutations introduced into this sequence abolished the transcriptional activity. Four factors, Cdx1, Cdx2, HNF1alpha, and HNF1beta, could bind to GCE and transcriptionally activate the beta3Gal-T5 gene. Transcriptional regulation of the beta3Gal-T5 gene was consistent with that of members of the Cdx and HNF1 families in two in vivo systems. 1) During in vitro differentiation of Caco-2 cells, transcriptional up-regulation of beta3Gal-T5 was observed in correlation with the increase in transcripts for Cdx2 and HNF1alpha. 2) Both transcript and protein levels of beta3Gal-T5 were determined to be significantly reduced in colon cancer. This down-regulation was correlated with the decrease of Cdx1 and HNF1beta expression in cancer tissue. This is the first finding that a glycosyltransferase gene is transcriptionally regulated under the control of homeoproteins in a tissue-specific manner. beta3Gal-T5, controlled by the intestinal homeoproteins, may play an important role in the specific function of intestinal cells by modifying the carbohydrate structure of glycoproteins.
Collapse
Affiliation(s)
- Soichiro Isshiki
- Division of Cell Biology, Institute of Life Science, Soka University, Tangi-cho, Hachioji, Tokyo 192-8577, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Brockhausen I. Glycodynamics of Mucin Biosynthesis in Gastrointestinal Tumor Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2003; 535:163-88. [PMID: 14714895 DOI: 10.1007/978-1-4615-0065-0_11] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Glycoproteins found in the secretions and on the surfaces of cancer cells include mucins and mucin-like glycoproteins. These molecules have been shown to carry antigens that are characteristically expressed on cancer cells, including Tn and T antigens and Lewis epitopes. The structures of O-glycans are often abnormal in gastrointestinal tumors, or else are present in abnormal amounts, and these structures greatly contribute to the phenotype and biology of cancer cells. It has been shown that glycans of cancer cells have functional importance in cell adhesion, invasion and metastasis. The possible mechanisms leading to these cancer-specific changes in carbohydrate structures (termed glycodynamics) involve altered mRNA expression and catalytic activities of glycosyltransferases and sulfotransferases found in tissues and cells of gastrointestinal tumors. In a number of cases it has been possible to correlate enzyme changes with oligosaccharide structures. Different mechanisms have been suggested leading to the synthesis of cancer-specific Lewis, T and Tn antigens, but the regulation of cancer mucin antigens generally appears to be very complex and is poorly understood. The expression levels of specific mucin antigens and enzymes in gastro-intestinal tumors have diagnostic as well as prognostic value. These antigens also have potential for cancer immunotherapy. However, we first need to unravel the complexity of the control of glycosylation in cancer cells. Most importantly, studies of the functional implications of the glycodynamics in cancer cells, as related to cell adhesion and impact on the immune system will provide promising directions for future research.
Collapse
Affiliation(s)
- Inka Brockhausen
- Department of Medicine, and Human Mobility Research Centre, Queen's University, Kingston, Ontario, K7L 3N6 Canada
| |
Collapse
|
44
|
Seko A, Nagata K, Yonezawa S, Yamashita K. Down-regulation of Gal 3-O-sulfotransferase-2 (Gal3ST-2) expression in human colonic non-mucinous adenocarcinoma. Jpn J Cancer Res 2002; 93:507-15. [PMID: 12036446 PMCID: PMC5927024 DOI: 10.1111/j.1349-7006.2002.tb01285.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Expression levels of sulfomucin in human colonic adenocarcinomas are lower than those in normal colonic mucosa; this should be in part caused by down-regulation of expression of sulfotransferases, but it remains unclear which Gal 3-O-sulfotransferase (Gal3ST) is responsible for the biosynthesis of sulfomucin. In this study, we first examined the substrate specificities of four Gal3STs cloned so far, and found that Galbeta1 3GlcNAcbeta1 3Galbeta1 4Glc (LNT) can be utilized only by Gal3ST-2 as an acceptor substrate. The substrate specificity of Gal3ST-2 is closely similar to those of Gal3ST activities present in human normal mucosa and adenocarcinomas, suggesting that Gal3ST-2 is the dominant Gal3ST in colon and colonic cancer. Secondly, using LNT as a substrate, we comparatively analyzed levels of Gal3ST-2 activities in non-mucinous adenocarcinoma, mucinous adenocarcinomas, and the adjacent normal mucosa. We found that levels of Gal3ST-2 activities in non-mucinous adenocarcinoma are significantly lower than those in the adjacent normal mucosa, while those in mucinous adenocarcinomas are not significantly different from those in the adjacent normal mucosa. Moreover, we showed by a competitive RT-PCR method that expression levels of transcript for Gal3ST-2 in non-mucinous adenocarcinoma are lower than those in normal mucosa. These results suggest that Gal3ST-2 is one of the enzymes responsible for biosynthesis of sulfomucin, and that expression levels of Gal3ST-2 are down-regulated in non-mucinous adenocarcinoma.
Collapse
Affiliation(s)
- Akira Seko
- Department of Biochemistry, Sasaki Institute, Chiyoda-ku, Tokyo 101-0062
| | | | | | | |
Collapse
|
45
|
Bai X, Zhou D, Brown JR, Crawford BE, Hennet T, Esko JD. Biosynthesis of the linkage region of glycosaminoglycans: cloning and activity of galactosyltransferase II, the sixth member of the beta 1,3-galactosyltransferase family (beta 3GalT6). J Biol Chem 2001; 276:48189-95. [PMID: 11551958 DOI: 10.1074/jbc.m107339200] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A family of five beta1,3-galactosyltransferases has been characterized that catalyze the formation of Galbeta1,3GlcNAcbeta and Galbeta1,3GalNAcbeta linkages present in glycoproteins and glycolipids (beta3GalT1, -2, -3, -4, and -5). We now report a new member of the family (beta3GalT6), involved in glycosaminoglycan biosynthesis. The human and mouse genes were located on chromosomes 1p36.3 and 4E2, respectively, and homologs are found in Drosophila melanogaster and Caenorhabditis elegans. Unlike other members of the family, beta3GalT6 showed a broad mRNA expression pattern by Northern blot analysis. Although a high degree of homology across several subdomains exists among other members of the beta3-galactosyltransferase family, recombinant enzyme did not utilize glucosamine- or galactosamine-containing acceptors. Instead, the enzyme transferred galactose from UDP-galactose to acceptors containing a terminal beta-linked galactose residue. This product, Galbeta1,3Galbeta is found in the linkage region of heparan sulfate and chondroitin sulfate (GlcAbeta1,3Galbeta1,3Galbeta1,4Xylbeta-O-Ser), indicating that beta3GalT6 is the so-called galactosyltransferase II involved in glycosaminoglycan biosynthesis. Its identity was confirmed in vivo by siRNA-mediated inhibition of glycosaminoglycan synthesis in HeLa S3 cells. Its localization in the medial Golgi indicates that this is the major site for assembly of the linkage region.
Collapse
Affiliation(s)
- X Bai
- Department of Cellular and Molecular Medicine, Glycobiology Research and Training Center, University of California, San Diego, La Jolla, California 92093-0687, USA
| | | | | | | | | | | |
Collapse
|
46
|
Ikeda N, Eguchi H, Nishihara S, Narimatsu H, Kannagi R, Irimura T, Ohta M, Matsuda H, Taniguchi N, Honke K. A remodeling system of the 3'-sulfo-Lewis a and 3'-sulfo-Lewis x epitopes. J Biol Chem 2001; 276:38588-94. [PMID: 11504739 DOI: 10.1074/jbc.m107390200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
It has been reported that the chemically synthesized 3'-sulfo-Le(a) and 3'-sulfo-Le(x) epitopes have a high potential as a ligand for selectins. To elucidate the physiological functions of 3'-sulfated Lewis epitopes, a remodeling system was developed using a combination of a betaGal-3-O-sulfotransferase GP3ST, hitherto known alpha1,3/1,4-fucosyltransferases (FucT-III, IV, V, VI, VII, and IX) and arylsulfatase A. The pyridylaminated (PA) lacto-N-tetraose (Galbeta1-3GlcNAcbeta1-3Galbeta1-4Glc) was first converted to 3'-sulfolacto-N-fucopentaose II (sulfo-3Galbeta1-3(Fucalpha1-4)GlcNAcbeta1-3Galbeta1-4Glc)-PA by sequential reactions with GP3ST and FucT-III. The 3'-sulfolacto-N-fucopentaose III (sulfo-3Galbeta1-4(Fucalpha1-3)GlcNAcbeta1-3Galbeta1-4Glc)-PA was then synthesized from lacto-N-neotetraose (Galbeta1-4GlcNAcbeta1-3Galbeta1-4Glc)-PA by GP3ST and FucT-III, -IV, -V, -VI, -VII, or -IX in a similar manner. The substrate specificity for the 3'-sulfated acceptor of the alpha1,3-fucosyltransferases was considerably different from that for the non-substituted and 3'-sialylated varieties. When the GP3ST gene was introduced into A549 and Chinese hamster ovary cells expressing FucT-III, they began to express 3'-sulfo-Le(a) and 3'-sulfo-Le(x) epitopes, respectively, suggesting that GP3ST is responsible for their biosynthesis in vivo. The expression of the 3'-sialyl-Le(x) epitope on Chinese hamster ovary cells was attenuated by the introduction of GP3ST gene, indicating that GP3ST and alpha2,3-sialyltransferase compete for the common Galbeta1-4GlcNAc-R oligosaccharides. Last, arylsulfatase A, which is a lysosomal hydrolase that catalyzes the desulfation of 3-O-sulfogalactosyl residues in glycolipids, was found to hydrolyze the sulfate ester bond on the 3'-sulfo-Le(x) (type 2 chain) but not that on the 3'-sulfo-Le(a) (type 1 chain). The present remodeling system might be of potential use as a tool for the study of the physiological roles of 3'-sulfated Lewis epitopes, including interaction with selectins.
Collapse
Affiliation(s)
- N Ikeda
- Department of Biochemistry and Department of Surgery, Osaka University Medical School, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Gromova I, Gromov P, Celis JE. A novel member of the glycosyltransferase family, beta 3 Gn-T2, highly downregulated in invasive human bladder transitional cell carcinomas. Mol Carcinog 2001; 32:61-72. [PMID: 11746818 DOI: 10.1002/mc.1065] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Differential display reverse transcription (DDRT)-polymerase chain reaction (PCR) was used to compare the transcriptomes of invasive and noninvasive fresh human bladder transitional cell carcinomas. A differentially expressed novel gene sharing structural similarity with the human beta 3-galactosyltransferase family, beta-1,3-N-acetylglucosaminyltransferase-T2 (beta 3Gn-T2), was identified. The full-length beta 3Gn-T2 cDNA, containing a complete open reading frame of 1193 bp, was cloned and sequenced. beta 3Gn-T2 exhibited 29-41% homology to the multigene beta 3-galactosyltransferase family. Expression of the full-length beta 3Gn-T2 cDNA in an in vitro coupled transcription/translation assay yielded a primary translation product with an apparent Mr of 46 kDa, which is in agreement with the predicted 397-amino-acid protein encoded by beta 3Gn-T2. Multiple peptide alignment showed several sequence motifs corresponding to putative catalytic domains that are conserved throughout all members of the beta 3-galactosyltransferase family, namely, a type II transmembrane domain, a conserved DxD motif, an N-glycosylation site, and five conserved cysteins. By RT-PCR strong downregulation of beta 3Gn-T2 expression was noted in invasive human bladder transitional cell carcinomas (16 fresh biopsy samples: grade III, T2-T4) compared with their noninvasive counterparts (15 fresh biopsies: grade II, Ta), suggesting that beta 3Gn-T2 may be involved in cancer progression.
Collapse
Affiliation(s)
- I Gromova
- Institute of Cancer Biology, Danish Cancer Society, Copenhagen, Denmark
| | | | | |
Collapse
|