1
|
De la Cruz-Cano E, González-Díaz JÁ, Olivares-Corichi IM, Ayala-Sumuano JT, Díaz-Gandarilla JA, Torres-Sauret Q, Larios-Serrato V, Vilchis-Reyes MÁ, López-Victorio CJ, González-Garrido JA, García-Sánchez JR. Identifying Genes Associated with the Anticancer Activity of a Fluorinated Chalcone in Triple-Negative Breast Cancer Cells Using Bioinformatics Tools. Int J Mol Sci 2025; 26:3662. [PMID: 40332279 PMCID: PMC12027753 DOI: 10.3390/ijms26083662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 04/04/2025] [Accepted: 04/08/2025] [Indexed: 05/08/2025] Open
Abstract
Fluorinated chalcones are molecules reported to possess potent anticancer properties against triple-negative breast cancer (TNBC) cells. However, their molecular mechanisms have not yet been fully explored. Using bioinformatics tools, we analyzed the transcriptomes of MDA-MB-231 cells treated with either a novel fluorinated chalcone (compound 3) or a control in order to identify differentially expressed (DE) genes associated with its anticancer activity and determine the biological processes in which these genes are involved. A fluorinated chalcone was synthesized using the Claisen-Schmidt method. The transcriptome of MDA-MB-231 cells was then analyzed on an Illumina NextSeq500, and DE genes with significant changes in expression were identified using the DESeq2 v1.38.0 bioinformatics tool under the strict detection criteria of |log2FC| ≥ 2 and adjusted p < 0.05. We identified 504 DE genes, which were enriched in terms related to "regulation of cell death", "cation transport", "response to topologically incorrect proteins", and "response to unfolded proteins". Surprisingly, these genes were involved in "the HSF1-dependent transactivation pathway" and "the attenuation phase pathway". This bioinformatics-based study suggests that the tested fluorinated chalcone could influence HSF-1 silencing in addition to promoting the up-regulation of several genes involved in stress-induced apoptosis. Therefore, the tested compound could have enormous potential as a novel approach for TNBC treatment.
Collapse
Affiliation(s)
- Eduardo De la Cruz-Cano
- Laboratorio de Bioquímica y Biología Molecular, División Académica de Ciencias Básicas, Centro de Investigación de Ciencia y Tecnología Aplicada de Tabasco (CICTAT), Universidad Juárez Autónoma de Tabasco, Cunduacán C.P. 86690, Mexico; (E.D.l.C.-C.); (J.Á.G.-D.); (Q.T.-S.); (M.Á.V.-R.); (J.A.G.-G.)
| | - José Ángel González-Díaz
- Laboratorio de Bioquímica y Biología Molecular, División Académica de Ciencias Básicas, Centro de Investigación de Ciencia y Tecnología Aplicada de Tabasco (CICTAT), Universidad Juárez Autónoma de Tabasco, Cunduacán C.P. 86690, Mexico; (E.D.l.C.-C.); (J.Á.G.-D.); (Q.T.-S.); (M.Á.V.-R.); (J.A.G.-G.)
| | - Ivonne María Olivares-Corichi
- Laboratorio de Oncología Molecular y Estrés Oxidativo, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México C.P. 11340, Mexico;
| | | | - José Alfredo Díaz-Gandarilla
- Laboratorio de Análisis Clínicos, División Académica Multidisciplinaria de Comalcalco, Universidad Juárez Autónoma de Tabasco, Comalcalco C.P. 86650, Mexico;
| | - Quirino Torres-Sauret
- Laboratorio de Bioquímica y Biología Molecular, División Académica de Ciencias Básicas, Centro de Investigación de Ciencia y Tecnología Aplicada de Tabasco (CICTAT), Universidad Juárez Autónoma de Tabasco, Cunduacán C.P. 86690, Mexico; (E.D.l.C.-C.); (J.Á.G.-D.); (Q.T.-S.); (M.Á.V.-R.); (J.A.G.-G.)
| | - Violeta Larios-Serrato
- Laboratorio de Biotecnología Genómica y Bioinformática, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México C.P. 11340, Mexico;
| | - Miguel Ángel Vilchis-Reyes
- Laboratorio de Bioquímica y Biología Molecular, División Académica de Ciencias Básicas, Centro de Investigación de Ciencia y Tecnología Aplicada de Tabasco (CICTAT), Universidad Juárez Autónoma de Tabasco, Cunduacán C.P. 86690, Mexico; (E.D.l.C.-C.); (J.Á.G.-D.); (Q.T.-S.); (M.Á.V.-R.); (J.A.G.-G.)
| | - Carlos Javier López-Victorio
- Laboratorio de Bioquímica y Biología Molecular, División Académica de Ciencias Básicas, Centro de Investigación de Ciencia y Tecnología Aplicada de Tabasco (CICTAT), Universidad Juárez Autónoma de Tabasco, Cunduacán C.P. 86690, Mexico; (E.D.l.C.-C.); (J.Á.G.-D.); (Q.T.-S.); (M.Á.V.-R.); (J.A.G.-G.)
| | - José Arnold González-Garrido
- Laboratorio de Bioquímica y Biología Molecular, División Académica de Ciencias Básicas, Centro de Investigación de Ciencia y Tecnología Aplicada de Tabasco (CICTAT), Universidad Juárez Autónoma de Tabasco, Cunduacán C.P. 86690, Mexico; (E.D.l.C.-C.); (J.Á.G.-D.); (Q.T.-S.); (M.Á.V.-R.); (J.A.G.-G.)
| | - José Rubén García-Sánchez
- Laboratorio de Oncología Molecular y Estrés Oxidativo, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México C.P. 11340, Mexico;
| |
Collapse
|
2
|
Paul GV, Sihite AC, Hsu T. Susceptibility of DNA damage recognition activities linked to nucleotide excision and mismatch repair in zebrafish (Danio rerio) early and mid-early embryos to 2.5 to 4.5 °C heat stress. FISH PHYSIOLOGY AND BIOCHEMISTRY 2023; 49:515-527. [PMID: 37133645 DOI: 10.1007/s10695-023-01198-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 04/12/2023] [Indexed: 05/04/2023]
Abstract
Fish at early life stages are sensitive to temperature change because of their narrower temperature tolerance ranges. Initiated by damage detection, DNA mismatch repair (MMR) and nucleotide excision repair (NER) maintain genome integrity respectively by eliminating mismatched nucleotides and helix-distorting DNA lesions. As discharge of heated effluent from power plants may elevate water temperatures to only 2 to 6 °C higher than ambient, this study explored if temperatures within this range affected MMR and NER-linked damage detection activities in fish embryos using zebrafish (Danio rerio) embryo as a model organism. Exposure of early embryos at 10 h post fertilization (hpf) to a warmer temperature at + 4.5 °C for 30 min enhanced damage recognition activities targeting UV-induced cyclobutane pyrimidine dimers (CPDs) and (6-4) photoproducts (6-4PPs) that distorted helical structures. Conversely, photolesions sensing activities were inhibited in 24 hpf mid-early embryos under the same stress conditions. A much higher temperature at + 8.5 °C imposed similar effects on UV damage detection. A mild heat stress at + 2.5 °C for 30 min, however, repressed both CPD and 6-4PP binding activities in 10 and 24 hpf embryos. Inhibition of damage recognition under mild heat stress impeded the overall NER capacity evidenced by a transcription-based repair assay. Warmer water temperatures at + 2.5 and + 4.5 °C also inhibited G-T mismatch binding activities in 10 and 24 hpf embryos, but G-T recognition was more sensitive to + 4.5 °C stress. Inhibition of G-T binding partially correlated with a downregulation of Sp1 transcription factor activity. Our results showed the potential of water temperature elevation within 2 to 4.5 °C to disturb DNA damage repair in fish at embryonic stages.
Collapse
Affiliation(s)
- Ganjai Vikram Paul
- Department of Bioscience and Biotechnology and Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, 202301, Taiwan
| | - Agatha Cecilia Sihite
- Department of Bioscience and Biotechnology and Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, 202301, Taiwan
| | - Todd Hsu
- Department of Bioscience and Biotechnology and Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, 202301, Taiwan.
| |
Collapse
|
3
|
Li M, Xiong J, Yang L, Huang J, Zhang Y, Liu M, Wang L, Ji J, Zhao Y, Zhu WG, Luo J, Wang H. Acetylation of p62 regulates base excision repair through interaction with APE1. Cell Rep 2022; 40:111116. [PMID: 35858573 DOI: 10.1016/j.celrep.2022.111116] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 04/26/2022] [Accepted: 06/27/2022] [Indexed: 11/28/2022] Open
Abstract
p62, a well-known adaptor of autophagy, plays multiple functions in response to various stresses. Here, we report a function for p62 in base excision repair that is distinct from its known functions. Loss of p62 impairs base excision repair capacity and increases the sensitivity of cancer cells to alkylating and oxidizing agents. In response to alkylative and oxidative damage, p62 is accumulated in the nucleus,acetylated by hMOF,and deacetylated by SIRT7, and acetylated p62 is recruited to chromatin. The chromatin-enriched p62 directly interacts with APE1, a key enzyme of the BER pathway, and promotes its endonuclease activity, which facilitates BER and cell survival. Collectively, our findings demonstrate that p62 is a regulator of BER and provide further rationale for targeting p62 as a cancer therapeutic strategy.
Collapse
Affiliation(s)
- Meiting Li
- Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; Department of Medical Genetics, Center for Medical Genetics, Peking University Health Science Center, Beijing 100191, China
| | - Jiannan Xiong
- Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Liqian Yang
- Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Jie Huang
- Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Yu Zhang
- Department of Medical Genetics, Center for Medical Genetics, Peking University Health Science Center, Beijing 100191, China
| | - Minghui Liu
- Department of Medical Genetics, Center for Medical Genetics, Peking University Health Science Center, Beijing 100191, China
| | - Lina Wang
- Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Jianguo Ji
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Ying Zhao
- Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Wei-Guo Zhu
- Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, International Cancer Center, Marshall Laboratory of Biomedical Engineering, Shenzhen University School of Medicine, Shenzhen 518055, China
| | - Jianyuan Luo
- Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; Department of Medical Genetics, Center for Medical Genetics, Peking University Health Science Center, Beijing 100191, China.
| | - Haiying Wang
- Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China.
| |
Collapse
|
4
|
Hasan A, Rizvi SF, Parveen S, Mir SS. Molecular chaperones in DNA repair mechanisms: Role in genomic instability and proteostasis in cancer. Life Sci 2022; 306:120852. [DOI: 10.1016/j.lfs.2022.120852] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/14/2022] [Accepted: 07/27/2022] [Indexed: 01/09/2023]
|
5
|
Staunstrup NH, Petersen CC, Fuglsang T, Starnawska A, Chernomorchenko A, Qvist P, Schack VR. Comparison of electrostatic and mechanical cell sorting with limited starting material. Cytometry A 2021; 101:298-310. [PMID: 34842347 DOI: 10.1002/cyto.a.24523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/15/2021] [Accepted: 11/17/2021] [Indexed: 11/11/2022]
Abstract
Isolation of multiple cell populations from limited starting material and with minimal influence on cell homeostasis and viability are common requirements in both basic and clinical research. Fluorescence-activated cell sorting (FACS) is the most commonly applied sorting methodology with the majority of instruments being based on high pressure and electrostatic deflection. A more recent technology is based on a mechanical valve, operating at low pressure. In the present work we compared the two technologies by parallel sorting of small amounts of peripheral blood and umbilical cord blood on a BD FACSAria™ III and Miltenyi MACSQuant® Tyto® instrument. Concurrent manually performed magnetic-based cell sorting served as reference. Sorting metrics, including purity and viability, were compared. Expression of the heat-shock protein HSPA1A immediately post sorting and the proliferation potential of sorted T-cells in vitro was assessed. In general, there was little to distinguish the two fluorescence-activated technologies with regard to sorting metrics and HSPA1A expression. Variation, however, with respect to recovery and viability, was much smaller among Tyto sorted samples. The proliferation potential of Tyto-sorted T-cells was significantly higher compared to Aria-sorted T-cells, indicating that T-cells of the Tyto instrument are less perturbed. In summary, cell types of blood origin including CD34+ cells could effectively be isolated from small input amounts with either fluorescence-activated technology with little immediate effect on viability. The mechanical valve-based sorting by the Tyto instrument; however, appeared to perturb the cells to a lesser extent as judged by their proliferation potential.
Collapse
Affiliation(s)
- Nicklas H Staunstrup
- Department of Biomedicine, University of Aarhus, Aarhus C, Denmark.,The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus V, Denmark.,Center for Genomics and Personalized Medicine, CGPM, and Center for Integrative Sequencing, iSEQ, Aarhus, Denmark
| | | | - Tina Fuglsang
- Department of Biomedicine, University of Aarhus, Aarhus C, Denmark
| | - Anna Starnawska
- Department of Biomedicine, University of Aarhus, Aarhus C, Denmark.,The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus V, Denmark.,Center for Genomics and Personalized Medicine, CGPM, and Center for Integrative Sequencing, iSEQ, Aarhus, Denmark
| | | | - Per Qvist
- Department of Biomedicine, University of Aarhus, Aarhus C, Denmark.,The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus V, Denmark.,Center for Genomics and Personalized Medicine, CGPM, and Center for Integrative Sequencing, iSEQ, Aarhus, Denmark
| | - Vivien R Schack
- Department of Biomedicine, University of Aarhus, Aarhus C, Denmark
| |
Collapse
|
6
|
A Dual Face of APE1 in the Maintenance of Genetic Stability in Monocytes: An Overview of the Current Status and Future Perspectives. Genes (Basel) 2020; 11:genes11060643. [PMID: 32545201 PMCID: PMC7349382 DOI: 10.3390/genes11060643] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/05/2020] [Accepted: 06/08/2020] [Indexed: 12/24/2022] Open
Abstract
Monocytes, which play a crucial role in the immune system, are characterized by an enormous sensitivity to oxidative stress. As they lack four key proteins responsible for DNA damage response (DDR) pathways, they are especially prone to reactive oxygen species (ROS) exposure leading to oxidative DNA lesions and, consequently, ROS-driven apoptosis. Although such a phenomenon is of important biological significance in the regulation of monocyte/macrophage/dendritic cells’ balance, it also a challenge for monocytic mechanisms that have to provide and maintain genetic stability of its own DNA. Interestingly, apurinic/apyrimidinic endonuclease 1 (APE1), which is one of the key proteins in two DDR mechanisms, base excision repair (BER) and non-homologous end joining (NHEJ) pathways, operates in monocytic cells, although both BER and NHEJ are impaired in these cells. Thus, on the one hand, APE1 endonucleolytic activity leads to enhanced levels of both single- and double-strand DNA breaks (SSDs and DSBs, respectively) in monocytic DNA that remain unrepaired because of the impaired BER and NHEJ. On the other hand, there is some experimental evidence suggesting that APE1 is a crucial player in monocytic genome maintenance and stability through different molecular mechanisms, including induction of cytoprotective and antioxidant genes. Here, the dual face of APE1 is discussed.
Collapse
|
7
|
Advances in DNA Repair-Emerging Players in the Arena of Eukaryotic DNA Repair. Int J Mol Sci 2020; 21:ijms21113934. [PMID: 32486270 PMCID: PMC7313471 DOI: 10.3390/ijms21113934] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 05/27/2020] [Accepted: 05/29/2020] [Indexed: 12/17/2022] Open
Abstract
Genomic DNA is constantly damaged by factors produced during natural metabolic processes as well as agents coming from the external environment. Considering such a wide array of damaging agents, eukaryotic cells have evolved a DNA damage response (DRR) that opposes the influence of deleterious factors. Despite the broad knowledge regarding DNA damage and repair, new areas of research are emerging. New players in the field of DDR are constantly being discovered. The aim of this study is to review current knowledge regarding the roles of sirtuins, heat shock proteins, long-noncoding RNAs and the circadian clock in DDR and distinguish new agents that may have a prominent role in DNA damage response and repair.
Collapse
|
8
|
Chien LC, Wu YH, Ho TN, Huang YY, Hsu T. Heat stress modulates nucleotide excision repair capacity in zebrafish (Danio rerio) early and mid-early embryos via distinct mechanisms. CHEMOSPHERE 2020; 238:124653. [PMID: 31473528 DOI: 10.1016/j.chemosphere.2019.124653] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 08/21/2019] [Accepted: 08/22/2019] [Indexed: 05/20/2023]
Abstract
Discharge of heated effluent at 8-12 °C above ambient into water areas is known to retard the growth of aquatic organisms due to heat stress. Nucleotide excision repair (NER) maintains genome integrity by removing helix-distorting adducts such as UV-induced DNA lesions. This study explored how NER in zebrafish (Danio rerio) embryos at different hours post fertilization (hpf) responded to + 8.5 °C heat shock for 30 min. Our transcription-based repair assay monitoring the ability of zebrafish extracts to upregulate a UV-suppressed gene expression detected a 2-fold increase of NER capacity in 10 hpf early embryos after heat stress. In contrast, heat stress caused a mild inhibition of NER capacity in 24 hpf mid-early embryos. Heat-treated and untreated 10 hpf zebrafish extracts displayed similar levels of UV-damaged-DNA binding activities, while an apparently weaker (6-4) photoproduct (6-4 PP) binding activity was present in heat-stressed 24 hpf zebrafish extracts. Heat stress enhanced UV-induced NER in 10 hpf embryos by increasing the efficiency of damage incision/excision based on both genomic DNA electrophoresis and terminal deoxytransferase (TdT)-mediated end labeling assay. UV-irradiated embryos preexposed to heat stress produced a significantly larger amount of NER-associated DNA fragments about 20-30 nucleotides in length than embryos only heat-treated or irradiated. Correlated with its inhibitory effect on 6-4 PP damage recognition, heat stress downregulated damage incision/excision activities in 24 hpf embryos. Hence, thermal stress may positively or negatively modulate NER capacity in zebrafish embryos at different stages by targeting at the step of DNA incision/excision or damage recognition.
Collapse
Affiliation(s)
- Liu-Chun Chien
- Department of Bioscience and Biotechnology and Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, 20224, Taiwan, ROC
| | - Yu-Hsuan Wu
- Department of Bioscience and Biotechnology and Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, 20224, Taiwan, ROC
| | - Tsung-Nan Ho
- Department of Bioscience and Biotechnology and Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, 20224, Taiwan, ROC
| | - Ya-Yun Huang
- Department of Bioscience and Biotechnology and Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, 20224, Taiwan, ROC
| | - Todd Hsu
- Department of Bioscience and Biotechnology and Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, 20224, Taiwan, ROC.
| |
Collapse
|
9
|
Gvozdenov Z, Kolhe J, Freeman BC. The Nuclear and DNA-Associated Molecular Chaperone Network. Cold Spring Harb Perspect Biol 2019; 11:cshperspect.a034009. [PMID: 30745291 PMCID: PMC6771373 DOI: 10.1101/cshperspect.a034009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Maintenance of a healthy and functional proteome in all cellular compartments is critical to cell and organismal homeostasis. Yet, our understanding of the proteostasis process within the nucleus is limited. Here, we discuss the identified roles of the major molecular chaperones Hsp90, Hsp70, and Hsp60 with client proteins working in diverse DNA-associated pathways. The unique challenges facing proteins in the nucleus are considered as well as the conserved features of the molecular chaperone system in facilitating DNA-linked processes. As nuclear protein inclusions are a common feature of protein-aggregation diseases (e.g., neurodegeneration), a better understanding of nuclear proteostasis is warranted.
Collapse
Affiliation(s)
- Zlata Gvozdenov
- Department of Cell and Developmental Biology, University of Illinois, Urbana-Champaign, Urbana, Illinois 61801.,Department Chemie, Technische Universität München, Garching 85748, Germany
| | - Janhavi Kolhe
- Department of Cell and Developmental Biology, University of Illinois, Urbana-Champaign, Urbana, Illinois 61801
| | - Brian C Freeman
- Department of Cell and Developmental Biology, University of Illinois, Urbana-Champaign, Urbana, Illinois 61801
| |
Collapse
|
10
|
Dubrez L, Causse S, Borges Bonan N, Dumétier B, Garrido C. Heat-shock proteins: chaperoning DNA repair. Oncogene 2019; 39:516-529. [DOI: 10.1038/s41388-019-1016-y] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 09/04/2019] [Accepted: 09/06/2019] [Indexed: 02/08/2023]
|
11
|
Cho W, Jin X, Pang J, Wang Y, Mivechi NF, Moskophidis D. The Molecular Chaperone Heat Shock Protein 70 Controls Liver Cancer Initiation and Progression by Regulating Adaptive DNA Damage and Mitogen-Activated Protein Kinase/Extracellular Signal-Regulated Kinase Signaling Pathways. Mol Cell Biol 2019; 39:e00391-18. [PMID: 30745413 PMCID: PMC6469921 DOI: 10.1128/mcb.00391-18] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 08/21/2018] [Accepted: 02/04/2019] [Indexed: 02/06/2023] Open
Abstract
Delineating the mechanisms that drive hepatic injury and hepatocellular carcinoma (HCC) progression is critical for development of novel treatments for recurrent and advanced HCC but also for the development of diagnostic and preventive strategies. Heat shock protein 70 (HSP70) acts in concert with several cochaperones and nucleotide exchange factors and plays an essential role in protein quality control that increases survival by protecting cells against environmental stressors. Specifically, the HSP70-mediated response has been implicated in the pathogenesis of cancer, but the specific mechanisms by which HSP70 may support malignant cell transformation remains to be fully elucidated. Here, we show that genetic ablation of HSP70 markedly impairs HCC initiation and progression by distinct but overlapping pathways. This includes the potentiation of the carcinogen-induced DNA damage response, at the tumor initiation stage, to increase the p53-dependent surveillance response leading to the cell cycle exit or death of genomically damaged differentiated pericentral hepatocytes, and this may also prevent their conversion into more proliferating HCC progenitor cells. Subsequently, activation of a mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) negative feedback pathway diminishes oncogenic signals, thereby attenuating premalignant cell transformation and tumor progression. Modulation of HSP70 function may be a strategy for interfering with oncogenic signals driving liver cell transformation and tumor progression, thus providing an opportunity for human cancer control.
Collapse
Affiliation(s)
- Wonkyoung Cho
- Molecular Chaperone Biology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
- Georgia Cancer Center, Augusta University, Augusta, Georgia, USA
| | - Xiongjie Jin
- Molecular Chaperone Biology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
- Georgia Cancer Center, Augusta University, Augusta, Georgia, USA
| | - Junfeng Pang
- Molecular Chaperone Biology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
- Georgia Cancer Center, Augusta University, Augusta, Georgia, USA
| | - Yan Wang
- Molecular Chaperone Biology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
- Georgia Cancer Center, Augusta University, Augusta, Georgia, USA
| | - Nahid F Mivechi
- Molecular Chaperone Biology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
- Georgia Cancer Center, Augusta University, Augusta, Georgia, USA
- Department of Radiology and Imaging, Augusta University, Augusta, Georgia, USA
| | - Demetrius Moskophidis
- Molecular Chaperone Biology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
- Georgia Cancer Center, Augusta University, Augusta, Georgia, USA
- Department of Medicine, Augusta University, Augusta, Georgia, USA
| |
Collapse
|
12
|
Ho TN, Paul GV, Chen YH, Hsu T. Heat stress upregulates G-T mismatch binding activities in zebrafish (Danio rerio) embryos preexposed and nonexposed to a sublethal level of cadmium (Cd). CHEMOSPHERE 2019; 218:179-188. [PMID: 30471498 DOI: 10.1016/j.chemosphere.2018.11.038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 11/02/2018] [Accepted: 11/04/2018] [Indexed: 05/20/2023]
Abstract
G-T mispair frequently appears in eukaryotic DNA due to the spontaneous deamination of 5-methylcytosine paired with guanine and is therefore an important target for DNA mismatch repair (MMR). Our earlier studies showed the downregulation of G-T binding activities in cadmium (Cd)-exposed (Danio rerio) embryos. Since elevation of water temperature was reported to increase Cd toxicity in zebrafish, this study explored whether heat stress affected zebrafish mismatch binding capacity in the absence or presence of Cd. Heat stress (37 °C for 30 min) induced heat shock protein 70 mRNA expression in embryos at 10 and 24 h post fertilization (hpf). Heat stress weakly upregulated normal G-T sensing machinery and inhibited G-T recognition activity in embryos preexposed to 3 μM Cd for 9 h. Either heat shock or a 23-h Cd treatment alone caused a 1.7-fold stimulation of G-T binding capacity in 24 hpf embryos and heat stress of Cd-preexposed embryos further enhanced G-T binding activity to 2.5 fold of control. Normal and Cd-downregulated loop binding activities in 10 and 24 hpf embryos were almost unreactive to heat shock. Heat stress-upregulated G-T sensing in nonexposed, but not in Cd-preexposed, 24 hpf embryos correlated with stronger gene activities encoding MMR-linked mismatch detecting factors MutS homolog 2 and 6 plus a higher DNA binding activity of the transcription factor Sp1 that regulates msh2/msh6 expression. Our results suggested the importance of heat shock response in facilitating the correction of G-T mismatch in developing zebrafish even under Cd exposure.
Collapse
Affiliation(s)
- Tsung-Nan Ho
- Department of Bioscience and Biotechnology and Center of Excellence for the Oceans, National Taiwan Ocean University, No.2, Pei-Ning Rd. Keelung, 20224, Taiwan, Republic of China
| | - Ganjai Vikram Paul
- Department of Bioscience and Biotechnology and Center of Excellence for the Oceans, National Taiwan Ocean University, No.2, Pei-Ning Rd. Keelung, 20224, Taiwan, Republic of China
| | - Yen-Hung Chen
- Department of Bioscience and Biotechnology and Center of Excellence for the Oceans, National Taiwan Ocean University, No.2, Pei-Ning Rd. Keelung, 20224, Taiwan, Republic of China
| | - Todd Hsu
- Department of Bioscience and Biotechnology and Center of Excellence for the Oceans, National Taiwan Ocean University, No.2, Pei-Ning Rd. Keelung, 20224, Taiwan, Republic of China.
| |
Collapse
|
13
|
Sottile ML, Nadin SB. Heat shock proteins and DNA repair mechanisms: an updated overview. Cell Stress Chaperones 2018; 23:303-315. [PMID: 28952019 PMCID: PMC5904076 DOI: 10.1007/s12192-017-0843-4] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 09/13/2017] [Indexed: 02/02/2023] Open
Abstract
Heat shock proteins (HSPs), also known as molecular chaperones, participate in important cellular processes, such as protein aggregation, disaggregation, folding, and unfolding. HSPs have cytoprotective functions that are commonly explained by their antiapoptotic role. Their involvement in anticancer drug resistance has been the focus of intense research efforts, and the relationship between HSP induction and DNA repair mechanisms has been in the spotlight during the past decades. Because DNA is permanently subject to damage, many DNA repair pathways are involved in the recognition and removal of a diverse array of DNA lesions. Hence, DNA repair mechanisms are key to maintain genome stability. In addition, the interactome network of HSPs with DNA repair proteins has become an exciting research field and so their use as emerging targets for cancer therapy. This article provides a historical overview of the participation of HSPs in DNA repair mechanisms as part of their molecular chaperone capabilities.
Collapse
Affiliation(s)
- Mayra L Sottile
- Tumor Biology Laboratory, Institute of Medicine and Experimental Biology of Cuyo (IMBECU), National Scientific and Technical Research Council (CONICET), Av. Adrián Ruiz Leal s/n Parque Gral. San Martín, 5500, Mendoza, Argentina
| | - Silvina B Nadin
- Tumor Biology Laboratory, Institute of Medicine and Experimental Biology of Cuyo (IMBECU), National Scientific and Technical Research Council (CONICET), Av. Adrián Ruiz Leal s/n Parque Gral. San Martín, 5500, Mendoza, Argentina.
| |
Collapse
|
14
|
Cao X, Zhou Y, Sun H, Xu M, Bi X, Zhao Z, Shen B, Wan F, Hong Z, Lan L, Luo L, Guo Z, Yin Z. EGFR-TKI-induced HSP70 degradation and BER suppression facilitate the occurrence of the EGFR T790 M resistant mutation in lung cancer cells. Cancer Lett 2018. [PMID: 29524558 DOI: 10.1016/j.canlet.2018.03.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Non-small cell lung cancer (NSCLC) patients harboring EGFR-activating mutations initially respond to EGFR tyrosine kinase inhibitors (EGFR-TKIs) and have shown favorable outcomes. However, acquired drug resistance to EGFR-TKIs develops in almost all patients mainly due to the EGFR T790 M mutation. Here, we show that treatment with low-dose EGFR-TKI results in the emergence of the EGFR T790 M mutation and in the reduction of HSP70 protein levels in HCC827 cells. Erlotinib treatment inhibits HSP70 phosphorylation at tyrosine 41 and increases HSP70 ubiquitination, resulting in HSP70 degradation. We show that EGFR-TKI treatment causes increased DNA damage and enhanced gene mutation rates, which are secondary to the EGFR-TKI-induced reduction of HSP70 protein. Importantly, HSP70 overexpression delays the occurrence of Erlotinib-induced EGFR T790 M mutation. We further demonstrate that HSP70 interacts with multiple enzymes in the base excision repair (BER) pathway and promotes not only the efficiency but also the fidelity of BER. Collectively, our findings show that EGFR-TKI treatment facilitates gene mutation and the emergence of EGFR T790 M secondary mutation by the attenuation of BER via induction of HSP70 protein degradation.
Collapse
Affiliation(s)
- Xiang Cao
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, Jiangsu, PR China
| | - Yi Zhou
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, Jiangsu, PR China
| | - Hongfang Sun
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, Jiangsu, PR China
| | - Miao Xu
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, Jiangsu, PR China
| | - Xiaowen Bi
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, Jiangsu, PR China
| | - Zhihui Zhao
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, Jiangsu, PR China
| | - Binghui Shen
- Department of Radiation Biology, City of Hope National Medical Center and Beckman Research Institute, Duarte, CA, 91010, USA
| | - Fengyi Wan
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Zhuan Hong
- Jiangsu Cancer Hospital, Nanjing, 210009, Jiangsu, PR China
| | - Lei Lan
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, Jiangsu, PR China.
| | - Lan Luo
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, Jiangsu, PR China.
| | - Zhigang Guo
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, Jiangsu, PR China.
| | - Zhimin Yin
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, Jiangsu, PR China.
| |
Collapse
|
15
|
Antognelli C, Trapani E, Delle Monache S, Perrelli A, Daga M, Pizzimenti S, Barrera G, Cassoni P, Angelucci A, Trabalzini L, Talesa VN, Goitre L, Retta SF. KRIT1 loss-of-function induces a chronic Nrf2-mediated adaptive homeostasis that sensitizes cells to oxidative stress: Implication for Cerebral Cavernous Malformation disease. Free Radic Biol Med 2018; 115:202-218. [PMID: 29170092 PMCID: PMC5806631 DOI: 10.1016/j.freeradbiomed.2017.11.014] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Revised: 10/18/2017] [Accepted: 11/15/2017] [Indexed: 02/06/2023]
Abstract
KRIT1 (CCM1) is a disease gene responsible for Cerebral Cavernous Malformations (CCM), a major cerebrovascular disease of proven genetic origin affecting 0.3-0.5% of the population. Previously, we demonstrated that KRIT1 loss-of-function is associated with altered redox homeostasis and abnormal activation of the redox-sensitive transcription factor c-Jun, which collectively result in pro-oxidative, pro-inflammatory and pro-angiogenic effects, suggesting a novel pathogenic mechanism for CCM disease and raising the possibility that KRIT1 loss-of-function exerts pleiotropic effects on multiple redox-sensitive mechanisms. To address this possibility, we investigated major redox-sensitive pathways and enzymatic systems that play critical roles in fundamental cytoprotective mechanisms of adaptive responses to oxidative stress, including the master Nrf2 antioxidant defense pathway and its downstream target Glyoxalase 1 (Glo1), a pivotal stress-responsive defense enzyme involved in cellular protection against glycative and oxidative stress through the metabolism of methylglyoxal (MG). This is a potent post-translational protein modifier that may either contribute to increased oxidative molecular damage and cellular susceptibility to apoptosis, or enhance the activity of major apoptosis-protective proteins, including heat shock proteins (Hsps), promoting cell survival. Experimental outcomes showed that KRIT1 loss-of-function induces a redox-sensitive sustained upregulation of Nrf2 and Glo1, and a drop in intracellular levels of MG-modified Hsp70 and Hsp27 proteins, leading to a chronic adaptive redox homeostasis that counteracts intrinsic oxidative stress but increases susceptibility to oxidative DNA damage and apoptosis, sensitizing cells to further oxidative challenges. While supporting and extending the pleiotropic functions of KRIT1, these findings shed new light on the mechanistic relationship between KRIT1 loss-of-function and enhanced cell predisposition to oxidative damage, thus providing valuable new insights into CCM pathogenesis and novel options for the development of preventive and therapeutic strategies.
Collapse
Affiliation(s)
| | - Eliana Trapani
- Department of Clinical and Biological Sciences, University of Torino, Regione Gonzole 10, Orbassano, 10043 Torino, Italy
| | - Simona Delle Monache
- Department of Biotechnological and Applied Clinical Science, University of L'Aquila, Italy
| | - Andrea Perrelli
- Department of Clinical and Biological Sciences, University of Torino, Regione Gonzole 10, Orbassano, 10043 Torino, Italy
| | - Martina Daga
- Department of Clinical and Biological Sciences, University of Torino, Regione Gonzole 10, Orbassano, 10043 Torino, Italy
| | - Stefania Pizzimenti
- Department of Clinical and Biological Sciences, University of Torino, Regione Gonzole 10, Orbassano, 10043 Torino, Italy
| | - Giuseppina Barrera
- Department of Clinical and Biological Sciences, University of Torino, Regione Gonzole 10, Orbassano, 10043 Torino, Italy
| | - Paola Cassoni
- Department of Medical Sciences, University of Torino, Italy
| | - Adriano Angelucci
- Department of Biotechnological and Applied Clinical Science, University of L'Aquila, Italy
| | - Lorenza Trabalzini
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Italy
| | | | - Luca Goitre
- Department of Clinical and Biological Sciences, University of Torino, Regione Gonzole 10, Orbassano, 10043 Torino, Italy
| | - Saverio Francesco Retta
- Department of Clinical and Biological Sciences, University of Torino, Regione Gonzole 10, Orbassano, 10043 Torino, Italy.
| |
Collapse
|
16
|
Limpose KL, Corbett AH, Doetsch PW. BERing the burden of damage: Pathway crosstalk and posttranslational modification of base excision repair proteins regulate DNA damage management. DNA Repair (Amst) 2017. [PMID: 28629773 DOI: 10.1016/j.dnarep.2017.06.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
DNA base damage and non-coding apurinic/apyrimidinic (AP) sites are ubiquitous types of damage that must be efficiently repaired to prevent mutations. These damages can occur in both the nuclear and mitochondrial genomes. Base excision repair (BER) is the frontline pathway for identifying and excising damaged DNA bases in both of these cellular compartments. Recent advances demonstrate that BER does not operate as an isolated pathway but rather dynamically interacts with components of other DNA repair pathways to modulate and coordinate BER functions. We define the coordination and interaction between DNA repair pathways as pathway crosstalk. Numerous BER proteins are modified and regulated by post-translational modifications (PTMs), and PTMs could influence pathway crosstalk. Here, we present recent advances on BER/DNA repair pathway crosstalk describing specific examples and also highlight regulation of BER components through PTMs. We have organized and reported functional interactions and documented PTMs for BER proteins into a consolidated summary table. We further propose the concept of DNA repair hubs that coordinate DNA repair pathway crosstalk to identify central protein targets that could play a role in designing future drug targets.
Collapse
Affiliation(s)
- Kristin L Limpose
- Graduate Program in Cancer Biology, Emory University, Atlanta, GA, 30322, United States
| | - Anita H Corbett
- Department of Biology, Emory University, Atlanta, GA, 30322, United States; Winship Cancer Institute, Emory University, Atlanta, GA 30322, United States.
| | - Paul W Doetsch
- Graduate Program in Cancer Biology, Emory University, Atlanta, GA, 30322, United States; Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA, 30322, United States; Winship Cancer Institute, Emory University, Atlanta, GA 30322, United States; Department of Biochemistry, Emory University, Atlanta, GA, 30322, United States.
| |
Collapse
|
17
|
Bauer NC, Corbett AH, Doetsch PW. The current state of eukaryotic DNA base damage and repair. Nucleic Acids Res 2015; 43:10083-101. [PMID: 26519467 PMCID: PMC4666366 DOI: 10.1093/nar/gkv1136] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 10/16/2015] [Indexed: 12/15/2022] Open
Abstract
DNA damage is a natural hazard of life. The most common DNA lesions are base, sugar, and single-strand break damage resulting from oxidation, alkylation, deamination, and spontaneous hydrolysis. If left unrepaired, such lesions can become fixed in the genome as permanent mutations. Thus, evolution has led to the creation of several highly conserved, partially redundant pathways to repair or mitigate the effects of DNA base damage. The biochemical mechanisms of these pathways have been well characterized and the impact of this work was recently highlighted by the selection of Tomas Lindahl, Aziz Sancar and Paul Modrich as the recipients of the 2015 Nobel Prize in Chemistry for their seminal work in defining DNA repair pathways. However, how these repair pathways are regulated and interconnected is still being elucidated. This review focuses on the classical base excision repair and strand incision pathways in eukaryotes, considering both Saccharomyces cerevisiae and humans, and extends to some important questions and challenges facing the field of DNA base damage repair.
Collapse
Affiliation(s)
- Nicholas C Bauer
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA Graduate Program in Biochemistry, Cell, and Developmental Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Anita H Corbett
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Paul W Doetsch
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
18
|
Sottile ML, Losinno AD, Fanelli MA, Cuello-Carrión FD, Montt-Guevara MM, Vargas-Roig LM, Nadin SB. Hyperthermia effects on Hsp27 and Hsp72 associations with mismatch repair (MMR) proteins and cisplatin toxicity in MMR-deficient/proficient colon cancer cell lines. Int J Hyperthermia 2015; 31:464-75. [PMID: 26043026 DOI: 10.3109/02656736.2015.1026848] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
PURPOSE Hyperthermia is used in combination with conventional anticancer agents to potentiate their cytotoxicity. One of its key events is the synthesis of heat shock proteins (HSPs), which are able to associate with components from DNA repair mechanisms. However, little is known about their relationship with the mismatch repair system (MMR). Our aim was to study the effects of hyperthermia on cisplatin (cPt) sensitivity and to determine whether MLH1 and MSH2 associate with Hsp27 and Hsp72 in MMR-deficient(-)/-proficient(+) cells. MATERIALS AND METHODS HCT116+ch2 (MMR-) and HCT116+ch3 (MMR+) cell lines were exposed to cPt with or without previous hyperthermia (42 °C, 1 h). Clonogenic survival assays, MTT, confocal immunofluorescence, immunoprecipitation, immunoblotting and flow cytometry were performed. RESULTS Hyperthermia increased the cPt resistance in MMR- cells 1.42-fold. Immunofluorescence revealed that after cPt, Hsp27 and Hsp72 translocated to the nucleus and colocalisation coefficients between these proteins with MLH1 and MSH2 increased in MMR+ cells. Immunoprecipitation confirmed the interactions between HSPs and MMR proteins in control and treated cells. Hyperthermia pretreatment induced cell cycle arrest, increased p73 expression and potentiated cPt sensitivity in MMR+ cells. CONCLUSIONS This is the first report showing in a MMR-/+ cellular model that MLH1 and MSH2 are client proteins of Hsp27 and Hsp72. Our study suggests that p73 might participate in the cellular response to hyperthermia and cPt in a MMR-dependent manner. Further functional studies will confirm whether HSPs cooperate with the MMR system in cPt-induced DNA damage response or whether these protein interactions are only the result of their chaperone functions.
Collapse
Affiliation(s)
- Mayra L Sottile
- Tumour Biology Laboratory, Institute of Medicine and Experimental Biology of Cuyo, National Scientific and Technical Research Council , Mendoza
| | | | | | | | | | | | | |
Collapse
|
19
|
Thakur S, Dhiman M, Tell G, Mantha AK. A review on protein-protein interaction network of APE1/Ref-1 and its associated biological functions. Cell Biochem Funct 2015; 33:101-12. [DOI: 10.1002/cbf.3100] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Revised: 02/10/2015] [Accepted: 02/24/2015] [Indexed: 12/17/2022]
Affiliation(s)
- S. Thakur
- Center for Biosciences, School of Basic and Applied Sciences; Central University of Punjab; Bathinda Punjab India
| | - M. Dhiman
- Center for Genetic Diseases and Molecular Medicine, School of Emerging Life Science Technologies; Central University of Punjab; Bathinda Punjab India
| | - G. Tell
- Department of Medical and Biological Sciences; University of Udine; Udine Italy
| | - A. K. Mantha
- Center for Biosciences, School of Basic and Applied Sciences; Central University of Punjab; Bathinda Punjab India
- Department of Biochemistry and Molecular Biology; University of Texas Medical Branch; Galveston TX USA
| |
Collapse
|
20
|
Human AP endonuclease 1: a potential marker for the prediction of environmental carcinogenesis risk. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014; 2014:730301. [PMID: 25243052 PMCID: PMC4158471 DOI: 10.1155/2014/730301] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 06/30/2014] [Indexed: 12/15/2022]
Abstract
Human apurinic/apyrimidinic endonuclease 1 (APE1) functions mainly in DNA repair as an enzyme removing AP sites and in redox signaling as a coactivator of various transcription factors. Based on these multifunctions of APE1 within cells, numerous studies have reported that the alteration of APE1 could be a crucial factor in development of human diseases such as cancer and neurodegeneration. In fact, the study on the combination of an individual's genetic make-up with environmental factors (gene-environment interaction) is of great importance to understand the development of diseases, especially lethal diseases including cancer. Recent reports have suggested that the human carcinogenic risk following exposure to environmental toxicants is affected by APE1 alterations in terms of gene-environment interactions. In this review, we initially outline the critical APE1 functions in the various intracellular mechanisms including DNA repair and redox regulation and its roles in human diseases. Several findings demonstrate that the change in expression and activity as well as genetic variability of APE1 caused by environmental chemical (e.g., heavy metals and cigarette smoke) and physical carcinogens (ultraviolet and ionizing radiation) is likely associated with various cancers. These enable us to ultimately suggest APE1 as a vital marker for the prediction of environmental carcinogenesis risk.
Collapse
|
21
|
Thakur S, Sarkar B, Cholia RP, Gautam N, Dhiman M, Mantha AK. APE1/Ref-1 as an emerging therapeutic target for various human diseases: phytochemical modulation of its functions. Exp Mol Med 2014; 46:e106. [PMID: 25033834 PMCID: PMC4119211 DOI: 10.1038/emm.2014.42] [Citation(s) in RCA: 125] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 01/27/2014] [Accepted: 03/05/2014] [Indexed: 12/12/2022] Open
Abstract
Apurinic/apyrimidinic endonuclease 1 (APE1) is a multifunctional enzyme involved in the base excision repair (BER) pathway, which repairs oxidative base damage caused by endogenous and exogenous agents. APE1 acts as a reductive activator of many transcription factors (TFs) and has also been named redox effector factor 1, Ref-1. For example, APE1 activates activator protein-1, nuclear factor kappa B, hypoxia-inducible factor 1α, paired box gene 8, signal transducer activator of transcription 3 and p53, which are involved in apoptosis, inflammation, angiogenesis and survival pathways. APE1/Ref-1 maintains cellular homeostasis (redox) via the activation of TFs that regulate various physiological processes and that crosstalk with redox balancing agents (for example, thioredoxin, catalase and superoxide dismutase) by controlling levels of reactive oxygen and nitrogen species. The efficiency of APE1/Ref-1's function(s) depends on pairwise interaction with participant protein(s), the functions regulated by APE1/Ref-1 include the BER pathway, TFs, energy metabolism, cytoskeletal elements and stress-dependent responses. Thus, APE1/Ref-1 acts as a ‘hub-protein' that controls pathways that are important for cell survival. In this review, we will discuss APE1/Ref-1's versatile nature in various human etiologies, including neurodegeneration, cancer, cardiovascular and other diseases that have been linked with alterations in the expression, subcellular localization and activities of APE/Ref-1. APE1/Ref-1 can be targeted for therapeutic intervention using natural plant products that modulate the expression and functions of APE1/Ref-1. In addition, studies focusing on translational applications based on APE1/Ref-1-mediated therapeutic interventions are discussed.
Collapse
Affiliation(s)
- Shweta Thakur
- Center for Biosciences, School of Basic and Applied Sciences, Central University of Punjab, Punjab, India
| | - Bibekananda Sarkar
- Center for Biosciences, School of Basic and Applied Sciences, Central University of Punjab, Punjab, India
| | - Ravi P Cholia
- Center for Biosciences, School of Basic and Applied Sciences, Central University of Punjab, Punjab, India
| | - Nandini Gautam
- Center for Environmental Science and Technology, School of Environment and Earth Sciences, Central University of Punjab, Punjab, India
| | - Monisha Dhiman
- Center for Genetic Diseases and Molecular Medicine, School of Emerging Life Science Technologies, Central University of Punjab, Punjab, India
| | - Anil K Mantha
- 1] Center for Biosciences, School of Basic and Applied Sciences, Central University of Punjab, Punjab, India [2] Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
22
|
Duan Y, Huang S, Yang J, Niu P, Gong Z, Liu X, Xin L, Currie RW, Wu T. HspA1A facilitates DNA repair in human bronchial epithelial cells exposed to Benzo[a]pyrene and interacts with casein kinase 2. Cell Stress Chaperones 2014; 19:271-9. [PMID: 23979991 PMCID: PMC3933616 DOI: 10.1007/s12192-013-0454-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 08/08/2013] [Accepted: 08/09/2013] [Indexed: 01/30/2023] Open
Abstract
Benzo[a]pyrene (BaP) is a ubiquitously distributed environmental pollutant that induces deoxyribonucleic acid (DNA) damage. The inducible heat shock protein (HspA1A) can function as a molecular chaperone; however, its role in DNA repair remains largely unknown. In the present study, human bronchial epithelial cells (16HBE) stably transfected with plasmids carrying HspA1A gene or shRNAs against HspA1A were treated with BaP. DNA damage levels of the cells were evaluated by comet assay. Results suggest that HspA1A could protect cells against DNA damage and facilitate the decrease of DNA damage levels during the first 2 h of DNA repair. DNA repair capacity (DRC) of Benzo(a)pyrene diol epoxide (BPDE)-DNA adducts was evaluated by host cell reactivation assay in the stable 16HBE cells transfected with luciferase reporter vector PCMVluc pretreated with BPDE. Compared with control cells, cells overexpressing HspA1A showed higher DRC (p < 0.01 at 10 μM BPDE and p < 0.05 at 20 μM BPDE, respectively), while knockdown of HspA1A inhibited DNA repair (p < 0.05 at 10 μM BPDE). Moreover, casein kinase 2 (CK2) was shown to interact with HspA1A by mass spectrometry and co-immunoprecipitation assays. The two proteins were co-localized in the cell nucleus and perinuclear region during DNA repair, and were identified by confocal laser scanning microscope. In addition, cells overexpressing HspA1A showed an increased CK2 activity after BaP treatment compared with control cells (p < 0.01). Our results suggest that HspA1A facilitates DNA repair after BaP treatment. HspA1A also interacts with CK2 and enhances the kinase activities of CK2 during DNA repair.
Collapse
Affiliation(s)
- Yanying Duan
- />Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 Hubei China
- />Department of Occupational and Environmental Health, School of Public Health, Xiangya Medical College, Central South University, Changsha, 410078 Hunan China
| | - Suli Huang
- />Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 Hubei China
| | - Jin Yang
- />Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 Hubei China
| | - Piye Niu
- />Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 Hubei China
| | - Zhiyong Gong
- />Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 Hubei China
| | - Xiaoyong Liu
- />Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 Hubei China
| | - Lili Xin
- />Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 Hubei China
| | - R. William Currie
- />Department of Anatomy and Neurobiology, Dalhousie University, 5850 College Street, Halifax, Nova Scotia B3H 4R2 Canada
| | - Tangchun Wu
- />Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 Hubei China
| |
Collapse
|
23
|
Ranjan A, Kaur N, Tiwari V, Singh Y, Chaturvedi MM, Tandon V. 3,4-Dimethoxyphenyl Bis-benzimidazole Derivative, Mitigates Radiation-Induced DNA Damage. Radiat Res 2013; 179:647-62. [DOI: 10.1667/rr3246.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Atul Ranjan
- Department of Chemistry, University of Delhi, Delhi, India
| | - Navrinder Kaur
- Department of Chemistry, University of Delhi, Delhi, India
| | - Vinod Tiwari
- Department of Chemistry, University of Delhi, Delhi, India
| | - Yogendra Singh
- Institute of Genomics and Integrative Biology, Delhi, India
| | | | - Vibha Tandon
- Department of Chemistry, University of Delhi, Delhi, India
| |
Collapse
|
24
|
Park SC, Lim JY, Jeen YT, Keum B, Seo YS, Kim YS, Lee SJ, Lee HS, Chun HJ, Um SH, Kim CD, Ryu HS, Sul D, Oh E. Ethanol-induced DNA damage and repair-related molecules in human intestinal epithelial Caco-2 cells. Mol Med Rep 2012; 5:1027-32. [PMID: 22246134 PMCID: PMC3493059 DOI: 10.3892/mmr.2012.754] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2011] [Accepted: 01/03/2012] [Indexed: 01/25/2023] Open
Abstract
The acute administration of ethanol to intestinal epithelial cells causes increased intestinal permeability and the translocation of endotoxins. The changes caused by ethanol in intestinal cells may be related to oxidative stress and DNA damage. However, DNA damage and repair-related molecules which act against stresses, including ethanol, have not been fully investigated in intestinal cells. Heat shock proteins (Hsps) are involved in the recovery and protection from cell damage and may be associated with DNA repair. Therefore, the aim of our study was to investigate cytotoxicity, DNA damage and the expression of DNA repair-related molecules, antioxidant proteins and Hsps in intestinal cells exposed to ethanol. Human intestinal Caco-2 cells were incubated with 1-8% ethanol for 1 h. Cell viability and DNA damage were determined using the MTT and comet assays, respectively. We measured DNA repair-related molecules, including DNA polymerase β, apurinic/apyrimidinic endonuclease/redox factor-1 (APE/Ref-1), growth arrest and DNA damage 45α (GADD45α) and proliferating cell nuclear antigen (PCNA), in Caco-2 cells using western blot analysis. We also measured glutathione peroxidase-1 (GPx-1), peroxiredoxin-1 (PRX-1), superoxide dismutase-2 (SOD-2), Hsp10, Hsp27, Hsp60, heat shock cognate (Hsc)70, Hsp70 and Hsp90. The viability of the Caco-2 cells exposed to ethanol decreased at concentrations ≥ 7% (P<0.05). The Olive tail moment, indicating DNA damage, increased dose dependently in ≥ 3% ethanol (P<0.05). Among the DNA repair proteins, the expression of PCNA and APE/Ref-1 increased significantly at 1% ethanol. Antioxidant enzymes, including GPx-1, PRX-1 and SOD-2, had an increased expression at 1% ethanol. Hsp10, Hsp27 and Hsp70 expression also increased significantly at 1% ethanol. In conclusion, the expression of DNA repair molecules, antioxidants and Hsps increased in intestinal Caco-2 cells exposed to low concentrations of ethanol. In particular, PCNA, APE/Ref-1, Hsp10, Hsp27 and Hsp70 were sensitive to low ethanol concentrations, indicating that they may be useful in evaluating the DNA repair and cytoprotective effects of the drug against stress in intestinal cells.
Collapse
Affiliation(s)
- Sung Chul Park
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Kangwon National University School of Medicine, Chuncheon, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Schötz U, Heuer S, Caldwell RB, Zitzelsberger H. Genetic and biochemical analysis of base excision repair complexes participating in radiation-induced ROS damage repair. RADIATION PROTECTION DOSIMETRY 2011; 143:284-288. [PMID: 21109544 DOI: 10.1093/rpd/ncq400] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
This work is part of the joint research project 'radiation-induced DNA damage' of the KVSF, a BMBF Initiative (maintenance of radiation biology expertise in Germany). The focus of the research is the mechanism of DNA repair, specifically damage repair aspects arising from radiation-induced reactive oxygen species production. The authors will systematically look at potential accessory proteins associated with primarily base excision repair using molecular and biochemical methods. The authors hope to gain knowledge on the initial response mechanisms to varying sources and doses of radiation. By using a highly sensitive marker system, it is intended to achieve a greater resolution of responses induced at lower doses. The work is of relevance for different human diseases caused by defects in DNA repair, e.g. spontaneous and radiation-related cancer. Beyond this, the risk of low radiation doses, for example, in the workplace is of relevance for radiation protection policy and decision-making thereof.
Collapse
Affiliation(s)
- Ulrike Schötz
- Department of Radiation Cytogenetics, German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, 85764 Neuherberg, Germany.
| | | | | | | |
Collapse
|
26
|
Bases R. Heat shock protein 70 (Hsp70)-stimulated deoxycytidine deaminases from a human lymphoma cell but not the activation-induced cytidine deaminase (AID) from Ramos 6.4 human Burkitt's lymphoma cells. Cell Stress Chaperones 2011; 16:91-6. [PMID: 20680536 PMCID: PMC3024086 DOI: 10.1007/s12192-010-0213-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Revised: 06/27/2010] [Accepted: 07/15/2010] [Indexed: 11/27/2022] Open
Abstract
Deoxycytidine deaminase enzyme activity was reduced in lysates of human leukemic THP1 cells 24 h after transfection with siRNA designed to inhibit cell synthesis of heat shock protein 70 (Hsp70)1a and Hsp701b. The cytidine deaminase enzyme activity from the cell lysates was purified from an affinity column which contained bound single-stranded oligodeoxycytidylic acid. Deficient enzyme activity in certain elution fractions from the siRNA-transfected cells was restored by including recombinant HSP 70 in the assays. Enzyme activity in some other fractions was increased after siRNA transfection. Activation-induced cytidine deaminase (AID) is a central factor in the immune response. A more specific assay for AID was used to study the influence of Hsp70 on AID activity. Unlike Hsp70's ability to stimulate certain enzymes of DNA base excision repair and other cytidine deaminases, it had little effect on AID activity in vitro, or was weakly inhibitory.
Collapse
Affiliation(s)
- Robert Bases
- Radiology and Radiation Oncology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY 10467, USA.
| |
Collapse
|
27
|
Matsuda M, Hoshino T, Yamashita Y, Tanaka KI, Maji D, Sato K, Adachi H, Sobue G, Ihn H, Funasaka Y, Mizushima T. Prevention of UVB radiation-induced epidermal damage by expression of heat shock protein 70. J Biol Chem 2009; 285:5848-58. [PMID: 20018843 DOI: 10.1074/jbc.m109.063453] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Irradiation with UV light, especially UVB, causes epidermal damage via the induction of apoptosis, inflammatory responses, and DNA damage. Various stressors, including UV light, induce heat shock proteins (HSPs) and the induction, particularly that of HSP70, provides cellular resistance to such stressors. The anti-inflammatory activity of HSP70, such as its inhibition of nuclear factor kappa B (NF-kappaB), was recently revealed. These in vitro results suggest that HSP70 protects against UVB-induced epidermal damage. Here we tested this idea by using transgenic mice expressing HSP70 and cultured keratinocytes. Irradiation of wild-type mice with UVB caused epidermal damage such as induction of apoptosis, which was suppressed in transgenic mice expressing HSP70. UVB-induced apoptosis in cultured keratinocytes was suppressed by overexpression of HSP70. Irradiation of wild-type mice with UVB decreased the cutaneous level of IkappaB-alpha (an inhibitor of NF-kappaB) and increased the infiltration of leukocytes and levels of pro-inflammatory cytokines and chemokines in the epidermis. These inflammatory responses were suppressed in transgenic mice expressing HSP70. In vitro, the overexpression of HSP70 suppressed the expression of pro-inflammatory cytokines and chemokines and increased the level of IkappaB-alpha in keratinocytes irradiated with UVB. UVB induced an increase in cutaneous levels of cyclobutane pyrimidine dimers and 8-hydroxy-2'-deoxyguanosine, both of which were suppressed in transgenic mice expressing HSP70. This study provides genetic evidence that HSP70 protects the epidermis from UVB-induced radiation damage. The findings here also suggest that the protective action of HSP70 is mediated by anti-apoptotic, anti-inflammatory, and anti-DNA damage effects.
Collapse
Affiliation(s)
- Minoru Matsuda
- Graduate School of Medical and Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Yang J, Liu X, Niu P, Zou Y, Duan Y. Correlations and co-localizations of Hsp70 with XPA, XPG in human bronchial epithelia cells exposed to benzo[a]pyrene. Toxicology 2009; 265:10-4. [PMID: 19748547 DOI: 10.1016/j.tox.2009.09.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2009] [Revised: 09/02/2009] [Accepted: 09/04/2009] [Indexed: 02/08/2023]
Abstract
Benzo[a]pyrene (BaP) is a ubiquitously distributed environmental pollutant known to cause DNA damage, which may be repaired through nucleotide excision repair (NER). The significantly negative correlation between Hsp70 levels and the level of DNA damage in workers exposed to coke oven emission had been found. However, little is known about how Hsp70 modulate the DNA repair process. In a series of experiments using the human bronchial epithelia cells (16HBE) exposed to different concentrations of BaP for 24h, we measured expression of NER subunit xeroderma pigmentosum (XP) group A, C, F, G (XPA, XPC, XPF, XPG), excision repair cross-complementing 1 (ERCC1) and Hsp70, and analyzed their possible correlations. Co-localizations of Hsp70 with NER subunit were detected by confocal microscope. We found that in vitro exposure to BaP reduced cell viability in a dose-dependent manner ranging from 2 to 64 microM. Our results showed that levels of XPA, XPG and Hsp70 significantly increased at cells exposed to 1 or 2muM BaP. In addition, curve estimation showed there was a significant correlation between relative ratios of Hsp70 and XPA, XPG in cells exposed to different concentrations of BaP. Moreover, confocal microscopy demonstrated increased co-localization of Hsp70 with XPA, XPG in nuclei of cells exposed to BaP. These results suggested that Hsp70 might play a role in nucleotide excision repair. However, the mechanisms underlying this observation need further investigation.
Collapse
Affiliation(s)
- Jin Yang
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Xinjiannan Road 86, 030001 Taiyuan, China
| | | | | | | | | |
Collapse
|
29
|
Snyers L, Schöfer C. Lamina-associated polypeptide 2α forms complexes with heat shock proteins Hsp70 and Hsc70 in vivo. Biochem Biophys Res Commun 2008; 368:767-71. [DOI: 10.1016/j.bbrc.2008.01.139] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2008] [Accepted: 01/30/2008] [Indexed: 01/09/2023]
|
30
|
Ramos AA, Lima CF, Pereira ML, Fernandes-Ferreira M, Pereira-Wilson C. Antigenotoxic effects of quercetin, rutin and ursolic acid on HepG2 cells: evaluation by the comet assay. Toxicol Lett 2008; 177:66-73. [PMID: 18276086 DOI: 10.1016/j.toxlet.2008.01.001] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2007] [Revised: 12/21/2007] [Accepted: 01/02/2008] [Indexed: 10/22/2022]
Abstract
In the present study, the chemoprotective effects of quercetin, rutin and ursolic acid on tert-butyl hydroperoxide (t-BHP)-induced DNA damage in a human hepatoma cell line (HepG2) were investigated by the comet assay. To determine whether protection was due to direct chemical interactions alone or to cellular-mediated responses three different types of treatments were used: simultaneous incubation of cells with individual test compounds and the toxicant; pre-treatment with test compound before addition of the toxicant followed or not by a recovery period. The expression of Hsp70 was quantified by Western blotting to test the involvement of heat shock proteins in the cellular responses to the test compounds. In addition, effects on proliferation were evaluated by the MTT assay. The results show that quercetin and ursolic acid prevented DNA damage and had antiproliferative properties in HepG2 cells suggesting an anticarcinogenic potential for these compounds. The protective effects of quercetin against t-BHP-induced DNA damage seem to be due to both direct effects on t-BHP toxicity and to cellularly mediated indirect effects which reflect the potentiation of the cellular antioxidant defenses. Ursolic acid seems to exert effects only through cellularly mediated mechanisms since it was not protective in simultaneous incubation. Quercetin and ursolic acid also showed to increase the rate of DNA repair. Rutin did not have effects at any level. These results, obtained with liver cells, emphasize and confirm the chemopreventive potential of quercetin and ursolic acid, which may help explain the lower cancer incidence in human population with high dietary intakes of fruits and vegetables. These results also demonstrate that Hsp70 is not involved in the observed effects in HepG2.
Collapse
Affiliation(s)
- A A Ramos
- CBMA - Molecular and Environment Biology Centre/Department of Biology, University of Minho, Braga, Portugal
| | | | | | | | | |
Collapse
|
31
|
Son YM, Lee JH, Kim DR. Modulation of RAG/DNA complex by HSP70 in V(D)J recombination. Biochem Biophys Res Commun 2007; 365:113-7. [PMID: 17980153 DOI: 10.1016/j.bbrc.2007.10.132] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2007] [Accepted: 10/24/2007] [Indexed: 10/22/2022]
Abstract
V(D)J recombination, a site-specific gene rearrangement process, requires two RAG1 and RAG2 proteins specifically recognizing recombination signal sequences and forming DNA double-strand breaks. The broken DNA ends tightly bound to RAG proteins are joined by repair proteins. Here, we found that heat shock protein 70 was associated with RAG2 following two-step affinity chromatography purification. It was also co-immunoprecipitated with RAG2 in pro-B cells. Purified HSP70 protein disrupted RAG/DNA complexes assembled in vitro and also inhibited the V(D)J cleavage (both nick and hairpin formation) in a dose-dependent manner. This HSP70 action required ATP energy. These data suggest that HSP70 might play a crucial role in disassembling RAG/DNA complexes stably formed during V(D)J recombination.
Collapse
Affiliation(s)
- Yong Mi Son
- Department of Biochemistry and MRCND and Institute of Health Sciences, Gyeongsang National University School of Medicine, 92 Chilam-dong, JinJu 660-751, Republic of Korea
| | | | | |
Collapse
|
32
|
Pruski AM, Dixon DR. Heat shock protein expression pattern (HSP70) in the hydrothermal vent mussel Bathymodiolus azoricus. MARINE ENVIRONMENTAL RESEARCH 2007; 64:209-24. [PMID: 17316784 DOI: 10.1016/j.marenvres.2007.01.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2006] [Revised: 01/10/2007] [Accepted: 01/11/2007] [Indexed: 05/14/2023]
Abstract
We previously reported evidence of increased levels of DNA damage in the hydrothermal mussel Bathymodiolus azoricus, which suggested that the species was not fully resistant to the natural toxicity of its deep-sea vent environment. In the present study, HSP70 was used as a biomarker of sub-cellular stress. Differences in HSP70 expression pattern were observed between vent sites, typified by different depths/toxicity profiles, and between different mussel tissue types. A comparison of specimens collected by remote operated vehicle (ROV) and acoustically-operated cages showed that less stress (as indicated by changes in HSP70 levels) was induced by the faster cage recovery method. Therefore alternatives to ROV collection should be considered when planning experiments involving live deep sea organisms. Significantly, a positive correlation was found between the levels of DNA strand breakage, as measured using the Comet assay, and HSP70 expression pattern; evidence was also obtained for the constitutive expression of at least one HSP isoform which was located within the cell nucleus.
Collapse
Affiliation(s)
- A M Pruski
- National Oceanography Centre, University of Southampton, Waterfront Campus, Southampton SO14 3ZH, United Kingdom.
| | | |
Collapse
|
33
|
Fishel ML, Kelley MR. The DNA base excision repair protein Ape1/Ref-1 as a therapeutic and chemopreventive target. Mol Aspects Med 2007; 28:375-95. [PMID: 17560642 DOI: 10.1016/j.mam.2007.04.005] [Citation(s) in RCA: 212] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2007] [Accepted: 04/15/2007] [Indexed: 10/23/2022]
Abstract
With our growing understanding of the pathways involved in cell proliferation and signaling, targeted therapies, in the treatment of cancer are entering the clinical arena. New and emerging targets are proteins involved in DNA repair pathways. Inhibition of various proteins in the DNA repair pathways sensitizes cancer cells to DNA damaging agents such as chemotherapy and/or radiation. We study the apurinic endonuclease 1/redox factor-1 (Ape1/Ref-1) and believe that its crucial function in DNA repair and reduction-oxidation or redox signaling make it an excellent target for sensitizing tumor cells to chemotherapy. Ape1/Ref-1 is an essential enzyme in the base excision repair (BER) pathway which is responsible for the repair of DNA caused by oxidative and alkylation damage. As importantly, Ape1/Ref-1 also functions as a redox factor maintaining transcription factors in an active reduced state. Ape1/Ref-1 stimulates the DNA binding activity of numerous transcription factors that are involved in cancer promotion and progression such as AP-1 (Fos/Jun), NFkappaB, HIF-1alpha, CREB, p53 and others. We will discuss what is known regarding the pharmacological targeting of the DNA repair activity, as well as the redox activity of Ape1/Ref-1, and explore the budding clinical utility of inhibition of either of these functions in cancer treatment. A brief discussion of the effect of polymorphisms in its DNA sequence is included because of Ape1/Ref-1's importance to maintenance and integrity of the genome. Experimental modification of Ape1/Ref-1 activity changes the response of cells and of organisms to DNA damaging agents, suggesting that Ape1/Ref-1 may also be a productive target of chemoprevention. In this review, we will provide an overview of Ape1/Ref-1's activities and explore the potential of this protein as a target in cancer treatment as well as its role in chemoprevention.
Collapse
Affiliation(s)
- Melissa L Fishel
- Department of Pediatrics (Section of Hematology/Oncology), Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | | |
Collapse
|
34
|
Bases R. Heat shock protein 70 enhanced deoxyribonucleic acid base excision repair in human leukemic cells after ionizing radiation. Cell Stress Chaperones 2006; 11:240-9. [PMID: 17009597 PMCID: PMC1576473 DOI: 10.1379/csc-185r.1] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Base excision repair (BER) of DNA damage in irradiated THP1 human leukemic cells was stimulated by pretreating the cells with exogenous recombinant Hsp70. The treatment of THP1 cells with recombinant Hsp70 in cell culture promoted repair by reducing the frequency of apurinic, apyrimidinic (AP) sites in DNA before and after 1.3 Gy of radiation. However, by 30 minutes after 2.6 Gy, accelerated repair of abasic sites supervened, which may contribute to the loss of the very-low-dose cell hypersensitivity seen in clonogenic studies of other laboratories. After irradiation with 2.6 Gy, the crucial initial glycosylase step was markedly incomplete when cells had been transfected 24 hours before with a small interfering RNA (siRNA) designed to inhibit synthesis of Hsp70. In confirmation, lysates from irradiated siRNA-treated cells after 2.6 Gy were deficient in uracil glycosylase activity (UDG). Transfection with a scrambled RNA of the same size did not interfere with the glycosylase step, ie, the prompt conversion of damaged pyrimidine sites to abasic sites as well as the subsequent repair of those sites. BER measured by reduction of DNA AP sites before and after low-dose radiation was also deficient in THP1 cells that had been transfected with the siRNA designed to inhibit synthesis of Hsp70. These results implicate BER and the participation of Hsp70 in the repair of DNA in human leukemic cells with the doses of ionizing radiation used in clinical regimens.
Collapse
Affiliation(s)
- Robert Bases
- Department of Radiology, Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY 10467, USA.
| |
Collapse
|
35
|
Niu P, Liu L, Gong Z, Tan H, Wang F, Yuan J, Feng Y, Wei Q, Tanguay RM, Wu T. Overexpressed heat shock protein 70 protects cells against DNA damage caused by ultraviolet C in a dose-dependent manner. Cell Stress Chaperones 2006; 11:162-9. [PMID: 16817322 PMCID: PMC1484517 DOI: 10.1379/csc-175r.1] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Heat shock protein 70 (Hsp70) comprises proteins that have been reported to protect cells, tissues, and organisms against damage from a wide variety of stressful stimuli; however, little is known about whether Hsp70 protects against DNA damage. In this study, we investigated the relationship between Hsp70 expression and the levels of ultraviolet C (UVC)-induced DNA damage in A549 cells with normal, inhibited, and overexpressed Hsp70 levels. Hsp70 expression was inhibited by treatment with quercetin or overexpressed by transfection of plasmids harboring the hsp70 gene. The level of DNA damage was assessed by the comet assay. The results showed that the levels of DNA damage (shown as the percentage of comet cells) in A549 cells increased in all cells after exposure to an incident dose of 0, 10, 20, 40, and 80 J/m2 whether Hsp70 was inhibited or overexpressed. This response was dose dependent: a protection against UVC-induced DNA damage in cells with overexpressed Hsp70 was observed at UVC dose 20 J/m2 with a maximum at 40 J/m2 when compared with cells with normal Hsp70 levels and in quercetin-treated cells. This differential protection disappeared at 80 J/m2. These results suggest that overexpressed Hsp70 might play a role in protecting A549 cells from DNA damage caused by UVC irradiation, with a threshold of protection from at UVC irradiation-induced DNA damage by Hsp70. The detailed mechanism how Hsp70 is involved in DNA damage and possible DNA repair warrants further investigation.
Collapse
Affiliation(s)
- Piye Niu
- Institute of Occupational Medicine and The Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Rieger RA, Zaika EI, Xie W, Johnson F, Grollman AP, Iden CR, Zharkov DO. Proteomic Approach to Identification of Proteins Reactive for Abasic Sites in DNA. Mol Cell Proteomics 2006; 5:858-67. [PMID: 16474175 DOI: 10.1074/mcp.m500224-mcp200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Apurinic/apyrimidinic (AP) sites, a prominent type of DNA damage, are repaired through the base excision repair mechanism in both prokaryotes and eukaryotes and may interfere with many other cellular processes. A full repertoire of AP site-binding proteins in cells is presently unknown, preventing reliable assessment of harm inflicted by these ubiquitous lesions and of their involvement in the flux of DNA metabolism. We present a proteomics-based strategy for assembling at least a partial catalogue of proteins capable of binding AP sites in DNA. The general scheme relies on the sensitivity of many AP site-bound protein species to NaBH(4) cross-linking. An affinity-tagged substrate is used to facilitate isolation of the cross-linked species, which are then separated and analyzed by mass spectrometry methods. We report identification of seven proteins from Escherichia coli (AroF, DnaK, MutM, PolA, TnaA, TufA, and UvrA) and two proteins from bakers' yeast (ARC1 and Ygl245wp) reactive for AP sites in this system.
Collapse
Affiliation(s)
- Robert A Rieger
- Department of Pharmacology, Stony Brook University, Stony Brook, NY 11794, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
McColl G, Vantipalli MC, Lithgow GJ. The C. elegans ortholog of mammalian Ku70, interacts with insulin-like signaling to modulate stress resistance and life span. FASEB J 2005; 19:1716-8. [PMID: 16099946 PMCID: PMC1400606 DOI: 10.1096/fj.04-2447fje] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The mammalian Ku heterodimer has important roles in DNA double strand break repair, telomere maintenance, cell cycle checkpoint-arrest, tumor suppression, and cellular stress resistance. To investigate the evolutionarily conserved functions of Ku, we knocked down expression by RNA interference (RNAi) of Ku genes in C. elegans. We found that C. elegans Ku70 (CKU-70) is required for resistance to genotoxic stress, regulates cytotoxic stress responses, and influences aging. The latter effects are dependent on an IGF-1/insulin-like signaling pathway previously shown to affect life span. Reduction of CKU-70 activity amplifies the aging phenotype of long-lived insulin receptor daf-2 mutations in a daf-16-dependent manner. These observations support the view that organismal stress resistance determines life span and Ku70 modulates these effects.
Collapse
Affiliation(s)
- Gawain McColl
- Buck Institute for Age Research, Novato, California 94945, USA.
| | | | | |
Collapse
|
38
|
Raaphorst G, LeBlanc J, Li L, Yang D. Hyperthermia responses in cell lines with normal and deficient DNA repairs systems. J Therm Biol 2005. [DOI: 10.1016/j.jtherbio.2005.05.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
39
|
Bases R. Clonogenicity of human leukemic cells protected from cell-lethal agents by heat shock protein 70. Cell Stress Chaperones 2005; 10:37-45. [PMID: 15832946 PMCID: PMC1074569 DOI: 10.1379/csc-58r.1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Pretreatment of human leukemia THP-1 cells with heat shock protein Hsp70 (Hsp70) protected them from the cell-lethal effects of the topoisomerase II inhibitor, lucanthone and from ionizing radiation. Cell viability was scored in clonogenic assays of single cells grown in liquid medium containing 0.5% methyl cellulose. Colonies were observed and rapidly scored after staining with the tetrazolium salt, 3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyl tetrazolium bromide. The frequency of abasic sites in the deoxyribonucleic acid (DNA) of THP-1 cells was reduced when these cells were treated with Hsp70. Hsp70 is presumed to have protected the cells by promoting repair of cell DNA, in agreement with previous studies that showed that Hsp70 enhanced base excision repair by purified enzymes. The shoulders of radiation dose-response curves were enhanced by pretreatment of cells with Hsp70 and, importantly, were reduced when cells were transfected with ribonucleic acid designed to silence Hsp70. Hsp70 influenced repair of sublethal damage after radiation.
Collapse
Affiliation(s)
- Robert Bases
- Departments of Radiology and Radiation Oncology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY 10467, USA.
| |
Collapse
|
40
|
Nadin SB, Vargas-Roig LM, Cuello-Carrión FD, Ciocca DR. Deoxyribonucleic acid damage induced by doxorubicin in peripheral blood mononuclear cells: possible roles for the stress response and the deoxyribonucleic acid repair process. Cell Stress Chaperones 2004; 8:361-72. [PMID: 15115288 PMCID: PMC514907 DOI: 10.1379/1466-1268(2003)008<0361:dadibd>2.0.co;2] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Doxorubicin is an antineoplastic drug widely used in cancer treatment. However, many tumors are intrinsically resistant to the drug or show drug resistance after an initial period of response. Among the different molecules implicated with doxorubicin resistance are the heat shock proteins (Hsps). At present we do not know with certainty the mechanism(s) involved in such resistance. In the present study, to advance our knowledge on the relationship between Hsps and drug resistance, we have used peripheral blood mononuclear cells obtained from healthy nonsmoker donors to evaluate the capacity of a preliminary heat shock to elicit the Hsp response and to establish the protection against the deoxyribonucleic acid (DNA) damage induced by doxorubicin. DNA damage and repair were determined using the alkaline comet assay. We also measured the expression of Hsp27, Hsp60, Hsp70, Hsp90, hMLH1, hMSH2, and proliferating cell nuclear antigen by immunocytochemistry. The damage induced by doxorubicin was more efficiently repaired when the cells were previously heat shocked followed by a resting period of 24 hours before drug exposure, as shown by (1) the increased number of undamaged cells (P < 0.05), (2) the increased DNA repair capacity (P < 0.05), and (3) the high expression of the mismatch repair (MMR) proteins hMLH1 and hMSH2 (P < 0.05). In addition, in the mentioned group of cells, we confirmed by Western blot high expression levels of Hsp27 and Hsp70. We also noted a nuclear translocation of Hsp27 and mainly of Hsp70. Furthermore, inducible Hsp70 was more expressed in the nucleus than Hsc70, showing a possible participation of Hsp70 in the DNA repair process mediated by the MMR system.
Collapse
Affiliation(s)
- Silvina B Nadin
- Institute of Experimental Medicine and Biology of Cuyo, Regional Center for Scientific and Technological Research, National Research Council of Argentine, and Argentine Foundation for Cancer Research, 5500 Mendoza, Argentina
| | | | | | | |
Collapse
|
41
|
Hunt CR, Dix DJ, Sharma GG, Pandita RK, Gupta A, Funk M, Pandita TK. Genomic instability and enhanced radiosensitivity in Hsp70.1- and Hsp70.3-deficient mice. Mol Cell Biol 2004; 24:899-911. [PMID: 14701760 PMCID: PMC343815 DOI: 10.1128/mcb.24.2.899-911.2004] [Citation(s) in RCA: 188] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Heat shock proteins (HSPs) are highly conserved among all organisms from prokaryotes to eukaryotes. In mice, the HSP genes Hsp70.1 and Hsp70.3 are induced by both endogenous and exogenous stressors, such as heat and toxicants. In order to determine whether such proteins specifically influence genomic instability, mice deficient for Hsp70.1 and Hsp70.3 (Hsp70.1/3(-/-) mice) were generated by gene targeting. Mouse embryonic fibroblasts (MEFs) prepared from Hsp70.1/3(-/-) mice did not synthesize Hsp70.1 or Hsp70.3 after heat-induced stress. While the Hsp70.1/3(-/-) mutant mice were fertile, their cells displayed genomic instability that was enhanced by heat treatment. Cells from Hsp70.1/3(-/-) mice also display a higher frequency of chromosome end-to-end associations than do control Hsp70.1/3(+/+) cells. To determine whether observed genomic instability was related to defective chromosome repair, Hsp70.1/3(-/-) and Hsp70.1/3(+/+) fibroblasts were treated with ionizing radiation (IR) alone or heat and IR. Exposure to IR led to more residual chromosome aberrations, radioresistant DNA synthesis (a hallmark of genomic instability), increased cell killing, and enhanced IR-induced oncogenic transformation in Hsp70.1/3(-/-) cells. Heat treatment prior to IR exposure enhanced cell killing, S-phase-specific chromosome damage, and the frequency of transformants in Hsp70.1/3(-/-) cells in comparison to Hsp70.1/3(+/+) cells. Both in vivo and in vitro studies demonstrate for the first time that Hsp70.1 and Hsp70.3 have an essential role in maintaining genomic stability under stress conditions.
Collapse
Affiliation(s)
- Clayton R Hunt
- Department of Oncology, Radiation, Washington University School of Medicine, 4511 Forest Park, St. Louis, MO 63108, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Belusko PB, Nakajima T, Azuma M, Shearer TR. Expression changes in mRNAs and mitochondrial damage in lens epithelial cells with selenite. Biochim Biophys Acta Gen Subj 2003; 1623:135-42. [PMID: 14572911 DOI: 10.1016/j.bbagen.2003.08.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
An overdose of sodium selenite induces cataracts in young rats. The mid-stage events producing the cataract include calpain-induced hydrolysis and precipitation of lens proteins. Apoptosis in lens epithelial cells has been suggested as an initial event in selenite cataracts. Expression levels of two genes associated with apoptosis were altered in lens epithelial cells from selenite-injected rats. The purpose of the present experiment was to perform a more comprehensive search for changes in expression of mRNAs in lens epithelial cells in order to more fully delineate the early events in selenite-induced cataracts. Lens epithelial cells were harvested at 1 and 2 days after a single subcutaneous injection of sodium selenite (30 mumol/kg body weight) into 12-day-old rats. Gene expression was analyzed using a commercial DNA array (Rat Genome U34A GeneChip array, Affymetrix). Of approximately 8000 genes assayed by hybridization, 13 genes were decreased and 27 genes were increased in the rat lens epithelial cells after injection of selenite. Some of the up-regulated genes included apoptosis-related genes, and a majority of the down-regulated genes were mitochondrial genes. Previously observed changes in expression of EGR-1 mRNA were also confirmed. Changes in the expression patterns of mRNAs were also confirmed by RT-PCR. To determine the mechanism for damage of lens epithelial cells (alpha TN4 cell) by culture in selenite, leakage of cytochrome c from mitochondria was measured. Selenite caused significant leakage of cytochrome c into the cytosol of alpha TN4 cells. Our data suggested that the loss of integrity of lens epithelial cells by selenite might be caused by preferential down-regulation of mitochondrial RNAs, release of cytochrome c, and impaired mitochondrial function. Up-regulation of mRNAs involved in maintenance of DNA, regulation of metabolism, and induction of apoptosis may also play roles.
Collapse
Affiliation(s)
- P B Belusko
- Senju Laboratory of Ocular Sciences, Senju Pharmaceutical Co. Ltd., Beaverton, OR 97006, USA
| | | | | | | |
Collapse
|
43
|
Mendez F, Kozin E, Bases R. Heat shock protein 70 stimulation of the deoxyribonucleic acid base excision repair enzyme polymerase beta. Cell Stress Chaperones 2003; 8:153-61. [PMID: 14627201 PMCID: PMC514867 DOI: 10.1379/1466-1268(2003)008<0153:hspsot>2.0.co;2] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2002] [Revised: 11/19/2002] [Accepted: 11/20/2002] [Indexed: 11/24/2022] Open
Abstract
Base excision repair (BER) of damaged deoxyribonucleic acid (DNA) is a multistep process during which potentially lethal abasic sites temporarily exist. Repair of these lesions is greatly stimulated by heat shock protein 70 (Hsp70), which enhances strand incision and removal of the abasic sites by human apurinic-apyrimidinic endonuclease (HAP1). The resulting single-strand gaps must then be filled in. Here, we show that Hsp70 and its 48- and 43-kDa N-terminal domains greatly stimulated filling in the single-strand gaps by DNA polymerase beta, a novel finding that extends the role of Hsps in DNA repair. Incorporation of deoxyguanosine monophosphate (dGMP) to fill in single-strand gaps in DNA phagemid pBKS by DNA polymerase beta was stimulated by Hsp70. Truncated proteins derived from the C-terminus of Hsp70 as well as unrelated proteins were less effective, but proteins derived from the N-terminus of Hsp70 remained efficient stimulators of DNA polymerase beta repair of DNA single-strand gaps. In agreement with these results, repair of a gap in a 30-bp oligonucleotide by polymerase beta also was strongly stimulated by Hsp70 although not by a truncated protein from the C-terminus of Hsp70. Sealing of the repaired site in the oligonucleotide by human DNA ligase 1 was not specifically stimulated by Hsp-related proteins. Results presented here now implicate and extend the role of Hsp70 as a partner in the enzymatic repair of damaged DNA. The participation of Hsp70 jointly with base excision enzymes improves repair efficiency by mechanisms that are not yet understood.
Collapse
Affiliation(s)
- Frances Mendez
- Department of Radiology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York 10467, USA
| | | | | |
Collapse
|
44
|
Jean S, Bideau C, Bellon L, Halimi G, De Méo M, Orsière T, Dumenil G, Bergé-Lefranc JL, Botta A. The expression of genes induced in melanocytes by exposure to 365-nm UVA: study by cDNA arrays and real-time quantitative RT-PCR. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1522:89-96. [PMID: 11750059 DOI: 10.1016/s0167-4781(01)00326-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ultraviolet A radiation (UVA; 320-400 nm) constitutes more than 90% of the terrestrial UV solar energy. This type of radiation generates reactive oxygen species and consequently induces DNA damage. UVA irradiation is now considered to be an important carcinogen agent especially in the development of melanoma. UVA radiation is known to activate several pathways in mammalian cells. We have used cDNA arrays to analyze differential gene expression in primary cultures of human melanocytes in response to 365-nm UVA. Among 588 genes studied, 11 were overexpressed. These genes included genes involved in cell cycle regulation (GADD45, CIP1/WAF1), in stress response (HSP70, HSP40, HSP86), in apoptosis (GADD153, tristetraproline) and genes encoding transcription factors (EGR-1, ETR-101, c-JUN, ATF4). This coordinate gene regulation was confirmed by real-time quantitative RT-PCR.
Collapse
Affiliation(s)
- S Jean
- Laboratoire de Biogénotoxicologie et Mutagenèse Environnementale, Facultés de Médecine et de Pharmacie, Université de la Méditerranée, Marseille, France
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Marenstein DR, Ocampo MT, Chan MK, Altamirano A, Basu AK, Boorstein RJ, Cunningham RP, Teebor GW. Stimulation of human endonuclease III by Y box-binding protein 1 (DNA-binding protein B). Interaction between a base excision repair enzyme and a transcription factor. J Biol Chem 2001; 276:21242-9. [PMID: 11287425 DOI: 10.1074/jbc.m101594200] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human endonuclease III (hNth1) is a DNA glycosylase/apurinic/apyrimidinic (AP) lyase that initiates base excision repair of pyrimidines modified by reactive oxygen species, ionizing, and ultraviolet radiation. Using duplex 2'-deoxyribose oligonucleotides containing an abasic (AP) site, a thymine glycol, or a 5-hydroxyuracil residue as substrates, we found the AP lyase activity of hNth1 was 7 times slower than its DNA glycosylase activity, similar to results reported for murine and human 8-oxoguanine-DNA glycosylase, which are also members of the endonuclease III family. This difference in rates contrasts with the equality of rates found in Escherichia coli and Saccharomyces cerevisiae endonuclease III homologs. A yeast two-hybrid screen for potential modulators of hNth1 activity revealed interaction with the damage-inducible transcription factor Y box-binding protein 1 (YB-1), also identified as DNA-binding protein B (DbpB). The in vitro addition of His(6)YB-1 to hNth1 increased the rate of DNA glycosylase and AP lyase activity. Analysis revealed that YB-1 affects the steady state equilibrium between the covalent hNth1-AP site Schiff base ES intermediate and the noncovalent ES intermediate containing the AP aldehydic sugar and the epsilon-amino group of the hNth1 active site lysine. This equilibrium may be a checkpoint in modulating hNth1 activity.
Collapse
Affiliation(s)
- D R Marenstein
- Department of Pathology and Kaplan Comprehensive Cancer Center, New York University School of Medicine, New York, New York 10016, USA
| | | | | | | | | | | | | | | |
Collapse
|