1
|
Simard M, Rioux G, Morin S, Martin C, Guérin SL, Flamand N, Julien P, Fradette J, Pouliot R. Investigation of Omega-3 Polyunsaturated Fatty Acid Biological Activity in a Tissue-Engineered Skin Model Involving Psoriatic Cells. J Invest Dermatol 2021; 141:2391-2401.e13. [PMID: 33857488 DOI: 10.1016/j.jid.2021.02.755] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 12/12/2022]
Abstract
Clinical studies have shown that diets enriched with omega-3 (also know as n-3) polyunsaturated fatty acids could relieve the symptoms of patients with psoriasis. However, the mechanisms involved remain poorly understood. The aim of this study was to investigate the effects of α-linolenic acid (ALA) on the proliferation and differentiation of psoriatic keratinocytes in a three-dimensional skin model. Skin models featuring healthy (healthy substitute) or psoriatic (psoriatic substitute) cells were engineered by the self-assembly method of tissue engineering using a culture medium supplemented with 10 μM ALA in comparison with the regular unsupplemented medium. ALA decreased keratinocyte proliferation and improved psoriatic substitute epidermal differentiation, as measured by decreased Ki67 staining and increased protein expression of FLG and loricrin. The added ALA was notably incorporated into the epidermal phospholipids and metabolized into long-chain n-3 polyunsaturated fatty acids, mainly eicosapentaenoic acid and n-3 docosapentaenoic acid. ALA supplementation led to increased levels of eicosapentaenoic acid derivatives (15-hydroxyeicosapentaenoic acid and 18-hydroxyeicosapentaenoic acid) as well as a decrease in levels of omega-6 (also know as n-6) polyunsaturated fatty acid lipid mediators (9-hydroxyoctadecadienoic acid, 12-hydroxyeicosatetraenoic acid, and leukotriene B4). Furthermore, the signal transduction mediators extracellular signal‒regulated kinases 1 and 2 were the kinases most activated after ALA supplementation. Taken together, these results show that ALA decreases the pathologic phenotype of psoriatic substitutes by normalizing keratinocyte proliferation and differentiation in vitro.
Collapse
Affiliation(s)
- Mélissa Simard
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Québec, Québec, Canada; Axe médecine régénératrice, Centre de recherche du CHU de Québec-Université Laval, Québec, Québec, Canada; Faculté de pharmacie, Université Laval, Québec, Québec, Canada
| | - Geneviève Rioux
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Québec, Québec, Canada; Axe médecine régénératrice, Centre de recherche du CHU de Québec-Université Laval, Québec, Québec, Canada; Faculté de pharmacie, Université Laval, Québec, Québec, Canada
| | - Sophie Morin
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Québec, Québec, Canada; Axe médecine régénératrice, Centre de recherche du CHU de Québec-Université Laval, Québec, Québec, Canada; Faculté de pharmacie, Université Laval, Québec, Québec, Canada
| | - Cyril Martin
- Centre de recherche de l'institut universitaire de cardiologie et de pneumologie de Québec, Québec, Québec, Canada; Département de médecine, Faculté de médecine, Université Laval, Québec, Québec, Canada
| | - Sylvain L Guérin
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Québec, Québec, Canada; Axe médecine régénératrice, Centre de recherche du CHU de Québec-Université Laval, Québec, Québec, Canada; CUO-Recherche, Centre de recherche du CHU de Québec-Université Laval, Québec, Québec, Canada; Département d'ophtalmologie, Faculté de médecine, Université Laval, Québec, Québec, Canada
| | - Nicolas Flamand
- Centre de recherche de l'institut universitaire de cardiologie et de pneumologie de Québec, Québec, Québec, Canada; Département de médecine, Faculté de médecine, Université Laval, Québec, Québec, Canada
| | - Pierre Julien
- Département de médecine, Faculté de médecine, Université Laval, Québec, Québec, Canada; Axe Endocrinologie et Néphrologie, Centre de recherche du CHU de Québec-Université Laval, Québec, Québec, Canada
| | - Julie Fradette
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Québec, Québec, Canada; Axe médecine régénératrice, Centre de recherche du CHU de Québec-Université Laval, Québec, Québec, Canada; Département de chirurgie, Faculté de médecine, Université Laval, Québec, Québec, Canada
| | - Roxane Pouliot
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Québec, Québec, Canada; Axe médecine régénératrice, Centre de recherche du CHU de Québec-Université Laval, Québec, Québec, Canada; Faculté de pharmacie, Université Laval, Québec, Québec, Canada.
| |
Collapse
|
2
|
Li K, Wu K, Zhao Y, Huang T, Lou D, Yu X, Li D. Interaction between Marine-Derived n-3 Long Chain Polyunsaturated Fatty Acids and Uric Acid on Glucose Metabolism and Risk of Type 2 Diabetes Mellitus: A Case-Control Study. Mar Drugs 2015; 13:5564-78. [PMID: 26343686 PMCID: PMC4584340 DOI: 10.3390/md13095564] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 07/22/2015] [Accepted: 08/06/2015] [Indexed: 11/22/2022] Open
Abstract
The present case-control study explored the interaction between marine-derived n-3 long chain polyunsaturated fatty acids (n-3 LC PUFAs) and uric acid (UA) on glucose metabolism and risk of type 2 diabetes mellitus (T2DM). Two hundred and eleven healthy subjects in control group and 268 T2DM subjects in case group were included. Plasma phospholipid (PL) fatty acids and biochemical parameters were detected by standard methods. Plasma PL C22:6n-3 was significantly lower in case group than in control group, and was negatively correlated with fasting glucose (r = −0.177, p < 0.001). Higher plasma PL C22:6n-3 was associated with lower risk of T2DM, and the OR was 0.32 (95% confidence interval (CI), 0.12 to 0.80; p = 0.016) for per unit increase of C22:6n-3. UA was significantly lower in case group than in control group. UA was positively correlated with fasting glucose in healthy subjects, but this correlation became negative in T2DM subjects. A significant interaction was observed between C22:6n-3 and UA on fasting glucose (p for interaction = 0.005): the lowering effect of C22:6n-3 was only significant in subjects with a lower level of UA. In conclusion, C22:6n-3 interacts with UA to modulate glucose metabolism.
Collapse
Affiliation(s)
- Kelei Li
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China.
| | - Kejian Wu
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China.
| | - Yimin Zhao
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China.
| | - Tao Huang
- Department of Nutrition and Epidemiology, Harvard School of Public Health, Boston, MA 02115, USA.
| | - Dajun Lou
- Department of Endocrinology, Shaoxing Hospital, Shaoxing 312000, China.
| | - Xiaomei Yu
- Department of Clinical Laboratory, Zhejiang Hospital, Hangzhou 310013, China.
| | - Duo Li
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
3
|
Kim DH, Lee HJ, Amanullah SM, Adesogan AT, Kim SC. Effects of dietary n-6/n-3 fatty acid ratio on nutrient digestibility and blood metabolites of Hanwoo heifers. Anim Sci J 2015; 87:46-53. [DOI: 10.1111/asj.12401] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 01/19/2015] [Indexed: 01/06/2023]
Affiliation(s)
- Dong Hyeon Kim
- Division of Applied Life Science (BK21Plus, Insti. of Agri. & Life Sci.); Gyeongsang National University; Jinju South Korea
| | - Hyuk Jun Lee
- Division of Applied Life Science (BK21Plus, Insti. of Agri. & Life Sci.); Gyeongsang National University; Jinju South Korea
| | - Sardar M. Amanullah
- Division of Applied Life Science (BK21Plus, Insti. of Agri. & Life Sci.); Gyeongsang National University; Jinju South Korea
- Bangladesh Livestock Research Institute; Dhaka Bangladesh
| | | | - Sam Churl Kim
- Division of Applied Life Science (BK21Plus, Insti. of Agri. & Life Sci.); Gyeongsang National University; Jinju South Korea
| |
Collapse
|
4
|
Eicosapentaenoic acid (EPA) induced apoptosis in HepG2 cells through ROS-Ca(2+)-JNK mitochondrial pathways. Biochem Biophys Res Commun 2014; 456:926-32. [PMID: 25529445 DOI: 10.1016/j.bbrc.2014.12.036] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 12/08/2014] [Indexed: 02/07/2023]
Abstract
Eicosapentaenoic acid (EPA), a well-known dietary n-3 PUFAS, has been considered to inhibit proliferation of tumor cells. However, the molecular mechanism related to EPA-induced liver cancer cells apoptosis has not been reported. In this study, we investigated the effect of EPA on HepG2 cells proliferation and apoptosis mechanism through mitochondrial pathways. EPA inhibited proliferation of HepG2 cells in a dose-dependent manner and had no significant effect on the cell viability of humor normal liver L-02 cells. It was found that EPA initially evoked ROS formation, leading to [Ca(2+)]c accumulation and the mitochondrial permeability transition pore (MPTP) opening; EPA-induced HepG2 cells apoptosis was inhibited by N-acetylcysteine (NAC, an inhibitor of ROS), 1,2-bis (2-aminophenoxy) ethane-N,N,N',N'-tetraacetic acid (BAPTA-AM, a chelator of calcium) and CsA (inhibitor of MPTP). The relationship between ROS production, the increase of cytoplasmic Ca and MPTP opening was detected. It seems that ROS may act as an upstream regulator of EPA-induced [Ca(2+)]c generation, moreover, generation of ROS, overload of mitochondrial [Ca(2+)]c, and JNK activated cause the opening of MPTP. Western blotting results showed that EPA elevated the phosphorylation status of JNK, processes associated with the ROS generation. Simultaneously, the apoptosis induced by EPA was related to release of cytochrome C from mitochondria to cytoplasm through the MPTP and activation of caspase-9 and caspase-3. These results suggest that EPA induces apoptosis through ROS-Ca(2+)-JNK mitochondrial pathways.
Collapse
|
5
|
|
6
|
Nikolakopoulou Z, Nteliopoulos G, Michael-Titus AT, Parkinson EK. Omega-3 polyunsaturated fatty acids selectively inhibit growth in neoplastic oral keratinocytes by differentially activating ERK1/2. Carcinogenesis 2013; 34:2716-25. [PMID: 23892603 PMCID: PMC3845892 DOI: 10.1093/carcin/bgt257] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The long-chain omega-3 polyunsaturated fatty acids (n-3 PUFAs)—eicosapentaenoic
acid (EPA) and its metabolite docosahexaenoic acid (DHA)—inhibit cancer formation
in vivo, but their mechanism of action is unclear. Extracellular
signal-regulated kinase 1/2 (ERK1/2) activation and inhibition have both been associated
with the induction of tumour cell apoptosis by n-3 PUFAs. We show here that low doses of
EPA, in particular, inhibited the growth of premalignant and malignant keratinocytes more
than the growth of normal counterparts by a combination of cell cycle arrest and
apoptosis. The growth inhibition of the oral squamous cell carcinoma (SCC) lines, but not
normal keratinocytes, by both n-3 PUFAs was associated with epidermal growth factor
receptor (EGFR) autophosphorylation, a sustained phosphorylation of ERK1/2 and its
downstream target p90RSK but not with phosphorylation of the PI3 kinase target Akt.
Inhibition of EGFR with either the EGFR kinase inhibitor AG1478 or an EGFR-blocking
antibody inhibited ERK1/2 phosphorylation, and the blocking antibody partially antagonized
growth inhibition by EPA but not by DHA. DHA generated more reactive oxygen species and
activated more c-jun N-terminal kinase than EPA, potentially explaining its increased
toxicity to normal keratinocytes. Our results show that, in part, EPA specifically
inhibits SCC growth and development by creating a sustained signalling imbalance to
amplify the EGFR/ERK/p90RSK pathway in neoplastic keratinocytes to a supraoptimal level,
supporting the chemopreventive potential of EPA, whose toxicity to normal cells might be
reduced further by blocking its metabolism to DHA. Furthermore, ERK1/2 phosphorylation may
have potential as a biomarker of n-3 PUFA function in vivo.
Collapse
Affiliation(s)
| | - Georgios Nteliopoulos
- Department of Haematology, Imperial College,
Commonwealth Building, Du Cane Road, London W12 0NN,
UK and
| | - Adina T. Michael-Titus
- Centre for Neuroscience and Trauma, Blizard Institute for Cell and Molecular
Science, Barts and the London School of Medicine and Dentistry, Queen Mary University of
London, 4 Newark Street, London E1 2AT,
UK
| | - Eric Kenneth Parkinson
- *To whom correspondence should be addressed. Tel: +44 2078
827185; Fax: +44 207 8827137;
| |
Collapse
|
7
|
Lorente-Cebrián S, Bustos M, Marti A, Fernández-Galilea M, Martinez JA, Moreno-Aliaga MJ. Eicosapentaenoic acid inhibits tumour necrosis factor-α-induced lipolysis in murine cultured adipocytes. J Nutr Biochem 2012; 23:218-27. [DOI: 10.1016/j.jnutbio.2010.11.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2010] [Revised: 10/29/2010] [Accepted: 11/22/2010] [Indexed: 12/11/2022]
|
8
|
Heinze VM, Actis AB. Dietary conjugated linoleic acid and long-chain n-3 fatty acids in mammary and prostate cancer protection: a review. Int J Food Sci Nutr 2011; 63:66-78. [PMID: 21762028 DOI: 10.3109/09637486.2011.598849] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The role of dietary fatty acids on cancer is still controversial. To examine the current literature on the protective role of conjugated linoleic acid (CLA) and marine long-chain fatty acids [eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)] and the risk of breast and prostate cancer, data from 41 case-control and cohort studies and relevant in vitro and animal experiments were included in this 2000-2010 revision. Epidemiological studies on CLA intake or its tissue concentration related to breast and prostate tumorigenesis are not conclusive; EPA and DHA intake have shown important inverse associations just in some studies. Additional research on the analysed association is required.
Collapse
Affiliation(s)
- Verónica M Heinze
- Facultad de Ciencias de la Salud, Universidad Adventista del Plata, 25 de Mayo 99, 3103 Libertador San Martín, Entre Ríos, Argentina.
| | | |
Collapse
|
9
|
Abstract
Compelling evidence exists for the cardioprotective benefits resulting from consumption of fatty acids from fish oils, EPA (20:5n-3) and DHA (22:6n-3). EPA and DHA alter membrane fluidity, interact with transcription factors such as PPAR and sterol regulatory element binding protein, and are substrates for enzymes including cyclooxygenase, lipoxygenase and cytochrome P450. As a result, fish oils may improve cardiovascular health by altering lipid metabolism, inducing haemodynamic changes, decreasing arrhythmias, modulating platelet function, improving endothelial function and inhibiting inflammatory pathways. The independent effects of EPA and DHA are poorly understood. While both EPA and DHA decrease TAG levels, only DHA appears to increase HDL and LDL particle size. Evidence to date suggests that DHA is more efficient in decreasing blood pressure, heart rate and platelet aggregation compared to EPA. Fish oil consumption appears to improve arterial compliance and endothelial function; it is not yet clear as to whether differences exist between EPA and DHA in their vascular effects. In contrast, the beneficial effect of fish oils on inflammation and insulin sensitivity observed in vitro and in animal studies has not been confirmed in human subjects. Further investigation to clarify the relative effects of consuming EPA and DHA at a range of doses would enable elaboration of current understanding regarding cardioprotective effects of consuming oily fish and algal sources of long chain n-3 PUFA, and provide clearer evidence for the clinical therapeutic potential of consuming either EPA or DHA-rich oils.
Collapse
|
10
|
Lorente-Cebrián S, Bustos M, Marti A, Martinez JA, Moreno-Aliaga MJ. Eicosapentaenoic acid up-regulates apelin secretion and gene expression in 3T3-L1 adipocytes. Mol Nutr Food Res 2010; 54 Suppl 1:S104-11. [DOI: 10.1002/mnfr.200900522] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
11
|
Ishii H, Horie Y, Ohshima S, Anezaki Y, Kinoshita N, Dohmen T, Kataoka E, Sato W, Goto T, Sasaki J, Sasaki T, Watanabe S, Suzuki A, Ohnishi H. Eicosapentaenoic acid ameliorates steatohepatitis and hepatocellular carcinoma in hepatocyte-specific Pten-deficient mice. J Hepatol 2009; 50:562-71. [PMID: 19162361 DOI: 10.1016/j.jhep.2008.10.031] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2008] [Revised: 09/20/2008] [Accepted: 10/08/2008] [Indexed: 12/19/2022]
Abstract
BACKGROUND/AIMS Eicosapentaenoic acid (EPA) has been known as a reagent for improving lipid metabolism and inflammation. Hepatocyte-specific Pten-deficient mice exhibit hepatic lesions analogous to non-alcoholic steatohepatitis (NASH). Therefore, we administered EPA to Pten-deficient mice to investigate the mechanisms of NASH. METHODS Pten-deficient mice were assigned to a control group fed with a standard chow or an EPA group fed with a 5% EPA-supplemented standard chow. At 40 weeks, livers from each group were processed to measure triglyceride content, gene expression analysis, Western blotting analysis, and histological examination. Level of serum reactive oxygen species (ROS) was also determined. Forty- and 76-week-old mice were used in tumor burden experiments. RESULTS EPA-ameliorated hepatic steatosis in Pten-deficient mice was based on decreased expression of AMPKalpha1-mediated SREBP-1c and increased PPARalpha expression. The EPA group exhibited less severe chronic hepatic inflammation compared to the control group, resulting from decreased ROS formation and a dramatically low ratio of arachidonic acid to EPA. Moreover, EPA inhibited development of hepatocellular carcinoma (HCC) in Pten-deficient mice based on an inhibition of MAPK activity and a low ratio of oleic to stealic acid, and a reduction in ROS formation. CONCLUSIONS EPA ameliorated steatohepatitis and development of HCC in Pten-deficient mice.
Collapse
Affiliation(s)
- Hajime Ishii
- Department of Gastroenterology, Akita University School of Medicine, Akita, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Dupertuis YM, Benais-Pont G, Buchegger F, Pichard C. Effect of an immunonutrient mix on human colorectal adenocarcinoma cell growth and viability. Nutrition 2007; 23:672-80. [PMID: 17656070 DOI: 10.1016/j.nut.2007.06.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2006] [Revised: 05/25/2007] [Accepted: 06/05/2007] [Indexed: 12/31/2022]
Abstract
OBJECTIVE L-Glutamine, L-arginine, RNA, and omega-3 polyunsaturated fatty acids (PUFAs) have been incorporated into nutritional formulas to improve immunity of patients with gastrointestinal cancer. We therefore examined the individual and net effects of these immunonutrients on four different human colorectal adenocarcinoma cell lines. METHODS LS174T, HT-29, CO112, and Caco-2 cells were exposed to dilutions of 1:50, 1:100, and 1:1000 of a mix or individual components of a mix of 15 g/L of L-glutamine, 16.3 g/L of L-arginine, 1.6 g/L of RNA, and 2.7 g/L of omega-3 PUFAs. Cell growth kinetic was assessed using cell count with a flow cytometer. Cell cycle and apoptosis were evaluated with double fluorescence-activated cell sorter analyses using bromodeoxyuridine labeling index and annexin V staining, respectively. One-way analysis of variance and Student's t tests were used for comparison. RESULTS Evaluation of the cell growth kinetic over an 18-d period showed that the immunonutrient mix stimulated cancer cell growth only when diluted > or =100 times. Individual component evaluation indicated that the cell growth stimulation was mainly due to the presence of L-glutamine and to a lesser extent RNA in the mix. L-Arginine had no effect. At a lower dilution of 1:50, omega-3 PUFA concentrations were sufficient to induce cell cycle arrest and massive cell death in part through apoptosis. CONCLUSION These results suggest that cancer cell growth stimulation by current immunonutrient formulas is unlikely due to predominant cytotoxic effect of omega-3 PUFAs.
Collapse
Affiliation(s)
- Yves M Dupertuis
- Clinical Nutrition, Geneva University Hospital, Geneva, Switzerland.
| | | | | | | |
Collapse
|
13
|
Le Foll C, Corporeau C, Le Guen V, Gouygou JP, Bergé JP, Delarue J. Long-chain n-3 polyunsaturated fatty acids dissociate phosphorylation of Akt from phosphatidylinositol 3'-kinase activity in rats. Am J Physiol Endocrinol Metab 2007; 292:E1223-30. [PMID: 17179391 DOI: 10.1152/ajpendo.00446.2006] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We examined whether a low amount of dietary long-chain n-3 polyunsaturated fatty acids (LC n-3 PUFA) modulated phosphatidylinositol 3'-kinase (PI 3-kinase) activity and downstream Akt phosphorylation differently in normal or insulin-resistant rats. Rats were fed for 28 days with either a control diet containing 14.6% of metabolizable energy (ME) as peanut-rape oil (PR) or an n-3 diet where 4.9% of ME as PR was replaced by fish oil. Over the last 5 days, rats received 9 per thousand NaCl or dexamethasone (1 mg/kg). Insulin stimulation of both PI 3-kinase activity and Akt serine(473) phosphorylation and modulation of GLUT4 content were studied in liver, muscle, and adipose tissue (AT). Glucose tolerance and insulin sensitivity were determined by an oral glucose challenge. In muscle and AT, LC n-3 PUFA abolished insulin-stimulated PI 3-kinase activity. These effects were not paralleled by defects in Akt serine(473) phosphorylation, which was even increased in AT. Dexamethasone abolished insulin-stimulated PI 3-kinase activity in all tissues, whereas Akt serine(473) phosphorylation was markedly reduced in muscle but unaltered in liver and AT. Such tissue-specific dissociating effects of LC n-3 PUFA on PI 3-kinase/Akt activation took place without alteration of glucose metabolism. Maintenance of a normal glucose metabolism by the n-3 diet despite abolition of PI 3-kinase activation was likely explained by a compensatory downstream Akt serine(473) phosphorylation. The inability of LC n-3 PUFA to prevent insulin resistance by dexamethasone could result from the lack of such a dissociation.
Collapse
|
14
|
Wan M, Li Y, Xue H, Li Q, Li J. Eicosapentaenoic acid inhibits TNF-α-induced Lnk expression in human umbilical vein endothelial cells: involvement of the PI3K/Akt pathway. J Nutr Biochem 2007; 18:17-22. [PMID: 16784840 DOI: 10.1016/j.jnutbio.2006.02.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2006] [Revised: 02/04/2006] [Accepted: 02/06/2006] [Indexed: 10/24/2022]
Abstract
n-3 Polyunsaturated fatty acids (PUFAs) exert anti-inflammatory properties by influencing inflammatory cell activation processes. Lnk is an adaptor protein involving endothelial cell (EC) activation because it is induced by tumor necrosis factor-alpha (TNF-alpha). This study was conducted to evaluate the role of eicosapentaenoic acid (EPA), an n-3 PUFA, in the regulation of Lnk expression in human umbilical vein endothelial cells (HUVECs). Primary HUVECs were pretreated with EPA for 12 h at various concentrations (0-40 muM) and then exposed for another 12 h in the presence or absence of TNF-alpha (10 ng/ml). Lnk mRNA and protein were detected using reverse transcriptase polymerase chain reaction, immunoprecipitation and Western blot analysis. Results showed that pretreatment of HUVEC with EPA inhibited TNF-alpha-induced expression of Lnk in a dose-dependent manner. TNF-alpha-induced Lnk was also inhibited by a phosphatidylinositol 3-kinase (PI3K) inhibitor, LY294002. Thus, we investigated the role of PI3K/Akt signaling pathway in this process. Phosphorylation of Akt was assessed by Western blot analysis. We found that EPA treatment decreased the amount of activated Akt. These results showed that EPA inhibited TNF-alpha-induced Lnk expression in HUVECs through the PI3K/Akt pathway. This may be a potential mechanism by which EPA protects ECs under inflammatory conditions.
Collapse
Affiliation(s)
- Meifang Wan
- Nanjing University School of Medicine, Nanjing 210093, P.R. China
| | | | | | | | | |
Collapse
|
15
|
Shirota T, Haji S, Yamasaki M, Iwasaki T, Hidaka T, Takeyama Y, Shiozaki H, Ohyanagi H. Apoptosis in human pancreatic cancer cells induced by eicosapentaenoic acid. Nutrition 2006; 21:1010-7. [PMID: 16157238 DOI: 10.1016/j.nut.2004.12.013] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2004] [Accepted: 12/03/2004] [Indexed: 12/29/2022]
Abstract
OBJECTIVES Clinical studies have shown that administration of eicosapentaenoic acid (EPA) to patients who have unresectable pancreatic cancer induces marked attenuation of cachexia. However, the exact mechanisms of the beneficial effect of EPA on pancreatic cancer are unknown. This examined the effect of EPA on proliferation of human pancreatic cancer cell lines and sought to clarify its mechanisms. METHODS The effects of EPA on proliferation of three human pancreatic cancer cell lines (SW1990, AsPC-1, and PANC-1) were assessed. Induction of apoptosis and expressions of apoptosis-related proteins were measured. The effect of EPA on cyclo-oxygenase-2 expression in these cell lines was determined. RESULTS EPA inhibited proliferation of all three human pancreatic cancer cell lines in a dose-dependent fashion. Simultaneously, EPA treatment induced apoptosis and this was associated with caspase-3 activation. EPA treatment was also associated with a decrease in intracellular levels of cyclo-oxygenase-2 protein. CONCLUSION We have demonstrated that EPA inhibits human pancreatic cancer cell growth due at least in part to the induction of apoptotic cell death. Such apoptosis is associated with activation of caspase-3 and suppression of cyclo-oxygenase-2 expression. Greater understanding of the molecular events associated with the biological activity of EPA should enhance the therapeutic potential of administration of EPA to patients who have pancreatic cancer.
Collapse
Affiliation(s)
- Tetsuya Shirota
- Department of Surgery, Kinki University School of Medicine, Osaka, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Sanz Sampelayo MR, Fernández Navarro JR, Hermoso R, Gil Extremera F, Rodríguez Osorio M. Thermogenesis associated to the intake of a diet non-supplemented or supplemented with n-3 polyunsaturated fatty acid-rich fat, determined in rats receiving the same quantity of metabolizable energy. ANNALS OF NUTRITION AND METABOLISM 2006; 50:184-92. [PMID: 16407644 DOI: 10.1159/000090739] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2005] [Accepted: 09/08/2005] [Indexed: 11/19/2022]
Abstract
The beneficial effects of n-3 polyunsaturated fatty acids (PUFA) are well known, but their consumption in western countries is chronically insufficient, and so it is recommended that diets should be supplemented with a fat rich in these fatty acids. However, the effect of such diets on the energy expenditure remains a controversial question. Precise data concerning the effect of using under the same metabolizable energy intake, a diet non-supplemented or supplemented with a fat rich in n-3 PUFA are not available. This type of information was obtained using rats at weaning fed a diet supplemented or non-supplemented with 10% of fish oil. Between the 30th and 60th day after starting the experiment, the energy and protein balance was established by means of the comparative slaughter method. The blood levels of different metabolites were also determined. Although total thermogenesis did not vary between the two groups, consumption of the fish oil diet led to a lower level of thermogenesis associated with the oxidation of protein, and a higher one of that associated with the oxidation of fat. We conclude that the thermic effect of feeding is a combination of independent processes. Due to their specific metabolism, n-3 PUFA may be considered essential compounds to maintain the energy balance.
Collapse
Affiliation(s)
- M R Sanz Sampelayo
- Consejo Superior de Investigaciones Científicas, Estación Experimental del Zaidín, Unidad de Nutrición Animal, Granada, Spain.
| | | | | | | | | |
Collapse
|
17
|
Ibrahim A, Rajkumar L, Acharya V. Dietary (n-3) long chain polyunsaturated fatty acids prevent sucrose-induced insulin resistance in rats. J Nutr 2005; 135:2634-8. [PMID: 16253960 DOI: 10.1093/jn/135.11.2634] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
This study was designed to determine the effect of substituting (n-3) long-chain PUFAs (LCPUFAs) for linoleic acid and hence decreasing the (n-6):(n-3) fatty acid ratio on sucrose-induced insulin resistance in rats. Weanling male Wistar rats were fed casein-based diets containing 100 g/kg fat for 12 wk. Insulin resistance was induced by replacing starch (ST) with sucrose (SU). The dietary fats were formulated with groundnut oil, palmolein, and fish oil to provide the following ratios of (n-6):(n-3) fatty acids: 210 (ST-210, SU-210), 50 (SU-50), 10 (SU-10), and 5 (SU-5). Compared with starch (ST-210), sucrose feeding (SU-210) significantly increased the plasma insulin and triglyceride concentrations and the plasma insulin area under the curve (AUC) in response to an oral glucose load. Adipocytes isolated from rats fed SU-210 had greater lipolytic rate, lower insulin stimulated glucose transport, and lower insulin-mediated antilipolysis than those from rats fed ST-210. Decreasing the dietary (n-6):(n-3) ratio in sucrose-fed rats (SU-10 and SU-5) normalized the plasma insulin concentration and the AUC of insulin after a glucose load. The sucrose-induced increase in plasma triglyceride concentration was normalized in rats fed SU-50, SU-10 and SU-5. Further, sucrose-induced alterations in adipocyte lipolysis and antilipolysis were partially reversed and glucose transport improved in rats fed diets SU-5 and SU-10. In diaphragm phospholipids, decreasing the (n-6):(n-3) ratio in the diet increased the concentration of (n-3) LCPUFAs with concomitant decreases in the concentration of (n-6) LCPUFAs. These results suggest that (n-3) LCPUFAs at a level of 2.6 g/kg diet [0.56% energy (n-3) LCPUFAs, (n-6):(n-3) ratio = 10] may prevent sucrose-induced insulin resistance by improving peripheral insulin sensitivity.
Collapse
|
18
|
Pérez-Matute P, Marti A, Martínez JA, Fernández-Otero MP, Stanhope KL, Havel PJ, Moreno-Aliaga MJ. Eicosapentaenoic fatty acid increases leptin secretion from primary cultured rat adipocytes: role of glucose metabolism. Am J Physiol Regul Integr Comp Physiol 2005; 288:R1682-8. [PMID: 15650121 DOI: 10.1152/ajpregu.00727.2004] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Eicosapentaenoic acid (EPA), one of the n-3 polyunsaturated fatty acids, has been shown to stimulate leptin mRNA expression and secretion in 3T3-L1 cells. However, other studies have reported inhibitory effects of EPA on leptin expression and secretion in vivo and in vitro. To determine the direct effects of EPA on basal and insulin-stimulated leptin secretion, isolated rat adipocytes were incubated with EPA in the absence and presence of insulin. EPA (10, 100, and 200 μM) increased basal leptin gene expression and secretion (+43.8%, P < 0.05; +71.1%, P < 0.01; and +73.7%, P < 0.01, respectively). EPA also increased leptin secretion in the presence of 1.6 nM insulin; however, the effect was less pronounced than in the absence of it. Because adipocyte glucose and lipid metabolism are involved in the regulation of leptin production, the metabolic effects of this fatty acid were also examined. EPA (200 μM) increased basal glucose uptake in isolated adipocytes (+50%, P < 0.05). Anaerobic metabolism of glucose, as assessed by lactate production and proportion of glucose metabolized to lactate, has been shown to be inversely correlated to leptin secretion and was decreased by EPA in both the absence and presence of insulin. EPA increased basal glucose oxidation as determined by the proportion of14C-labeled glucose metabolized to CO2. Lipogenesis (14C-labeled glucose incorporation into triglyceride) was decreased by EPA in the absence of insulin, whereas lipolysis (glycerol release) was unaffected. The EPA-induced increase of basal leptin secretion was highly correlated with increased glucose utilization ( r = +0.89, P < 0.01) and inversely related to the anaerobic glucose metabolism to lactate. EPA’s effect on insulin-stimulated leptin secretion was not related to increased glucose utilization but was inversely correlated with anaerobic glucose metabolism to lactate ( r = −0.84, P < 0.01). Together, the results suggest that EPA, like insulin, stimulates leptin production by increasing the nonanaerobic/oxidative metabolism of glucose.
Collapse
Affiliation(s)
- Patricia Pérez-Matute
- Department of Physiology and Nutrition, University of Navarra, 31008 Pamplona, Spain
| | | | | | | | | | | | | |
Collapse
|
19
|
Madsen L, Petersen RK, Kristiansen K. Regulation of adipocyte differentiation and function by polyunsaturated fatty acids. Biochim Biophys Acta Mol Basis Dis 2005; 1740:266-86. [PMID: 15949694 DOI: 10.1016/j.bbadis.2005.03.001] [Citation(s) in RCA: 186] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2004] [Revised: 02/23/2005] [Accepted: 03/02/2005] [Indexed: 12/11/2022]
Abstract
A diet enriched in PUFAs, in particular of the n-3 family, decreases adipose tissue mass and suppresses development of obesity in rodents. Although several nuclear hormone receptors are identified as PUFA targets, the precise molecular mechanisms underlying the effects of PUFAs still remain to be elucidated. Here we review research aimed at elucidating molecular mechanisms governing the effects of PUFAs on the differentiation and function of white fat cells. This review focuses on dietary PUFAs as signaling molecules, with special emphasis on agonistic and antagonistic effects on transcription factors currently implicated as key players in adipocyte differentiation and function, including peroxisome proliferator activated receptors (PPARs) (alpha, beta and gamma), sterol regulatory element binding proteins (SREBPs) and liver X receptors (LXRs). We review evidence that dietary n-3 PUFAs decrease adipose tissue mass and suppress the development of obesity in rodents by targeting a set of key regulatory transcription factors involved in both adipogensis and lipid homeostasis in mature adipocytes. The same set of factors are targeted by PUFAs of the n-6 family, but the cellular/physiological responses are dependent on the experimental setting as n-6 PUFAs may exert either an anti- or a proadipogenic effect. Feeding status and hormonal background may therefore be of particular importance in determining the physiological effects of PUFAs of the n-6 family.
Collapse
Affiliation(s)
- Lise Madsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | | | | |
Collapse
|
20
|
Abstract
Fatty acids (FA) regulate the expression of genes involved in lipid and energy metabolism. In particular, two transcription factors, sterol regulatory element binding protein-1c (SREBP-1c) and peroxisome proliferator activated receptor alpha (PPARalpha), have emerged as key mediators of gene regulation by FA. SREBP-1c induces a set of lipogenic enzymes in liver. Polyunsaturated fatty acids (PUFA), but not saturated or monounsaturated FA, suppress the induction of lipogenic genes by inhibiting the expression and processing of SREBP-1c. This unique effect of PUFA suggests that SREBP-1c may regulate the synthesis of unsaturated FA for incorporation into glycerolipids and cholesteryl esters. PPARalpha plays an essential role in metabolic adaptation to fasting by inducing the genes for mitochondrial and peroxisomal FA oxidation as well as those for ketogenesis in mitochondria. FA released from adipose tissue during fasting are considered as ligands of PPARalpha. Dietary PUFA, except for 18:2 n-6, are likely to induce FA oxidation enzymes via PPARalpha as a "feed-forward " mechanism. PPARalpha is also required for regulating the synthesis of highly unsaturated FA, indicating pleiotropic functions of PPARalpha in the regulation of lipid metabolic pathways. It is yet to be determined whether FA regulate other transcription factors such as liver-X receptor, hepatocyte nuclear factor 4, and carbohydrate response element binding protein.
Collapse
Affiliation(s)
- Manabu T Nakamura
- Department of Food Science and Human Nutrition and Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.
| | | | | | | |
Collapse
|
21
|
Larsson SC, Kumlin M, Ingelman-Sundberg M, Wolk A. Dietary long-chain n-3 fatty acids for the prevention of cancer: a review of potential mechanisms. Am J Clin Nutr 2004; 79:935-45. [PMID: 15159222 DOI: 10.1093/ajcn/79.6.935] [Citation(s) in RCA: 636] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Increasing evidence from animal and in vitro studies indicates that n-3 fatty acids, especially the long-chain polyunsaturated fatty acids eicosapentaenoic acid and docosahexaenoic acid, present in fatty fish and fish oils inhibit carcinogenesis. The epidemiologic data on the association between fish consumption, as a surrogate marker for n-3 fatty acid intake, and cancer risk are, however, somewhat less consistent. This review highlights current knowledge of the potential mechanisms of the anticarcinogenic actions of n-3 fatty acids. Moreover, a possible explanation of why some epidemiologic studies failed to find an association between n-3 fatty acid intake and cancer risk is provided. Several molecular mechanisms whereby n-3 fatty acids may modify the carcinogenic process have been proposed. These include suppression of arachidonic acid-derived eicosanoid biosynthesis; influences on transcription factor activity, gene expression, and signal transduction pathways; alteration of estrogen metabolism; increased or decreased production of free radicals and reactive oxygen species; and mechanisms involving insulin sensitivity and membrane fluidity. Further studies are needed to evaluate and verify these mechanisms in humans to gain more understanding of the effects of n-3 fatty acid intake on cancer risk.
Collapse
Affiliation(s)
- Susanna C Larsson
- Division of Nutritional Epidemiology, The National Institute of Environmental Medicine, Karolinska Institutet, Stockholm.
| | | | | | | |
Collapse
|
22
|
Chi TY, Chen GG, Lai PBS. Eicosapentaenoic Acid Induces Fas-Mediated Apoptosis Through a p53-Dependent Pathway in Hepatoma Cells. Cancer J 2004; 10:190-200. [PMID: 15285929 DOI: 10.1097/00130404-200405000-00009] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Eicosapentaenoic acid (EPA) has been demonstrated to induce apoptosis and cell cycle arrest in various cancer cell lines in vitro. In this study, we investigated the anti-tumor effects of EPA on hepatoma cell lines and the mechanisms responsible for induced cell death. Three hepatoma cell lines tested had different p53 status: HepG2 with a wild-type p53; Hep3B, of which the endogenous p53 was deleted; and Huh7 with its p53 mutated. MTT assay showed reduced viability of HepG2 cells after exposure to EPA, and the cytotoxicity of EPA was time and dose dependent. However, EPA had no effect on the viability and cell death in the two other hepatoma cell lines containing dysfunctional p53. DNA fragmentation analysis and TUNEL (terminal deoxynucleotidyl transferase [TdT]-mediated deoxyuridine diphosphate [dUTP] nick end labeling) staining showed a typical pattern of DNA laddering and DNA breaks staining, respectively, in wild-type p53-containing HepG2 cells after EPA treatment. We also observed that EPA induced transient nuclear accumulation of P53 protein that subsequently up-regulated the expression of Fas messenger RNA and protein in HepG2 cells. In contrast, these findings were not observed in Hep3B and Huh7 cells exposed to EPA. Most notably, EPA-induced apoptosis in HepG2 cells could be reduced almost completely by treatment with FasL antisense oligonucleotides. We conclude that EPA inhibits the growth of HepG2 cells and mediates its effect, at least in part, via the Fas-mediated apoptosis. It appears that the effects of EPA on hepatoma cells are determined by the status of p53 and that wild-type p53 is a prerequisite for the anticancer effect of EPA.
Collapse
Affiliation(s)
- Tian-Yi Chi
- Department of Surgery, Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
| | | | | |
Collapse
|
23
|
Mattos R, Staples CR, Arteche A, Wiltbank MC, Diaz FJ, Jenkins TC, Thatcher WW. The Effects of Feeding Fish Oil on Uterine Secretion of PGF2α, Milk Composition, and Metabolic Status of Periparturient Holstein Cows. J Dairy Sci 2004; 87:921-32. [PMID: 15259226 DOI: 10.3168/jds.s0022-0302(04)73236-1] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The objectives were to determine the effect of dietary fish oil (FO) on uterine secretion of PGF2alpha, milk production, milk composition, and metabolic status during the periparturient period. Holstein cows were assigned randomly to diets containing FO (n = 13) or olive oil (OO, n = 13). Cows were fed prepartum and postpartum diets that provided approximately 200 g/d from 21 d before the expected parturition until 21 d after parturition. The FO used contained 36% eicosapentaenoic acid (EPA, C20:5, n-3) and 28% docosahexaenoic acid (DHA, C22:6, n-3). Blood samples were obtained from 14 d before the due date until d 21 postpartum. A total of 6 FO and 8 OO cows without periparturient disorders were used in the statistical analyses of PGF2alpha-metabolite (PGFM) and metabolite concentrations. Length of prepartum feeding with OO or FO did not differ. Proportions of individual and total n-3 fatty acids were increased in caruncular tissue and milk of cows fed FO. The combined concentrations of EPA and DHA in caruncular tissue were correlated positively with the number of days supplemented with FO. Cows fed FO had reduced concentrations of plasma PGFM during the 60 h immediately after parturition compared with cows fed OO. Concentrations of prostaglandin H synthase-2 mRNA and protein in caruncular tissue were unaffected by diet. Production of milk and FCM were similar between cows fed the two oil diets. However, cows fed FO produced less milk fat. Feeding FO reduced plasma concentrations of glucose. Dietary fatty acids given during the periparturient period can reduce the uterine secretion of PGF2alpha in lactating dairy cows and alter the fatty acid profile of milk fat.
Collapse
Affiliation(s)
- R Mattos
- Department of Animal Sciences, University of Florida, Gainesville 32611-0920, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Suzuki T, Fukuo K, Suhara T, Yasuda O, Sato N, Takemura Y, Tsubakimoto M, Ogihara T. Eicosapentaenoic acid protects endothelial cells against anoikis through restoration of cFLIP. Hypertension 2003; 42:342-8. [PMID: 12874095 DOI: 10.1161/01.hyp.0000084602.06114.ad] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Dietary supplementation with eicosapentaenoic acid (EPA) improves the prognosis of chronic inflammatory diseases, including atherosclerosis. The mechanism underlying these beneficial effects, however, remains to be elucidated. Here we show that EPA protects endothelial cells from anoikis through upregulation of the cellular FLICE (Fas-associating protein with death domain-like interleukin-1-converting enzyme)-inhibitory protein (cFLIP), an endogenous inhibitor of caspase-8. EPA-induced upregulation of cFLIP expression was partially suppressed by the phosphatidylinositol-3-kinase inhibitor wortmannin. Conversely, treatment with insulinlike growth factor-1 (IGF-1), an activator of phosphatidylinositol-3-kinase/Akt signaling, or infection with an adenoviral construct expressing the constitutively active Akt gene induced upregulation of cFLIP expression. In addition, pretreatment of endothelial cells with either EPA or IGF-1 protected them from anoikis, suggesting that EPA-induced protection against anoikis is partially mediated through activation of Akt. On the other hand, when endothelial cells were already detached, treatment of these cells with EPA but not with IGF-1 protected them against anoikis. Importantly, EPA restored cFLIP expression without activating Akt signaling in detached endothelial cells, whereas IGF-1 had no effect. Additionally, exogenously restored expression of cFLIP by the tetracycline-regulated adenovirus system protected endothelial cells against anoikis. Furthermore, EPA was protective against the loss of endothelium in an organ culture of rat aortas. These findings suggest that EPA protects against endothelial cell anoikis through restoration of cFLIP expression, which might contribute to the mechanism underlying the beneficial effects of EPA in patients with hypertension.
Collapse
Affiliation(s)
- Takashi Suzuki
- Department of Geriatric Medicine, Osaka University Medical School, Suita, Osaka, Japan
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Chen H, Li D, Chen J, Roberts GJ, Saldeen T, Mehta JL. EPA and DHA attenuate ox-LDL-induced expression of adhesion molecules in human coronary artery endothelial cells via protein kinase B pathway. J Mol Cell Cardiol 2003; 35:769-75. [PMID: 12818567 DOI: 10.1016/s0022-2828(03)00120-2] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Uptake of oxidized low-density lipoprotein (ox-LDL) by endothelial cells is a critical step for the initiation and development of atherosclerosis. Adhesion molecules are inflammatory makers, which are upregulated by ox-LDL and play a pivotal role in atherogenesis. A number of studies suggest that fish and its constituents can reduce inflammation and decrease atherosclerosis. We hypothesized that fish oil constituents namely docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) may reduce expression of adhesion molecules induced by ox-LDL. Cultured human coronary artery endothelial cells (HCAECs) were incubated with ox-LDL for 24 h. Parallel groups of cells were pretreated with DHA or EPA (10 or 50 microM) overnight before incubation with ox-LDL. Ox-LDL markedly increased the expression of P-selectin and intracellular adhesion molecule-1 (ICAM-1) (both protein and mRNA) in HCAECs, and enhanced the adhesion of monocytes to the cultured HCAECs. Both EPA and DHA decreased ox-LDL-induced upregulation of expression of P-selectin and ICAM-1, and the enhanced adhesion of monocytes to HCAECs. To determine the role of protein kinase B (PKB) as an intracellular-signaling pathway, HCAECs were treated with the PKB upstream inhibitor wortmannin (100 nM) or transfected with plasmids encoding dominant-negative mutants of PKB (PKB-DN) before treatment with DHA. Ox-LDL alone downregulated the activity of PKB; DHA attenuated this effect of ox-LDL, and both wortmannin and PKB-DN blocked the effect of DHA. The present study in human coronary endothelial cells suggests that both EPA and DHA attenuate ox-LDL-induced expression of adhesion molecules, and the adhesion of monocytes to HCAECs by modulation of PKB activation. These effects may be important mechanisms of anti-atherosclerotic effects of fish and fish oils.
Collapse
Affiliation(s)
- Hongjiang Chen
- Department of Medicine and Physiology and Biophysics, University of Arkansas for Medical Sciences and Central Arkansas Veterans Health Care System, Little Rock, AR 72205, USA
| | | | | | | | | | | |
Collapse
|