1
|
Sordo-Bahamonde C, Lorenzo-Herrero S, Payer ÁR, Gonzalez S, López-Soto A. Mechanisms of Apoptosis Resistance to NK Cell-Mediated Cytotoxicity in Cancer. Int J Mol Sci 2020; 21:ijms21103726. [PMID: 32466293 PMCID: PMC7279491 DOI: 10.3390/ijms21103726] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/20/2020] [Accepted: 05/22/2020] [Indexed: 12/14/2022] Open
Abstract
Natural killer (NK) cells are major contributors to immunosurveillance and control of tumor development by inducing apoptosis of malignant cells. Among the main mechanisms involved in NK cell-mediated cytotoxicity, the death receptor pathway and the release of granules containing perforin/granzymes stand out due to their efficacy in eliminating tumor cells. However, accumulated evidence suggest a profound immune suppression in the context of tumor progression affecting effector cells, such as NK cells, leading to decreased cytotoxicity. This diminished capability, together with the development of resistance to apoptosis by cancer cells, favor the loss of immunogenicity and promote immunosuppression, thus partially inducing NK cell-mediated killing resistance. Altered expression patterns of pro- and anti-apoptotic proteins along with genetic background comprise the main mechanisms of resistance to NK cell-related apoptosis. Herein, we summarize the main effector cytotoxic mechanisms against tumor cells, as well as the major resistance strategies acquired by tumor cells that hamper the extrinsic and intrinsic apoptotic pathways related to NK cell-mediated killing.
Collapse
Affiliation(s)
- Christian Sordo-Bahamonde
- Department of Functional Biology, Immunology, University of Oviedo, 33006 Oviedo, Spain; (S.L.-H.); (S.G.)
- Instituto Universitario de Oncología del Principado de Asturias, IUOPA, 33006 Oviedo, Spain;
- Instituto de Investigación Biosanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Correspondence: (C.S.-B.); (A.L.-S.)
| | - Seila Lorenzo-Herrero
- Department of Functional Biology, Immunology, University of Oviedo, 33006 Oviedo, Spain; (S.L.-H.); (S.G.)
- Instituto Universitario de Oncología del Principado de Asturias, IUOPA, 33006 Oviedo, Spain;
- Instituto de Investigación Biosanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Ángel R. Payer
- Instituto Universitario de Oncología del Principado de Asturias, IUOPA, 33006 Oviedo, Spain;
- Instituto de Investigación Biosanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Department of Hematology, Hospital Universitario Central de Asturias (HUCA), 33011 Oviedo, Spain
| | - Segundo Gonzalez
- Department of Functional Biology, Immunology, University of Oviedo, 33006 Oviedo, Spain; (S.L.-H.); (S.G.)
- Instituto Universitario de Oncología del Principado de Asturias, IUOPA, 33006 Oviedo, Spain;
- Instituto de Investigación Biosanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Alejandro López-Soto
- Instituto Universitario de Oncología del Principado de Asturias, IUOPA, 33006 Oviedo, Spain;
- Instituto de Investigación Biosanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Department of Biochemistry and Molecular Biology, University of Oviedo, 33006 Oviedo, Spain
- Correspondence: (C.S.-B.); (A.L.-S.)
| |
Collapse
|
2
|
Mert U, Adawy A, Scharff E, Teichmann P, Willms A, Haselmann V, Colmorgen C, Lemke J, von Karstedt S, Fritsch J, Trauzold A. TRAIL Induces Nuclear Translocation and Chromatin Localization of TRAIL Death Receptors. Cancers (Basel) 2019; 11:cancers11081167. [PMID: 31416165 PMCID: PMC6721811 DOI: 10.3390/cancers11081167] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 08/08/2019] [Indexed: 01/09/2023] Open
Abstract
Binding of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) to the plasma membrane TRAIL-R1/-R2 selectively kills tumor cells. This discovery led to evaluation of TRAIL-R1/-R2 as targets for anti-cancer therapy, yet the corresponding clinical trials were disappointing. Meanwhile, it emerged that many cancer cells are TRAIL-resistant and that TRAIL-R1/-R2-triggering may lead to tumor-promoting effects. Intriguingly, recent studies uncovered specific functions of long ignored intracellular TRAIL-R1/-R2, with tumor-promoting functions of nuclear (n)TRAIL-R2 as the regulator of let-7-maturation. As nuclear trafficking of TRAIL-Rs is not well understood, we addressed this issue in our present study. Cell surface biotinylation and tracking of biotinylated proteins in intracellular compartments revealed that nTRAIL-Rs originate from the plasma membrane. Nuclear TRAIL-Rs-trafficking is a fast process, requiring clathrin-dependent endocytosis and it is TRAIL-dependent. Immunoprecipitation and immunofluorescence approaches revealed an interaction of nTRAIL-R2 with the nucleo-cytoplasmic shuttle protein Exportin-1/CRM-1. Mutation of a putative nuclear export sequence (NES) in TRAIL-R2 or the inhibition of CRM-1 by Leptomycin-B resulted in the nuclear accumulation of TRAIL-R2. In addition, TRAIL-R1 and TRAIL-R2 constitutively localize to chromatin, which is strongly enhanced by TRAIL-treatment. Our data highlight the novel role for surface-activated TRAIL-Rs by direct trafficking and signaling into the nucleus, a previously unknown signaling principle for cell surface receptors that belong to the TNF-superfamily.
Collapse
Affiliation(s)
- Ufuk Mert
- Institute for Experimental Cancer Research, University of Kiel, 24105 Kiel, Germany
| | - Alshaimaa Adawy
- Institute for Experimental Cancer Research, University of Kiel, 24105 Kiel, Germany
| | - Elisabeth Scharff
- Institute for Experimental Cancer Research, University of Kiel, 24105 Kiel, Germany
| | - Pierre Teichmann
- Institute for Experimental Cancer Research, University of Kiel, 24105 Kiel, Germany
| | - Anna Willms
- Institute for Experimental Cancer Research, University of Kiel, 24105 Kiel, Germany
| | - Verena Haselmann
- Department of Clinical Chemistry, University Medical Centre, Ruprecht-Karls University of Heidelberg, 68167 Mannheim, Germany
| | - Cynthia Colmorgen
- Institute for Experimental Cancer Research, University of Kiel, 24105 Kiel, Germany
| | - Johannes Lemke
- Department of General and Visceral Surgery, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| | - Silvia von Karstedt
- Department of Translational Genomics, Medical Faculty, University of Cologne, 50931 Cologne, Germany
- CECAD Research Center, Medical Faculty, University of Cologne, 50931 Cologne, Germany
| | - Jürgen Fritsch
- Department of Infection Prevention and Infectious Diseases, University of Regensburg, 93053 Regensburg, Germany
| | - Anna Trauzold
- Institute for Experimental Cancer Research, University of Kiel, 24105 Kiel, Germany.
| |
Collapse
|
3
|
Ralff MD, El-Deiry WS. TRAIL pathway targeting therapeutics. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2018; 3:197-204. [PMID: 30740527 DOI: 10.1080/23808993.2018.1476062] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Introduction Despite decades of focused research efforts, cancer remains a significant cause of morbidity and mortality. Tumor necrosis factor(TNF)-related apoptosis-inducing ligand (TRAIL) is capable of inducing cell death selectively in cancer cells while sparing normal cells. Areas covered In this review, the authors cover TRA therapy and strategies that have been undertaken to improve their efficacy, as well as unconventional approaches to TRAIL pathway activation including TRAIL-inducing small molecules. They also discuss mechanisms of resistance to TRAIL and the use of combination strategies to overcome it. Expert commentary Targeting the TRAIL pathway has been of interest in oncology, and although initial clinical trials of TRAIL receptor agonists (TRAs) showed limitations, novel approaches represent the future of TRAIL-based therapy.
Collapse
Affiliation(s)
- Marie D Ralff
- MD/PhD Program, Lewis Katz School of Medicine, Temple University, Philadelphia, PA.,Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Department of Hematology/Oncology and Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA
| | - Wafik S El-Deiry
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Department of Hematology/Oncology and Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA
| |
Collapse
|
4
|
Fancy RM, Kim H, Napier T, Buchsbaum DJ, Zinn KR, Song Y. Calmodulin antagonist enhances DR5-mediated apoptotic signaling in TRA-8 resistant triple negative breast cancer cells. J Cell Biochem 2018; 119:6216-6230. [PMID: 29663486 DOI: 10.1002/jcb.26848] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 03/09/2018] [Indexed: 01/25/2023]
Abstract
Patients with triple negative breast cancer (TNBC) have no successful "targeted" treatment modality, which represents a priority for novel therapy strategies. Upregulated death receptor 5 (DR5) expression levels in breast cancer cells compared to normal cells enable TRA-8, a DR5 specific agonistic antibody, to specifically target malignant cells for apoptosis without inducing normal hepatocyte apoptosis. Drug resistance is a common obstacle in TRAIL-based therapy for TNBC. Calmodulin (CaM) is overexpressed in breast cancer. In this study, we characterized the novel function of CaM antagonist in enhancing TRA-8 induced cytotoxicity in TRA-8 resistant TNBC cells and its underlying molecular mechanisms. Results demonstrated that CaM antagonist(s) enhanced TRA-8 induced cytotoxicity in a concentration and time-dependent manner for TRA-8 resistant TNBC cells. CaM directly bound to DR5 in a Ca2+ dependent manner, and CaM siRNA promoted DR5 recruitment of FADD and caspase-8 for DISC formation and TRA-8 activated caspase cleavage for apoptosis in TRA-8 resistant TNBC cells. CaM antagonist, trifluoperazine, enhanced TRA-8 activated DR5 oligomerization, DR5-mediated DISC formation, and TRA-8 activated caspase cleavage for apoptosis, and decreased anti-apoptotic pERK, pAKT, XIAP, and cIAP-1 expression in TRA-8 resistant TNBC cells. These results suggest that CaM could be a key regulator to mediate DR5-mediated apoptotic signaling, and suggests a potential strategy for using CaM antagonists to overcome drug resistance of TRAIL-based therapy for TRA-8 resistant TNBC.
Collapse
Affiliation(s)
- Romone M Fancy
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, Alabama
| | - Harrison Kim
- Department of Radiology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Tiara Napier
- Hospital, University of Alabama at Birmingham, Birmingham, Alabama
| | - Donald J Buchsbaum
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Kurt R Zinn
- Department of Radiology, University of Alabama at Birmingham, Birmingham, Alabama.,Department of Radiology and Biomedical Engineering, Michigan State University, East Lansing, Michigan
| | - Yuhua Song
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
5
|
Belkahla H, Herlem G, Picaud F, Gharbi T, Hémadi M, Ammar S, Micheau O. TRAIL-NP hybrids for cancer therapy: a review. NANOSCALE 2017; 9:5755-5768. [PMID: 28443893 DOI: 10.1039/c7nr01469d] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Cancer is a worldwide health problem. It is now considered as a leading cause of morbidity and mortality in developed countries. In the last few decades, considerable progress has been made in anti-cancer therapies, allowing the cure of patients suffering from this disease, or at least helping to prolong their lives. Several cancers, such as those of the lung and pancreas, are still devastating in the absence of therapeutic options. In the early 90s, TRAIL (Tumor Necrosis Factor-related apoptosis-inducing ligand), a cytokine belonging to the TNF superfamily, attracted major interest in oncology owing to its selective anti-tumor properties. Clinical trials using soluble TRAIL or antibodies targeting the two main agonist receptors (TRAIL-R1 and TRAIL-R2) have, however, failed to demonstrate their efficacy in the clinic. TRAIL is expressed on the surface of natural killer or CD8+ T activated cells and contributes to tumor surveillance. Nanoparticles functionalized with TRAIL mimic membrane-TRAIL and exhibit stronger antitumoral properties than soluble TRAIL or TRAIL receptor agonist antibodies. This review provides an update on the association and the use of nanoparticles associated with TRAIL for cancer therapy.
Collapse
Affiliation(s)
- H Belkahla
- Nanomedicine Lab, EA 4662, Université de Bourgogne Franche-Comté, Besançon, France
| | | | | | | | | | | | | |
Collapse
|
6
|
Fancy RM, Kim H, Zhou T, Zinn KR, Buchsbaum DJ, Song Y. Calmodulin Binding to Death Receptor 5-mediated Death-Inducing Signaling Complex in Breast Cancer Cells. J Cell Biochem 2017; 118:2285-2294. [PMID: 28092099 DOI: 10.1002/jcb.25882] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 12/16/2016] [Indexed: 01/01/2023]
Abstract
Activation of death receptor-5 (DR5) leads to the formation of death-inducing signaling complex (DISC) for apoptotic signaling. TRA-8, a DR5 specific agonistic antibody, has demonstrated significant cytotoxic activity in vitro and in vivo without inducing hepatotoxicity. Calmodulin (CaM) that is overexpressed in breast cancer plays a critical role in regulating DR5-mediated apoptosis. However, the mechanism of CaM in regulating DR5-mediated apoptotic signaling remains unknown. In this study, we characterized CaM binding to DR5-mediated DISC for apoptosis in TRA-8 sensitive breast cancer cell lines using co-immunoprecipitation, fluorescence microscopic imaging, caspase signaling analysis, and cell viability assay. Results show that upon DR5 activation, CaM was recruited into DR5-mediated DISC in a calcium dependent manner. CaM antagonist, trifluoperazine (TFP), inhibited CaM recruitment into the DISC and attenuated DISC formation. DR5 oligomerization is critical for DISC formation for apoptosis. TFP decreased TRA-8 activated DR5 oligomerization, which was consistent with TFP's effect on DR5-mediated DISC formation. TFP and Ca2+ chelator, EGTA, impeded TRA-8-activated caspase-dependent apoptotic signaling, and TFP decreased TRA-8-induced cell cytotoxicity. These results demonstrated CaM binding to DR5-mediated DISC in a calcium dependent manner and may identify CaM as a key regulator of DR5-mediated DISC formation for apoptosis in breast cancer. J. Cell. Biochem. 118: 2285-2294, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Romone M Fancy
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham 35294, Alabama
| | - Harrison Kim
- Department of Radiology, The University of Alabama at Birmingham, Birmingham 35294, Alabama
| | - Tong Zhou
- Department of Medicine, The University of Alabama at Birmingham, Birmingham 35294, Alabama
| | - Kurt R Zinn
- Department of Radiology, The University of Alabama at Birmingham, Birmingham 35294, Alabama
| | - Donald J Buchsbaum
- Department of Radiation Oncology, The University of Alabama at Birmingham, Birmingham 35294, Alabama
| | - Yuhua Song
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham 35294, Alabama
| |
Collapse
|
7
|
Oh YT, Yue P, Wang D, Tong JS, Chen ZG, Khuri FR, Sun SY. Suppression of death receptor 5 enhances cancer cell invasion and metastasis through activation of caspase-8/TRAF2-mediated signaling. Oncotarget 2016; 6:41324-38. [PMID: 26510914 PMCID: PMC4747408 DOI: 10.18632/oncotarget.5847] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 09/22/2015] [Indexed: 01/03/2023] Open
Abstract
The role of death receptor 5 (DR5), a well-known cell surface pro-apoptotic protein, in the negative regulation of invasion and metastasis of human cancer cells and the underlying mechanisms are largely unknown and were hence the focus of this study. In this report, we have demonstrated that DR5 functions to suppress invasion and metastasis of human cancer cells, as evidenced by enhanced cancer cell invasion and metastasis upon genetic suppression of DR5 either by gene knockdown or knockout. When DR5 is suppressed, FADD and caspase-8 may recruit and stabilize TRAF2 to form a metastasis and invasion signaling complex, resulting in activation of ERK and JNK/AP-1 signaling that mediate the elevation and activation of matrix metalloproteinase-1 (MMP1) and eventual promotion of cancer invasion and metastasis. Our findings thus highlight a novel non-apoptotic function of DR5 as a suppressor of human cancer cell invasion and metastasis and suggest a basic working model elucidating the underlying biology.
Collapse
Affiliation(s)
- You-Take Oh
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, GA, USA
| | - Ping Yue
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, GA, USA
| | - Dongsheng Wang
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, GA, USA
| | - Jing-Shan Tong
- Department of Pharmacology and Chemical Biology, University of Pittsburgh Cancer Institute and School of Medicine, Pittsburgh, PA, USA
| | - Zhuo G Chen
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, GA, USA
| | - Fadlo R Khuri
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, GA, USA
| | - Shi-Yong Sun
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, GA, USA
| |
Collapse
|
8
|
Nathwani SM, Greene LM, Butini S, Campiani G, Williams DC, Samali A, Szegezdi E, Zisterer DM. The pyrrolo-1,5-benzoxazepine, PBOX-15, enhances TRAIL‑induced apoptosis by upregulation of DR5 and downregulation of core cell survival proteins in acute lymphoblastic leukaemia cells. Int J Oncol 2016; 49:74-88. [PMID: 27176505 PMCID: PMC4902072 DOI: 10.3892/ijo.2016.3518] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 03/08/2016] [Indexed: 01/01/2023] Open
Abstract
Apoptotic defects are frequently associated with poor outcome in pediatric acute lymphoblastic leukaemia (ALL) hence there is an ongoing demand for novel strategies that counteract apoptotic resistance. The death ligand TRAIL (tumour necrosis factor-related apoptosis-inducing ligand) and its selective tumour receptor system has attracted exceptional clinical interest. However, many malignancies including ALL are resistant to TRAIL monotherapy. Tumour resistance can be overcome by drug combination therapy. TRAIL and its agonist antibodies are currently undergoing phase II clinical trials with established chemotherapeutics. Herein, we present promising therapeutic benefits in combining TRAIL with the selective anti-leukaemic agents, the pyrrolo-1,5-benzoxazepines (PBOXs) for the treatment of ALL. PBOX-15 synergistically enhanced apoptosis induced by TRAIL and a DR5-selective TRAIL variant in ALL-derived cells. PBOX-15 enhanced TRAIL-induced apoptosis by dual activation of extrinsic and intrinsic apoptotic pathways. The specific caspase-8 inhibitor, Z-IETD-FMK, identified the extrinsic pathway as the principal mode of apoptosis. We demonstrate that PBOX-15 can enhance TRAIL-induced apoptosis by upregulation of DR5, reduction of cellular mitochondrial potential, activation of the caspase cascade and downregulation of PI3K/Akt, c-FLIP, Mcl-1 and IAP survival pathways. Of note, the PI3K pathway inhibitor LY-294002 significantly enhanced the apoptotic potential of TRAIL and PBOX-15 validating the importance of Akt downregulation in the TRAIL/PBOX-15 synergistic combination. Considering the lack of cytotoxicity to normal cells and ability to downregulate several survival pathways, PBOX-15 may represent an effective agent for use in combination with TRAIL for the treatment of ALL.
Collapse
Affiliation(s)
- Seema-Maria Nathwani
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Lisa M Greene
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Stefania Butini
- European Research Centre for Drug Discovery and Development, University of Siena, Siena, Italy
| | - Giuseppe Campiani
- European Research Centre for Drug Discovery and Development, University of Siena, Siena, Italy
| | - D Clive Williams
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Afshin Samali
- Apoptosis Research Centre, Bioscience Research Building, National University of Ireland, Galway, Ireland
| | - Eva Szegezdi
- Apoptosis Research Centre, Bioscience Research Building, National University of Ireland, Galway, Ireland
| | - Daniela M Zisterer
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
9
|
Fancy RM, Wang L, Zeng Q, Wang H, Zhou T, Buchsbaum DJ, Song Y. Characterization of the Interactions between Calmodulin and Death Receptor 5 in Triple-negative and Estrogen Receptor-positive Breast Cancer Cells: AN INTEGRATED EXPERIMENTAL AND COMPUTATIONAL STUDY. J Biol Chem 2016; 291:12862-12870. [PMID: 27129269 DOI: 10.1074/jbc.m116.727727] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Indexed: 01/26/2023] Open
Abstract
Activation of death receptor-5 (DR5) leads to the formation of death inducing signaling complex (DISC) for apoptotic signaling. Targeting DR5 to induce breast cancer apoptosis is a promising strategy to circumvent drug resistance and present a target for breast cancer treatment. Calmodulin (CaM) has been shown to regulate DR5-mediated apoptotic signaling, however, its mechanism remains unknown. In this study, we characterized CaM and DR5 interactions in breast cancer cells with integrated experimental and computational approaches. Results show that CaM directly binds to DR5 in a calcium dependent manner in breast cancer cells. The direct interaction of CaM with DR5 is localized at DR5 death domain. We have predicted and verified the CaM-binding site in DR5 being (354)WEPLMRKLGL(363) that is located at the α2 helix and the loop between α2 helix and α3 helix of DR5 DD. The residues of Trp-354, Arg-359, Glu-355, Leu-363, and Glu-367 in DR5 death domain that are important for DR5 recruitment of FADD and caspase-8 for DISC formation to signal apoptosis also play an important role for CaM-DR5 binding. The changed electrostatic potential distribution in the CaM-binding site in DR5 DD by the point mutations of W354A, E355K, R359A, L363N, or E367K in DR5 DD could directly contribute to the experimentally observed decreased CaM-DR5 binding by the point mutations of the key residues in DR5 DD. Results from this study provide a key step for the further investigation of the role of CaM-DR5 binding in DR5-mediated DISC formation for apoptosis in breast cancer cells.
Collapse
Affiliation(s)
| | | | | | | | | | - Donald J Buchsbaum
- Radiation Oncology, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Yuhua Song
- From the Departments of Biomedical Engineering,.
| |
Collapse
|
10
|
Yang H, Song Y. Structural Insight for Roles of DR5 Death Domain Mutations on Oligomerization of DR5 Death Domain-FADD Complex in the Death-Inducing Signaling Complex Formation: A Computational Study. J Mol Model 2016; 22:89. [PMID: 26995783 DOI: 10.1007/s00894-016-2941-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 02/22/2016] [Indexed: 12/14/2022]
Abstract
Death receptor 5 (DR5)-induced apoptosis that prioritizes the death of tumor cells has been proposed as one of the promising cancer therapies. In this process, oligomerized DR5 death domain (DD) binding to Fas-associated death domain (FADD) leads to FADD activating caspase-8, which marks the formation of the death-inducing signaling complex (DISC) that initiates apoptosis. DR5 DD mutations found in cancer cells have been suggested to play an important pathological role, the mechanism through which those mutants prevent the DR5-activated DISC formation is not clear yet. This study sought to provide structural and molecular insight for the roles of four selected DR5 DD mutations (E355K, E367K, K415N, and L363F) in the oligomerization of DR5 DD-FADD complex during the DISC formation. Results from the molecular dynamics simulations show that the simulated mutants induce conformational, dynamical motions and interactions changes in the DR5 DD-FADD tetramer complex, including changes in a protein's backbone flexibility, less exposure of FADD DED's caspase-8 binding site, reduced H-bonding and hydrophobic contacts at the DR5 DD-FADD DD binding, altered distribution of the electrostatic potentials and correlated motions of residues, and reduced binding affinity of DR5 DD binding to FADD. This study provides structural and molecular insight for the influence of DR5 DD mutations on oligomerization of DR5 DD-FADD complex, which is expected to foster understanding of the DR5 DD mutants' resistance mechanism against DR5-activated DISC formation.
Collapse
Affiliation(s)
- Hongyi Yang
- Department of Chemistry, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Yuhua Song
- Department of Biomedical Engineering, The University of Alabama at Birmingham, 803 Shelby Interdisciplinary Biomedical Research Building, 1825 University Boulevard, Birmingham, AL, 35294, USA.
| |
Collapse
|
11
|
Fritsche H, Heilmann T, Tower RJ, Hauser C, von Au A, El-Sheikh D, Campbell GM, Alp G, Schewe D, Hübner S, Tiwari S, Kownatzki D, Boretius S, Adam D, Jonat W, Becker T, Glüer CC, Zöller M, Kalthoff H, Schem C, Trauzold A. TRAIL-R2 promotes skeletal metastasis in a breast cancer xenograft mouse model. Oncotarget 2016; 6:9502-16. [PMID: 25909161 PMCID: PMC4496234 DOI: 10.18632/oncotarget.3321] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 02/09/2015] [Indexed: 12/13/2022] Open
Abstract
Despite improvements in detection, surgical approaches and systemic therapies, breast cancer remains typically incurable once distant metastases occur. High expression of TRAIL-R2 was found to be associated with poor prognostic parameters in breast cancer patients, suggesting an oncogenic function of this receptor. In the present study, we aimed to determine the impact of TRAIL-R2 on breast cancer metastasis. Using an osteotropic variant of MDA-MB-231 breast cancer cells, we examine the effects of TRAIL-R2 knockdown in vitro and in vivo. Strikingly, in addition to the reduced levels of the proliferation-promoting factor HMGA2 and corresponding inhibition of cell proliferation, knockdown of TRAIL-R2 increased the levels of E-Cadherin and decreased migration. In vivo, these cells were strongly impaired in their ability to form bone metastases after intracardiac injection. Evaluating possible underlying mechanisms revealed a strong downregulation of CXCR4, the receptor for the chemokine SDF-1 important for homing of cancers cells to the bone. In accordance, cell migration towards SDF-1 was significantly impaired by TRAIL-R2 knockdown. Conversely, overexpression of TRAIL-R2 upregulated CXCR4 levels and enhanced SDF-1-directed migration. We therefore postulate that inhibition of TRAIL-R2 expression could represent a promising therapeutic strategy leading to an effective impairment of breast cancer cell capability to form skeletal metastases.
Collapse
Affiliation(s)
- Hendrik Fritsche
- Division of Molecular Oncology, Institute for Experimental Cancer Research, CCC-North, University of Kiel, Kiel, Germany
| | - Thorsten Heilmann
- Division of Molecular Oncology, Institute for Experimental Cancer Research, CCC-North, University of Kiel, Kiel, Germany.,Department of Gynecology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Robert J Tower
- Section Biomedical Imaging, Department of Radiology and Neuroradiology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Charlotte Hauser
- Clinic for General Surgery, Visceral, Thoracic, Transplantation and Pediatric Surgery, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Anja von Au
- Department of Tumor Cell Biology, University Hospital of Surgery, Heidelberg, Germany
| | - Doaa El-Sheikh
- Division of Molecular Oncology, Institute for Experimental Cancer Research, CCC-North, University of Kiel, Kiel, Germany
| | - Graeme M Campbell
- Section Biomedical Imaging, Department of Radiology and Neuroradiology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Göhkan Alp
- Division of Molecular Oncology, Institute for Experimental Cancer Research, CCC-North, University of Kiel, Kiel, Germany
| | - Denis Schewe
- Department of General Pediatrics, ALL-BFM Study Group, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Sebastian Hübner
- Division of Molecular Oncology, Institute for Experimental Cancer Research, CCC-North, University of Kiel, Kiel, Germany
| | - Sanjay Tiwari
- Section Biomedical Imaging, Department of Radiology and Neuroradiology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Daniel Kownatzki
- Division of Molecular Oncology, Institute for Experimental Cancer Research, CCC-North, University of Kiel, Kiel, Germany
| | - Susann Boretius
- Section Biomedical Imaging, Department of Radiology and Neuroradiology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Dieter Adam
- Institute of Immunology, University of Kiel, Kiel, Germany
| | - Walter Jonat
- Department of Gynecology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Thomas Becker
- Clinic for General Surgery, Visceral, Thoracic, Transplantation and Pediatric Surgery, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Claus C Glüer
- Section Biomedical Imaging, Department of Radiology and Neuroradiology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Margot Zöller
- Department of Tumor Cell Biology, University Hospital of Surgery, Heidelberg, Germany
| | - Holger Kalthoff
- Division of Molecular Oncology, Institute for Experimental Cancer Research, CCC-North, University of Kiel, Kiel, Germany
| | - Christian Schem
- Department of Gynecology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Anna Trauzold
- Division of Molecular Oncology, Institute for Experimental Cancer Research, CCC-North, University of Kiel, Kiel, Germany.,Clinic for General Surgery, Visceral, Thoracic, Transplantation and Pediatric Surgery, University Hospital Schleswig-Holstein, Kiel, Germany
| |
Collapse
|
12
|
Reddy RB, Bhat AR, James BL, Govindan SV, Mathew R, DR R, Hedne N, Illiayaraja J, Kekatpure V, Khora SS, Hicks W, Tata P, Kuriakose MA, Suresh A. Meta-Analyses of Microarray Datasets Identifies ANO1 and FADD as Prognostic Markers of Head and Neck Cancer. PLoS One 2016; 11:e0147409. [PMID: 26808319 PMCID: PMC4726811 DOI: 10.1371/journal.pone.0147409] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 01/04/2016] [Indexed: 01/18/2023] Open
Abstract
The head and neck squamous cell carcinoma (HNSCC) transcriptome has been profiled extensively, nevertheless, identifying biomarkers that are clinically relevant and thereby with translational benefit, has been a major challenge. The objective of this study was to use a meta-analysis based approach to catalog candidate biomarkers with high potential for clinical application in HNSCC. Data from publically available microarray series (N = 20) profiled using Agilent (4X44K G4112F) and Affymetrix (HGU133A, U133A_2, U133Plus 2) platforms was downloaded and analyzed in a platform/chip-specific manner (GeneSpring software v12.5, Agilent, USA). Principal Component Analysis (PCA) and clustering analysis was carried out iteratively for segregating outliers; 140 normal and 277 tumor samples from 15 series were included in the final analysis. The analyses identified 181 differentially expressed, concordant and statistically significant genes; STRING analysis revealed interactions between 122 of them, with two major gene clusters connected by multiple nodes (MYC, FOS and HSPA4). Validation in the HNSCC-specific database (N = 528) in The Cancer Genome Atlas (TCGA) identified a panel (ECT2, ANO1, TP63, FADD, EXT1, NCBP2) that was altered in 30% of the samples. Validation in treatment naïve (Group I; N = 12) and post treatment (Group II; N = 12) patients identified 8 genes significantly associated with the disease (Area under curve>0.6). Correlation with recurrence/re-recurrence showed ANO1 had highest efficacy (sensitivity: 0.8, specificity: 0.6) to predict failure in Group I. UBE2V2, PLAC8, FADD and TTK showed high sensitivity (1.00) in Group I while UBE2V2 and CRYM were highly sensitive (>0.8) in predicting re-recurrence in Group II. Further, TCGA analysis showed that ANO1 and FADD, located at 11q13, were co-expressed at transcript level and significantly associated with overall and disease-free survival (p<0.05). The meta-analysis approach adopted in this study has identified candidate markers correlated with disease outcome in HNSCC; further validation in a larger cohort of patients will establish their clinical relevance.
Collapse
Affiliation(s)
- Ram Bhupal Reddy
- Integrated Head and Neck Oncology Program, Mazumdar Shaw Centre for Translational Research, Mazumdar Shaw Medical Centre, Narayana Health, Bangalore, Karnataka, India
- Head and Neck Oncology, Mazumdar Shaw Medical Centre, Narayana Health, Bangalore, Karnataka, India
- Division of Medical Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology University, Vellore, Tamil Nadu, India
| | - Anupama Rajan Bhat
- Strand Life Sciences, Kirloskar Business Park, Bangalore, Karnataka, India
| | - Bonney Lee James
- Integrated Head and Neck Oncology Program, Mazumdar Shaw Centre for Translational Research, Mazumdar Shaw Medical Centre, Narayana Health, Bangalore, Karnataka, India
- Head and Neck Oncology, Mazumdar Shaw Medical Centre, Narayana Health, Bangalore, Karnataka, India
| | | | - Rohit Mathew
- Integrated Head and Neck Oncology Program, Mazumdar Shaw Centre for Translational Research, Mazumdar Shaw Medical Centre, Narayana Health, Bangalore, Karnataka, India
| | - Ravindra DR
- Integrated Head and Neck Oncology Program, Mazumdar Shaw Centre for Translational Research, Mazumdar Shaw Medical Centre, Narayana Health, Bangalore, Karnataka, India
- Head and Neck Oncology, Mazumdar Shaw Medical Centre, Narayana Health, Bangalore, Karnataka, India
| | - Naveen Hedne
- Head and Neck Oncology, Mazumdar Shaw Medical Centre, Narayana Health, Bangalore, Karnataka, India
| | - Jeyaram Illiayaraja
- Department of Clinical Research, Mazumdar Shaw Medical Centre, Narayana Health, Bangalore, Karnataka, India
| | - Vikram Kekatpure
- Head and Neck Oncology, Mazumdar Shaw Medical Centre, Narayana Health, Bangalore, Karnataka, India
| | - Samanta S. Khora
- Division of Medical Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology University, Vellore, Tamil Nadu, India
| | - Wesley Hicks
- Department of Head and Neck/Plastic & Reconstructive Surgery, Roswell Park Cancer Institute, Buffalo, New York, United States of America
- Mazumdar Shaw Medical Centre-Roswell Park Collaboration Program, Roswell Park Cancer Institute, Buffalo, New York, United States of America
| | - Pramila Tata
- Strand Life Sciences, Kirloskar Business Park, Bangalore, Karnataka, India
| | - Moni A. Kuriakose
- Integrated Head and Neck Oncology Program, Mazumdar Shaw Centre for Translational Research, Mazumdar Shaw Medical Centre, Narayana Health, Bangalore, Karnataka, India
- Head and Neck Oncology, Mazumdar Shaw Medical Centre, Narayana Health, Bangalore, Karnataka, India
- Mazumdar Shaw Medical Centre-Roswell Park Collaboration Program, Roswell Park Cancer Institute, Buffalo, New York, United States of America
| | - Amritha Suresh
- Integrated Head and Neck Oncology Program, Mazumdar Shaw Centre for Translational Research, Mazumdar Shaw Medical Centre, Narayana Health, Bangalore, Karnataka, India
- Head and Neck Oncology, Mazumdar Shaw Medical Centre, Narayana Health, Bangalore, Karnataka, India
| |
Collapse
|
13
|
Wang H, Yang T, Wu X. 5-Fluorouracil preferentially sensitizes mutant KRAS non-small cell lung carcinoma cells to TRAIL-induced apoptosis. Mol Oncol 2015; 9:1815-24. [PMID: 26130327 DOI: 10.1016/j.molonc.2015.06.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 06/01/2015] [Accepted: 06/09/2015] [Indexed: 12/12/2022] Open
Abstract
Mutations in the KRAS gene are very common in non-small cell lung cancer (NSCLC), but effective therapies targeting KRAS have yet to be developed. Interest in tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), a potent inducer of cell death, has increased following the observation that TRAIL can selectively kill a wide variety of human cancer cells without killing normal cells both in vitro and in xenograft models. However, results from clinical trials of TRAIL-based therapy are disappointingly modest at best and many have demonstrated a lack of therapeutic benefit. Current research has focused on selecting a subpopulation of cancer patients who may benefit from TRAIL-based therapy and identifying best drugs to work with TRAIL. In the current study, we found that NSCLC cells with a KRAS mutation were highly sensitive to treatment with TRAIL and 5-fluorouracil (5FU). Compared with other chemotherapeutic agents, 5FU displayed the highest synergy with TRAIL in inducing apoptosis in mutant KRAS NSCLC cells. We also found that, on a mechanistic level, 5FU preferentially repressed survivin expression and induced expression of TRAIL death receptor 5 to sensitize NSCLC cells to TRAIL. The combination of low-dose 5FU and TRAIL strongly inhibited xenograft tumor growth in mice. Our results suggest that the combination of TRAIL and 5FU may be beneficial for patients with mutant KRAS NSCLC.
Collapse
Affiliation(s)
- Haizhen Wang
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, USA
| | - Tao Yang
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, USA
| | - Xiangwei Wu
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, USA.
| |
Collapse
|
14
|
Wang H, Davis JS, Wu X. Immunoglobulin Fc domain fusion to TRAIL significantly prolongs its plasma half-life and enhances its antitumor activity. Mol Cancer Ther 2014; 13:643-50. [PMID: 24431076 DOI: 10.1158/1535-7163.mct-13-0645] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
TRAIL (Apo2L) is a potent inducer of cell death. Interest in TRAIL has increased, following the observation that TRAIL can selectively kill a wide variety of human cancer cells without killing normal cells both in vitro and when grown as xenografts. Therefore, TRAIL has been proposed as a promising anticancer agent and currently is being tested in clinical trials. However, recombinant TRAIL has a very short plasma half-life, which limits its therapeutic potential. To overcome this limitation, we investigated the ability of the human IgG1 fragment crystallizable region (Fc) to enhance TRAIL stability. In this report, we show that Fc-TRAIL chimeric protein displays higher specific activity in vitro and a significantly longer half-life in mice than recombinant human TRAIL (rh-TRAIL). No short-term toxicity, especially liver toxicity, was observed. More importantly, Fc-TRAIL was much more effective in inhibiting tumor growth in a xenograft tumor model compared with rh-TRAIL. Our data suggest that fusion of Fc to TRAIL is able to improve the bioavailability and activity of TRAIL both in vitro and in vivo, and Fc-TRAIL may be explored for future clinical applications in cancer treatment and prevention.
Collapse
Affiliation(s)
- Haizhen Wang
- Corresponding Author: Xiangwei Wu, Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 1013, Houston, TX 77030.
| | | | | |
Collapse
|
15
|
Haselmann V, Kurz A, Bertsch U, Hübner S, Olempska-Müller M, Fritsch J, Häsler R, Pickl A, Fritsche H, Annewanter F, Engler C, Fleig B, Bernt A, Röder C, Schmidt H, Gelhaus C, Hauser C, Egberts JH, Heneweer C, Rohde AM, Böger C, Knippschild U, Röcken C, Adam D, Walczak H, Schütze S, Janssen O, Wulczyn FG, Wajant H, Kalthoff H, Trauzold A. Nuclear death receptor TRAIL-R2 inhibits maturation of let-7 and promotes proliferation of pancreatic and other tumor cells. Gastroenterology 2014; 146:278-90. [PMID: 24120475 DOI: 10.1053/j.gastro.2013.10.009] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 09/02/2013] [Accepted: 10/03/2013] [Indexed: 12/14/2022]
Abstract
BACKGROUND & AIMS Tumor necrosis factor-related apoptosis inducing ligand (TRAIL-R1) (TNFRSF10A) and TRAIL-R2 (TNFRSF10B) on the plasma membrane bind ligands that activate apoptotic and other signaling pathways. Cancer cells also might have TRAIL-R2 in the cytoplasm or nucleus, although little is known about its activities in these locations. We investigated the functions of nuclear TRAIL-R2 in cancer cell lines. METHODS Proteins that interact with TRAIL-R2 initially were identified in pancreatic cancer cells by immunoprecipitation, mass spectrometry, and immunofluorescence analyses. Findings were validated in colon, renal, lung, and breast cancer cells. Functions of TRAIL-R2 were determined from small interfering RNA knockdown, real-time polymerase chain reaction, Drosha-activity, microRNA array, proliferation, differentiation, and immunoblot experiments. We assessed the effects of TRAIL-R2 overexpression or knockdown in human pancreatic ductal adenocarcinoma (PDAC) cells and their ability to form tumors in mice. We also analyzed levels of TRAIL-R2 in sections of PDACs and non-neoplastic peritumoral ducts from patients. RESULTS TRAIL-R2 was found to interact with the core microprocessor components Drosha and DGCR8 and the associated regulatory proteins p68, hnRNPA1, NF45, and NF90 in nuclei of PDAC and other tumor cells. Knockdown of TRAIL-R2 increased Drosha-mediated processing of the let-7 microRNA precursor primary let-7 (resulting in increased levels of mature let-7), reduced levels of the let-7 targets (LIN28B and HMGA2), and inhibited cell proliferation. PDAC tissues from patients had higher levels of nuclear TRAIL-R2 than non-neoplastic pancreatic tissue, which correlated with increased nuclear levels of HMGA2 and poor outcomes. Knockdown of TRAIL-R2 in PDAC cells slowed their growth as orthotopic tumors in mice. Reduced nuclear levels of TRAIL-R2 in cultured pancreatic epithelial cells promoted their differentiation. CONCLUSIONS Nuclear TRAIL-R2 inhibits maturation of the microRNA let-7 in pancreatic cancer cell lines and increases their proliferation. Pancreatic tumor samples have increased levels of nuclear TRAIL-R2, which correlate with poor outcome of patients. These findings indicate that in the nucleus, death receptors can function as tumor promoters and might be therapeutic targets.
Collapse
Affiliation(s)
- Verena Haselmann
- Division of Molecular Oncology, Institute for Experimental Cancer Research, University of Kiel, Kiel, Germany
| | - Alexandra Kurz
- Division of Molecular Oncology, Institute for Experimental Cancer Research, University of Kiel, Kiel, Germany
| | - Uwe Bertsch
- Institute of Immunology, University of Kiel, Kiel, Germany
| | - Sebastian Hübner
- Division of Molecular Oncology, Institute for Experimental Cancer Research, University of Kiel, Kiel, Germany
| | - Monika Olempska-Müller
- Division of Molecular Oncology, Institute for Experimental Cancer Research, University of Kiel, Kiel, Germany
| | - Jürgen Fritsch
- Institute of Immunology, University of Kiel, Kiel, Germany
| | - Robert Häsler
- Institute of Clinical Molecular Biology, University of Kiel, Kiel, Germany
| | - Andreas Pickl
- Division of Molecular Oncology, Institute for Experimental Cancer Research, University of Kiel, Kiel, Germany
| | - Hendrik Fritsche
- Division of Molecular Oncology, Institute for Experimental Cancer Research, University of Kiel, Kiel, Germany
| | - Franka Annewanter
- Division of Molecular Oncology, Institute for Experimental Cancer Research, University of Kiel, Kiel, Germany
| | - Christine Engler
- Division of Molecular Oncology, Institute for Experimental Cancer Research, University of Kiel, Kiel, Germany
| | - Barbara Fleig
- Division of Molecular Oncology, Institute for Experimental Cancer Research, University of Kiel, Kiel, Germany
| | - Alexander Bernt
- Division of Molecular Oncology, Institute for Experimental Cancer Research, University of Kiel, Kiel, Germany
| | - Christian Röder
- Division of Molecular Oncology, Institute for Experimental Cancer Research, University of Kiel, Kiel, Germany
| | | | | | - Charlotte Hauser
- Division of Molecular Oncology, Institute for Experimental Cancer Research, University of Kiel, Kiel, Germany; Clinic for General Surgery, Visceral, Thoracic, Transplantation and Pediatric Surgery, University of Kiel, Kiel, Germany
| | - Jan-Hendrik Egberts
- Clinic for General Surgery, Visceral, Thoracic, Transplantation and Pediatric Surgery, University of Kiel, Kiel, Germany
| | - Carola Heneweer
- Clinic for Diagnostic Radiology, University of Kiel, Kiel, Germany
| | - Anna Maria Rohde
- Center for Anatomy, Institute of Cell Biology and Neurobiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | | - Uwe Knippschild
- Department of General, Visceral and Transplantation Surgery, Centre of Surgery, University of Ulm, Ulm, Germany
| | | | - Dieter Adam
- Institute of Immunology, University of Kiel, Kiel, Germany
| | - Henning Walczak
- Centre for Cell Death, Cancer and Inflammation, University College London Cancer Institute, London, United Kingdom
| | - Stefan Schütze
- Institute of Immunology, University of Kiel, Kiel, Germany
| | - Ottmar Janssen
- Institute of Immunology, University of Kiel, Kiel, Germany
| | - F Gregory Wulczyn
- Center for Anatomy, Institute of Cell Biology and Neurobiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Harald Wajant
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Holger Kalthoff
- Division of Molecular Oncology, Institute for Experimental Cancer Research, University of Kiel, Kiel, Germany
| | - Anna Trauzold
- Division of Molecular Oncology, Institute for Experimental Cancer Research, University of Kiel, Kiel, Germany.
| |
Collapse
|
16
|
ZHU HONG, ZHAO FEN, YU SHUIJING, HE JIANPING, DENG LICONG, YI CHENG, HUANG YING. The synergistic effects of low-dose irinotecan and TRAIL on TRAIL-resistant HT-29 colon carcinoma in vitro and in vivo. Int J Mol Med 2012; 30:1087-94. [PMID: 22922573 DOI: 10.3892/ijmm.2012.1105] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Accepted: 07/23/2012] [Indexed: 11/05/2022] Open
|
17
|
Keller LC, Cheng L, Locke CJ, Müller M, Fetter RD, Davis GW. Glial-derived prodegenerative signaling in the Drosophila neuromuscular system. Neuron 2012; 72:760-75. [PMID: 22153373 DOI: 10.1016/j.neuron.2011.09.031] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2011] [Indexed: 11/15/2022]
Abstract
We provide evidence for a prodegenerative, glial-derived signaling framework in the Drosophila neuromuscular system that includes caspase and mitochondria-dependent signaling. We demonstrate that Drosophila TNF-α (eiger) is expressed in a subset of peripheral glia, and the TNF-α receptor (TNFR), Wengen, is expressed in motoneurons. NMJ degeneration caused by disruption of the spectrin/ankyrin skeleton is suppressed by an eiger mutation or by eiger knockdown within a subset of peripheral glia. Loss of wengen in motoneurons causes a similar suppression providing evidence for glial-derived prodegenerative TNF-α signaling. Neither JNK nor NFκβ is required for prodegenerative signaling. However, we provide evidence for the involvement of both an initiator and effector caspase, Dronc and Dcp-1, and mitochondrial-dependent signaling. Mutations that deplete the axon and nerve terminal of mitochondria suppress degeneration as do mutations in Drosophila Bcl-2 (debcl), a mitochondria-associated protein, and Apaf-1 (dark), which links mitochondrial signaling with caspase activity in other systems.
Collapse
Affiliation(s)
- Lani C Keller
- Department of Biochemistry and Biophysics, University of California, San Francisco, 1550 4th Street, Rock Hall 4th Floor North, San Francisco, CA 94143, USA
| | | | | | | | | | | |
Collapse
|
18
|
Kojima Y, Nakayama M, Nishina T, Nakano H, Koyanagi M, Takeda K, Okumura K, Yagita H. Importin β1 protein-mediated nuclear localization of death receptor 5 (DR5) limits DR5/tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL)-induced cell death of human tumor cells. J Biol Chem 2011; 286:43383-93. [PMID: 22020938 DOI: 10.1074/jbc.m111.309377] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)/death receptor 5 (DR5)-mediated cell death plays an important role in the elimination of tumor cells and transformed cells. Recently, recombinant TRAIL and agonistic anti-DR5 monoclonal antibodies have been developed and applied to cancer therapy. However, depending on the type of cancer, the sensitivity to TRAIL has been reportedly different, and some tumor cells are resistant to TRAIL-mediated apoptosis. Using confocal microscopy, we found that large amounts of DR5 were localized in the nucleus in HeLa and HepG2 cells. Moreover, these tumor cells were resistant to TRAIL, whereas DU145 cells, which do not have nuclear DR5, were highly sensitive to TRAIL. By means of immunoprecipitation and Western blot analysis, we found that DR5 and importin β1 were physically associated, suggesting that the nuclear DR5 was transported through the nuclear import pathway mediated by importin β1. Two functional nuclear localization signals were identified in DR5, the mutation of which abrogated the nuclear localization of DR5 in HeLa cells. Moreover, the nuclear transport of DR5 was also prevented by the knockdown of importin β1 using siRNA, resulting in the up-regulation of DR5 expression on the cell surface and an increased sensitivity of HeLa and HepG2 cells to TRAIL. Taken together, our findings suggest that the importin β1-mediated nuclear localization of DR5 limits the DR5/TRAIL-induced cell death of human tumor cells and thus can be a novel target to improve cancer therapy with recombinant TRAIL and anti-DR5 antibodies.
Collapse
Affiliation(s)
- Yuko Kojima
- Laboratory of Biomedical Imaging Research, Biomedical Research Center, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Cui DD, Huang Y, Mao SH, Chen SC, Qiu M, Ji LL, Yi C. Synergistic antitumor effect of TRAIL and adriamycin on the human breast cancer cell line MCF-7. Braz J Med Biol Res 2010; 42:854-62. [PMID: 19738990 DOI: 10.1590/s0100-879x2009000900013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2009] [Accepted: 06/18/2009] [Indexed: 02/05/2023] Open
Abstract
The aim of the present study was to determine the effect of the combination of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and adriamycin (ADM) on the human breast cancer cell line MCF-7 and to identify potential mechanisms of apoptosis. Cell viability was analyzed by the MTT assay and the synergistic effect was assessed by the Webb coefficient. Apoptosis was quantified using the annexin V-FITC and propidium iodide staining flow cytometry. The mRNA expression of TRAIL receptors was measured by RT-PCR. Changes in the quantities of Bax and caspase-9 proteins were determined by Western blot. MCF-7 cells were relatively resistant to TRAIL (IC50 >10 microg/mL), while MCF-7 cells were sensitive to ADM (IC50 <10 microg/mL). A subtoxic concentration of ADM (0.5 microg/mL) combined with 0.1, 1, or 10 microg/mL TRAIL had a synergistic cytotoxic effect on MCF-7 cells, which was more marked with the combination of TRAIL (0.1 microg/mL) and ADM (0.5 microg/mL). In addition, the combined treatment with TRAIL and ADM significantly increased cell apoptosis from 9.8% (TRAIL) or 17% (ADM) to 38.7%, resulting in a synergistic apoptotic effect, which is proposed to be mediated by up-regulation of DR4 and DR5 mRNA expression and increased expression of Bax and caspase-9 proteins. These results suggest that the combination of TRAIL and ADM might be a promising therapy for breast cancer.
Collapse
Affiliation(s)
- D D Cui
- West China Hospital, Sichuan University, Chengdu, China
| | | | | | | | | | | | | |
Collapse
|
20
|
Trail Receptors: Targets for Cancer Therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 615:127-58. [DOI: 10.1007/978-1-4020-6554-5_7] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
21
|
Mérino D, Lalaoui N, Morizot A, Solary E, Micheau O. TRAIL in cancer therapy: present and future challenges. Expert Opin Ther Targets 2007; 11:1299-314. [PMID: 17907960 PMCID: PMC2976473 DOI: 10.1517/14728222.11.10.1299] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Since its identification in 1995, TNF-related apoptosis-inducing ligand (TRAIL) has sparked growing interest in oncology due to its reported ability to selectively trigger cancer cell death. In contrast to other members of the TNF superfamily, TRAIL administration in vivo is safe. The relative absence of toxic side effects of this naturally occurring cytokine, in addition to its antitumoural properties, has led to its preclinical evaluation. However, despite intensive investigations, little is known in regards to the mechanisms underlying TRAIL selectivity or efficiency. An appropriate understanding of its physiological relevance, and of the mechanisms controlling cancer cells escape from TRAIL-induced cell death, will be required to optimally use the cytokine in clinics. The present review focuses on recent advances in the understanding of TRAIL signal transduction and discusses the existing and future challenges of TRAIL-based cancer therapy development.
Collapse
|
22
|
Bin L, Thorburn J, Thomas LR, Clark PE, Humphreys R, Thorburn A. Tumor-derived Mutations in the TRAIL Receptor DR5 Inhibit TRAIL Signaling through the DR4 Receptor by Competing for Ligand Binding. J Biol Chem 2007; 282:28189-94. [PMID: 17666396 DOI: 10.1074/jbc.m704210200] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
TRAIL (tumor necrosis factor-related apoptosis-inducing ligand) is a cytokine that preferentially induces apoptosis in tumor cells compared with normal cells through two receptors (DR4 and DR5). Somatic mutations in these receptors have been found in different kinds of cancer; however, it is poorly understood how the mutations affect signaling. We found that point mutations (L334F, E326K, E338K, and K386N) that were identified in human tumors result in the DR5 receptor losing its ability to form a functional death-inducing signaling complex and induce apoptosis. The mutant receptors also have a "dominant negative" effect whereby they inhibit the ability of TRAIL to induce apoptosis through functional DR4 receptors. This dominant negative mechanism is achieved through competition for TRAIL binding as shown by experiments where the ability of the mutant DR5 receptor to bind with the ligand was abolished, thus restoring TRAIL signaling through DR4. The inhibitory effect on signaling through the wild-type DR4 protein can be overcome if the inhibitory mechanism is bypassed by using a DR4-agonistic antibody that is not subject to this competition. This study provides a molecular basis for the use of specific therapeutic agonists of TRAIL receptors in people whose tumors harbor somatic DR5 mutations.
Collapse
Affiliation(s)
- Lianghua Bin
- Department of Pharmacology, University of Colorado at Denver and Health Sciences Center, Aurora, Colorado 80045, USA
| | | | | | | | | | | |
Collapse
|
23
|
Jin Z, El-Deiry WS. Distinct signaling pathways in TRAIL- versus tumor necrosis factor-induced apoptosis. Mol Cell Biol 2006; 26:8136-48. [PMID: 16940186 PMCID: PMC1636728 DOI: 10.1128/mcb.00257-06] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Trimeric tumor necrosis factor (TNF) binding leads to recruitment of TRADD to TNFR1. In current models, TRADD recruits RIP, TRAF2, and FADD to activate NF-kappaB, Jun N-terminal protein kinase (JNK), and apoptosis. Using stable short-hairpin RNA (shRNA) knockdown (KD) cells targeting these adaptors, TNF death-inducing signaling complex immunoprecipitation demonstrates competitive binding of TRADD and RIP to TNFR1, whereas TRAF2 recruitment requires TRADD. Analysis of KD cells indicates that FADD is necessary for Fas-L- or TRAIL- but not TNF-induced apoptosis. Interestingly, TRADD is dispensable, while RIP is required for TNF-induced apoptosis in human tumor cells. TRADD is required for c-Jun phosphorylation upon TNF exposure. RIP KD abrogates formation of complex II following TNF exposure, whereas TRADD KD allows efficient RIP-caspase 8 association. Treatment with TRAIL also induces formation of a complex II containing FADD, RIP, IKKalpha, and caspase 8 and 10, leading to activation of caspase 8. Our data suggest that TNF triggers apoptosis in a manner distinct from that of Fas-L or TRAIL.
Collapse
Affiliation(s)
- Zhaoyu Jin
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | |
Collapse
|
24
|
Wang S, El-Deiry WS. Inducible silencing of KILLER/DR5 in vivo promotes bioluminescent colon tumor xenograft growth and confers resistance to chemotherapeutic agent 5-fluorouracil. Cancer Res 2004; 64:6666-72. [PMID: 15374982 DOI: 10.1158/0008-5472.can-04-1734] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The candidate tumor suppressor KILLER/DR5 is a DNA damage-inducible p53-regulated death receptor for the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), a promising agent for cancer therapy. The majority of studies on KILLER/DR5 have been focused on its role in TRAIL-induced apoptosis. However, its contribution to the inhibition of tumor growth and its role as a determinant of chemosensitivity are poorly understood. In the present study, we have generated stable human colon cancer cell lines, in which the function of KILLER/DR5 was ablated using inducible RNA interference. Inducible silencing of KILLER/DR5 in vivo by exposure of mice to doxycycline led to accelerated growth of bioluminescent tumor xenografts and conferred resistance to the chemotherapeutic agent 5-fluorouracil. Our results suggest that KILLER/DR5 may be a critical determinant for tumorigenicity and chemosensitivity.
Collapse
Affiliation(s)
- Shulin Wang
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | |
Collapse
|
25
|
Long S, Wilson M, Bengtén E, William Clem L, Miller NW, Gregory Chinchar V. Identification and characterization of a FasL-like protein and cDNAs encoding the channel catfish death-inducing signaling complex. Immunogenetics 2004; 56:518-30. [PMID: 15375637 PMCID: PMC1364530 DOI: 10.1007/s00251-004-0701-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2004] [Indexed: 12/13/2022]
Abstract
To elucidate cytolytic mechanisms in the channel catfish, lysates from catfish lymphoid and fibroblast cell lines were screened by Western blot analysis using a panel of antibodies reactive with components of the mammalian apoptotic pathway. Strong reactivity with three proteins (approximate Mr 70,000, 37,000, and 15,000) was seen using an antibody targeted to mammalian Fas ligand (FasL). The sizes of the two smaller proteins are consistent with their tentative designation as membrane-bound (37,000 Mr) and soluble (15,000 Mr) FasL. Treatments known to induce FasL in mammalian systems (e.g., PMA/calcium ionophore, UV-irradiation) induced expression of the 37,000- Mr protein in catfish T-cell lines. Moreover, expression of the 37,000- Mr protein in clonal T cells was up-regulated by increasing cell density. At the nucleotide level, homologues of Fas receptor (FasR), FADD, and caspase 8 were identified and characterized. These gene products likely constitute the teleost equivalent of the death-inducing signaling complex (DISC). FADD was constitutively expressed in all (T, B, macrophage, and fibroblast) cell lines examined as well as in peripheral blood lymphocytes (PBL), whereas FasR and caspase 8 were expressed in all cell lines except CCO, a FasL-positive fibroblast line. In contrast to FasL, expression of FasR and caspase 8 was inversely proportional to cell density. Collectively these studies identified four membrane-proximal proteins involved in the initiation of apoptosis in channel catfish and suggest that mechanisms of cell-mediated cytotoxicity in teleosts are similar to those used by mammals.
Collapse
Affiliation(s)
- Scott Long
- Department of Microbiology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA e-mail: Tel.: +1-601-9841743 Fax: +1-601-9841708
| | - Melanie Wilson
- Department of Microbiology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA e-mail: Tel.: +1-601-9841743 Fax: +1-601-9841708
| | - Eva Bengtén
- Department of Microbiology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA e-mail: Tel.: +1-601-9841743 Fax: +1-601-9841708
| | - L. William Clem
- Department of Microbiology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA e-mail: Tel.: +1-601-9841743 Fax: +1-601-9841708
| | - Norman W. Miller
- Department of Microbiology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA e-mail: Tel.: +1-601-9841743 Fax: +1-601-9841708
| | - V. Gregory Chinchar
- Department of Microbiology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA e-mail: Tel.: +1-601-9841743 Fax: +1-601-9841708
| |
Collapse
|
26
|
Jin Z, McDonald ER, Dicker DT, El-Deiry WS. Deficient tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) death receptor transport to the cell surface in human colon cancer cells selected for resistance to TRAIL-induced apoptosis. J Biol Chem 2004; 279:35829-39. [PMID: 15155747 DOI: 10.1074/jbc.m405538200] [Citation(s) in RCA: 176] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Many tumor cell types are sensitive to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis. Incubation of TRAIL-sensitive cells with TRAIL invariably leads to resistant survivors even when high doses of TRAIL are used. Because the emergence of resistance to apoptosis is a major concern in successful treatment of cancer, and TRAIL survivors may contribute to therapeutic failure, we investigated potential resistance mechanisms. We selected TRAIL-resistant SW480 human colon adenocarcinoma cells by repeatedly treating them with high and/or low doses of TRAIL. The resulting TRAIL-resistant clones were not cross-resistant to Fas or paclitaxel. Expression of modulators of apoptosis was not changed in the resistant cells, including TRAIL receptors, cFLIP, Bax, Bid, or IAP proteins. Surprisingly, we found that DISC formation was deficient in multiple selected TRAIL-resistant clones. DR4 was not recruited to the DISC upon TRAIL treatment, and caspase-8 was not activated at the DISC. Although total cellular DR4 mRNA and protein were virtually identical in TRAIL-sensitive parental and TRAIL-resistant clones, DR4 protein expression on the cell surface was essentially undetectable in the TRAIL-resistant clones. Moreover, exogenous DR4 and KILLER/DR5 were not properly transported to the cell surface in the TRAIL-resistant cells. Interestingly, TRAIL-resistant cells were resensitized to TRAIL by tunicamycin pretreatment, which increased cell surface expression of DR4 and KILLER/DR5. Our data suggest that tumor cells may become resistant to TRAIL through regulation of the death receptor cell surface transport and that resistance to TRAIL may be overcome by the glycosylation inhibitor/endoplasmic reticulum stress-inducing agent tunicamycin.
Collapse
Affiliation(s)
- Zhaoyu Jin
- Laboratory of Molecular Oncology and Cell Cycle Regulation, Howard Hughes Medical Institute, Department of Medicine, Abramson Cancer Center, University of Pennsylvania School of Medicine, Philadelphia 19104, USA
| | | | | | | |
Collapse
|
27
|
Burns TF, Fei P, Scata KA, Dicker DT, El-Deiry WS. Silencing of the novel p53 target gene Snk/Plk2 leads to mitotic catastrophe in paclitaxel (taxol)-exposed cells. Mol Cell Biol 2003; 23:5556-71. [PMID: 12897130 PMCID: PMC166320 DOI: 10.1128/mcb.23.16.5556-5571.2003] [Citation(s) in RCA: 177] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Loss of p53 sensitizes to antimicrotubule agents in human tumor cells, but little is known about its role during mitosis. We have identified the Polo-like kinase family member serum inducible kinase (Snk/Plk2) as a novel p53 target gene. Snk/Plk2 mutagenesis demonstrated that its kinase activity is negatively regulated by its C terminus. Small interfering RNA (siRNA)-mediated Snk/Plk2 silencing in the presence of the mitotic poisons paclitaxel (Taxol) or nocodazole significantly increased apoptosis, similar to p53 mutations, which confer paclitaxel sensitivity. Furthermore, we have demonstrated that the apoptosis due to silencing of Snk/Plk2 in the face of spindle damage occurs in mitotic cells and not in cells that have progressed to a G(1)-like state without dividing. Since siRNA directed against Snk/Plk2 promoted death of paclitaxel-treated cells in mitosis, we envision a mitotic checkpoint wherein p53-dependent activation of Snk/Plk2 prevents mitotic catastrophe following spindle damage. Finally, these studies suggest that disruption of Snk/Plk2 may be of therapeutic value in sensitizing paclitaxel-resistant tumors.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents, Phytogenic/pharmacology
- Apoptosis
- Base Sequence
- Blotting, Northern
- Blotting, Western
- Cell Death
- Cell Line
- Chromatin/metabolism
- DNA Damage
- Dose-Response Relationship, Radiation
- Female
- Flow Cytometry
- G1 Phase
- Gene Silencing
- Genes, p53
- Green Fluorescent Proteins
- HeLa Cells
- Humans
- In Situ Hybridization
- Luciferases/metabolism
- Luminescent Proteins/metabolism
- Mice
- Mice, Transgenic
- Microtubules/drug effects
- Mitosis
- Models, Biological
- Paclitaxel/pharmacology
- Plasmids/metabolism
- Precipitin Tests
- Protein Structure, Tertiary
- RNA/metabolism
- RNA, Messenger/metabolism
- RNA, Small Interfering/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Serine Endopeptidases/genetics
- Temperature
- Time Factors
- Transcription Factors/genetics
- Transfection
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Timothy F Burns
- Laboratory of Molecular Oncology and Cell Cycle Regulation, Howard Hughes Medical Institute, Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | |
Collapse
|
28
|
Kim PKM, Park SY, Koty PP, Hua Y, Luketich JD, Billiar TR. Fas-associating death domain protein overexpression induces apoptosis in lung cancer cells. J Thorac Cardiovasc Surg 2003; 125:1336-1342. [PMID: 12830053 DOI: 10.1016/s0022-5223(02)73227-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Non-small cell lung cancers commonly develop resistance to radiation and chemotherapy, and they often present at stages beyond surgical resectability. Because current treatment modalities are inadequate, novel therapies are necessary to reduce the effects of the increasing incidence in pulmonary neoplasms. Fas-associating death domain protein is a central mediator of death receptor-initiated apoptosis that directly activates the caspase-8 protease. We hypothesized that overexpression of Fas-associating death domain protein would effectively eradicate lung cancer cells by induction of apoptosis. METHODS Cultured A549 alveolar carcinoma and NCI-H226 squamous carcinoma cells were exposed to increasing multiplicities of infection of a replication-deficient, adenoviral vector that expresses the wild-type murine Fas-associating death domain protein gene or control virus for 4 hours. Twenty-four hours later, cells were assessed for viability by crystal violet staining and caspase activation by microscopic analysis. Protein lysates were examined by Western blotting for expression of Fas-associating death domain protein and activated caspase-8. RESULTS Adenoviral infection with the wild-type murine Fas-associating death domain protein gene in A549 cells resulted in a dose-dependent expression of Fas-associating death domain protein and the appearance of cleaved, activated caspase-8. Increasing multiplicities of infection of the wild-type murine Fas-associating death domain protein gene, but not control adenovirus, was associated with increased cell death in A549 and NCI-H226 cells. The wild-type murine Fas-associating death domain protein gene infection of A549 cells at multiplicities of infection of 50 induced at least 10-fold increase in Fas-associating death domain protein levels and decreased viability by > 50% (n = 3; P <.001). CONCLUSION Overexpression of Fas-associating death domain protein induced dose-dependent cell death in A549 and NCI-H226 lung epithelial cancer cells. Expression of Fas-associating death domain protein results in activation of caspases, a hallmark of apoptosis. Delivery of the wild-type murine Fas-associating death domain protein gene to drug- and radiation-resistant lung cancer may be a novel method for therapy of non-small cell lung cancer.
Collapse
Affiliation(s)
- Peter K M Kim
- Department of Surgery Laboratories, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| | | | | | | | | | | |
Collapse
|
29
|
Abstract
The extrinsic cell death pathway is initiated upon ligand-receptor interactions at the cell surface including FAS ligand-FAS/APO1, TNF-TNF receptors, and TRAIL-TRAIL receptors. Abnormalities of various components of these pathways have been identified in human cancer including loss of FAS expression, deletion or loss of TRAIL receptor DR4, mutation of TRAIL receptor DR5, overexpression of TRAIL decoy TRID or overexpression of Fas decoy, as well as overexpression of the caspase activation inhibitor, FLIP. Death ligands have been explored as potential therapeutics in cancer therapy with some limitations in the case of FAS and TNF due to toxicities. TRAIL remains promising as a therapeutic and has potential for combination with chemo- or radio-therapy. The death receptor signaling pathways include cross-talk with the mitochondrial pathway and can in some cases be influenced by mitochondrial membrane potential changes or NF-kappaB. FLIP and BCL-XL expression may reduce sensitivity of cancer cells to combination therapies.
Collapse
Affiliation(s)
- Nesrin Ozören
- Department of Medicine, University of Pennsylvania School of Medicine, CRB 437A, 415 Curie Blvd., Philadelphia, PA 19104, USA
| | | |
Collapse
|
30
|
Bridgham JT, Wilder JA, Hollocher H, Johnson AL. All in the family: evolutionary and functional relationships among death receptors. Cell Death Differ 2003; 10:19-25. [PMID: 12655292 DOI: 10.1038/sj.cdd.4401174] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Over the last decade, significant progress has been made towards identifying the signaling pathways within mammalian cells that lead to apoptosis mediated by death receptors. The simultaneous expression of more than one death receptor in many, if not all, cell types suggests that functional innovation has driven the divergence of these receptors and their cognate ligands. To better understand the physiological divergence of the death receptors, a phylogenetic analysis of vertebrate death receptors was conducted based upon amino-acid sequences encoding the death domain regions of currently known and newly identified members of the family. Evidence is presented to indicate an ancient radiation of death receptors that predates the emergence of vertebrates, as well as ongoing divergence of additional receptors both within several receptor lineages as well as modern taxonomic lineages. We speculate that divergence among death receptors has led to their functional specialization. For instance, some receptors appear to be primarily involved in mediating the immune response, while others play critical roles during development and tissue differentiation. The following represents an evolutionary approach towards an understanding of the complex relationship among death receptors and their proposed physiological functions in vertebrate species.
Collapse
Affiliation(s)
- J T Bridgham
- Department of Biological Sciences and Walther Cancer Center, University of Notre Dame, IN 46556, USA
| | | | | | | |
Collapse
|
31
|
Hill JM, Vaidyanathan H, Ramos JW, Ginsberg MH, Werner MH. Recognition of ERK MAP kinase by PEA-15 reveals a common docking site within the death domain and death effector domain. EMBO J 2002; 21:6494-504. [PMID: 12456656 PMCID: PMC136945 DOI: 10.1093/emboj/cdf641] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2002] [Revised: 09/27/2002] [Accepted: 10/15/2002] [Indexed: 01/12/2023] Open
Abstract
PEA-15 is a multifunctional protein that modulates signaling pathways which control cell proliferation and cell death. In particular, PEA-15 regulates the actions of the ERK MAP kinase cascade by binding to ERK and altering its subcellular localization. The three-dimensional structure of PEA-15 has been determined using NMR spectroscopy and its interaction with ERK defined by characterization of mutants that modulate ERK function. PEA-15 is composed of an N-terminal death effector domain (DED) and a C-terminal tail of irregular structure. NMR 'footprinting' and mutagenesis identified elements of both the DED and tail that are required for ERK binding. Comparison of the DED-binding surface for ERK2 with the death domain (DD)-binding surface of Drosophila Tube revealed an unexpected similarity between the interaction modes of the DD and DED motifs in these proteins. Despite a lack of functional or sequence similarity between PEA-15 and Tube, these proteins utilize a common surface of the structurally similar DD and DED to recognize functionally diverse targets.
Collapse
Affiliation(s)
- Justine M Hill
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY 10021, USA
| | | | | | | | | |
Collapse
|
32
|
Seitz S, Wassmuth P, Fischer J, Nothnagel A, Jandrig B, Schlag PM, Scherneck S. Mutation analysis and mRNA expression of trail-receptors in human breast cancer. Int J Cancer 2002; 102:117-28. [PMID: 12385006 DOI: 10.1002/ijc.10694] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The chromosome region 8p12-p22 shows frequent allelic loss in a variety of human malignancies, including breast cancer (BC). The tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-receptors TRAIL-R1, -R2, -R3 and -R4 are located on 8p21-p22 and might be candidate tumor suppressor genes in this region. To evaluate the involvement of TRAIL receptors in breast carcinogenesis, we have analyzed the entire coding region of TRAIL-R2 and the death domain (DD) regions of TRAIL-R1 and -R4 for the detection of somatic mutations in a series of breast tumors, lymph node metastases and BC cell lines. Overall, we detected 1, 11 and 3 alterations in the TRAIL-R1, -R2 and -R4 genes, respectively. Although functional studies have not yet been performed, we assume that most of these alterations do not alter the function of TRAIL-receptors. Additionally, we analyzed individuals from BC families for the detection of TRAIL-R2 germline mutations. One alteration has been found in the Kozak consensus motif at position -4 with respect to the translation initiation AUG [1-4 (C-->A)]. We further studied the mRNA expression of TRAIL and the 4 TRAIL receptors. In BC cell lines, a strongly decreased mRNA expression of TRAIL, TRAIL-R1, -R3 and -R4 was found, whereas the expression of TRAIL-R2 was only slightly reduced. In breast tumors, a 1.2-3.6-fold reduction of mRNA signals of the 5 genes was observed. No correlation was found between the expression level of TRAIL and the receptor mRNAs and clinicopathologic variables and between the expression of TRAIL-R2 and TP53 mutation status and loss of heterozygosity (LOH) at 8p21-p22. Taken together, we cannot exclude the involvement of TRAIL-receptors in BC. Our mutation studies indicate that DD receptor mutations occur at low frequency and are not the primary cause for the altered mRNA expression of TRAIL and TRAIL-receptors in BC.
Collapse
Affiliation(s)
- Susanne Seitz
- Abteilung Tumorgenetik, Max-Delbrück-Centrum für Molekulare Medizin, Robert-Rössle-Strasse 10, 13092 Berlin, Germany.
| | | | | | | | | | | | | |
Collapse
|
33
|
Bridgham JT, Johnson AL. Avian TVB (DR5-like) death receptor expression in hen ovarian follicles. Biochem Biophys Res Commun 2002; 291:226-32. [PMID: 11846394 DOI: 10.1006/bbrc.2002.6429] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
TVB is an avian death domain-containing receptor belonging to the TNF receptor family and is proposed to be the ortholog to mammalian DR5. Although TVB receptor activation has been demonstrated to mediate apoptosis in chick embryo fibroblasts, there is essentially no information regarding TVB expression or regulation in the mature hen ovary, and in particular within the follicle granulosa layer where apoptosis is known to promote atresia. Significantly, the TVB receptor represents the fourth death domain-containing receptor (also including Fas, TNF-R1, and DR6) found to be expressed within hen granulosa cells. Levels of TVB expression are higher in prehierarchal follicles actively undergoing atresia compared to healthy follicles. However, increased TVB expression does not precede follicle death induced in vitro. Furthermore, TVB expression within granulosa cells is highest during the final stages of follicle development when follicles are not normally susceptible to undergoing atresia. These results provide evidence that TVB receptor signaling in the ovary may function in a capacity other than solely to mediate granulosa cell death and follicle atresia.
Collapse
Affiliation(s)
- Jamie T Bridgham
- Department of Biological Sciences and Walther Cancer Research Center, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | | |
Collapse
|
34
|
El-Deiry WS. Insights into cancer therapeutic design based on p53 and TRAIL receptor signaling. Cell Death Differ 2001; 8:1066-75. [PMID: 11687885 DOI: 10.1038/sj.cdd.4400943] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2000] [Accepted: 08/20/2001] [Indexed: 11/08/2022] Open
Abstract
Knowledge of the emerging pathways of cell death downstream of the p53 tumor suppressor and the TRAIL death-inducing ligand is suggesting ways to improve therapeutic design in cancer. In contrast to its unique G1 cell cycle arresting mechanism that is maintained by p21(WAF1), there are signals transduced by p53 to multiple apoptotic effectors perhaps due to the importance of apoptosis in suppressing tumors. There is evidence for cytoplasmic as well as mitochondrial activation of caspases downstream of p53, although in some cell lineages the signal ultimately involves the mitochondria. The TRAIL signaling pathway appears promising for therapeutic development despite sharing some similarities with the toxic Fas and TNF pathways, in terms of effector molecules and downstream signals. One of the key findings is the tissue specificity of cell death responses, a feature that could be exploited in strategies to widen the therapeutic window of combination cancer therapies. Efforts continue to develop p53-targeted cancer therapy, and novel clues to enhance or block specific effectors may improve therapeutic design.
Collapse
Affiliation(s)
- W S El-Deiry
- Laboratory of Molecular Oncology and Cell Cycle Regulation, Department of Medicine, Howard Hughes Medical Institute, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
35
|
Park WS, Lee JH, Shin MS, Park JY, Kim HS, Kim YS, Park CH, Lee SK, Lee SH, Lee SN, Kim H, Yoo NJ, Lee JY. Inactivating mutations of KILLER/DR5 gene in gastric cancers. Gastroenterology 2001; 121:1219-1225. [PMID: 11677215 DOI: 10.1053/gast.2001.28663] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
BACKGROUND & AIMS The KILLER/death receptor (DR)5 has been identified as a potent inducer of apoptosis, and mapped to chromosome 8p21-22, showing frequent allelic loss in gastric cancer. The p53-induced apoptosis is an important biological process to prevent the development of cancer, and is mediated in part by expression of KILLER/DR5 only in cells with wild-type p53 protein, but not in those lacking p53 function. The aim of this study was to determine whether genetic alterations of KILLER/DR5 could be involved in the tumorigenesis of gastric cancer. METHODS We analyzed the genetic alterations of KILLER/DR5 and p53 in 43 gastric cancers and the loss of function of KILLER/DR5 mutants, detected in this study. RESULTS We found 3 KILLER/DR5 missense mutations (7%), and 2 of them showed allelic loss in the remaining allele. Interestingly, all the mutants inhibit apoptotic cell death in transfection studies. We also found 6 p53 mutations (14%). Interestingly, the tumors containing the KILLER/DR5 mutation did not carry the p53 mutation. CONCLUSIONS These results suggest that inactivation of KILLER/DR5 caused by mutations of KILLER/DR5 may be one of the possible escaping mechanisms against KILLER/DR5-mediated apoptosis and that inactivating mutation of KILLER/DR5 may contribute to the development or progression of a subset of gastric cancers.
Collapse
Affiliation(s)
- W S Park
- Department of Pathology, College of Medicine, The Catholic University of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Burns TF, El-Deiry WS. Identification of inhibitors of TRAIL-induced death (ITIDs) in the TRAIL-sensitive colon carcinoma cell line SW480 using a genetic approach. J Biol Chem 2001; 276:37879-86. [PMID: 11486001 DOI: 10.1074/jbc.m103516200] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a potent inducer of apoptosis in tumor cell lines, whereas normal cells appear to be protected from its cytotoxic effects. Therefore TRAIL holds promise as a potential therapeutic agent against cancer. To elucidate some of the critical factors that contribute to TRAIL resistance, we performed a genetic screen in the human colon carcinoma cell line SW480 by infecting this TRAIL-sensitive cell line with a human placental cDNA retroviral library and isolating TRAIL-resistant clones. Characterization of the resulting clones for inhibitors of TRAIL-induced death (ITIDs) led to the isolation of c-FLIP(S), Bax inhibitor 1, and Bcl-XL as candidate suppressors of TRAIL signaling. We have demonstrated that c-FLIP(S) and Bcl-XL are sufficient when overexpressed to convey resistance to TRAIL treatment in previously sensitive cell lines. Furthermore both c-FLIP(S) and Bcl-XL protected against overexpression of the TRAIL receptors DR4 and KILLER/DR5. When c-FLIP(S) and Bcl-XL were overexpressed together in SW480 and HCT 116, an additive inhibitory effect was observed after TRAIL treatment suggesting that these two molecules function in the same pathway in the cell lines tested. Furthermore, we have demonstrated for the first time that a proapoptotic member of the Bcl-2 family, Bax, is required for TRAIL-mediated apoptosis in HCT 116 cells. Surprisingly, we have found that the serine/threonine protein kinase Akt, which is an upstream regulator of both c-FLIP(S) and Bcl-XL, is not sufficient when overexpressed to protect against TRAIL in the cell lines tested. These results suggest a key role for c-FLIP(S), Bcl-XL, and Bax in determining tumor cell sensitivity to TRAIL.
Collapse
Affiliation(s)
- T F Burns
- Laboratory of Molecular Oncology and Cell Cycle Regulation, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | |
Collapse
|
37
|
Abstract
Induction of apoptosis in tumor cells is a major goal for chemotherapy and radiation treatment strategies. However, disordered gene expression often leads to apoptosis resistance rendering tumor cells insensitive to various conventional treatments. TNF-related apoptosis-inducing ligand (TRAIL) is a recently identified cytokine of the TNF superfamily that induces apoptosis in tumor cells upon binding to different receptors. Remarkably, the majority of tumor cell lines are sensitive to TRAIL-induced apoptosis, while most nontransformed cell types are TRAIL-resistant. Furthermore, a combination treatment of TRAIL with ionizing irradiation or chemotherapeutic agents induces apoptosis in a highly synergistic manner, particularly in those cells that are otherwise resistant to a sole treatment. In contrast to other TNF members, TRAIL apparently does not exert overt systemic toxicity in murine and primate models, although unexpected concerns about a potential hepatotoxicity of TRAIL have been recently raised. While the molecular mechanisms of TRAIL sensitivity and resistance are poorly understood, TRAIL seems to be a promising biological agent for combination therapy with chemotherapeutic drugs or irradiation.
Collapse
Affiliation(s)
- J Held
- Department of Immunology and Cell Biology, University of Münster, Münster, Germany
| | | |
Collapse
|